
Towards Understanding Generalization of Macro-AUC in Multi-label Learning

Guoqiang Wu 1 Chongxuan Li 2 Yilong Yin 1

Abstract
Macro-AUC is the arithmetic mean of the class-
wise AUCs in multi-label learning and is com-
monly used in practice. However, its theoreti-
cal understanding is far lacking. Toward solv-
ing it, we characterize the generalization prop-
erties of various learning algorithms based on
the corresponding surrogate losses w.r.t. Macro-
AUC. We theoretically identify a critical factor
of the dataset affecting the generalization bounds:
the label-wise class imbalance. Our results on
the imbalance-aware error bounds show that the
widely-used univariate loss-based algorithm is
more sensitive to the label-wise class imbalance
than the proposed pairwise and reweighted loss-
based ones, which probably implies its worse per-
formance. Moreover, empirical results on various
datasets corroborate our theory findings. To estab-
lish it, technically, we propose a new (and more
general) McDiarmid-type concentration inequal-
ity, which may be of independent interest.

1. Introduction
Multi-Label Learning (MLC) (McCallum, 1999) is an im-
portant learning task in machine learning where each in-
stance might be associated with multiple labels. It has
been widely applied in various areas, e.g., natural lan-
guage processing (Schapire & Singer, 2000), computer
vision (Carneiro et al., 2007), and bioinformatics (Elis-
seeff & Weston, 2001). Due to the complexity of MLC
and the diverse demands of different scenarios, various
measures (Zhang & Zhou, 2014; Wu & Zhou, 2017) have
been developed for a comprehensive evaluation, e.g., Ham-
ming loss, ranking loss, and subset accuracy. Among them,
Macro-AUC (Zhang & Zhou, 2014) is a widely-used mea-
sure in practice. Informally, it is the arithmetic mean of the
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class-wise AUC measures, which is the focus of this paper.

Macro-AUC (and many other measures) in MLC are dis-
continuous and non-convex, which makes that optimizing
them directly can lead to NP-hard problems (Arora & Barak,
2009). Thus, many surrogate losses are used in practice for
computational efficiency. Empirically, many surrogate loss-
based learning algorithms are commonly evaluated in terms
of Macro-AUC, including the widely-used surrogate uni-
variate loss-based algorithms (Boutell et al., 2004; Wu &
Zhu, 2020) that originally aim to optimize the Hamming
loss. Theoretically, however, the understanding is far lack-
ing. To take a step towards solving it, this paper attempts to
formally answer the following question:

What is the learning guarantee of the widely-used surro-
gate univariate loss-based algorithms w.r.t. the Macro-
AUC?

To answer the above question, we propose an analytical
framework to characterize the generalization properties of
learning algorithms w.r.t. the Macro-AUC. Inspired by the
theory analyses, we also propose one pairwise surrogate
loss and one reweighted univariate loss for Macro-AUC.
Theoretically, we analyze the learning guarantees of algo-
rithms with all three losses. We theoretically identify the
label-wise class imbalance, which is a factor of the dataset
in MLC (Tarekegn et al., 2021; Zhang et al., 2020b), plays
a critical role in these generalization bounds.

Specifically, the pairwise loss-based learning algorithmApa

has a label-wise class imbalance-aware leaning guarantee
of O ( 1√

n
( 1
K ∑

K
k=1

√
1
τk
)) (see Table 1), where n is the

sample size, K is the label size, and τk ∈ [
1
n
, 1
2
] character-

izes the k-th label class imbalance level. The smaller τk,
the higher the imbalance level. In contrast, the widely-used
univariate loss-based algorithm Au1 has an error bound
of O ( 1

τ∗
S

√
n
( 1
K ∑

K
k=1

√
1
τk
)), where τ∗S = argmink∈[K] τk.

Thus, we can observe thatAu1 is more sensitive to the label-
wise class imbalance than Apa, which implies that Apa

would probably perform better than Au1 practically, espe-
cially when 1

τ∗
S

is large, which often occurs in real datasets
of MLC. Note that, computationally, Apa can lead to a com-
plexity of O(n2K), which is worse thanAu1 (i.e., O(nK)),
and it can be prohibitively costly when the sample size n
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Table 1. Summary of the main theoretical results. The contributions of this paper are highlighted in red.

Algorithm Surrogate loss Generalization bound Computation

A
pa pairwise (Lpa) R̂pa

S (f) +O (
1
√

n
(

1
K ∑

K
k=1

√
1
τk
)) O(n2K)

A
u1 (Boutell et al., 2004) univariate (Lu1 ) 1

τ∗
S
R̂u1

S (f) +O (
1

τ∗
S

√
n
(

1
K ∑

K
k=1

√
1
τk
)) O(nK)

A
u2 reweighted univariate (Lu2 ) R̂u2

S (f) +O (
1
√

n
(

1
K ∑

K
k=1

√
1
τk
)) O(nK)

is large. Interestingly, our proposed reweighted univariate
loss-based algorithm Au2 has a generalization bound of
O ( 1√

n
( 1
K ∑

K
k=1

√
1
τk
)), which is nearly the same as Apa.

This probably implies the performance superiority of Au2

over Au1 , as well as the computational efficiency. Finally,
empirical results corroborate our theory findings.

Technically, since optimizing Macro-AUC potentially in-
volves learning with dependent examples, the existing gener-
alization analytical techniques (Wu & Zhu, 2020; Wu et al.,
2021) for other measures in MLC cannot be applied, making
it more challenging. Following the technique in Bipartite
Ranking (BR, or equivalently AUC maximization in bi-
nary classification) (Usunier et al., 2005; Amini & Usunier,
2015), we extend it to Macro-AUC maximization in MLC.
Note that the technique in BR cannot be trivially applied
in MLC due to the multiple labels (or tasks) property of
MLC.1 Thus, we propose general techniques that include
a new McDiarmid-type concentration inequality and a gen-
eral generalization bound of learning multiple tasks with
graph-dependent examples, which may be of independent
interest. (See Appendix A for details). Our generalization
analyses on the Macro-AUC maximization in MLC can be
viewed as an application of these general techniques.

2. Preliminaries
Notations. Let boldfaced lower and upper letters denote the
vector (e.g., a) and matrix (e.g., A), respectively. For a ma-
trix A, ai, aj , and aij denote its i-th row, j-th column and
(i, j)-th element, respectively. For a vector a, ai denotes its
i-th element. Let [K] denote the set {1, . . . ,K}. For a set,
∣ ⋅ ∣ denotes its cardinality. [[⋅]] denotes the indicator function,
i.e., it returns 1 if the proposition holds and 0 otherwise.

2.1. Problem Setting

Let x ∈ X ⊂ Rd and y ∈ Y ⊂ {−1,+1}K denote the input
and output respectively, where d is the feature dimension,
and K is the label size. yk = 1 (or −1) indicates that the
associated k-th label is relevant (or irrelevant). Given a

1Note that one may use the union bound to combine the original
bounds in BR to get the desired bound w.r.t. Macro-AUC in MLC,
which would lead to a loosely bound involving a term log(K

δ
).

training set S = {(xi,yi)}
n
i=1 of n i.i.d. samples drawn

from a distribution P over X ×Y , the original goal of MLC
is to learn a multi-label classifier H ∶ Rd → {−1,+1}K .

To solve MLC, a standard approach is first to learn a vector-
based score function (or predictor) f = [f1, . . . , fK] ∶ X →
RK from a hypothesis space F and then get the classifier
H by a thresholding function. A typical goal in MLC is to
learn the best predictor from the finite training data in terms
of some ranking-based measure, which is usually called
Multi-label Ranking (Dembczynski et al., 2012; Wu et al.,
2021), and this is our focus in this paper.

2.2. Evaluation Measure

Many evaluation measures have been developed to evaluate
the performance of different algorithms. Here we focus on
the common measure Macro-AUC, which macro-averages
the AUC measure across all class labels. Given a dataset S
and a predictor f ∈ F , Macro-AUC is defined as follows:2

1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

[[fk(xp) > fk(xq)]],

where S+k (or S−k ) denotes the relevant (or irrelevant) in-
stance index set for the label k.

Maximizing Macro-AUC is equivalent to minimizing the
following objective (i.e., one minus Macro-AUC):

1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

L0/1(xp,xq, fk), (1)

where the 0/1 loss function is defined as

L0/1(x
+,x−, fk) = [[fk(x

+
) ≤ fk(x

−
)]], (2)

in which x+ (or x−) denotes a relevant (or irrelevant) input
for the label k.

2Note that here we do not adopt another common form w.r.t.
the equality (i.e., [[fk(xp) ≥ fk(xq)]]), in order to avoid the trial
zero hypothesis f . Besides, these two forms are nearly the same
practically in evaluating algorithms.
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2.3. Risk

Since Macro-AUC (or the 0/1 loss function) is discontin-
uous and non-convex, optimizing it directly would lead to
NP-hard problem (Arora & Barak, 2009). Practically, one
often seeks (convex) surrogate losses for computational ef-
ficiency. Let Lϕ ∶ X × X × Fk → R+ denote a surrogate
loss function where Fk = {fk ∶ X → R} and we will dis-
cuss its specific form in the next section. For a predictor
f ∈ F , the true (0/1) generalization (or expected) risk w.r.t.
Macro-AUC is defined as

R0/1(f) =
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[L0/1(xp,xq, fk)] ,

where the conditional distribution P +k = P (x∣yk = 1) and
P −k = P (x∣yk = −1). Besides, the surrogate empirical
and generalization risks w.r.t. Lϕ are defined as follows,
respectively:

R̂ϕ
S(f) =

1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

Lϕ(xp,xq, fk),

Rϕ(f) = E
S
[R̂ϕ

S(f)] . (3)

Note that we do not define the surrogate generalization risk
as the following common form

1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

Lϕ(xp,xq, fk). (4)

This is because that Eq.(3) is more general than Eq.(4) where
Eq.(3) can cover the surrogate loss Lϕ depending on the
training dataset S while Eq.(4) cannot.3 Besides, they are
equal for certain losses independent of S.

3. Methods
In this section, we present the considered surrogate losses
and their corresponding learning algorithms.

3.1. Surrogate Losses

To optimize Macro-AUC, it is natural to use the following
(surrogate) pairwise loss:

Lpa(x
+,x−, fk) = ℓ (fk(x

+
) − fk(x

−
)) , (5)

where the base loss function ℓ(t) could be many popular
(margin-based) loss functions, e.g., the hinge loss ℓ(t) =

3Note that, the aim we define Eq.(3) is for the convenience of
analyses for Lu1 and finally to get the bounds where terms only
depend on the dataset. If we define the common form, we will
eventually get the bounds involving the term depending on the
distribution.

max(0,1−t), the logistic function ℓ(t) = log2(1+exp(−t)),
and so on. A natural property of the base loss is that it is
an upper bound of the original 0/1 loss, i.e., ℓ(t) ≥ [[t ≤ 0]].
Note that minimizing this pairwise loss-based risk leads
to a computational complexity of O(n2), which could be
prohibitively costly when the sample size n is large.4

The widely-used univariate loss that originally aims to opti-
mize the Hamming Loss measure (Boutell et al., 2004; Wu
& Zhu, 2020), could be also viewed as a surrogate loss Lu1

for Macro-AUC. Its original empirical risk can be written
as:

R̂u1

S (f) =
1

K

K

∑
k=1

1

n

n

∑
i=1

ℓ(yikfk(xi)) =
1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣
×

∑
(p,q)∈S+

k
×S−

k

(
∣S+k ∣

n
ℓ(fk(xp)) +

∣S−k ∣

n
ℓ(−fk(xq))) .

Thus, we can define this surrogate univariate loss Lu1 w.r.t.
Macro-AUC as follows:

Lu1(x
+,x−, fk) =

∣S+k ∣

n
ℓ (fk(x

+
)) +

∣S−k ∣

n
ℓ (−fk(x

−
)) .

(6)

Note that this surrogate loss cannot strictly upper bound the
0/1 loss, i.e., L0/1 ≰ Lu1 . The upper bound property of the
surrogate loss w.r.t. the 0/1 loss is critical to provide its
generalization analysis w.r.t. the 0/1 loss and we discuss it
in detail later. Besides, note that we cannot define the gener-
alization risk w.r.t. Lu1 by Eq.(4) due to its dependency on
the dataset S.

To upper bound the 0/1 loss (i.e., L0/1), here we propose a
new reweighted univariate surrogate loss Lu2 with compu-
tational efficiency, which is defined as below:

Lu2(x
+,x−, fk) = ℓ (fk(x

+
)) + ℓ (−fk(x

−
)) . (7)

Then, we can write its empirical risk as

R̂u2

S (f) =
1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

Lu2(xp,xq, fk)

=
1

K

K

∑
k=1

n

∑
i=1
([[yik = 1]]

1

∣S+k ∣
ℓ(fk(xi)) +

[[yik ≠ 1]]
1

∣S−k ∣
ℓ(−fk(xi))).

We can see that, computationally, minimizing the empirical
risk w.r.t. Lu2 could lead to a complexity of O(n), which
is the same as Lu1 . Intuitively, this reweighted loss could
be seen as a cost-sensitive loss that optimizes for balanced
accuracy.

There are some relationships between these losses and we
will discuss them thoroughly in the subsequent section.

