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Abstract

The success of graph neural networks (GNNs)
provokes the question about explainability:

“Which fraction of the input graph is the most de-
terminant of the prediction?” Particularly, para-
metric explainers prevail in existing approaches
because of their more robust capability to deci-
pher the black-box (i.e., target GNNs). In this
paper, based on the observation that graphs typi-
cally share some common motif patterns, we pro-
pose a novel non-parametric subgraph matching
framework, dubbed MatchExplainer, to explore
explanatory subgraphs. It couples the target graph
with other counterpart instances and identifies the
most crucial joint substructure by minimizing the
node corresponding-based distance. Moreover,
we note that present graph sampling or node-
dropping methods usually suffer from the false
positive sampling problem. To alleviate this issue,
we design a new augmentation paradigm named
MatchDrop. It takes advantage of MatchExplainer
to fix the most informative portion of the graph
and merely operates graph augmentations on the
rest less informative part. Extensive experiments
on synthetic and real-world datasets show the
effectiveness of our MatchExplainer by outper-
forming all state-of-the-art parametric baselines
with significant margins. Results also demon-
strate that MatchDrop is a general scheme to be
equipped with GNNs for enhanced performance.
The code is available at https://github.
com/smiles724/MatchExplainer.
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1. Introduction
Graph neural networks (GNNs) have drawn broad interest
due to their success in learning representations of graph-
structured data, such as social networks (Fan et al., 2019),
knowledge graphs (Schlichtkrull et al., 2018), traffic net-
works (Geng et al., 2019), and molecular graphs (Gilmer
et al., 2017; Wu et al., 2023). Despite their remarkable
efficacy, GNNs lack transparency as the rationale of their
predictions is not easy for humans to comprehend. This
prohibits practitioners from not only gaining an understand-
ing of the network characteristics but correcting systematic
patterns of mistakes made by models before deploying them
in real-world applications.

Extensive studies have noticed this issue and great efforts
are devoted to explaining GNNs (Yuan et al., 2020b). Re-
searchers strive to answer questions like “What knowledge
of the input graph is the most dominantly important in the
model’s decision?” To this end, feature attribution and se-
lection (Selvaraju et al., 2017; Sundararajan et al., 2017;
Ancona et al., 2017) becomes a prevalent paradigm. They
distribute the model’s outcome prediction to the input graph
via gradient-like signals (Baldassarre & Azizpour, 2019;
Pope et al., 2019; Schnake et al., 2020), mask or attention
scores (Ying et al., 2019; Luo et al., 2020), or prediction
changes on perturbed features (Schwab & Karlen, 2019;
Yuan et al., 2021), and then choose a salient substructure as
the explanation.

Apart from them, more recent approaches prefer relying
on a deep learning network to parameterize the gener-
ation process of explanations (Vu & Thai, 2020; Wang
et al., 2021b). These learning-based mechanisms empir-
ically show superior accuracy than the above-mentioned
non-parametric ones. Some explainer models are optimized
toward local fidelity (Chen et al., 2018), such as GNNEx-
plainer (Ying et al., 2019), PGM-Explainer (Vu & Thai,
2020) and SubgraphX (Yuan et al., 2021). Meanwhile, sev-
eral others are committed to providing a global understand-
ing of the model prediction, including PGExplainer (Luo
et al., 2020), XGNN (Yuan et al., 2020a), and ReFine (Wang
et al., 2021b).

Despite the fruitful progress and the popular trend towards
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parametric explainers, we observe that different essential
subgraph patterns are shared by different groups of graphs,
which can be the key to deciphering the decision of GNNs.
These frequently occurring motifs contain rich semantic
meanings and indicate the characteristics of the whole graph
instance (Henderson et al., 2012; Zhang et al., 2020; Banjade
et al., 2021; Wu et al., 2023). For example, the hydroxide
group (-OH) in small molecules typically results in higher
water solubility and a carboxyl group (-COOH) usually con-
tributes to better stability and higher boiling points. Besides
that, the pivotal role of functional groups has also been
proven in protein structure prediction (Senior et al., 2020).

Inspired by this inspection, we propose to mine the ex-
planatory motif in a subgraph matching manner and de-
sign a novel non-parametric algorithm dubbed MatchEx-
plainer, whose workflow is depicted in Fig. 1. For each
pair of graphs, our MatchExplainer endeavors to explore
the most crucial joint substructure by minimizing their node
corresponding-based distance in the high-dimensional fea-
ture space. Then it marries the target graph iteratively with
other counterpart graphs in the reference set to seek poten-
tial explanatory subgraphs. Consequently, unlike traditional
explainers, the candidate explanation produced by MatchEx-
plainer can be non-unique for the same target graph instance.

Taking a step further, we leverage the metric of mutual infor-
mation from the information theory to analyze the working
principle of our MatchExplainer. To be specific, we de-
fine the explanation that contains all shared information
between paired graphs as sufficient explanation, while the
explanation that contains the shared and eliminates the non-
shared information as minimal sufficient explanation. We
prove that the minimal sufficient explanation can be used
to approximate the desired ground truth explanation with a
theoretical guarantee. This strong relationship also provides
a perspective for us to filter out the best-case substructure
from all candidate explanatory subgraphs. To be precise, we
propose to optimize the final candidate explanations by max-
imizing the difference in the prediction after the explanatory
subgraph is removed from the original graph.

