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Abstract
To bridge the gaps between topology-aware Graph
Neural Networks (GNNs) and inference-efficient
Multi-Layer Perceptron (MLPs), GLNN (Zhang
et al., 2021) proposes to distill knowledge from
a well-trained teacher GNN into a student MLP.
Despite their great progress, comparatively lit-
tle work has been done to explore the reliability
of different knowledge points (nodes) in GNNs,
especially their roles played during distillation.
In this paper, we first quantify the knowledge
reliability in GNN by measuring the invariance
of their information entropy to noise perturba-
tions, from which we observe that different knowl-
edge points (1) show different distillation speeds
(temporally); (2) are differentially distributed in
the graph (spatially). To achieve reliable distilla-
tion, we propose an effective approach, namely
Knowledge-inspired Reliable Distillation (KRD),
that models the probability of each node being an
informative and reliable knowledge point, based
on which we sample a set of additional reliable
knowledge points as supervision for training stu-
dent MLPs. Extensive experiments show that
KRD improves over the vanilla MLPs by 12.62%
and outperforms its corresponding teacher GNNs
by 2.16% averaged over 7 datasets and 3 GNN
architectures. Codes are publicly available at:
https://github.com/LirongWu/RKD.

1. Introduction
Recent years have witnessed the great success of Graph
Neural Networks (GNNs) (Hamilton et al., 2017; Kipf &
Welling, 2016; Veličković et al., 2017; Liu et al., 2020;
Wu et al., 2020; Zhou et al., 2020; Wu et al., 2021b;a) in
handling graph-related tasks. Despite their great academic
success, Multi-Layer Perceptrons (MLPs) remain the pri-
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Figure 1. Mean, standard deviation, and minimum/maximum clas-
sification accuracy of student MLPs trained with different combi-
nations of (randomly sampled) GNN knowledge points on Cora.

mary workhorse for practical industrial applications. One
reason for such academic-industrial gap is the neighborhood-
fetching latency incurred by data dependency in GNNs (Jia
et al., 2020; Zhang et al., 2021), which makes it hard to
deploy for latency-sensitive applications. Conversely, Multi-
Layer Perceptrons (MLPs) involve no data dependence be-
tween data pairs and infer much faster than GNNs, but their
performance is less competitive. Motivated by these comple-
mentary strengths and weaknesses, one solution to reduce
their gaps is to perform GNN-to-MLP knowledge distilla-
tion (Yang et al., 2021; Zhang et al., 2021; Gou et al., 2021),
which extracts the knowledge from a well-trained teacher
GNN and then distills the knowledge into a student MLP.

Despite the great progress, most previous works have simply
treated all knowledge points (nodes) in GNNs as equally im-
portant, and few efforts are made to explore the reliability of
different knowledge points in GNNs and the diversity of the
roles they play in the distillation process. From the motiva-
tional experiment in Fig. 1, we can make two important ob-
servations about knowledge points: (1) More is better: the
performance of distilled MLPs can be improved as the num-
ber of knowledge points NKP increases; and (2) Reliable is
better: the performance variances (e.g., standard deviation
and best/worst performance gap) of different knowledge
combinations are enlarged as NKP decreases. The above
two observations suggest that different knowledge points
may play different roles in the distillation process and that
distilled MLPs can consistently benefit from more reliable
knowledge points, while those uninformative and unreliable
knowledge points may contribute little to the distillation.
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Present Work. In this paper, we identify a potential under-
confidence problem for GNN-to-MLP distillation, i.e., the
distilled MLPs may not be able to make predictions as confi-
dently as teacher GNNs. Furthermore, we conduct extensive
theoretical and experimental analysis on this problem and
find that it is mainly caused by the lack of reliable supervi-
sion from teacher GNNs. To provide more supervision for
reliable distillation into student MLPs, we propose to quan-
tify the knowledge in GNNs by measuring the invariance
of their information entropy to noise perturbations, from
which we find that different knowledge points (1) show dif-
ferent distillation speeds (temporally); (2) are differentially
distributed in the graph (spatially). Finally, we propose an
effective approach, namely Knowledge-inspired Reliable
Distillation (KRD), for filtering out unreliable knowledge
points and making full use of those with informative knowl-
edge. The proposed KRD framework models the probability
of each node being an information-reliable knowledge point,
based on which we sample a set of additional reliable knowl-
edge points as supervision for training student MLPs.

Our main contributions can be summarized as follows:

• We are the first to identify a potential under-confidence
problem for GNN-to-MLP distillation, and more im-
portantly, we described in detail what it represents, how
it arises, what impact it has, and how to deal with it.

• We propose a perturbation invariance-based metric to
quantify the reliability of knowledge in GNNs and
analyze the roles played by different knowledge nodes
temporally and spatially in the distillation process.

• We propose a Knowledge-inspired Reliable Distilla-
tion (KRD) framework based on the quantified GNN
knowledge to make full use of those reliable knowledge
points as additional supervision for training MLPs.