4Note that there are possible ways to accelerate it for certain
base losses.
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3.2. Learning Algorithm

In the subsequent analyses, we focus on the kernel-based
learning algorithms, which have been widely used in prac-
tice (Elisseeff & Weston, 2001; Boutell et al., 2004; Hariha-
ran et al., 2010; Tan et al., 2020; Wu et al., 2020a) and in
theory (Wu & Zhu, 2020; Wu et al., 2021) in MLC. Note
that our subsequent analyses can be extended to other forms
of the hypothesis space, e.g., neural networks (Anthony &
Bartlett, 1999). Let κ ∶ X ×X → R be a Positive Definite
Symmetric (PDS) kernel and denote its induced reproduc-
ing kernel Hilbert space (RKHS) as H. Let Φ ∶ X → H
be a feature mapping associated with κ. The considered
kernel-based hypothesis class can be defined as

F = {x↦W⊺Φ(x) ∶W = (w1, . . . ,wK)
⊺, ∥wk∥ ≤ Λ},

(8)

where ∥wk∥ denotes ∥wk∥H for convenience.

Here we consider the following three regularized learning
algorithms with the aforementioned corresponding surrogate
losses:

A
pa
∶ min

W
R̂pa

S (f) + λ∥W∥
2,

A
uj ∶ min

W
R̂

uj

S (f) + λ∥W∥
2, j = 1,2,

where λ denotes a trade-off hyper-parameter and ∥W∥ de-
notes ∥W∥H,2 = (∑

c
j=1 ∥wj∥

2
H)

1/2 for convenience.

4. Theoretical Results
In this section, we mainly introduce the generalization re-
sults of the aforementioned learning algorithms with differ-
ent surrogates w.r.t. the Macro-AUC measure, where the
proofs of related lemmas, theorems, and corollaries are in
Appendix B.

Technically, to establish it, we propose new techniques in-
cluding a new McDiarmid-type inequality. (Please see Sec-
tion 4.5 for the proof sketch and Appendix A for details).

Firstly, we give the following definition to characterize the
label-wise class imbalance in MLC.

Definition 1 (Label-wise class imbalance). Given a
dataset S, define the following factor to characterize the
label-wise class imbalance level for each label k ∈ [K]:

τk =
min{∣S+k ∣, ∣S

−
k ∣}

n
,

where τk ∈ [
1
n
, 1
2
]. Besides, define τ∗S = argmink∈[K] τk.

From the above definition, we can see, the smaller τk, the
higher the label-wise class imbalance level. Besides, for the

convenience of following discussions, we give the following
definition.5

Definition 2 (Label-wise class balanced and extremely
imbalanced dataset). Given a dataset S, we say that it is
label-wise class balanced (or extremely class imbalanced)
if ∀k ∈ [K], τk = 1

2
(or τk = 1

n
) holds.6

Then, we introduce the common mild assumptions for the
subsequent analyses.

Assumption 1 (The common assumptions).

(1) The training dataset S = {(xi,yi)}
n
i=1 is an i.i.d. sam-

ple drawn from the distribution P , where ∃ r > 0, it
satisfies κ(x,x) ≤ r2 for all x ∈ X .

(2) The hypothesis class is defined in Eq.(8).
(3) The base (convex) loss ℓ(z) is ρ-Lipschitz continuous

and bounded by B.7

Here we give the definition of the fractional Rademacher
complexity of the loss space.

Definition 3 (The fractional Rademacher complexity of
the loss space). For each label k ∈ [K], construct the
dataset S̃k = {(x̃ki, ỹki)}

mk

i=1 = {((x̃
+
ki, x̃

−
ki),1)}

mk

i=1 based
on the original dataset Sk, where (x̃+ki, x̃

−
ki) ∈ S

+
k ×S

−
k , and

let {(Ikj , ωkj)}j∈[Jk] be a fractional independent vertex
cover of the dependence graph Gk constructed over S̃k with
∑j∈[Jk] ωkj = χf(Gk), where χf(Gk) is the fractional
chromatic number of Gk. For the hypothesis space F and
loss function L ∶ X ×X ×Fk → R+, the empirical fractional
Rademacher complexity of the loss space is defined as

R̂∗
S̃
(L ○F) =

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj×

sup
f∈F

⎛

⎝
∑
i∈Ikj

σkiL(x̃
+
ki, x̃

−
ki, fk)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Then, we give the base theorem of Macro-AUC used in the
subsequent generalization analyses.

Theorem 1 (The base theorem of Macro-AUC). Assume
the loss function Lϕ ∶ X × X × Fk → R+ is bounded by
M . Then, for any δ > 0, the following generalization bound
holds with probability at least 1− δ over the draw of an i.i.d.

5Note that multi-label datasets can also be imbalanced in an
inter-label way, i.e. some labels having very few positives, and
other labels having many.

6In this paper we call it balanced or extremely imbalanced for
simplicity.

7Note that, the widely-used hinge and logistic loss are both
1-Lipschitz continuous. Although the exponential and squared
hinge losses are not globally Lipschitz continuous, they are locally
Lipschitz continuous.
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sample S of size n:

∀f ∈ F , Rϕ(f) ≤ R̂
ϕ
S(f) + 2R̂

∗
S̃
(Lϕ ○F) +

3M

√
1

2n
log (

2

δ
)
⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
.

Then, we analyze the relationship between the surrogate and
true losses as follows.
Lemma 1 (The relationship between the surrogate and
true losses). Assume the base loss function upper bounds
the original 0/1 loss, i.e., ℓ(t) ≥ [[t ≤ 0]]. Then, for any
fk ∈ Fk and (x+,x−) ∈ S+k × S

−
k , the following inequalities

hold:

L0/1(x
+,x−, fk) ≤ Lpa(x

+,x−, fk),

L0/1(x
+,x−, fk) ≤ Lu2(x

+,x−, fk) ≤
1

τk
Lu1(x

+,x−, fk)

≤
1 − τk
τk

Lu2(x
+,x−, fk).

Remark. From this lemma, we can observe that when min-
imizing Lu1 , it also minimizes an upper bound of L0/1 de-
pending on 1

τk
. Besides, for the second inequality involving

Lu1 and Lu2 , the bound is tight since the equality holds
when τk =

1
2

.

Based on Lemma 1, we can get the relationship between the
surrogate and true risks as follows, which is critical for the
generalization analyses.
Lemma 2 (The relationship between the surrogate and
true risks). Assume the base loss function upper bounds
the original 0/1 loss, i.e., ℓ(t) ≥ [[t ≤ 0]]. Then, for any

f ∈ F and any sample S
i.i.d.
∼ P , the following inequalities

hold:

R0/1(f) ≤ Rpa(f),

R0/1(f) ≤ Ru2(f) = E
S
[R̂u2

S (f)] ≤ E
S
[
1

τ∗S
R̂u1

S (f)]

≤ E
S
[
1 − τ∗S
τ∗S

R̂u2

S (f)] .

Remark. For the second inequality involving the general-
ization risk w.r.t. Lu1 and Lu2 , the bound is tight since the
equality holds when τk =

1
2

.

Next, for clear discussions, we introduce the generalization
results of algorithms w.r.t. the label-wise class imbalance:
general, balanced, and extremely imbalanced cases.

4.1. General Case

Here we introduce the generalization results of algorithms
w.r.t. general datasets which cover the subsequent balanced
and extremely imbalanced datasets.

Theorem 2 (Learning guarantee of Apa in general case).
Assume the loss Lϕ = Lpa, where Lpa is defined in Eq.(5).
Besides, Assumption 1 holds. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d. sample S
of size n, the following generalization bound holds for any
f ∈ F:

R0/1(f) ≤ Rpa(f) ≤R̂pa(f) +
4ρrΛ
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+

3B

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
. (9)

From this theorem, we can observe that Apa has a
label-wise class imbalance-aware learning guarantee of

O ( 1√
n
( 1
K ∑

K
k=1

√
1
τk
)) ≈ O ( 1√

n
(
√

1
K ∑

K
k=1

1
τk
)) w.r.t.

Macro-AUC.

Theorem 3 (Learning guarantee of Au1 in general case).
Assume the loss Lϕ =

1
τ∗
S
Lu1 , where Lu1 is defined in Eq.(6).

Besides, Assumption 1 holds. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d. sample S
of size n, the following generalization bound holds for any
f ∈ F:

R0/1(f) ≤
1

τ∗S
R̂u1(f) +

4ρrΛ

τ∗S
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+

3B

τ∗S

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
. (10)

From this theorem, we can see that Au1 has an imbalance-
aware learning guarantee of O ( 1

τ∗
S

√
n
( 1
K ∑

K
k=1

√
1
τk
))

w.r.t. Macro-AUC.

Theorem 4 (Learning guarantee of Au2 in general case).
Assume the loss Lϕ = Lu2 , where Lu2 is defined in Eq.(7).
Besides, Assumption 1 holds. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d. sample S
of size n, the following generalization bound holds for any
f ∈ F:

R0/1(f) ≤ Ru2(f) ≤R̂u2(f) +
8ρrΛ
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+

6B

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
. (11)

From this theorem, we can see that Au2 has an imbalance-
aware learning guarantee of O ( 1√

n
( 1
K ∑

K
k=1

√
1
τk
)) w.r.t.

Macro-AUC, which is nearly the same as Apa.
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4.2. Balanced Case

Here we consider the balanced dataset. Note that in this
case, algorithms Au1 and Au2 are exactly the same, which
should share the same learning guarantee and it is confirmed
by the following corollary.
Corollary 1 (Learning guarantee of Au1 and Au2 in bal-
anced case). Assume the loss Lϕ = 2Lu1 = Lu2 , where Lu1

and Lu2 are defined in Eq.(6) and Eq.(7), respectively. Be-
sides, Assumption 1 holds and suppose S is balanced. Then,
for any δ > 0, with probability at least 1 − δ over the draw
of an i.i.d. sample S of size n, the following generalization
bound holds for any f ∈ F:

R0/1(f) ≤ Ru2(f) = 2Ru1(f) ≤R̂u2(f) +
8
√
2ρrΛ
√
n

+

6
√
2B

√
log( 2

δ
)

2n
, (12)

where R̂u2(f) = 2R̂u1(f).

Note that in this case, the same error bound of Au1 and
Au2 confirms the validity of our analyses. From this corol-
lary, we can see Au1 (or Au2) has an error bound of

O(
√

1
n
), which is the same as Apa (see Corollary 4 in

Appendix B.3.4).

4.3. Extremely Imbalanced Case

Here we consider the extremely imbalanced datasets. In this
case, the generalization results are as follows.
Corollary 2 (Learning guarantee of Apa in extremely
imbalanced case). Assume the loss Lϕ = Lpa, where Lpa

is defined in Eq.(5). Besides, Assumption 1 holds and sup-
pose S is extremely imbalanced. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d. sample S
of size n, the following generalization bound holds for any
f ∈ F:

R0/1(f) ≤ Rpa(f) ≤ R̂pa(f) + 4ρrΛ + 3B

√

log(
2

δ
).

Corollary 3 (Learning guarantee of Au1 in extremely
imbalanced case). Assume the loss Lϕ = nLu1 , where
Lu1 is defined in Eq.(6). Besides, Assumption 1 holds and
suppose S is extremely imbalanced. Then, for any δ > 0,
with probability at least 1 − δ over the draw of an i.i.d.
sample S of size n, the following generalization bound
holds for any f ∈ F:

R0/1(f) ≤nR̂u1(f) + 4nρrΛ + 3Bn

√
log( 2

δ
)

2
.

From the above corollaries, we can see thatApa has an error
bound of O(1) w.r.t. n, while Au1 depends on O(n). Be-
sides,Au2 has a similar error bound toApa (see Corollary 5

in Appendix B.4.7). One may notice that these bounds all
diverge when n→∞. This may be due to the following two
reasons. On one hand, learning in the extremely imbalanced
case is indeed difficult. On the other hand, our analysis
techniques might not be optimal w.r.t. n, and advanced tech-
niques (e.g., local Rademacher-type complexity (Bartlett
et al., 2005)) might be used to improve it. However, this is
not our focus in this paper and we mainly focus on the gen-
eralization effect of label-wise class imbalance factors under
the same framework, and the orders of different algorithms
can still provide valuable insights.

4.4. Comparison and Discussion

For generalization analyses, a tighter upper bound usually
implies probably better performance (Mohri et al., 2018).8

In this paper, all algorithms are analyzed under the same
framework and inequalities between the surrogate and true
risks (or losses) are tight. Therefore, it is relatively safe
to evaluate the performance of the algorithms theoretically
by comparing their upper bounds. We now compare these
algorithms as follows.

• Apa vs Au1 . Apa usually has a tighter bound than
Au1 . Specifically, given the same hypothesis space,
it is usually easier to train R̂pa

S than other risks, mak-
ing R̂pa

S smaller than 1
τ∗
S
R̂u1

S .9 Besides, for the model
complexity terms (i.e., the last two terms), Apa has an
error bound of O ( 1

K ∑
K
k=1

√
1
τk
) while Au1 depends

on O ( 1
τ∗
S
( 1
K ∑

K
k=1

√
1
τk
)).