Last but not least, we exhibit a bonus of our MatchExplainer
to be applied in enhancing the traditional graph augmenta-
tion methods. Though exhibiting strong power in preventing
over-fitting and over-smoothing, present graph sampling or
node-dropping mechanisms suffer from the false positive
sampling problem. That is, nodes or edges of the most infor-
mative substructure are accidentally dropped or erased but
the model is still required to forecast the original property,
which can be misleading. To alleviate this obstacle, we
take advantage of MatchExplainer and introduce a simple
technique called MatchDrop. Specifically, it first digs out
the explanatory subgraph by means of MatchExplainer and
keeps this part unchanged. Then the graph sampling or node
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Figure 1. The illustration of our proposed MatchExplainer. The ex-
planation GS is attained via subgraph matching between G and G′,
where we minimize the accumulated node-to-node distance in the
high-dimensional feature space in a greedy search manner. Since
several GS can be obtained by matching G to different counterpart
graphs G′ from the reference set DG , we seek to find the optimal
one by maximizing Equ. 10.

dropping is implemented solely on the remaining less infor-
mative part. As a consequence, the core fraction of the input
graph that reveals the label information is not affected and
the false positive sampling issue is effectively mitigated.

To summarize, we are the foremost to investigate the ex-
plainability of GNNs from the perspective of non-parametric
subgraph matching to the best of our knowledge. Extensive
experiments on synthetic and real-world applications demon-
strate that our MatchExplainer can find the explanatory sub-
graphs fast and accurately with state-of-the-art performance.
Additionally, we empirically show that our MatchDrop, a
pragmatic application of MatchExplainer, can serve as an
efficient way to promote conventional graph augmentation
methods.

2. Preliminary and Task Description
In this section, we begin with the description of the GNN
explanation task and briefly review the relevant background
of graph matching and graph similarity learning (GSL).

Explanations for GNNs. Let hY : G → Y denote the
well-trained GNN to be explained, which gives the pre-
diction Ŷ to approximate the ground truth Y . Without
loss of generality, we consider the problem of explaining
a graph classification task. Our goal is to find an explainer
hS : G → GS that discovers the subgraph GS from input
graph G as:

min
hS

R(hY ◦ hS(G), Ŷ ), s.t.|hS(G)| ≤ K, (1)

whereR(.) is the risk function such as a cross-entropy loss
or a mean squared error (MSE) loss, and K is a constraint
on the size of GS to attain a compact explanation. That is,
GS has at most K nodes.

Graph matching. As a classic combinatorial problem,
graph matching is known in general NP-hard (Loiola et al.,
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2007). They require expensive, complex, and imprac-
tical solvers, leading to inexact solutions (Wang et al.,
2020). Given two different graphs G1 = (V1, E1) and
G2 = (V2, E2) with N1 and N2 nodes respectively, the
matching between them can be generally expressed by the
quadratic assignment programming (QAP) form as (Wang
et al., 2019):

min
T∈{0,1}N1×N2

vec(T)TKvec(T), s.t.,T1 = 1, TT1 = 1,

(2)
where T is a binary permutation matrix encoding the
node correspondence, and 1 denotes a column vector with
all elements to be one. K is the so-called affinity ma-
trix (Leordeanu & Hebert, 2005), whose elements encode
the node-to-node and edge-to-edge affinity between G1 and
G2.

Graph similarity learning. GSL is a general framework
for graph representation learning that requires reasoning
about the structures and semantics of graphs (Li et al.,
2019). We need to produce the similarity score s(G1,G2)
between them. This similarity s(., .) is typically defined
by either exact matches for full-graph or sub-graph isomor-
phism (Berretti et al., 2001; Shasha et al., 2002), or some
measure of structural similarity such as the graph edit dis-
tance (Willett et al., 1998; Raymond et al., 2002). In our
setting, s(., .) depends entirely on whether these two graphs
belong to the same category or share very close properties.
Then for G1 and G2 with the same type, GSL seeks to maxi-
mize the mutual information between their representations
with the joint distribution p(G1,G2) as:

max
f1,f2

I(f1(G1), f2(G2), T ), (3)

where f1 and f2 are encoding functions. They can share
the same parameter (i.e., f1 = f2) or be combined into
one architecture. T is the random variable representing the
information required for a specific task, independent of the
model selection.

3. The MatchExplainer Approach
The majority of recent approaches lean on parametric net-
works to interpret GNNs, and some early methods for
GNN explanations are based on local explainability and
from a single-graph view (Ying et al., 2019; Baldassarre
& Azizpour, 2019; Pope et al., 2019; Schwab & Karlen,
2019). Regardless of this inclination, we argue that a non-
parametric graph-graph fashion can also excavate important
subgraphs and may lead to better explainability. In this
work, we introduce MatchExplainer to explain GNNs via
identifying the joint essential substructures by means of
subgraph matching (see Algorithm 1).