2. Related Work
GNN-to-GNN Knowledge Distillation. Despite the great
progress, most existing GNNs share the de facto design that
relies on message passing to aggregate features from neigh-
borhoods, which may be one major source of latency in
GNN inference. To address this problem, there are previous
works that attempt to distill knowledge from large teacher
GNNs to smaller student GNNs, termed as GNN-to-GNN
distillation (Lassance et al., 2020; Zhang et al., 2020a; Ren
et al., 2021; Joshi et al., 2021; Wu et al., 2022a;b). For ex-
ample, the student model in RDD (Zhang et al., 2020b) and
TinyGNN (Yan et al., 2020) is a GNN with fewer parame-
ters but not necessarily fewer layers than the teacher GNN.
Besides, LSP (Yang et al., 2020b) transfers the topological
structure (rather than feature) knowledge from a pre-trained
teacher GNN to a shallower student GNN. In addition,
GNN-SD (Chen et al., 2020) directly distills knowledge
across different GNN layers, mainly aiming to solve the

over-smoothing problem but with unobvious performance
improvement at shallow layers. Moreover, FreeKD (Feng
et al., 2022) studies a free-direction knowledge distillation
architecture, with the purpose of dynamically exchanging
knowledge between two shallower GNNs. Note that both
teacher and student models in the above works are GNNs,
making it still suffer from neighborhood-fetching latency.

GNN-to-MLP Knowledge Distillation. To enjoy the topol-
ogy awareness of GNNs and inference-efficient of MLPs,
the other branch of graph knowledge distillation is to directly
distill from teacher GNNs to lightweight student MLPs,
termed as GNN-to-MLP distillation. For example, CPF
(Yang et al., 2021) directly improves the performance of
student MLPs by adopting deeper/wider network architec-
tures and incorporating label propagation in MLPs, both
of which burden the inference latency. Instead, GLNN
(Zhang et al., 2021) distills knowledge from teacher GNNs
to vanilla MLPs without other computing-consuming oper-
ations; while the performance of their distilled MLPs can
be indirectly improved by employing more powerful GNNs,
they still cannot match GNN-to-GNN distillation in terms
of classification performance. To further improve GLNN,
RKD-MLP (Anonymous, 2023) adopts a meta-policy to
filter out unreliable soft labels, but this is essentially a down-
sampling-style strategy that will further reduce the already
limited supervision. In contrast, this paper aims to provide
more reliable supervision for training student MLPs, which
can be considered as an up-sampling-style strategy.

3. Preliminaries
Notions and Problem Statement. Let G = (A,X) be a
graph with the node set V and edge set E , where V is the set
of N nodes with features X = [x1,x2, · · · ,xN ] ∈ RN×d.
The graph structure is denoted by an adjacency matrix A ∈
[0, 1]N×N with Ai,j = 1 if ei,j ∈ E and Ai,j = 0 if
ei,j /∈ E . Considering a semi-supervised node classification
task where only a subset of node VL with labels YL are
known, we denote the labeled set as DL = (VL,YL) and
unlabeled set as DU = (VU ,YU ), where VU = V\VL. The
node classification aims to learn a mapping Φ : V → Y so
that it can be used to infer the ground-truth label yi ∈ YU .

Graph Neural Networks (GNNs). A general GNN frame-
work consists of two key operations for each node vi: (1)
AGGREGATE: aggregating messages from neighborhood
Ni; (2) UPDATE: updating node representations. For an
L-layer GNN, the formulation of the l-th layer is as

m
(l)
i =AGGREGATE(l)

({
h
(l−1)
j : vj ∈ Ni

})
h
(l)
i =UPDATE(l)

(
h
(l−1)
i ,m

(l)
i

) (1)

where 1 ≤ l ≤ L, h(0)
i = xi is the input node feature, and

h
(l)
i is the node representation of node vi in the l-th layer.

Multi-Layer Perceptrons (MLPs). To achieve efficient

2



Quantifying the Knowledge in GNNs for Reliable Distillation into MLPs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

25

50

75

100

125

150
De

ns
ity

Teacher - GCNs
Student - MLPs

(a) Confidence Distribution

0.0 0.5 1.0 1.5 2.0
Entropy (Teacher GNNs)

0

10

20

30

40

50

60

De
ns

ity

False Negative

(b) Histogram of False Negative Samples

0.0 0.5 1.0 1.5 2.0
Entropy (Teacher GNNs)

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 (S

tu
de

nt
 M

LP
s)

(c) GNN Entropy vs. MLP Confidence

Figure 2. (a) Histograms of the confidence distributions of teacher GCNs and students MLP for those correct predictions on the Cora
dataset. (b) Distribution of “False Negative” samples w.r.t the information entropy of teacher’s predictions on the Cora dataset. (c)
Scatter curve of confidence (student MLP) and information entropy (teacher GCN) for those “True Positive” samples on the Cora dataset.

inference, the vanilla MLPs are used as the student model
by default in this paper. For a L-layer MLP, the l-th layer is
composed of a linear transformation, an activation function
ReLu(·), and a dropout function Dropout(·), as follows

z
(l)
i = Dropout

(
ReLu

(
z
(l−1)
i W(l−1)

))
(2)

where z
(0)
i = xi is the input feature, and {W(l)}L−1

l=0 are
weight matrices with the hidden dimension F . In this paper,
the network architecture of MLPs, such as the layer number
L and layer size F , is set the same as that of teacher GNNs.