• Au2 vs Au1 . Similarly, we argue that Au2 usually
has a tighter bound than Au1 . For the first risk term,
1
τ∗
S
R̂u1

S is usually comparable or even larger than

R̂u2

S .10 For the model complexity term, Au2 has an

error bound of O ( 1
K ∑

K
k=1

√
1
τk
) while Au1 depends

on O ( 1
τ∗
S
( 1
K ∑

K
k=1

√
1
τk
)).

• Apa vsAu2 . Apa andAu2 have similar or comparable
learning guarantees. Specifically, for the first risk term,
R̂pa

S is usually comparable to R̂u2

S .11 For the model
term, Apa and Au2 are nearly the same (with only
different constant) w.r.t. the label-wise class imbalance.

8Note that when comparing bounds, it is usually more reason-
able to compare the order of dependent variables rather than the
absolute values.

9Although we can not formally express this claim, we empiri-
cally observed it in experiments.

10In some cases, the first risk term may be bigger than 1 but we
can still take insights from the error bound through the dependent
variables of the model complexity.

11Note that although we cannot formally express this, the exper-
iments verify it.
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Overall, the tighter bound level of Apa (and Au2 ) over Au1

heavily depend on 1
τ∗
S

. Thus, when 1
τ∗
S

is large, Apa and
Au2 would probably perform significantly better than Au1 .
In contrast, when 1

τ∗
S

is small, Apa and Au2 would prob-
ably perform slightly better than or nearly comparably to
Au1 . Besides, Apa and Au2 have nearly the same learning
guarantee, thus they would probably perform comparably.
Experimental results on benchmark datasets in Table 3 con-
firm our analyses.

Note that there may be another way to analyze the learning
guarantees ofAu1 andAu2 w.r.t. the Macro-AUC under the
analytical framework of prior work (Wu & Zhu, 2020; Wu
et al., 2021) and here we focus on analyzing three algorithms
under the same framework, leaving it as future work.

Implications of the theory in real-world applications.
While the MLC datasets are usually highly (label-wise)
class imbalanced in real-world applications, our theory can
have valuable implications in practice. Specifically, our the-
oretical results on the imbalance-aware bounds show that
the imbalance-aware loss-based algorithm Au2 has a better
learning guarantee w.r.t. the label-wise class imbalance than
the algorithm Au1 with the original univariate loss (e.g.,
cross-entropy loss), which probably implies its performance
superiority. This can provide valuable insights to explain
why the existing imbalance-aware reweighting losses (Rid-
nik et al., 2021; Wu et al., 2020b) can have promising per-
formance w.r.t. ranking-based measures (e.g., mean average
precision (mAP)) similar to Macro-AUC in practice. Fur-
ther, how to design more effective imbalance-aware loss
w.r.t. specific measures and how to make these bounds
tighter would inspire more effective algorithms.

4.5. Proof Sketch

Here we mainly summarize the proof sketch of the general-
ization results of the general case in Section 4.1 as follows.

Proof sketch: Overall, the proof can be mainly divided into
the following two steps.

Step 1: Construct general techniques in need (see Ap-
pendix A for details). First, we propose a new (and more
general) McDiarmid-type inequality (i.e., Theorem 5). Then,
based on it, we propose a general generalization bound (i.e.,
Theorem 6) for the problem setting of learning multiple
tasks with graph-dependent examples, which involves the
fractional Rademacher complexity of the loss space.

Step 2: Get the results of the Macro-AUC maximization
(MaAUCM) in MLC by applying the generalization bound
obtained in Step 1 (see Appendix B for details). Firstly we
transform the MaAUCM problem into the problem setting
of learning multiple tasks with graph-dependent examples
in Step 1 and then we get the base error bound of Macro-

AUC (i.e., Theorem 1). Next, we analyze the relationships
between surrogate and true risks. Then, for each algorithm,
define its specific fractional Rademacher complexity of the
hypothesis space, upper bound the kernel-based one (e.g.,
Lemma 4), and get the specific contraction inequality (e.g.,
Lemma 5) to connect the complexity of the loss space with
the complexity of the hypothesis space. Finally, we can get
the desired results based on the above intermediate results.

4.6. Consistency of Surrogate Losses

Except for the finite-sample generalization guarantee, the
consistency of surrogates is also important. Following (Gao
& Zhou, 2015; Kotlowski et al., 2011), here we consider the
consistency of Lpa, Lu1 and Lu2 w.r.t. the Macro-AUC with
L0/1(x

+,x−, fk) = [[fk(x
+) < fk(x

−)]] + 1
2
[[fk(x

+) =

fk(x
−)]]. The Macro-AUC maximization task of MLC can

be decomposed into K AUC maximization tasks of binary
classification. Thus, we can investigate the consistency of
these surrogates based on the previous well-studied con-
sistency results of AUC in binary classification (or, equiv-
alently bipartite ranking) (Gao & Zhou, 2015; Kotlowski
et al., 2011). Specifically, we can get the following results
about these surrogates:

• Lpa: Based on the previous result in binary classifica-
tion with AUC maximization (Gao & Zhou, 2015) (i.e.,
Corollary 1 on Page 4), we can get that Lpa is con-
sistent w.r.t. Macro-AUC with the (base) logistic loss
and exponential loss. Besides, based on the previous
result (Gao & Zhou, 2015) (i.e., Lemma 3 on Page 3),
we can get that Lpa is inconsistent w.r.t. Macro-AUC
with the (base) hinge loss and absolute loss.

• Lu1 : Based on the previous result (Gao & Zhou, 2015)
(i.e., Theorem 7 on Page 6), we can get that Lu1 is
consistent with the (base) exponential loss.

• Lu2 : As a reweighting univariate loss, Lu2 involves
reweighting factors depending on the dataset (i.e., 1

∣S+
k
∣ ,

1
∣S−

k
∣ for the positive and negative instances, respec-

tively). Thus, in the infinite-sample (i.e., population)
setting, it could be regarded to be dependent on the
distribution, where the reweighting factors of positive
and negative instances are propositional to 1

P (yk=1)
and 1

1−P (yk=1) , respectively. In this case, based on the
previous result of bipartite ranking (Kotlowski et al.,
2011) (i.e., Theorem 4.1 on Page 4), we can get that
Lu2 is consistent w.r.t. Macro-AUC with the (base)
logistic loss and exponential loss.

As for the surrogates Lu1 and Lu2 with other base losses,
we left it as future work.
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5. Related Work
Consistency. Gao & Zhou (2013) studied the consistency
of surrogate losses w.r.t. the Hamming and (partial) ranking
measures in general. Besides, Dembczynski et al. (2012)
presented an explicit regret bound for a surrogate univariate
loss under the partial ranking measure. Notably, for the
F-measure in binary classification, Ye et al. (2012) justified
and connected the empirical utility maximization (EUM)
framework and the decision-theoretic approach (DTA), with
applications to optimizing the macro-F measure in MLC.12

For these two approach frameworks, Dembczyński et al.
(2017) revisited the consistency analysis for binary classi-
fication with complex metrics, where they chose the more
descriptive names Population Utility (PU) and Expected
Test Utility (ETU). Further, for the F-measure in MLC,
Waegeman et al. (2014); Zhang et al. (2020a) studied the
consistency in the perspective of DTA via estimating the
conditional distribution P (y∣x) differently. Further, Koyejo
et al. (2015) studied consistent MLC approaches w.r.t. var-
ious measures in the EUM framework and Menon et al.
(2019) investigated the multi-label consistency of various
reduction methods w.r.t. precision@k and recall@k mea-
sures.

Generalization. Wu & Zhu (2020) studied the general-
ization of learning algorithms with surrogates aiming to
optimize Hamming loss and subset accuracy w.r.t. these
two measures, and found that the label size played an im-
portant role in the generalization bounds, which explains
the empirical phenomena that when the label size is not
large, optimizing Hamming loss with its surrogate can have
promising performance w.r.t. subset accuracy. Further, Wu
et al. (2021) revisited the consistency and generalization of
many surrogate loss-based algorithms w.r.t. the ranking loss
measure and identified the instance-wise class imbalance
of the dataset (or distribution) plays a critical role in the
generalization bounds, which could explain the empirical
phenomena better than consistency.

We mention that Wu & Zhou (2017) also proposed a pair-
wise loss (similar to Eq. (5)), which omits the reweighting
factor 1

∣S+
k
∣∣S−

k
∣ and lacks formal generalization analyses. Be-

sides, please see Appendix D for detailed discussions about
comparisons between a recent McDiarmid-type concentra-
tion inequality (Zhang et al., 2019) and ours for data with
graph dependence.

6. Experiments
As a theoretical work, the primary goal of experiments is
to verify our theory findings rather than illustrate the su-
perior performance of the proposed method. Therefore,

12Note that our generalization analyses of learning algorithms
w.r.t. Macro-AUC is in the EUM framework.

we evaluate the aforementioned three learning algorithms
in Section 3.2 in terms of Macro-AUC on 10 widely-used
benchmark datasets with various domains and sizes of labels
and data. The detailed statistics of the datasets are summa-
rized in Table 2, including four label-wise class imbalance-
related factors.13 Besides, the label-wise class imbalance
levels of three representative datasets are illustrated in Fig-
ure 1. (See Figure 2 in Appendix C.1 for all datasets). For
all algorithms, we take linear models with the base logis-
tic loss for simplicity and fair comparison. Besides, we
utilize the same efficient stochastic optimization algorithm
(i.e., SVRG-BB (Tan et al., 2016)) to solve these convex
optimization problems. Moreover, we search the hyper-
parameter λ for all algorithms on all datasets in a wide range
of {10−6,10−5, . . . ,102} using 3-fold cross-validation.14

The experimental results are summarized in Table 3. Overall,
we can observe that algorithmsApa andAu2 performs better
than the algorithm Au1 , which confirms our theoretical
results that Apa and Au2 have better learning guarantees
w.r.t. the label-wise class imbalance than Au1 . Besides,
Apa performs comparably to Au2 , which also verifies our
theoretical results that they share the learning guarantee
w.r.t. the label-wise class imbalance.

Further, from Table 2 and 3, we can carefully study the ef-
fects of the label-wise class imbalance on the performance.
Recall that the learning guarantees of Apa and Au2 both
depends on the factor Imb1, while the one of Au1 depends
on the factor Imb4. For the datasets CAL500, enron, rcv-s1,
bibtex, corel5k and delicious, factors Imb1 and Imb4 have a
large order gap (or equivalently Imb3 is large), and Au2 (or
Apa) performs significantly better thanAu1 . In contrast, for
the datasets emotions, image, and scene, factors Imb1 and
Imb4 have a small gap (or equivalently Imb3 is small), and
Au2 (or Apa) performs slightly better than or is nearly com-
parable to Au1 . This also confirms our theoretical findings
of these algorithms on the label-wise class imbalance.

Furthermore, similarly to previous theoretical results (Wu
et al., 2021) for the Ranking Loss measure in MLC, our gen-
eralization upper bound absolute values might not reflect
the true generalization error reasonably well (i.e., bigger
than 1). However, they can still offer valuable insight into
these learning algorithms under the same analytical frame-
work. (See Table 4 in Appendix C.2 for details). Advanced
techniques (e.g., local Radermacher-type complexity) can
refine the results, left as future work.

13These datasets can be downloaded from http://mulan.
sourceforge.net/datasets-mlc.html and http://
palm.seu.edu.cn/zhangml/.

14Our code is available at https://github.com/
GuoqiangWoodrowWu/Macro-AUC-Theory
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Table 2. Basic statistics of the benchmark datasets. Denote the label-wise class imbalance-related factors Imb1 =
1
K ∑

K
k=1

√
1
τk

, Imb2 =
√

1
K ∑

K
k=1

1
τk

, Imb3 =
1
τ∗
S

and Imb4 =
1
τ∗
S
(

1
K ∑

K
k=1

√
1
τk
), respectively.

Dataset #Instance #Feature #Label Domain Imb1 Imb2 Imb3 Imb4

CAL500 502 68 174 music 4.2 4.8 100.4 421.1
emotions 593 72 6 music 1.8 1.8 4.0 7.3
image 2000 294 5 images 2.0 2.0 4.9 9.9
scene 2407 294 6 images 2.4 2.4 6.6 15.7
yeast 2417 103 14 biology 2.6 3.2 71.1 188.4
enron 1702 1001 53 text 9.1 11.7 1702 15566
rcv1-s1 6000 944 101 text 11.8 15.4 3000 35267
bibtex 7395 1836 159 text 9.2 9.4 7395 1332
corel5k 5000 499 374 images 23.4 29.1 5000 117000
delicious 16105 500 983 text(web) 12.2 13.3 766.9 9344
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Figure 1. Illustration of the label-wise class imbalance of three representative datasets.

Table 3. Macro-AUC (mean ± std, the symbol . means 0.) of all
three algorithms on benchmark datasets. On each dataset, the top
two algorithms are highlighted in bold and the top one is labeled
with †. Besides, “-” means that Apa takes more than one week by
using a 16-core CPU server on the corresponding datasets.