3.1. Theoretical Analysis of MatchExplainer

From the perspective of probability theory and information
theory, Equ. 1 is equivalent to maximizing the mutual infor-
mation between the input graph G and the subgraph GS in
the context of hY . Namely, the goal of an explainer is to
derive a small subgraph GS such that:

max
GS⊂G,|GS |≤K

I(GS , Th), (4)

where I(.) refers to the Shannon mutual information of two
random variables. Unlike T which is model-agnostic, Th
represents the knowledge learned by the GNN predictor hY
in a concrete downstream task. Notably, instead of merely
optimizing the information hidden in GS , another line of
research (Yuan et al., 2021) seeks to reduce the mutual
information between the remaining subgraph G − GS and
the original one G as:

min
GS⊂G,|GS |≤K

I(G − GS , Th). (5)

As an approximation of directly optimizing Equ. 4, the core
idea of MatchExplainer is to fetch another graph G′ that
shares the same predicted property as G (i.e., hY (G) =
hY (G′)) and then extract the most relevant part between
them as the explanations. To be specific, we aim to search
for the best counterpart G′ so that the mutual information be-
tween the input graph G and the subgraph GS is maximized
as:

max
G′∈DG ,G′ ̸=G

[
max

GS⊂G,|GS |≤K
I(GS ,G′, Th)

]
, (6)

where DG denotes the reference set consisting of all avail-
able graphs, and GS is obtained by subgraph matching be-
tween G and G′. Similar to the information bottleneck the-
ory (Tishby & Zaslavsky, 2015; Achille & Soatto, 2018) in
supervised learning, we can define the sufficient explanation
and minimal sufficient explanation of G with its counterpart
G′ ̸= G in the context of subgraph matching.

Definition 3.1 (Sufficient Explanation). Given G′, the
explanation GsufS of G is sufficient if and only if
I(GsufS ,G′, Th) = I(G,G′, Th).

The sufficient explanation GsufS of G keeps all joint informa-
tion with G′ related to the learned information Th. In other
words, GsufS contains all the shared information between
G and G′. Symmetrically, the sufficient explanation for G′
satisfies I(G′sufS ,G′, Th) = I(G,G′, Th).
Definition 3.2 (Minimal Sufficient Explanation). Given G′,
the sufficient explanation GminS of G is minimal if and only
if I(GminS ,G, Th) ≤ I(GsufS ,G, Th).

Among all sufficient explanations, the minimal sufficient
explanation GminS contains the least information about G
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with regards to the learned knowledge Th. Normally, it
is usually assumed that GminS only maintains the shared
information between G and G′, and eliminates other non-
shared one, i.e., I(GminS ,G|G′) = 0.

Theorem 3.3 (Task Relevant Information in Explanations).
(Wang et al., 2022a) Given G′, the minimal sufficient expla-

nation GminS contains less task-relevant information learned
by hY from input G than any other sufficient explanation
GsufS . Formally, we have:

I(G, Th) = I(GminS , Th) + I(G, Th|G′)

≥ I(GsufS , Th) = I(GminS , Th) + I(GsufS ,G, Th|G′)
≥ I(GminS , Th).

(7)

Theorem 3.3 indicates that the mutual information between
G and Th can be divided into two fractions. One is GminS ,
which is the interaction between G and G′ associated with
the learned knowledge Th. The other is determined by the
disjoint structure of G and G′ with respect to the learned in-
formation Th. Our subgraph matching is committed to max-
imizing I(GminS , Th), which is the lower bound of I(G, Th).
Notably, I(G, Th|G′) is not completely independent to
I(GminS , Th), but is instead the offset of I(GminS , Th) to
I(G, Th). Hence, if we increase I(GminS , Th), I(G, Th|G′)
is minimized simultaneously. Consequently, I(GminS , Th)
can be used to not only improve the lower bound of I(G, Th)
but approximate I(G, Th), which is exactly our final ex-
planatory object. This provides a firm theoretical founda-
tion for our MatchExplainer to mine the most explanatory
substructure via the subgraph matching approach.

3.2. Non-parametric Subgraph Exploration

Preamble. It is remarkable that our excavation of expla-
nations through subgraph matching has some significant
differences from either graph matching or GSL. On the one
hand, graph matching algorithms (Zanfir & Sminchisescu,
2018; Sarlin et al., 2020; Wang et al., 2020; 2021a) typically
establish node correspondence from a whole graph G1 to an-
other whole graph G2. However, we seek to construct partial
node correspondence between the subgraph of G1 and the
subgraph of G2. On the other hand, GSL concentrates on
the graph representations encoded by f1 and f2, as well as
the ground truth information T rather than the information
Th learned by the GNN predictor hY .

Besides, most existing graph matching architectures (Zanfir
& Sminchisescu, 2018; Li et al., 2019; Wang et al., 2020; Pa-
pakis et al., 2020; Liu et al., 2021a) are deep learning-based.
They utilize a network to forecast the relationship between
nodes or graphs, which has several flaws. For instance, the
network needs tremendous computational resources to be
trained. More importantly, its effectiveness is unreliable and

may fail in certain circumstances if the network is not deli-
cately designed. To overcome these limitations, we employ
a non-parametric subgraph matching paradigm, which is to-
tally training-free and fast to explore the most informatively
joint substructure shared by any pair of input instances.