Dataset A
pa

A
u1

A
u2

CAL500 .5735 ± .0186† .5571 ± .0102 .5717 ± .0177
emotions .8372 ± .0172† .8346 ± .0223 .8348 ± .0189
image .8383 ± .0073† .8359 ± .0121 .8314 ± .0094
scene .9319 ± .0013† .9271 ± .0067 .9285 ± .0035
yeast .6872 ± .0100 .6862 ± .0064 .6892 ± .0088†

enron .7211 ± .0320 .6908 ± .0105 .7356 ± .0121†

rcv1-s1 - .8585 ± .0204 .9097 ± .0068†

bibtex - .8693 ± .0156 .9299 ± .0034†

corel5k - .5703 ± .0092 .6645 ± .0253†

delicious - .7633 ± .0020 .8044 ± .0040†

7. Conclusion
Towards understanding the generalization of Macro-AUC in
MLC, this paper takes an initial step by analyzing the gener-
alization bounds of the algorithms with various surrogates
including the widely-used univariate one. Our results show

that the label-wise class imbalance of the dataset plays a
critical role in these bounds. The algorithms with the pro-
posed pairwise and reweighted univariate loss have better
learning guarantees than the original univariate-based algo-
rithm, which probably implies their superior performance.
Experimental results also confirm our theoretical findings.

Social Impact: As a theoretical research, this work will
help understand and potentially develop better algorithms
for multi-label learning, while without explicit negative
consequences to society.
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A. General Techniques
In this section, we introduce the general techniques, which mainly consist of a new McDiarmid-type concentration inequality
and a general generalization bound of learning multiple tasks with graph-dependent examples.

A.1. A new McDiarmid-type concentration inequality

A.1.1. BACKGROUNDS

First, we introduce the bounded differences property and a lemma for the proof of the subsequent theorem.
Definition 4 (The bounded differences property (McDiarmid et al., 1989)). Let x1, x2, . . . , xm ∈ X , and function
f ∶ Xm → R. Then, f is said to have bounded differences property if there exist c1, . . . , cm > 0 such that

∣f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′
i, . . . , xm)∣ ≤ ci,

for all i ∈ [m] and any points x1, . . . , xm, x′i ∈ X .
Lemma 3 ((McDiarmid et al., 1989)). Let X = (X1, . . . ,Xm) ∈ X

m be a vector of m independent random variables and
function f ∶ Xm → R satisfies the bounded differences property with ci (i ∈ [m]), then for any s > 0,

E[exp(s(f(X) −E[f(X)]))] ≤ exp(
s2∑i∈[m] c

2
i

8
) .

Here we introduce some necessary notions of graph theory in this paper, and we refer readers to (Janson, 2004; Amini &
Usunier, 2015) and recent survey (Zhang & Amini, 2022).

Given a graph G = (V,E), we introduce the following notions.
Definition 5 (Fractional independent vertex cover, and fractional chromatic number (Zhang & Amini, 2022)).

(1) A family {(Fj , ωj)}j of pairs (Fj , ωj), where Fj ⊆ V (G) and ωj ∈ (0,1] is a fractional vertex cover of G if
∑j∶v∈Fj

ωj = 1 for every v ∈ V (G).

(2) An independent set of G is a set of vertices in G such that no two them are adjacent. The set of independent sets of G is
denoted by I(G).

(3) A fractional independent vertex cover {(Ij , ωj)}j of G is fractional vertex cover such that Ij ∈ I(G) for every j.

(4) A fractional coloring of a graph G is a mapping g from I(G) to (0,1] such that ∑I∈I(G)∶v∈I g(I) ≥ 1 for every
vertex v ∈ V (G). The fractional chromatic number χf(G) is the minimum of the value ∑I∈I(G) g(I) over fractional
colorings of G.

Note that the fractional chromatic number χf(G) of a graph G is the minimum of∑j ωj over all fractional independent
vertex covers {(Ij , ωj)}j of G.

Next, we introduce the notion of dependency graph as follows.
Definition 6 (Dependency graph (Janson, 2004)). An undirected graph G = (V,E) is called a dependency graph of a
random vector X = (X1, . . . ,Xm) if

(1) V (G) = [m].

(2) For all disjoint I, J ∈ [m], if I, J are not adjacent in G, then random variables {Xi}i∈I and {Xj}j∈J are independent.

Then, we say that random vector X is G-dependent with a dependency graph G.

An important property of the dependency graph, combined with the notion of fractional independent covers, is Janson’s
decomposition property (Janson, 2004). Specifically, suppose interdependent random variables (Xi)i∈[m] is G-dependent
with a dependency graph G, and {(Ij , ωj)}j∈[J] is a fractional independent vertex cover of G. Then, we can decompose the
sum of interdependent variables into a weighted sum of sums of independent variables, i.e.,

m

∑
i=1

Xi =
m

∑
i=1

J

∑
j=1

ωj[[i ∈ Ij]]Xi =
J

∑
j=1

ωj ∑
i∈Ij

Xi. (13)

13
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A.1.2. PROOF OF THE NEW MCDIARMID-TYPE CONCENTRATION INEQUALITY

Here we propose a new and more general McDiarmid-type inequality as follows, which mainly follows the work (Janson,
2004; Usunier et al., 2005; Amini & Usunier, 2015) and we refer to a recent related survey (Zhang & Amini, 2022).

Theorem 5 (A new and more general McDiarmid-type inequality). Let X1 = (x11, . . . ,x1m1) ∈ X
m1 , . . . ,

XK = (xK1, . . . ,xKmK
) ∈ XmK be vectors of random variables and X denote (X1, . . . ,XK) = (x11, . . . ,xKmK

)

for convenience. Let f1 ∶ Xm1 → R, . . . , fK ∶ XmK → R and f ∶ Xm → R be functions with ∑K
k=1mk = m. Assume

each Xk (k ∈ [K]) is Gk-dependent with a dependency graph Gk.15 Besides, assume the function f satisfies the following
constraints:

(1) f(X) = ∑k∈[K] fk(Xk);
(2) fk(Xk) has the decomposability constraint with the bounded difference property w.r.t. the graph Gk, i.e., for all

xk ∈ X
mk and the minimal fractional independent vertex covers {(Ikj , ωkj)}j∈[Jk] of Gk, there exists functions

{fkj ∶ X
∣Ikj ∣ → R}j∈[Jk] such that fkj satisfies the bounded difference property with cki (i ∈ Ikj) and

fk(xk) = ∑
j∈[Jk]

ωkjfkj(xIkj
),

where xIkj
denotes (xki)i∈Ikj

.

Then, for any t > 0,

P(f(X)−E[f(X)] ≥ t) ≤

exp
⎛

⎝
−

2t2

K∑k∈[K] (χf(Gk)∑i∈[mk] c
2
ki)

⎞

⎠
,

where χf(Gk) is the fractional chromatic number of Gk.

Remark. The McDiarmid-type inequality in prior work (Usunier et al., 2005; Amini & Usunier, 2015) can be viewed as a
special case of the above one by setting K = 1. Thus, our proposed new McDiarmid-type inequality is more general.

Proof. Following the Cramér-Chernoff method (Boucheron et al., 2013), we have for any s > 0 and t > 0,

P(f(X) −E[f(X)] ≥ t) ≤ e−stE[exp(s(f(X) −E[f(X)]))]. (14)

For the dependency graph, the k-th sub-graph Gk has mk vertexes. Further, let Ik be the vertex set of Gk and
{(Ikj , ωkj)}j∈[Jk] be a minimal fractional independent vertex cover of Gk with ∑j∈[Jk] ωkj = χf(Gk). Utilizing the
decomposition property f(x) = ∑k∈[K] fk(xk) = ∑k∈[K]∑j∈[Jk] ωkjfkj(Ikj) where xIkj

is denoted by Ikj for notation
simplicity, we have for the expectation term on the right-hand side of the above inequality:

E[exp(s(f(X) −E[f(X)]))] = E
⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
∑

k∈[K]
∑

j∈[Jk]
sωkj (fkj(Ikj) −E fkj(Ikj))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Let {p1, p2, ..., pK} be any set of K strictly positive real numbers that sum to 1. Similarly, for each k ∈ [K], let
{qk1, qk2, ..., qkJk

} be any set of Jk strictly positive real numbers that sum to 1. Then, based on the convexity of the
exponential function, we can have the following:

E[exp(s(f(X) −E[f(X)]))] = E
⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
∑

k∈[K]
∑

j∈[Jk]
sωkj (fkj(Ikj) −E fkj(Ikj))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
∑

k∈[K]
pk ∑

j∈[Jk]

sωkj

pk
(fkj(Ikj) −E fkj(Ikj))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(definition of pk)

15Note that here we only make the dependency assumptions within each Xk but have no assumptions between different Xks, where
Xks can be independent or dependent, regardless of independence.
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≤ E
⎡
⎢
⎢
⎢
⎢
⎣

∑
k∈[K]

pk exp
⎛

⎝
∑

j∈[Jk]

sωkj

pk
(fkj(Ikj) −E fkj(Ikj))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(Jensen’s inequality)

= E
⎡
⎢
⎢
⎢
⎢
⎣

∑
k∈[K]

pk exp
⎛

⎝
∑

j∈[Jk]
qkj

sωkj

pkqkj
(fkj(Ikj) −E fkj(Ikj))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(definition of pkj)

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

∑
k∈[K]

pk ∑
j∈[Jk]

qkj exp(
sωkj

pkqkj
(fkj(Ikj) −E fkj(Ikj)))

⎤
⎥
⎥
⎥
⎥
⎦

(Jensen’s inequality)

= ∑
k∈[K]

pk ∑
j∈[Jk]

qkj E [exp(
sωkj

pkqkj
(fkj(Ikj) −E fkj(Ikj)))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
def= ♣k

(linearity of expectation).

Here we can observe that for the summation term ♣k, the random variables associated with each term j ∈ [Jk] are
independent. Thus, applying the Lemma 3, we can get

♣k = ∑
j∈[Jk]

qkj E [exp(
sωkj

pkqkj
(fkj(Ikj) −E fkj(Ikj)))] ≤ ∑

j∈[Jk]
qkj exp

⎛

⎝

s2ω2
kj

8p2kq
2
kj

∑
i∈Ikj

c2ki
⎞

⎠
.

By rearranging terms in the exponential of right hand side of the inequality above and by setting

qkj =
ωkj

√

∑i∈Ikj
c2ki

∑j∈[Jk] (ωkj

√

∑i∈Ikj
c2ki)

,

we have:

∑
j∈[Jk]

qkj exp
⎛

⎝

s2ω2
kj

8p2kq
2
kj

∑
i∈Ikj

c2ki
⎞

⎠
= ∑

j∈[Jk]
qkj exp

⎛
⎜
⎝

s2

8p2k

⎛

⎝
∑

j∈[Jk]

⎛

⎝
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠

= exp
⎛
⎜
⎝

s2

8p2k

⎛

⎝
∑

j∈[Jk]

⎛

⎝
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠

( ∑
j∈[mk]

qkj = 1).

Till now, we have the following:

E[exp(s(f(X) −E[f(X)]))] ≤ ∑
k∈[K]

pk♣k ≤ ∑
k∈[K]

pk exp
⎛
⎜
⎝

s2

8p2k

⎛

⎝
∑

j∈[Jk]

⎛

⎝
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠
.

Next, similarly to the above proof idea w.r.t. the qkj , we set pk as follows:

pk =
∑j∈[Jk] (ωkj

√

∑i∈Ikj
c2ki)

∑k∈[K]∑j∈[Jk] (ωkj

√

∑i∈Ikj
c2ki)

.

Then, it comes:

∑
k∈[K]

pk exp
⎛
⎜
⎝

s2

8p2k

⎛

⎝
∑

j∈[Jk]

⎛

⎝
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠
= ∑

k∈[K]
pk exp

⎛
⎜
⎝

s2

8

⎛

⎝
∑

k∈[K]
∑

j∈[Jk]

⎛

⎝
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠

= exp
⎛
⎜
⎝

s2

8

⎛

⎝
∑

k∈[K]
∑

j∈[Jk]

⎛

⎝
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠
( ∑
k∈[K]

pk = 1)
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1
≤ exp

⎛
⎜
⎝

s2K

8
∑

k∈[K]

⎛

⎝
∑

j∈[Jk]
ωkj

√

∑
i∈Ikj

c2ki
⎞

⎠

2
⎞
⎟
⎠

= exp
⎛
⎜
⎝

s2K

8
∑

k∈[K]

⎛

⎝
∑

j∈[Jk]

⎛

⎝

√
ωkj

√

ωkj ∑
i∈Ikj

c2ki
⎞

⎠

⎞

⎠

2
⎞
⎟
⎠

2
≤ exp

⎛

⎝

s2K

8
∑

k∈[K]

⎛

⎝
∑

j∈[Jk]
ωkj

⎞

⎠

⎛

⎝
∑

j∈[Jk]
ωkj ∑

i∈Ikj

c2ki
⎞

⎠

⎞

⎠

3
= exp

⎛

⎝

s2K

8
∑

k∈[K]
χf(Gk)

⎛

⎝
∑

i∈[mk]
c2ki
⎞

⎠

⎞

⎠
.

For 1 , it is based on the inequality (∑n
i=1 ai)

2
≤ n∑

n
i=1 a

2
i . For 2 , it is due to the Cauchy-Schwarz inequality. For 3 , it is

due to the definition of the fractional chromatic number, i.e., ∑j∈[Jk] ωkj = χf(Gk), and the decomposition property of
fractional independent vertex covers of dependency graph (Janson, 2004), i.e., for a fractional independent vertex cover
{(Ikj , ωkj)}j∈[Jk] of Gk, then the sum of interdependent variables can be decomposed into a weighted sum of sums of
independent variables as follows:

mk

∑
i=1

xki =
mk

∑
i=1

Jk

∑
j=1

ωkj[[i ∈ Ikj]]xki =
Jk

∑
j=1

ωkj ∑
i∈Ikj

xki.

Since Xk = [xk1, ...,xkmk
] is a random vector, we can take the specific values to get the equation 3 based on the inequality

2 . Specifically, if we take xki = c
2
ki for each i ∈ [mk], then we can get

mk

∑
i=1

c2ki =
Jk

∑
j=1

ωkj ∑
i∈Ikj

c2ki.

Thus, we have obtained

E[exp(s(f(X) −E[f(X)]))] ≤ exp
⎛

⎝

s2K

8
∑

k∈[K]
χf(Gk)

⎛

⎝
∑

i∈[mk]
c2ki
⎞

⎠

⎞

⎠
.

Combining the inequality (14), we can get

P(f(X) −E[f(X)] ≥ t) ≤ exp
⎛

⎝
−st +

s2K

8
∑

k∈[K]
χf(Gk)

⎛

⎝
∑

i∈[mk]
c2ki
⎞

⎠

⎞

⎠
.

We can obtain the final result by minimizing the right-hand side of the above inequality over s.

A.2. Learning multiple tasks with graph-dependent examples

A.2.1. PROBLEM SETTING

Here we consider learning with multiple tasks where each task might contain dependent training examples and the
dependency relationship is characterized by a dependency graph. Formally, given a training dataset S̃ = {(x̃, ỹ)}mi=1 that is
composed of K blocks (or tasks), i.e., S̃ = (S̃1, . . . , S̃K) with each S̃k = {(x̃ki, ỹki)}

mk

i=1 drawn from the distribution Dk

(k ∈ [K]) over X̃ × Ỹ with a dependency graph Gk and ∑k∈[K]mk =m. The goal is to learn a mapping h̃ = (h̃1, . . . , h̃K),
where h̃k ∶ X̃ → Ỹ for each k ∈ [K].

Let F̃ = {f̃ = (f̃1, . . . , f̃K) ∣ f̃k ∶ X̃ → Ŷ, k ∈ [K]} be the hypothesis space, and denote F̃k = {f̃k ∣ f̃k ∶ X̃ → Ŷ} for each
k ∈ [K]. Consider a loss function L ∶ X̃ × Ỹ × F̃k → R+. For a hypothesis f̃ ∈ F̃ and a training set S̃, the empirical risk of f̃
is defined as

R̂S̃(f̃) =
1

K

K

∑
k=1

1

mk

mk

∑
i=1

L(x̃ki, ỹki, f̃k),

16
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and the generalization (or expected) risk is defined as

R(f̃) = Ẽ
S

[R̂S̃(f̃)] . (15)

Note that we do not define the generalization risk as the following usual form

1

K

K

∑
k=1

E
(x̃,ỹ)∼Dk

[L(x̃, ỹ, f̃k)] . (16)

This is because the definition in Eq.(15) is more general than Eq.(16). Specifically, Eq.(15) can cover the loss function
dependent on the training set S̃ while Eq.(16) cannot. Besides, they are equal for certain losses independent of S̃.

A.2.2. THE FRACTIONAL RADEMACHER COMPLEXITY OF THE LOSS SPACE

Here we give the definition of the fractional Rademacher complexity of the loss space as follows.

Definition 7 (The fractional Rademacher complexity of the loss space). For each k ∈ [K], let {(Ikj , ωkj)}j∈[Jk]
be a fractional independent vertex cover of the dependence graph Gk constructed over S̃k with ∑j∈[Jk] ωkj = χf(Gk).
Let F̃ = {f̃ = (f̃1, . . . , f̃K) ∣ f̃k ∶ X̃ → Ŷ, k ∈ [K]} be the hypothesis space. Then, the empirical fractional Rademacher
complexity of F̃ given S̃ is defined by

R̂∗
S̃
(L ○ F̃) =

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f̃∈F̃

⎛

⎝
∑
i∈Ikj

σkiL(x̃ki, ỹki, f̃k)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

where σ = (σki)k∈[K],i∈[mk] denotes m independent Rademacher variables, that is, P(σki = +1) = P(σki = −1) = 1/2 for
all variables. Furthermore, the fractional Rademacher complexity of F̃ over all samples of size m is defined by

R∗m(L ○ F̃) = E
S̃∼Dm

[K]

[R̂∗
S̃
(L ○ F̃)] ,

where S̃ ∼Dm
[K] denotes S̃1 ∼D

m1

1 , . . . , S̃K ∼D
mK

K for simplicity.

A.2.3. PROOF OF THE GENERAL GENERALIZATION BOUND OF LEARNING MULTIPLE TASKS WITH GRAPH-DEPENDENT
EXAMPLES

Here we give a general generalization bound of learning multiple tasks with graph-dependent examples as follows.

Theorem 6 (A general generalization bound of learning multiple tasks with graph-dependent examples). Give a sample
S̃ = {S̃1, . . . , S̃K} where each S̃k∈[K] is of size mk with dependency graph Gk and a loss function L ∶ X̃ × Ỹ × F̃k → [0,M].
Then, for any δ ∈ (0,1), with probability at least 1 − δ, we have

∀f̃ ∈ F̃ , R(f̃) ≤R̂S̃(f̃) + 2R
∗
m(L ○ F̃) +

M

¿
Á
ÁÀ(

1

K

K

∑
k=1

χf(Gk)

2mk
) log (

1

δ
) , (17)

and

∀f̃ ∈ F̃ , R(f̃) ≤R̂S̃(f̃) + 2R̂
∗
S̃
(L ○ F̃) +

3M

¿
Á
ÁÀ(

1

K

K

∑
k=1

χf(Gk)

2mk
) log (

2

δ
) . (18)

Proof. The proof can be divided into three major steps as follows.

Step 1: link the supremum of R(f̃) − R̂S̃(f̃) on F̃ with its expectation.

17
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For any f̃ ∈ F̃ , we have R̂(f̃) is an unbiased estimator of R(f̃) because the data points in the sample S̃k are assumed to be
G-dependent and have the same marginal distribution. Hence considering an independent ghost sample S̃′ with the same
generation process as S̃, we have

sup
f̃∈F̃
(R(f̃) − R̂S̃(f̃)) = sup

f̃∈F̃
(Ẽ
S′
[R̂S̃′(f̃)] − R̂S̃(f̃)) = sup

f̃∈F̃
(Ẽ
S′
[R̂S̃′(f̃) − R̂S̃(f̃)]) .

For each k ∈ [K], let {(Ikj , ωkj)}j∈[Jk] be a fractional independent vertex cover of the dependence graph Gk with
∑j∈[Jk] ωkj = χf(Gk). Since the supremum of the expectation is lower than the expectation of the supremum, we can have

sup
f̃∈F̃
(Ẽ
S′
[R̂S̃′(f̃) − R̂S̃(f̃)]) ≤ Ẽ

S′

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃
(R̂S̃′(f̃) − R̂S̃(f̃))

⎤
⎥
⎥
⎥
⎥
⎦

= Ẽ
S′

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃
(
1

K

K

∑
k=1

1

mk

mk

∑
i=1
(L(x̃′ki, ỹ

′
ki, f̃k) −L(x̃ki, ỹki, f̃k)))

⎤
⎥
⎥
⎥
⎥
⎦

1
= Ẽ

S′

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝

1

K

K

∑
k=1
∑

j∈[Jk]

ωkj

mk
∑
i∈Ikj

(L(x̃′ki, ỹ
′
ki, f̃k) −L(x̃ki, ỹki, f̃k))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

2
≤

1

K

K

∑
k=1
∑

j∈[Jk]

ωkj

mk
Ẽ
S′
k

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ikj

(L(x̃′ki, ỹ
′
ki, f̃k) −L(x̃ki, ỹki, f̃k))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

where the inequality 1 is due to the Janson’s decomposition (Janson, 2004), and 2 is due to the sub-additivity of the
supremum function (i.e., sup(a + b) ≤ sup(a) + sup(b)) and the linearity of the expectation.

By defining g(S̃) = ∑
K
k=1 gk(S̃k) with each gk ∶ S̃k ↦ ∑j∈[Jk] ωkjgkj(Ikj) where each

gkj ∶ Ikj ↦
1

Kmk
Ẽ
S′
k

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ikj

(L(x̃′ki, ỹ
′
ki, f̃k) −L(x̃ki, ỹki, f̃k))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

have differences bounded by M
Kmk

in the sense of the condition of Theorem 5; then for any δ ∈ (0,1), with probability at
least 1 − δ, we have

sup
f̃∈F̃
(R(f̃) − R̂S̃(f̃))

≤
1

K

K

∑
k=1
∑

j∈[Jk]

ωkj

mk
E

S̃k,S̃′k

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ikj

(L(x̃′ki, ỹ
′
ki, f̃k) −L(x̃ki, ỹki, f̃k))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
def= ☀

+M

¿
Á
ÁÀ(

1

K

K

∑
k=1

χf(Gk)

mk
) log (

1

δ
).

Step 2: bound☀ with respect to the fractional Rademacher complexity.

Next, taking the symmetrization technique by introduction of Rademacher variables, we have

☀ =
1

K

K

∑
k=1
∑

j∈[Jk]

ωkj

mk
E

S̃k,S̃′k

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ikj

(L(x̃′ki, ỹ
′
ki, f̃k) −L(x̃ki, ỹki, f̃k))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

K

K

∑
k=1
∑

j∈[Jk]

ωkj

mk
E

S̃k,S̃′k
E
σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ikj

σki (L(x̃
′
ki, ỹ

′
ki, f̃k) −L(x̃ki, ỹki, f̃k))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

3
≤

2

K

K

∑
k=1

Ẽ
Sk

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f̃∈F̃

⎛

⎝
∑
i∈Ikj

σkiL(x̃ki, ỹki, f̃k)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= 2R∗m(L ○ F̃).
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For a fixed pair (k, i), σki = 1 does not change anything but σki = −1 consists in swapping both examples (x̃′ki, ỹ
′
ki) and

(x̃ki, ỹki). Thus, when taking the expectations over S̃k and S̃′k, the introduction of Rademacher variables does not change
the value. For 3 , it is due to the sub-additivity of the supremum function and the linearity of the expectation.

Thus, we can obtain

sup
f̃∈F̃
(R(f̃) − R̂S̃(f̃)) ≤ 2R

∗
m(L ○ F̃) +M

¿
Á
ÁÀ(

1

K

K

∑
k=1

χf(Gk)

mk
) log (

1

δ
).

Besides, based on the definition of supremum of functions, we have

∀f̃ ∈ F̃ , R(f̃) − R̂S̃(f̃) ≤ sup
f̃∈F̃
(R(f̃) − R̂S̃(f̃)) .

Then, we can obtain the desired first bound (17).

Step 3: bound the fractional Rademacher complexity with the empirical one.

By defining g(S̃) = ∑
K
k=1 gk(S̃k) with each gk ∶ S̃k ↦ ∑j∈[Jk] ωkjgkj(Ikj) where each

gkj ∶ Ikj ↦
1

Kmk
E
σ

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈[Jk]

ωkj sup
f̃∈F̃

⎛

⎝
∑
i∈Ikj

σkiL(x̃ki, ỹki, f̃k)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

having differences bounded by M
Kmk

in the sense of the condition of Theorem 5; then for any δ ∈ (0,1), with probability at
least 1 − δ, we have

R∗m(L ○ F̃) ≤ R̂
∗
S̃
(L ○ F̃) +M

¿
Á
ÁÀ(

1

K

K

∑
k=1

χf(Gk)

mk
) log (

1

δ
).

Then, we can get the desired second bound (18) by using the union bound with the first bound (17).

B. Macro-AUC Maximization in MLC
B.1. Proof of Theorem 1

B.1.1. PROBLEM TRANSFORMATION

For the Macro-AUC maximization problem in multi-label learning, we can transform it into the problem of learning multiple
tasks with graph-dependent examples which is considered in Section A.2.1.

Specifically, construct the training dataset S̃ based on the original training set S as follows. For each label k ∈ [K], based on
the original dataset Sk, construct the dataset S̃k = {(x̃ki, ỹki)}

mk

i=1 , where x̃ki = (x̃
+
ki, x̃

−
ki), ỹki = 1, and (x̃+ki, x̃

−
ki) ∈ S

+
k ×S

−
k ,

mk = ∣S
+
k ∣∣S

−
k ∣ = n

2τk(1 − τk) and let {(Ikj , ωkj)}j∈[Jk] be a fractional independent vertex cover of the dependence graph
Gk constructed over S̃k with ∑j∈[Jk] ωkj = χf(Gk), where χf(Gk) is the fractional chromatic number of Gk. From
previous results in bipartite ranking (Usunier et al., 2005; Amini & Usunier, 2015), we know that

∀k ∈ [K], χf(Gk) =max{∣S+k ∣, ∣S
−
k ∣} = (1 − τk)n.

Besides, f̃k(x̃i) = fk(x
+
i ) − fk(x

−
i ) for each label k ∈ [K].