Subgraph matching framework. We break the target
GNN hY into two consecutive parts: hY = ϕG ◦ ϕX ,
where ϕG is the aggregator to compute the graph-level
representation and predict the properties, and ϕX is the
feature function to update both the node and edge fea-
tures. Given a graph G with node features hi ∈ Rψv ,∀i ∈
V and edge features eij ∈ Rψe ,∀(i, j) ∈ E , the re-
newed output is calculated as {h′

i}i∈V , {e′ij}(i,j)∈E =

ϕX
(
{hi}i∈V , {eij}(i,j)∈E

)
, which is forwarded into ϕG

afterwards.

As analyzed before, our primary goal is to find a subgraph
GS with K nodes to maximize I(GS ,G′, Th). Due to the
hypothesis that the optimal counterpart G′ ought to share
the same explanatory substructure as G. Our target is equiv-
alent to optimize I(GS ,G′S , Th) with GS ⊂ G and G′S ⊂ G′.
There we utilize the node correspondence-based distance dG
as a substitution for measuring I(GS ,G′S , Th), the shared
learned information between GS and G′S . Then given a pair
of G and G′, dG is defined and minimized as follows:

min
GS⊂G,G′

S⊂G′
dG(GS ,G′S) =

min
GS⊂G,G′

S⊂G′

(
min

T∈Π(GS ,G′
S)

〈
T,DϕX

〉)
,

(8)

where DϕX is the matrix of all pairwise distances between
node features of GS and G′S . Its element is calculated as
DϕX

ij = dX(h′
i,h

′
j) ∀i ∈ V, j ∈ V ′, where dX is the stan-

dard vector space similarity such as the Euclidean distance
and the Hamming distance. The inner optimization is con-
ducted over Π(., .), which is the set of all matrices with
prescribed margins defined as:

Π(GS ,G′S) =
{
T ∈ {0, 1}K×K |T1 = 1, TT1 = 1

}
.

(9)
Due to the NP-hard nature of graph matching (Loiola et al.,
2007), we adopt the greedy strategy to optimize dG(GS ,G′S)
and attain the subgraph GS . It is worth noting that the greedy
algorithm does not guarantee to reach the globally optimal
solution (Bang-Jensen et al., 2004), but can yield locally
optimal solutions in a reasonable amount of time with the
complexity of O(K).

After that, we feed GS into hY and examine its correctness.
If hY (GS) = hY (G), then GS is regarded as the candidate
explanation. Otherwise, GS is abandoned since it cannot
recover the information required by hY to predict G.
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Algorithm 1 Workflow of MatchExplainer
Input: target GNN hY , graph G, reference set DG
Initialize an empty candidate list DS .
for G′ ∈ DG do
GS ← minGS⊂G,G′

S⊂G′ dG(GS ,G′S) in Equ. 8
if hY (GS) = hY (G) then

add GS to DS
end if

end for
G+S ← maxG′∈DS ,G′ ̸=G ∆G(G′, hY ) in Equ. 10
Return: G+S

Non-uniqueness of GNN explanations. Unlike prior
learning-based GNN explanation methods (Vu & Thai,
2020; Wang et al., 2021b; 2022b) that generate a unique
subgraph GS for G, our selection of GS varies according to
the choice of the counterpart G′ ∈ DG . Therefore, MatchEx-
plainer can provide many-to-one explanations for a single
graph G once a bunch of counterparts is given. This of-
fers a new understanding that the determinants for GNNs’
predictions are non-unique, and GNNs can gain correct pre-
dictions based on several different explanatory subgraphs of
the same size.

Optimization of GNN explanations. Since our Match-
Explainer is able to discover a variety of possible explana-
tory subgraphs, how to screen out the most informative
one becomes a critical issue. As indicated in Theorem 3.3,
I(GminS , Th) is the lower bound of I(G, Th), and their dif-
ference I(G, Th|G′) entirely depends on the selection of the
matching counterpart G′. Ideally, G′ ought to share the exact
same explanatory substructure with G, i.e., GS = G′S . Mean-
while, G conditioned on G′ is independent to the learned
knowledge Th, i.e., I(G, Th|G′) = 0. Therefore, there are
two distinct principles for selecting the counterpart graphs.

The first line is to seek G′ that has as close the explanatory
subgraph as possible to G. The second line is to ensure
that G conditioned on G′ maintains little information rele-
vant to the learned information Th. Nevertheless, without
sufficient domain knowledge regarding which substructure
is majorly responsible for the graph property, it would be
impossible for us to manually select the counterpart graph
G′ that satisfies GS ≈ G′S .

As a remedy, we consider optimizing an opposite objec-
tive described in Equ. 5. That is, we desire to minimize the
intersection between G−GS and Th, i.e., I(G−GS , Th). To-
wards this goal, we remove the extracted subgraph GS from
G and aspire to confuse GNNs’ predictions on the remaining
part G − GS . Mathematically, the optimal G′ maximizes the
difference between the prediction of the whole graph and
the prediction of the graph that is subtracted by GS . In other

words, we wish to retrieve the best explanation G+S via:

max
G′∈DS ,G′ ̸=G

∆G(G′, hY ) =

max
G′∈DS ,G′ ̸=G

[
hc

∗

Y (G)− hc
∗

Y (G − GS)
]
,

(10)

where c∗ is the ground truth class of G and GS is the substruc-
ture via subgraph matching with G′. DS is the candidate
subgraph set.

To summarize, given any graph G and a reference graph set
DG , we first acquire all possible subgraphs via matching G
to available counterparts inDG . After the pairwise subgraph
matching, we calculate their corresponding ∆G(., hY ) and
pick up the one that leads to the largest ∆G(., hY ) as the
optimal counterpart graph. Notably, not all graphs in DG
are qualified counterparts and there are several intuitive
conditions that G′ has to satisfy. First, G and G′ should
belong to the same category predicted by hY . Besides, G′
needs to have at least K nodes. Otherwise, GS would be
smaller than the given constrained size.

Effectiveness vs. efficiency. The time-complexity is al-
ways a vital topic to evaluate the practicability of explainers.
For our MatchExplainer, the size of the reference set, i.e.,
|DG |, plays a vital role in determining the time cost since the
total time cost is O(K|DG |). However, a limited number of
counterpart graphs can also prohibit it from exploring better
explanatory subgraphs. Thus, it is non-trivial to balance the
effectiveness and efficiency of MatchExplainer by choosing
an appropriate size of DG .

4. The MatchDrop Methodology
Prevention of the false positive sampling. Deep graph
learning faces unique challenges, such as feature data in-
completeness, structural data sparsity, and over-smoothing.
To address these issues, a growing number of data augmen-
tation techniques (Hamilton et al., 2017; Rong et al., 2019)
have been proposed in the graph domain and shown promis-
ing outcomes. Graph sampling and node dropping (Feng
et al., 2020; Xu et al., 2021) are two commonly used
mechanisms. However, most previous approaches are com-
pletely randomized, resulting in false positive sampling
and injecting spurious information into the training process.
For instance, 1,3-dinitrobenzene (C6H4N2O4) is a mutagen
molecule and its explanation is the NO2 groups (Debnath
et al., 1991). If any edge or node of the NO2 group is ac-
cidentally dropped or destroyed, the mutagenicity property
no longer exists. Therefore, it will misguide GNNs if the
original label is assigned to this molecular graph after node
or edge sampling.

To tackle this drawback, recall that our MatchExplainer of-
fers a convenient way to discover the most essential part
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MatchDrop (ours)
(Keep the necessary parts unchanged.)

Previous Graph Sampling Methods

Example: C6H4N2O4 Approaches Result

It leads to false positive 
sampling and does 
harm to the training.

The most informative 
part remains and the 
false positive sampling 
is forbidden.

Perturbation

(Completely random perturbation.)

NO2

H

N+ N+

H

H

O H
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Figure 2. Comparison between graph augmentation with and with-
out MatchDrop.

of a given graph. It is natural to keep this crucial portion
unchanged and only drop nodes or edges in the remaining
portion. Based on this idea, we propose a simple but ef-
fective method dubbed MatchDrop, which keeps the most
informative part of graphs found by our MatchExplainer
and alters the less informative part (see Fig. 2).

The procedure of our MatchDrop is described as follows.
To begin with, we train a GNN hY for several epochs until
it converges to an acceptable accuracy, which guarantees the
effectiveness of the subsequent subgraph selection. Then
for each graph G in training set Dtrain, we randomly select
another graph G′ ∈ Dtrain with the same class as the coun-
terpart graph. Afterwards, we explore its subgraph GS via
MatchExplainer with a retaining ratio ρ (i.e., |GS | = ρ|G|)
and use it as the model input to train hY .

Notably, similar to the typical image augmentation skills
such as rotation and flapping (Shorten & Khoshgoftaar,
2019), MatchDrop is a novel data augmentation technique
for GNN training. However, instead of randomly augment-
ing G, MatchDrop reserves the most informative part and
only changes the less important substructure. This signif-
icantly reduces the possibility of false positive sampling.
Additionally, unlike other learnable mechanisms to inspect
subgraphs, our MatchDrop is entirely parameter-free and,
therefore, can be deployed at any stage of the training pe-
riod.

Training objective. The training of GNNs is supervised
by the cross entropy (CE) loss. Suppose there are M classes
in total, then the loss takes the following form:

LS = − 1

|Dtrain|
∑

G∈Dtrain

M∑
c=1

YG log (hcY (hS(G, ρ))) , (11)

where hcY (.) indicates the predicted probability of GS to be
of class c and YG is the ground truth value. hS employs
MatchExplainer to mine the subgraph GS by matching G to
a randomly selected counterpart graph G′ in the training set
Dtrain with a pre-defined ratio ρ.

5. Experimental Analysis
5.1. Datasets and Experimental Settings

Following Wang et al. (2021b), we use four standard datasets
with various target GNNs.

• Molecule graph classification: MUTAG (Debnath et al.,
1991; Kazius et al., 2005) is a molecular dataset for the
graph classification problem. Each graph represents a
molecule with nodes for atoms and edges for bonds. The
labels are determined by their mutagenic effect on a bac-
terium. The well-trained Graph Isomorphism Network
(GIN) (Xu et al., 2018) has approximately achieved 82%
testing accuracy.

• Motif graph classification.: Wang et al. (2021b) create a
synthetic dataset, BA-3Motif, with 3000 graphs. They use
the Barabasi-Albert (BA) graphs as the base and attach
each base with one of three motifs: house, cycle, or grid.
We train an ASAP model (Ranjan et al., 2020) that realizes
a 99.75% testing accuracy.