B.1.2. PROOF OF THEOREM 1

Theorem 1 (The base theorem of Macro-AUC). Assume the loss function Lϕ ∶ X ×X ×Fk → R+ is bounded by M . Then,
for any δ > 0, the following generalization bound holds with probability at least 1 − δ over the draw of an i.i.d. sample S of
size n:

∀f ∈ F , Rϕ(f) ≤ R̂
ϕ
S(f) + 2R̂

∗
S̃
(Lϕ ○F) +

3M

√
1

2n
log (

2

δ
)
⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
.
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Proof. Based on the problem transformation in Section B.1.1, we can straightforwardly get this theorem by applying
Theorem 6.

B.2. Proof of Lemma 1 and 2

B.2.1. PROOF OF LEMMA 1

Lemma 1 (The relationship between the surrogate and true losses). Assume the base loss function upper bounds the
original 0/1 loss, i.e., ℓ(t) ≥ [[t ≤ 0]]. Then, for any fk ∈ Fk and (x+,x−) ∈ S+k × S

−
k , the following inequalities hold:

L0/1(x
+,x−, fk) ≤ Lpa(x

+,x−, fk),

L0/1(x
+,x−, fk) ≤ Lu2(x

+,x−, fk) ≤
1

τk
Lu1(x

+,x−, fk)

≤
1 − τk
τk

Lu2(x
+,x−, fk).

Proof. For the first inequality, the following holds:

L0/1(x
+,x−, fk) = [[fk(x

+
) ≤ fk(x

−
)]] ≤ ℓ(fk(xp) − fk(xq)) = Lpa(x

+,x−, fk).

For the second inequality, the following holds:

L0/1(x
+,x−, fk) = [[fk(x

+
) ≤ fk(x

−
)]]

≤ [[sgn(fk(x
+
)) ≤ sgn(fk(x

−
))]]

= [[sgn(fk(x
+
)) ≠ +1]] + [[sgn(fk(x

−
)) ≠ −1]] − [[sgn(fk(x

+
)) ≠ +1]][[sgn(fk(x

−
)) ≠ −1]]

≤ [[sgn(fk(x
+
)) ≠ +1]] + [[sgn(fk(x

−
)) ≠ −1]]

≤ ℓ(fk(x
+
)) + ℓ(−fk(x

−
))

= Lu2(x
+,x−, fk)

=
n

min{∣S+k ∣, ∣S
−
k ∣}
(
min{∣S+k ∣, ∣S

−
k ∣}

n
ℓ(fk(x

+
)) +

min{∣S+k ∣, ∣S
−
k ∣}

n
ℓ(−fk(x

−
)))

≤
1

τk
(
∣S+k ∣

n
ℓ(fk(x

+
)) +

∣S−k ∣

n
ℓ(−fk(x

−
)))

=
1

τk
Lu1
(x+,x−, fk)

≤
1

τk
(
max{∣S+k ∣, ∣S

−
k ∣}

n
ℓ(fk(x

+
)) +

max{∣S+k ∣, ∣S
−
k ∣}

n
ℓ(−fk(x

−
)))

≤
max{∣S+k ∣, ∣S

−
k ∣}

min{∣S+k ∣, ∣S
−
k ∣}
(ℓ(fk(x

+
)) + ℓ(−fk(x

−
)))

=
1 − τk
τk

Lu2(x
+,x−, fk).

Thus, the inequalities hold.

B.2.2. PROOF OF LEMMA 2

Lemma 2 (The relationship between the surrogate and true risks). Assume the base loss function upper bounds the
original 0/1 loss, i.e., ℓ(t) ≥ [[t ≤ 0]]. Then, for any f ∈ F and any sample S

i.i.d.
∼ P , the following inequalities hold:

R0/1(f) ≤ Rpa(f),

R0/1(f) ≤ Ru2(f) = E
S
[R̂u2

S (f)] ≤ E
S
[
1

τ∗S
R̂u1

S (f)]

≤ E
S
[
1 − τ∗S
τ∗S

R̂u2

S (f)] .
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Proof. For the first inequality, the following holds:

R0/1(f) =
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[[fk(xp) ≤ fk(xq)]]

=
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[L0/1(xp,xq, fk)]

≤
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[Lpa(xp,xq, fk)]

=
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[ℓ(fk(xp) − fk(xq))]

= E
S
[R̂pa

S (f)]

= Rpa(f)

For the second inequality, we first have the following

Ru1(f) = E
S
[R̂u1

S (f)]

= E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

Lu1(xp,xq, fk)

⎤
⎥
⎥
⎥
⎥
⎦

= E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

(
∣S+k ∣

n
ℓ(fk(xp)) +

∣S−k ∣

n
ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

≥ E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

K

K

∑
k=1

τk
∣S+k ∣∣S

−
k ∣

∑
(p,q)∈S+

k
×S−

k

(ℓ(fk(xp)) + ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

.

Then, we can get

R0/1(f) =
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[L0/1(xp,xq, fk)]

≤
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[Lu2(xp,xq, fk)]

=
1

K

K

∑
k=1

E
xp∼P+k ,xq∼P−k

[ℓ(fk(xp)) + ℓ(−fk(xq))]

= E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

K

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

(ℓ(fk(xp)) + ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

= E
S
[R̂u2

S (f)]

= Ru2(f)

≤ E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

K

K

∑
k=1

1

τk ∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

(
∣S+k ∣

n
ℓ(fk(xp)) +

∣S−k ∣

n
ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

Kτ∗S

K

∑
k=1

1

∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

(
∣S+k ∣

n
ℓ(fk(xp)) +

∣S−k ∣

n
ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

= E
S
[
1

τ∗S
R̂u1

S (f)]

≤ E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

Kτ∗S

K

∑
k=1

max{S+k , S
−
k}

n∣S+k ∣∣S
−
k ∣

∑
(p,q)∈S+

k
×S−

k

(ℓ(fk(xp)) + ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦
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≤ E
S

⎡
⎢
⎢
⎢
⎢
⎣

1

Kτ∗S

K

∑
k=1

1 − τk
∣S+k ∣∣S

−
k ∣

∑
(p,q)∈S+

k
×S−

k

(ℓ(fk(xp)) + ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
S

⎡
⎢
⎢
⎢
⎢
⎣

1 − τ∗S
Kτ∗S

K

∑
k=1

1 − τk
∣S+k ∣∣S

−
k ∣

∑
(p,q)∈S+

k
×S−

k

(ℓ(fk(xp)) + ℓ(−fk(xq)))

⎤
⎥
⎥
⎥
⎥
⎦

= E
S
[
1 − τ∗S
τ∗S

R̂u2

S (f)] .

Thus, the second inequality holds.

B.3. Proof of Theorem 2, Corollary 4 and 2

B.3.1. THE FRACTIONAL RADEMACHER COMPLEXITY OF THE HYPOTHESIS SPACE

Definition 8 (The fractional Rademacher complexity of the hypothesis space for Lpa). Given a dataset S (and its
corresponding constructed dataset S̃), define the empirical fractional Rademacher complexity of the hypothesis space F̃
w.r.t. S̃ as follows:

R̂∗
S̃
(F̃) =

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f̃∈F̃

⎛

⎝
∑
i∈Ikj

σkif̃k(x̃ki)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f̃∈F̃

⎛

⎝
∑
i∈Ikj

σki(fk(x̃
+
ki − fk(x̃

−
ki))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Lemma 4 (The fractional Rademacher complexity of the kernel-based hypothesis space for Lpa). Suppose (1) and (2)
in Assumption 1 hold. Then, for the kernel-based hypothesis space (8), its empirical fractional Rademacher complexity w.r.t.
the dataset S̃, can be bounded as bellow:

R̂∗
S̃
(F̃) ≤

2Br
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠

Proof. By the definition of R̂∗
S̃
(F̃), we have

R̂∗
S̃
(F̃) =

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f̃∈F̃

⎛

⎝
∑
i∈Ikj

σkif̃k(x̃ki)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

∥wk∥≤B

⎛

⎝
∑
i∈Ikj

σki⟨wk,Φ(x̃ki)⟩
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj∥ sup

∥wk∥≤B
∥wk∥

XXXXXXXXXXXX

∑
i∈Ikj

σkiΦ(x̃ki)

XXXXXXXXXXXX

⎤
⎥
⎥
⎥
⎥
⎦

(Cauchy–Schwarz inequality)

=
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

B

mk
∑

j∈[Jk]
ωkj

XXXXXXXXXXXX

∑
i∈Ikj

σkiΦ(x̃ki)

XXXXXXXXXXXX

⎤
⎥
⎥
⎥
⎥
⎦

(the definition of sup)

=
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj E

σ

⎡
⎢
⎢
⎢
⎢
⎣

XXXXXXXXXXXX

∑
i∈Ikj

σkiΦ(x̃ki)

XXXXXXXXXXXX

⎤
⎥
⎥
⎥
⎥
⎦

(linearity of expectation)

≤
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj

⎛
⎜
⎝
E
σ

⎡
⎢
⎢
⎢
⎢
⎣

XXXXXXXXXXXX

∑
i∈Ikj

σkiΦ(x̃ki)

XXXXXXXXXXXX

2⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

1
2

(Jensen’s inequality)

=
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj

⎛

⎝
E
σ

⎡
⎢
⎢
⎢
⎢
⎣

∑
p∈Ikj ,q∈Ikj

σkpσkq ⟨Φ(x̃kp),Φ(x̃kq)⟩

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

1
2
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=
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj

⎛

⎝
∑
i∈Ikj

⟨Φ(x̃ki),Φ(x̃ki)⟩
⎞

⎠

1
2

(∀p ≠ q,E[σkpσkq] = 0 and E[σkiσki] = 1)

=
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj

⎛

⎝
∑
i∈Ikj

⟨Φ(x+ki) −Φ(x
−
ki),Φ(x

+
ki) −Φ(x

−
ki)⟩
⎞

⎠

1
2

(Φ(x̃) = Φ(x+) −Φ(x−))

≤
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj

⎛

⎝
∑
i∈Ikj

(⟨Φ(x+ki),Φ(x
+
ki)⟩ + ⟨Φ(x

−
ki),Φ(x

−
ki)⟩)

⎞

⎠

1
2

(∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2)

=
1

K

K

∑
k=1

B

mk
∑

j∈[Jk]
ωkj

⎛

⎝
∑
i∈Ikj

2 (κ(x+ki,x
+
ki) + κ(x

−
ki,x

−
ki))
⎞

⎠

1
2

(κ(x,x) = ⟨Φ(x),Φ(x)⟩)

≤
1

K

K

∑
k=1

2Br

mk
∑

j∈[Jk]
ωkj
√
mkj (κ(x,x) ≤ r2 and let ∣Ikj ∣ =mkj)

=
1

K

K

∑
k=1

2Brχf(Gk)

mk
∑

j∈[Jk]

ωkj

χf(Gk)

√
mkj

≤
1

K

K

∑
k=1

2Br
√
χf(Gk)

mk

√

∑
j∈[Jk]

ωkjmkj ( ∑
j∈[Jk]

ωkj

χf(Gk)
= 1 and Jensen’s inequality)

=
1

K

K

∑
k=1

2Br

√
χf(Gk)

mk
( ∑
j∈[Jk]

ωkjmkj =mk)

Since for Macro-AUC optimization in multi-label learning, χf(Gk) = max{∣S+k ∣, ∣S
−
k ∣}, mk = ∣S

+
k ∣∣S

−
k ∣ and τk =

min{∣S+k ∣, ∣S
−
k ∣} hold, then we can get

1

K

K

∑
k=1

2Br

√
χf(Gk)

mk
=
2Br
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
.

Thus, we can get the desired result by combining the above equality and previous inequality.

B.3.2. THE CONTRACTION INEQUALITY

Lemma 5 (Contraction inequality for Lpa). Assume the loss function Lϕ = L1(y, f̃k(x̃)) is µ-Lipschitz continuous w.r.t.
the second argument where L1 denotes the loss function of two inputs for convenience. Then, the following holds:

R̂∗
S̃
(Lϕ ○F) ≤ µR̂

∗
(F̃).

Proof. Since R̂∗
S̃
(Lϕ ○ F) =

1
K ∑

K
k=1 R̂

∗
S̃k
(Lϕ ○ Fk) and R̂∗

S̃
(F) = 1

K ∑
K
k=1 R̂

∗
S̃k
(Fk), we first prove R̂∗

S̃k
(Lϕ ○ Fk) ≤

µR̂∗
S̃k
(Fk) and then can get the desired result.

Here we prove the inequality R̂∗
S̃k
(Lϕ ○Fk) ≤ µR̂

∗
S̃k
(Fk) following the idea in Mohri et al. (2018) (Lemma 5.7, p.93), and

we omit the index k and the symbol S̃k for notation simplicity in the following.

First we fix a sample (x̃1, . . . , x̃m), then by defintion,

R̂∗(Lϕ ○ f) = E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

m
∑

j∈[J]
wj sup

f̃∈F̃

⎛

⎝
∑
i∈Ij

σiL1(yi, f̃(x̃i))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

m
∑

j∈[J]
wj E

σ1,...,σnj−1

⎡
⎢
⎢
⎢
⎢
⎣

E
σnj

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

unj−1(f̃) + σnjL1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

, (denote nj = ∣Ij ∣ for simplicity)
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where unj−1(f̃) = ∑
nj

i=1 σiL1(yi, f̃(x̃i)). By the definition of the supremum, for any ϵ > 0, there exists f̃1, f̃2 ∈ F̃ such that

unj−1(f̃
1
) +L1(ynj , f̃

1
(x̃nj)) ≤ (1 − ϵ)

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

unj−1(f̃) +L1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

,

and

unj−1(f̃
2
) −L1(ynj , f̃

2
(x̃nj)) ≤ (1 − ϵ)

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

unj−1(f̃) −L1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

.