• Handwriting graph classification: Knyazev et al. (2019)
transforms the MNIST images into 70K superpixel graphs
with at most 75 nodes for each graph. The nodes are su-
perpixels, and the edges are the spatial distances between
them. There are ten types of digital labels. We adopt a
Spline-based GNN (Fey et al., 2018) that gains around
98% accuracy in the testing set.

• Scene graph classification: Wang et al. (2021b) select
4443 pairs of images and scene graphs from Visual
Genome (Krishna et al., 2017) to construct the VG-5
dataset (Pope et al., 2019). Each graph is labeled with one
of five categories: stadium, street, farm, surfing, and for-
est. The regions of objects are represented as nodes, while
edges indicate the relationships between object nodes. We
train an AAPNP (Klicpera et al., 2018) that reaches 61.9%
testing accuracy.

We compare our MatchExplainer with several state-of-the-
art and popular explanation baselines, which are listed be-
low:

• SA (Baldassarre & Azizpour, 2019) directly uses the gra-
dients of the model prediction concerning the adjacency
matrix of the input graph as the importance of edges.

• Grad-CAM (Selvaraju et al., 2017; Pope et al., 2019)
uses the gradients of any target concept, such as the motif
in a graph flowing into the final convolutional layer, to
produce a coarse localization map highlighting the critical
regions in the graph for predicting the concept.

1These results are reproduced
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MUTAG VG-5 MNIST BA-3Motif
ACC-AUC ACC-AUC ACC-AUC ACC-AUC Recall@ 5

SA 0.769 0.769 0.559 0.518 0.243
Grad-CAM 0.786± 0.011 0.909± 0.005 0.581± 0.009 0.533± 0.003 0.212± 0.002
GNNExplainer 0.895± 0.010 0.895± 0.003 0.535± 0.013 0.528± 0.005 0.157± 0.002
PG-Explainer 0.631± 0.008 0.790± 0.004 0.504± 0.010 0.586± 0.004 0.293± 0.001
PGM-Explainer 0.714± 0.007 0.792± 0.001 0.615± 0.003 0.575± 0.002 0.250± 0.000
ReFine 0.955± 0.005 0.914± 0.001 0.636± 0.003 0.576± 0.0131 0.297± 0.0001

MatchExplainer 0.997 0.993 0.938 0.634 0.305
Relative Impro. 4.5% 8.6% 48.9% 8.1% 2.6%

Table 1. Comparisons of our MatchExplainer with other baseline explainers.

• GNNExplainer (Ying et al., 2019) optimizes soft masks
for edges and node features to maximize the mutual infor-
mation between the original predictions and new predic-
tions.

• PGExplainer (Luo et al., 2020) hires a parameterized
model to decide whether an edge is essential, which is
trained over multiple explained instances with all edges.

• PGM-Explainer (Vu & Thai, 2020) collects the pre-
diction change on the random node perturbations and
then learns a Bayesian network from these perturbation-
prediction observations to capture the dependencies
among the nodes and the prediction.

• ReFine (Wang et al., 2021b) exploits the pre-training and
fine-tuning idea to develop a multi-grained GNN explainer.
It has a global understanding of model workings and local
insights on specific instances.

As the ground-truth explanations are usually unknown, it
is tough to evaluate the excellence of explanations quanti-
tatively. There, we follow Wang et al. (2021b) and employ
the predictive accuracy (ACC@ρ) and Recall@N as the
metrics. Specifically, ACC@ρ measures the fidelity of the
explanatory subgraphs by forwarding them into the target
model and examining how well it recovers the target pre-
diction. ACC-AUC is reported as the area under the ACC
curve over different selection ratios ρ ∈ {0.1, 0.2, ..., 1.0}.
Recall@N is computed as EG [|Gs ∩ G∗S | / |G∗S |], where G∗S
is the ground-truth explanatory subgraph. Remarkably,
Recall@N is only suitable for BA3-motif since this dataset
is synthetic and the motifs are foregone.

5.2. Can MatchExplainer Find Better Explanations?

Quantitative results. To investigate the effectiveness of
MatchExplainer, we conduct broad experiments on four
datasets, and the comparisons are reported in Table 1. For
MUTAG, VG-5, and BA3-Motif, we exploit the full training
and validation data as the reference set. For MNIST, we
randomly select 10% available samples as the reference set
to speed up matching. It can be found that MatchExplainer

outperforms every baseline in all cases. Particularly, previ-
ous explainers fail to explain GNNs well in MNIST with
ACC-AUCs lower than 65%, but MatchExplainer can reach
as high as 93.8%. And if we use the whole training and
validation data in MNIST as the reference, its ACC-AUC
can increase to 97.2%. This phenomenon demonstrates the
advantage of subgraph matching in explaining GNNs when
the dataset has clear patterns of explanatory subgraphs. Ad-
ditionally, MatchExplainer also achieves significant relative
improvements over the strongest baseline by 8.6% and 8.1%
in VG-5 and BA3-Motif, respectively.

Furthermore, it is also worth noting that MatchExplainer re-
alizes nearly 100% ACC-AUCs in each task but BA-3Motif.
For BA-3Motif, we find that its predictive accuracy are
[0.31, 0.31, 0.31, 0.34, 0.49, 0.71, 0.97, 1.0, 1.0, 1.0] with
different selection ratios. This aligns with the fact that most
motifs in this task occupy a large fraction of the whole graph.
Once the selection ratio is greater than 0.7, MatchExplainer
can figure out the correct explanatory subgraph.

Visualization. In addition, we envision the explanations of
MatchExplainer on MUTAG in Appendix C for qualitative
evaluations. We also compare the efficiency of our Match-
Explainer with other parametric methods in Appendix 3. It
can be discovered that MatchExplainer enjoys a competitive
fast inference speed with no additional training cost, making
it possible for large-scale deployment.

5.3. Can MatchDrop Improve the Performance of
GNNs?

Implementations. We take account of two backbones:
GCN (Kipf & Welling, 2016), and GIN (Xu et al., 2018)
with a depth of 6. Similar to Rong et al. (2019), we adopt a
random hyper-parameter search for each architecture to en-
able more robust comparisons. There, DropNode stands for
randomly sampling subgraphs, which can be also treated as
a specific form of node dropping. False-positive drop (FP-
Drop) is the opposite operation of our MatchDrop, where the
subgraph sampling or node dropping is only performed in
the explanatory subgraphs while the rest remains the same.
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Dataset Backbone Original FPDrop DropNode PGDrop MatchDrop

MUTAG GCN 0.828± 0.004 0.803± 0.017 0.832± 0.008 0.825± 0.02 0.844±0.006
GIN 0.832± 0.003 0.806± 0.020 0.835± 0.009 0.828± 0.01 0.845±0.007

VG-5 GCN 0.619± 0.003 0.587± 0.014 0.623± 0.007 0.604± 0.002 0.638±0.008
GIN 0.621± 0.004 0.593± 0.018 0.622± 0.006 0.600± 0.004 0.630±0.003

MNIST GCN 0.982± 0.001 0.955± 0.008 0.982± 0.002 0.975± 0.003 0.986±0.002
GIN 0.988± 0.001 0.959± 0.005 0.989± 0.001 0.979± 0.002 0.990±0.001

Table 2. Testing accuracy (%) comparisons on different backbones with and without MatchDrop.

We add FPDrop as a baseline to help unravel the reason why
MatchDrop works. PGDrop is similar to MatchDrop, but
uses a fixed PGExplainer (Luo et al., 2020) to explore the
informative substructure. The selection ratios ρ for FPDrop,
PGDrop, and MatchDrop are all set as 0.95.

Overall results. Table 2 documents the performance on
all datasets except BA-3Motif, since its testing accuracy has
already approached 100%. It can be observed that Match-
Drop consistently promotes the testing accuracy for all cases.
Exceptionally, FPdrop imposes a negative impact over the
performance of GNNs. This indicates that false positive
sampling does harm to the conventional graph augmenta-
tion methods, which can be surmounted by our MatchDrop
effectively. On the other hand, PGDrop also gives rise to the
decrease of accuracy. One possible reason is that parameter-
ized explainers like PGExplainr are trained on samples that
GNNs predict correctly, so they are incapable to explore
explanatory subgraphs on unseen graphs that GNNs forecast
mistakenly.

6. Related Work
6.1. Explainability of GNNS

Interpretability and feature selection have been attached
to growing significance in demystifying complicated deep
learning models, and increasing interests have been ap-
pealed in explaining GNNs (Ying et al., 2019; Wu et al.,
2022). Despite fruitful progress, the study in this area is
still insufficient compared to the domain of images and
natural languages. Generally, there are two mainstream
lines of research. The widely-adopted one nowadays is the
parametric explanation method. They run a parameterized
model to dig out informative substructures or generate the
saliency maps. For example, GNNExplainer (Ying et al.,
2019) learns soft masks for each instance and applies them
to the adjacency matrix. PGExplainer (Luo et al., 2020)
collectively explains multiple samples with a probabilistic
graph generative model. XGNN (Yuan et al., 2020a) utilizes
a graph generator to output class-wise graph patterns to ex-
plain GNNs for each class. PGM-Explainer (Vu & Thai,
2020) proposes a Bayesian network on the pairs of graph
perturbations and prediction changes. The other line is the

non-parametric explanation methods, which do not involve
any additional trainable models. They employ some heuris-
tics like gradient-like scores obtained by backpropagation as
the feature contributions of a specific instance (Baldassarre
& Azizpour, 2019; Pope et al., 2019; Schnake et al., 2020).
As mentioned, the latter is usually less favored because their
performance is much poorer than the former parametric
methods. In contrast, our MatchExplainer procures state-of-
the-art results astonishingly.