Thus, for any ϵ > 0, by definition of E
σnj

,

(1 − ϵ) E
σnj

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

unj−1(f̃) + σnjL1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

= (1 − ϵ)

⎡
⎢
⎢
⎢
⎢
⎣

1

2
sup
f̃∈F̃

unj−1(f̃) +L1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

1

2
sup
f̃∈F̃

unj−1(f̃) −L1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

2
[unj−1(f̃

1
) +L1(ynj , f̃

1
(x̃nj))] +

1

2
[unj−1(f̃

2
) −L1(ynj , f̃

2
(x̃nj))] .

Let s = sgn(f̃1(x̃nj) − f̃
2(x̃nj)). Then, the previous inequality implies

(1 − ϵ) E
σnj

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

unj−1(f̃) + σnjL1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

2
[unj−1(f̃

1
) + unj−1(f̃

2
) + sµ(f̃1

(x̃nj) − f̃
2
(x̃nj))] (Lipschitz property)

=
1

2
[unj−1(f̃

1
) + sµf̃1

(x̃nj)] +
1

2
[unj−1(f̃

2
) − sµf̃2

(x̃nj)] (rearranging)

≤
1

2
sup
f̃∈F̃
[unj−1(f̃) + sµf̃(x̃nj)] +

1

2
sup
f̃∈F̃
[unj−1(f̃) − sµf̃(x̃nj)] (definition of sup)

= E
σnj

[unj−1(f̃) + σnjµf̃(x̃nj)] . (definition of E
σnj

)

Since the inequality holds for any ϵ > 0, we have

E
σnj

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

unj−1(f̃) + σnjL1(ynj , f̃(x̃nj))

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
σnj

[unj−1(f̃) + σnjµf̃(x̃nj)] .

Proceeding in the same way for all other σi (i ∈ [Ij], i ≠ nj) proves that

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ij

σiL1(yi, f̃(x̃i))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ij

σiµf̃(x̃i)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

By proceeding other j ∈ [J], we can obtain the following

R̂∗(Lϕ ○ f) =
1

m
∑

j∈[J]
wj E

σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ij

σiL1(yi, f̃(x̃i))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

m
∑

j∈[J]
wj E

σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f̃∈F̃

⎛

⎝
∑
i∈Ij

σiµf̃(x̃i)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= µR̂∗(f̃).
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B.3.3. PROOF OF THEOREM 2

Theorem 2 (Learning guarantee of Apa in general case). Assume the loss Lϕ = Lpa, where Lpa is defined in Eq.(5).
Besides, Assumption 1 holds. Then, for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S of size
n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤ Rpa(f) ≤R̂pa(f) +
4ρrΛ
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+

3B

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
. (9)

Proof. Since the base loss ℓ(z) is bounded by B and the loss Lpa(x
+,x−, fk) = ℓ (fk(x

+) − fk(x
−)), the loss Lϕ = Lpa is

bounded by B. Then, applying Theorem 1, and combining Lemma 5 and Lemma 4, we can obtain that for any δ > 0, the
following generalization bound holds with probability at least 1 − δ over the draw of an i.i.d. sample S of size n:

Rpa(f) ≤ R̂pa(f) +
4ρrΛ
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+ 3B

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
.

Finally, we can get the desired result by combining the above inequality and Lemma 2 (i.e., R0/1(f) ≤ Rpa(f)).

B.3.4. PROOF OF COROLLARY 4

Corollary 4 (Learning guarantee of Apa in balanced case). Assume the loss Lϕ = Lpa, where Lpa is defined in Eq.(5).
Besides, Assumption 1 holds and suppose S is balanced. Then, for any δ > 0, with probability at least 1− δ over the draw of
an i.i.d. sample S of size n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤ Rpa(f) ≤R̂pa(f) +
4
√
2ρrΛ
√
n

+

3
√
2B

√
log( 2

δ
)

2n
. (19)

Proof. It is straightforward to get the result by applying the Theorem 2 by plugging τk =
1
2

.

B.3.5. PROOF OF COROLLARY 2

Corollary 2 (Learning guarantee ofApa in extremely imbalanced case). Assume the loss Lϕ = Lpa, where Lpa is defined
in Eq.(5). Besides, Assumption 1 holds and suppose S is extremely imbalanced. Then, for any δ > 0, with probability at
least 1 − δ over the draw of an i.i.d. sample S of size n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤ Rpa(f) ≤ R̂pa(f) + 4ρrΛ + 3B

√

log(
2

δ
).

Proof. It is straightforward to get the result by applying the Theorem 2 by plugging τk =
1
n

.

B.4. Proof of Theorem 3 and 4, Corollary 1, 3 and 5

B.4.1. THE FRACTIONAL RADEMACHER COMPLEXITY OF THE HYPOTHESIS SPACE

Definition 9 (The fractional Rademacher complexity of the hypothesis space w.r.t. (reweighted) univariate losses).
Given a dataset S (and its corresponding constructed dataset S̃), assume the loss function Lϕ = Lu(x

+,x−, fk) =
a+(Sk)ℓ(fk(x

+)) + a−(Sk)ℓ(−fk(x
−)) for each label k ∈ [K], where ℓ(t) is the base loss function and the reweighting
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function a+(Sk) (or a−(Sk)) indicates its dependency on Sk. Then, define the empirical fractional Rademacher complexity
of the hypothesis space F w.r.t. S̃ and Lu as follows:

R̂∗
S̃,Lu
(F) =

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f∈F

⎛

⎝
∑
i∈Ikj

(σ+kia
+
(Sk)fk(x

+
ki) + σ

−
kia
−
(Sk)fk(x

−
ki))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Lemma 6 (The fractional Rademacher complexity of kernel-based hypothesis space w.r.t. (reweighted) univari-
ate losses). Suppose (1) and (2) in Assumption 1 hold and the loss function Lu(x

+,x−, fk) = a+(Sk)ℓ(fk(x
+)) +

a−(Sk)ℓ(−fk(x
−)). Then, for the kernel-based hypothesis space (8), its empirical fractional Rademacher complexity w.r.t.

the dataset S̃ and loss function Lu, can be bounded as bellow:

R̂∗
S̃,Lu
(F) ≤

Br
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk
(a+(Sk) + a

−
(Sk))

⎞

⎠
.

Proof. By the definition of R̂∗
S̃,Lu
(F) and let a+k (or a−k) denote a+(Sk) (or a−(Sk)) for notation simplicity, we can have

R̂∗
S̃,Lu
(F) =

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

f∈F

⎛

⎝
∑
i∈Ikj

(σ+kia
+
(Sk)fk(x

+
ki) + σ

−
kia
−
(Sk)fk(x

−
ki))
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

∥wk∥≤B

⎛

⎝
∑
i∈Ikj

(σ+kia
+
k⟨wk,Φ(x

+
ki)⟩ + σ

−
kia
−
k⟨wk,Φ(x

−
ki)⟩)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

1
≤

1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj

⎛

⎝
sup
∥wk∥≤B

⎛

⎝
∑
i∈Ikj

σ+kia
+
k⟨wk,Φ(x

+
ki)⟩
⎞

⎠
+ sup
∥wk∥≤B

⎛

⎝
∑
i∈Ikj

σ−kia
−
k⟨wk,Φ(x

−
ki)⟩
⎞

⎠

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

def
= ♣ + ♠

where the inequality 1 is due to sub-additivity of the supremum function (i.e., sup(a + b) ≤ supa + sup b), and

♣ =
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

∥wk∥≤B

⎛

⎝
∑
i∈Ikj

σ+kia
+
k⟨wk,Φ(x

+
ki)⟩
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

♠ =
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

∥wk∥≤B

⎛

⎝
∑
i∈Ikj

σ−kia
−
k⟨wk,Φ(x

−
ki)⟩
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Next, we will (upper) bound ♣ and ♠, respectively.

Firstly, for ♣, we can have

♣ =
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

mk
∑

j∈[Jk]
ωkj sup

∥wk∥≤B

⎛

⎝
∑
i∈Ikj

σ+kia
+
k⟨wk,Φ(x

+
ki)⟩
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

K

K

∑
k=1

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

a+k
mk

∑
j∈[Jk]

ωkj sup
∥wk∥≤B

∥wk∥

XXXXXXXXXXXX

∑
i∈Ikj

σ+kiΦ(x
+
ki)

XXXXXXXXXXXX

⎤
⎥
⎥
⎥
⎥
⎦

(Cauchy–Schwarz inequality)

=
1

K

K

∑
k=1

Ba+k
mk

∑
j∈[Jk]

ωkj E
σ

⎡
⎢
⎢
⎢
⎢
⎣

XXXXXXXXXXXX

∑
i∈Ikj

σ+kiΦ(x
+
ki)

XXXXXXXXXXXX

⎤
⎥
⎥
⎥
⎥
⎦

(the definition of the sup and linearity of expectation)

≤
1

K

K

∑
k=1

Ba+k
mk

∑
j∈[Jk]

ωkj

⎛
⎜
⎝
E
σ

⎡
⎢
⎢
⎢
⎢
⎣

XXXXXXXXXXXX

∑
i∈Ikj

σ+kiΦ(x
+
ki)

XXXXXXXXXXXX

2⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

1
2

(Jensen’s inequality)

=
1

K

K

∑
k=1

Ba+k
mk

∑
j∈[Jk]

ωkj

⎛

⎝
E
σ

⎡
⎢
⎢
⎢
⎢
⎣

∑
p∈Ikj ,q∈Ikj

σ+kpσ
+
kq⟨Φ(x

+
kp),Φ(x

+
kq)⟩

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

1
2
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=
1

K

K

∑
k=1

Ba+k
mk

∑
j∈[Jk]

ωkj

⎛

⎝
∑
i∈Ikj

⟨Φ(x+ki),Φ(x
+
ki)⟩
⎞

⎠

1
2

(∀p ≠ q,E[σkpσkq] = 0 and E[σkiσki] = 1)

≤
1

K

K

∑
k=1

Bra+k
mk

∑
j∈[Jk]

ωkj
√
mkj (⟨Φ(x+ki),Φ(x

+
ki)⟩ = κ(x

+
ki,x

+
ki) ≤ r

2 and let mkj = ∣Ikj ∣)

=
1

K

K

∑
k=1

Bra+kχf(Gk)

mk
∑

j∈[Jk]

ωkj

χf(Gk)

√
mkj

≤
1

K

K

∑
k=1

Bra+k
√
χf(Gk)

mk

√

∑
j∈[Jk]

ωkjmkj ( ∑
j∈[Jk]

ωkj

χf(Gk)
= 1 and Jensen’s inequality).

Since ∑j∈[Jk] ωkjmkj =mk, χf(Gk) =max{∣S+k ∣, ∣S
−
k ∣},mk = ∣S

+
k ∣∣S

−
k ∣ and τk =min{∣S+k ∣, ∣S

−
k ∣} hold, it comes

♣ ≤
1

K

K

∑
k=1

Bra+k
√
χf(Gk)

mk

√

∑
j∈[Jk]

ωkjmkj ≤
Br
√
n

⎛

⎝

1

K

K

∑
k=1

a+k

√
1

τk

⎞

⎠
.

Similarly to the proof of ♣, we can obtain the upper bound for ♠:

♠ ≤
Br
√
n

⎛

⎝

1

K

K

∑
k=1

a−k

√
1

τk

⎞

⎠
.

Thus, we can obtain the final result:

R̂∗
S̃,Lu
(F) ≤

Br
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk
(a+(Sk) + a

−
(Sk))

⎞

⎠
.

Proposition 1 (The fractional Rademacher complexity of the kernel-based hypothesis space w.r.t. Lu1 and Lu2). For the
surrogate loss functions Lu1 and Lu2 , which are defined in Eq.(6) and Eq.(7) respectively, we have

R̂∗
S̃,Lu1

(F) ≤
Br
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
,

R̂∗
S̃,Lu2

(F) ≤
2Br
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
.

Proof. The proof is straightforward based on Lemma 6 by plugging in the specific reweighted values (i.e., a+(Sk) and
a−(Sk)) of the surrogate univariate loss functions.

B.4.2. THE CONTRACTION INEQUALITY

Lemma 7 (Contraction inequality for the (reweighted) univariate loss Lu). For a dataset S (and its corresponding
constructed dataset S̃), assume the loss function Lϕ = Lu(x

+,x−, fk) = a
+(Sk)ℓ(fk(x

+)) + a−(Sk)ℓ(−fk(x
−)) for each

k ∈ [K], where the base loss function ℓ(t) is ρ-Lipschitz and the reweighting function a+(Sk) (or a−(Sk)) indicates its
dependency on Sk. Then, the following inequality holds

R̂∗
S̃
(Lϕ ○F) ≤ 2ρR̂

∗
S̃,Lu
(F).