6.2. Graph Augmentations

Data augmentation has recently attracted growing attention
in graph representation learning to counter issues like data
noise and data scarcity (Zhao et al., 2022). The related work
can be roughly broken down into feature-wise (Zhang et al.,
2017; Liu et al., 2021b; Taguchi et al., 2021), structure-
wise (You et al., 2020; Zhao et al., 2021a), and label-
wise (Verma et al., 2019) categories based on the augmen-
tation modality (Ding et al., 2022). Among them, many
efforts are raised to augment the graph structures. Com-
pared with adding or deleting edges (Xu et al., 2022), the
augmentation operations on node sets are more complicated.
A typical application is to promote the propagation of the
whole graph by inserting a supernode (Gilmer et al., 2017),
while Zhao et al. (2021b) interpolate nodes to enrich the
minority classes. On the contrary, some implement graph
or subgraph sampling by dropping nodes for different pur-
poses, such as scaling up GNNs (Hamilton et al., 2017),
enabling contrastive learning (Qiu et al., 2020), and pro-
hibiting over-fitting and over-smoothing (Rong et al., 2019).
Nonetheless, few of those graph sampling or node dropping
approaches manage to find augmented graph instances from
the input graph that best preserve the original properties.

7. Conclusion
This paper proposes a promising subgraph matching tech-
nique called MatchExplainer for GNN explanations. Dis-
tinct from the popular trend of using a parameterized net-
work that lacks interpretability, we design a non-parametric
algorithm to search for the most informative joint subgraph
between a pair of graphs with theoretical guarantees. Fur-
thermore, we combine MatchExplainer with the classic
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graph augmentation method and show its great capacity in
ameliorating the false positive sampling challenge. Experi-
ments convincingly demonstrate the efficacy of our Match-
Explainer by winning over parametric approaches with sig-
nificant margins. Our work hopes to push the frontier of
non-parametric methods to explain deep learning models.
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A. The Greedy Algorithm for Subgraph Matching
Here we provide the pseudo-code of subgraph matching in a greedy way. Given two graphs G and G′, we first feed them to a
GNN hY and obtain their corresponding node features as {hi}i∈V and {h′

i}i∈V′ . Our goal is to find subgraphs GS and G′S
such that dG(GS ,G′S) is minimized.

Algorithm 2 Greedy Algorithm to Explore Shared Subgraphs
Input: node features {hi}i∈V and {h′

i}i∈V′ , subgraph size K
Initialize an empty list g to store the selected nodes.
Compute the distance matrix DϕX , where DϕX

ij = dX(h′
i,h

′
j)∀i ∈ V,∀j ∈ V ′.

for t = 1, ...,K do
(i, j)← mini∈V,j∈V′ DϕX

ij ,
add i to g,
remove i from V ,
remove j from V ′,

end for
Return: g

B. Experimental Details and Additional Results
Explaining GNNs. All experiments are conducted on a single A100 PCIE GPU (40GB). For the parametric methods
containing GNNExplainer, PGExplainer, PGM-Explainer, and Refine, we use the reported performance in Wang et al.
(2021b). Regarding the re-implementation of Refine in BA-3Motif, we use the original code with the same hyperparameters,
and we adopt Adam optimizer (Kingma & Ba, 2014) and set the learning rate of pre-training and fine-tuning as 1e-3 and
1e-4, respectively.

Graph augmentations. All experiments are also implemented on a single A100 PCIE GPU (40GB). We employ three sorts
of different GNN variants (GCN, GAT, and GIN) to fit these datasets and verify the efficacy of various graph augmentation
methods. We employ Adam optimizer for model training. For MUTAG, the batch size is 128, and the learning rate is 1e-3.
For BA3-Motif, the batch size is 128, and the learning rate is 1e-3. For VG-5, the batch size is 256, and the learning rate is
0.5 * 1e-3. We fix the number of epochs to 100 for all datasets.

Efficiency studies. We compute the average inference time cost for each dataset with different methods to obtain
explanations of a single graph. We also count the overall training and inference time expenditure and summarize the results
in Table 3. Specifically, we train GNNExplainer and PG-Explainer for 10 epochs, and pre-train ReFine for 50 epochs before
evaluation. It can be observed that though prior approaches enjoy fast inference speed, they suffer from long-term training
phases. As an alternative, our MatchExplainer is completely training-free. When comparing the total time, MatchExplainer
is the least computationally expensive in MUTAG, VG-5, and MNIST. However, as most motifs in BA-3Motif are large-size,
MatchExplainer has to traverse a large reference set to obtain appropriate counterpart graphs, which unavoidably results in
spending far more time.

C. Explanations for Graph Classification Models
In this section, we report visualizations of explanations in Figure 3.
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Table 3. Efficiency studies of different methods (in seconds).

Method Phase MUTAG VG-5 MNIST BA-3Motif

GNNExplainer
Training 186.0 1127.2 1135.4 66.1

Inference (per graph) 1.290 0.565 0.732 0.517
Training + Inference (total) 703.4 1644.6 1782.1 271.6

PG-Explainer
Training 186.3 286.3 1154.1 112.4

Inference (per graph) 0.056 0.094 0.025 0.020
Training + Inference (total) 208.6 309.5 1162.1 120.4

ReFine
Training 1191.6 1933.3 5025.8 763.0

Inference (per graph) 0.068 0.107 0.026 0.027
Training + Inference (total) 1218.9 1959.7 5051.2 773.8

MatchExplainer
Training – – – –

Inference (per graph) 0.485 0.732 0.682 7.687
Training + Inference (total) 194.6 180.3 667.8 224.7

Prediction:

Mutagenic

Prediction:

Non-

mutagenic

Figure 3. Explanatory subgraphs in Mutagenicity, where 50% nodes are highlighted.
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