Proof. Since R̂∗
S̃
(Lϕ ○F) =

1
K ∑

K
k=1 R̂

∗
S̃k
(Lϕ ○Fk) and R̂∗

S̃
(F , Lu) =

1
K ∑

K
k=1 R̂

∗
S̃,Lu
(F), we first prove R̂∗

S̃k
(Lϕ ○Fk) ≤

2ρR̂∗
S̃,Lu
(F) and then can get the desired result.

Here we prove the inequality R̂∗
S̃k
(Lϕ ○Fk) ≤ ρR̂

∗
S̃k,Lu

(Fk) following the idea in Mohri et al. (2018) (Lemma 5.7, p.93),

and we omit the index k and the symbol S̃k or S for notation simplicity in the following.
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First we fix a sample (x̃1 = (x
+
1 ,x

−
1), . . . , x̃m = (x

+
m,x−m)), then by defintion,

R̂∗(Lϕ ○ f) = E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

m
∑

j∈[J]
wj sup

f∈F

⎛

⎝
∑
i∈Ij

σiLu(x
+
i ,x

−
i , f)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
1

m
∑

j∈[J]
wj E

σ1,...,σnj−1
[ E
σnj

[sup
f∈F

unj−1(f) + σnjLu(x
+
nj
,x−nj

, f)]] , (denote nj = ∣Ij ∣ for simplicity)

where unj−1(f) = ∑
nj

i=1 σiLu(x
+
i ,x

−
i , f). By the definition of the supremum, for any ϵ > 0, there exists f1, f2 ∈ F such that

unj−1(f
1
) +Lu2(x

+
nj
,x−nj

, f1
) ≤ (1 − ϵ) [sup

f∈F
unj−1(f) +Lu(x

+
nj
,x−nj

, f)] ,

and

unj−1(f
2
) −Lu2(x

+
nj
,x−nj

, f2
) ≤ (1 − ϵ) [sup

f∈F
unj−1(f) −Lu(x

+
nj
,x−nj

, f)] .

Thus, for any ϵ > 0, by definition of E
σnj

,

(1 − ϵ) E
σnj

[sup
f∈F

unj−1(f) + σnjLu(x
+
nj
,x−nj

, f)]

= (1 − ϵ) [
1

2
sup
f∈F

unj−1(f) +Lu(x
+
nj
,x−nj

, f)] + [
1

2
sup
f∈F

unj−1(f) −Lu(x
+
nj
,x−nj

, f)]

≤
1

2
[unj−1(f

1
) +Lu(x

+
nj
,x−nj

, f1
))] +

1

2
[unj−1(f

2
) −Lu(x

+
nj
,x−nj

, f2
)] .

=
1

2
[unj−1(f

1
) + a+ℓ(f1

(x+nj
)) + a−ℓ(−f1

(x−nj
))] +

1

2
[unj−1(f

2
) − a+ℓ(f2

(x+nj
)) − a−ℓ(−f2

(x−nj
))] .

Let s+ = sgn(f1(x+nj
) − f2(x+nj

)) and s− = sgn(f1(x−nj
) − f2(x−nj

)). Then, the previous inequality implies

(1 − ϵ) E
σnj

[sup
f∈F

unj−1(f) + σnjLu(x
+
nj
,x−nj

, f)]

≤
1

2
[unj−1(f

1
) + unj−1(f

2
) + s+a+ρ(f1

(x+nj
) − f2

(x+nj
)) + s−a−ρ(f1

(x−nj
) − f2

(x−nj
))] (Lipschitz property)

=
1

2
[unj−1(f

1
) + s+a+ρf1

(x+nj
) + s−a−ρf1

(x−nj
)] +

1

2
[unj−1(f

2
) − s+a+ρf2

(x+nj
) − s−a−ρf2

(x−nj
)] (rearranging)

≤
1

2
sup
f∈F
[unj−1(f) + s

+a+ρf(x+nj
) + s−a−ρf(x−nj

)] +
1

2
sup
f∈F
[unj−1(f) − s

+a+ρf(x+nj
) − s−a−ρf(x−nj

)] (def of sup)

= 2 E
σ+nj

,σ−nj

[unj−1(f̃) + σ
+
nj
a+ρf(x+nj

) + σ−nj
a−ρf(x−nj

)] . (definition of E
σ+nj

,σ−nj

)

Since the inequality holds for any ϵ > 0, we have

E
σnj

[sup
f∈F

unj−1(f) + σnjLu(x
+
nj
,x−nj

, f)] ≤ 2 E
σ+nj

,σ−nj

[unj−1(f̃) + σ
+
nj
a+ρf(x+nj

) + σ−nj
a−ρf(x−nj

)] .

Proceeding in the same way for all other σi (i ∈ [Ij], i ≠ nj) proves that

E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

m
∑

j∈[J]
wj sup

f∈F

⎛

⎝
∑
i∈Ij

σiLu(x
+
i ,x

−
i , f)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
σ

⎡
⎢
⎢
⎢
⎢
⎣

1

m
∑

j∈[J]
wj sup

f∈F
2ρ
⎛

⎝
∑
i∈Ij
(σ+i a

+f(x+i ) + σ
−
i a
−f(x−i ))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.
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By proceeding other j ∈ [J], we can obtain the following

R̂∗(Lϕ ○ f) =
1

m
∑

j∈[J]
wj E

σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f∈F

⎛

⎝
∑
i∈Ij

σiLu(x
+
i ,x

−
i , f)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

m
∑

j∈[J]
wj E

σ

⎡
⎢
⎢
⎢
⎢
⎣

sup
f∈F

⎛

⎝
∑
i∈Ij

2ρ(σ+i a
+f(x+i ) + σ

−
i a
−f(x−i ))

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= 2ρR̂∗Lu
(f).

B.4.3. PROOF OF THEOREM 3

Theorem 3 (Learning guarantee of Au1 in general case). Assume the loss Lϕ =
1
τ∗
S
Lu1

, where Lu1
is defined in Eq.(6).

Besides, Assumption 1 holds. Then, for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S of size
n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤
1

τ∗S
R̂u1(f) +

4ρrΛ

τ∗S
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+

3B

τ∗S

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
. (10)

Proof. Since the base loss ℓ(z) is bounded by B and the loss Lu1(x
+,x−, fk) =

∣S+k ∣
n

ℓ (fk(x
+))+

∣S−k ∣
n

ℓ (−fk(x
−)), the loss

Lϕ =
1
τ∗
S
Lu1 is bounded by B

τ∗
S

. Then, applying Theorem 1, and combining Lemma 7 and Proposition 1, we can obtain that
for any δ > 0, the following generalization bound holds with probability at least 1 − δ over the draw of an i.i.d. sample S of
size n:

E
S
[
1

τ∗S
R̂u1(f)] ≤

1

τ∗S
R̂u1(f) +

4ρrΛ

τ∗S
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+
3B

τ∗S

√
log( 2

δ
)

2n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
.

Finally, we can get the desired result by combining the above inequality and Lemma 2 (i.e., R0/1(f) ≤ E
S
[ 1
τ∗
S
R̂u1(f)]).

B.4.4. PROOF OF THEOREM 4

Theorem 4 (Learning guarantee of Au2 in general case). Assume the loss Lϕ = Lu2 , where Lu2 is defined in Eq.(7).
Besides, Assumption 1 holds. Then, for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S of size
n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤ Ru2(f) ≤R̂u2(f) +
8ρrΛ
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+

6B

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠
. (11)

Proof. Since the base loss ℓ(z) is bounded by B and the loss Lu2(x
+,x−, fk) = ℓ (fk(x

+)) + ℓ (−fk(x
−)), the loss

Lϕ = Lu2 is bounded by 2B. Then, applying Theorem 1, and combining Lemma 7 and Proposition 1, we can obtain that for
any δ > 0, the following generalization bound holds with probability at least 1 − δ over the draw of an i.i.d. sample S of size
n:

Ru2(f) = E
S
[R̂u2(f)] ≤ R̂u2(f) +

8ρrΛ
√
n

⎛

⎝

1

K

K

∑
k=1

√
1

τk

⎞

⎠
+ 6B

√
log( 2

δ
)

2n

⎛
⎜
⎝

¿
Á
ÁÀ 1

K

K

∑
k=1

1

τk

⎞
⎟
⎠

Finally, we can get the desired result by combining the above inequality and Lemma 2 (i.e., R0/1(f) ≤ Ru2(f)).
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B.4.5. PROOF OF COROLLARY 1

Corollary 1 (Learning guarantee of Au1 and Au2 in balanced case). Assume the loss Lϕ = 2Lu1 = Lu2 , where Lu1 and
Lu2 are defined in Eq.(6) and Eq.(7), respectively. Besides, Assumption 1 holds and suppose S is balanced. Then, for any
δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S of size n, the following generalization bound holds
for any f ∈ F:

R0/1(f) ≤ Ru2(f) = 2Ru1(f) ≤R̂u2(f) +
8
√
2ρrΛ
√
n

+

6
√
2B

√
log( 2

δ
)

2n
, (12)

where R̂u2(f) = 2R̂u1(f).

Proof. It is straightforward to get the result by applying the Theorem 3 and Theorem 4 by plugging τk =
1
2

.

B.4.6. PROOF OF COROLLARY 3

Corollary 3 (Learning guarantee of Au1 in extremely imbalanced case). Assume the loss Lϕ = nLu1 , where Lu1 is
defined in Eq.(6). Besides, Assumption 1 holds and suppose S is extremely imbalanced. Then, for any δ > 0, with probability
at least 1 − δ over the draw of an i.i.d. sample S of size n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤nR̂u1(f) + 4nρrΛ + 3Bn

√
log( 2

δ
)

2
.

Proof. It is straightforward to get the result by applying the Theorem 3 by plugging τk =
1
n

.

B.4.7. PROOF OF COROLLARY 5

Corollary 5 (Learning guarantee of Au2 in extremely imbalanced case). Assume the loss Lϕ = Lu2 , where Lu2 is
defined in Eq.(7). Besides, Assumption 1 holds and suppose S is extremely imbalanced. Then, for any δ > 0, with probability
at least 1 − δ over the draw of an i.i.d. sample S of size n, the following generalization bound holds for any f ∈ F:

R0/1(f) ≤ Ru2(f) ≤R̂u2(f) + 8ρrΛ + 6B

√
log( 2

δ
)

2
.

Proof. It is straightforward to get the result by applying the Theorem 4 and Theorem 4 by plugging τk =
1
n

.

C. Additional Experimental Results
C.1. Label-wise class imbalance illustrations of benchmark datasets

The label-wise class imbalance levels of all the benchmark datasets are illustrated in Figure 2.

C.2. Experimental results about the absolute value of bounds

Here we report the mean upper bound values of three algorithms for the benchmark datasets in Table 4. From the experimental
results, we can observe that the absolute values might not reflect the true generalization risk (i.e., bigger than 1), but they can
still offer valuable insights into these algorithms by comparing the order of dependent factors under the same framework.

D. Additional Related Work
Recently, there have been some works on the McDiarmid-type concentration inequality for data with graph dependence in
quite general settings, e.g., Zhang et al. (2019). However, to the best of our knowledge, it is not clear to apply the conclusion
of the existing work (Zhang et al., 2019) (i.e., Theorem 3.6 for the general dependency graph on Page 5) to get the explicit

30



Towards Understanding Generalization of Macro-AUC in Multi-label Learning

50 100 150

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(a) CAL500

1 2 3 4 5 6

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(b) emotions

1 2 3 4 5

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(c) image

1 2 3 4 5 6

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(d) scene

2 4 6 8 10 12 14

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(e) yeast

10 20 30 40 50

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(f) enron

20 40 60 80 100

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(g) rcv1-s1

50 100 150

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a
lu

e
 (

k
)

(h) bibtex

100 200 300

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a

lu
e

 (
k
)

(i) corel5k

200 400 600 800

Label Index (k)

0

0.1

0.2

0.3

0.4

0.5

V
a

lu
e

 (
k
)

(j) delicious

Figure 2. The illustration of the label-wise class imbalance of each benchmark dataset.

Table 4. The mean upper bound values of three algorithms for the benchmark datasets. We set δ = 0.01.

Dataset A
pa

A
u1

A
u2

CAL500 13.0 7082.4 36.3
emotions 13.6 56.8 33.7
image 13.1 191.0 30.7
scene 7.4 146.2 19.6
yeast 3.6 375.2 12.1
enron - 37016.0 69.0
rcv1-s1 - 96284.0 20.2
bibtex - 207.4 55.2
corel5k - 97359.0 3.1
delicious - 293000.0 82.8

generalization bound in the Macro-AUC maximization of MLC, as the forest complexity of the dependency graph might be
non-trivial to estimate in this case. In contrast, our proposed new McDiarmid-type concentration inequality (i.e., Theorem 5)
is easy to apply in this case.

Note that our proposed concentration inequality (i.e., Theorem 5) is not a corollary of the existing one (i.e., Theorem 3.6
in (Zhang et al., 2019)). They are complementary to each other with different assumptions. Although Zhang et al. (2019) is
general for the general dependency graph, ours consider the particular case with additional assumptions by constraining the
function and the dependency graph (i.e., the assumptions (1) and (2) in Theorem 5), which cannot be induced by Zhang et al.
(2019).
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