GNN-to-MLP Knowledge Distillation. The knowledge
distillation is first introduced in (Hinton et al., 2015) to
mainly handle image data. However, recent works on GNN-
to-MLP distillation (Yang et al., 2021; Zhang et al., 2021)
extend it to the graph domain by imposing KL-divergence
constraint DKL(·, ·) between the label distributions gener-
ated by teacher GNNs and student MLPs, as follows

LKD =
1

|V|
∑
i∈V

DKL

(
σ
(
z
(L)
i

)
, σ

(
h
(L)
i

))
(3)

where σ(·) = softmax(·), and all nodes (knowledge points)
in the set V are indiscriminately used as supervisions.

4. Methodology
4.1. What Gets in the Way of Better Distillation?

Potential Under-confident Problem. The GNN-to-MLP
distillation can be achieved by directly optimizing the ob-
jective function LKD defined in Eq. (3). However, such a
straightforward distillation completely ignores the differ-
ences between knowledge points in GNNs and may suffer
from a potential under-confident problem, i.e., the distilled
MLP may fail to make predictions as confidently as teacher
GNNs. To illustrate this problem, we report in Fig. 2(a) the
confidences of teacher GCNs and student MLPs for those
correct predictions by the UMAP (McInnes et al., 2018) al-
gorithm on the Cora dataset. It can be seen that there exists
a significant distribution shift between the confidence distri-
bution of teacher GCNs and student MLPs, which confirms

the existence of the under-confident problem. The direct
hazard of such an under-confident problem is that it may
push those samples located near the class boundaries into
incorrect predictions, as shown in Fig. 3(a) and Fig. 3(c),
which hinders the performance of student MLPs.

To go deeper into the under-confident problem and explore
what exactly stands in the way of better GNN-to-MLP distil-
lation, we conducted extensive theoretical and experimental
analysis and found that one of the main causes could be due
to the lack of reliable supervision from teacher GNNs.

Theoretical Analysis. The main strength of teacher GNNs
over student MLPs is their excellent topology-awareness
capability, which is mainly enabled by message passing.
There have been a number of works exploring the roles of
message passing in GNNs. For example, (Yang et al., 2020a)
have proved that message passing (architecture design) in
GNNs is equivalent to performing Laplacian smoothing (su-
pervision design) on node embeddings in MLPs. In essence,
message-passing-based GNNs implicitly take the objective
of Dirichlet energy minimization (Belkin & Niyogi, 2001)
as graph-based regularization, which is defined as follows

Lreg = Tr
(
Y⊤∆Y

)
=

∑
i

∑
j∈Ni

∥∥∥ Yi√
di
− Yj√

dj

∥∥∥2
2

(4)

where ∆ = I −D− 1
2AD− 1

2 is the normalized Laplacian
operator, D is the degree matrix with Di,i = di =

∑
jAi,j ,

and Y = softmax
(
H(L)

)
is the label distribution matrix.

Apart from the supervision of cross-entropy on the labeled
set, message passing in GNNs implicitly provides a spe-
cial kind of self-supervision, which imposes regularization
constraints on the label distributions between neighboring
nodes. We conjecture that it is exactly such additional self-
supervision that enables GNNs to make highly confident
predictions. In contrast, student MLPs are trained in a way
that cannot capture the fine-grained dependencies between
neighboring nodes; instead, they only learn the overall con-
textual information about their neighborhood from teacher
GNNs, resulting in undesirable under-confident predictions.
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Figure 3. (a)(c) Visualizations of the embeddings of teacher GNNs and student MLPs for two classes on Cora. (b)(d) Spatial distribution
of knowledge points with the reliability ranked in the top 20% and bottom 10%, which are marked in green and orange, respectively.

Experimental Analysis. To see why the (distilled) stu-
dent MLPs tend to make low-confidence predictions, we
conducted an in-depth statistical analysis on two types of
special samples. (1) The distribution of “False Negative”
samples (predicted correctly by GNNs but incorrectly by
MLPs) w.r.t the information entropy of teacher’s predictions
is reported in Fig. 2(b), from which we observe that most of
the “False Negative” samples are distributed in the region
of higher entropy. (2) For those “True Positive” samples
(predicted correctly by both GNNs and MLPs), the scatter of
confidence and information entropy from student MLPs and
teacher GNNs is plotted in Fig. 2(c), which shows that GNN
knowledge with high uncertainty (low reliability) may un-
dermine the capability of student MLPs to make sufficiently
confident predictions. Based on these two observations, it
is reasonable to hypothesize that one cause of the under-
confident problem suffered by student MLPs is be the lack
of sufficiently reliable supervision from teacher GNNs.

4.2. How to Quantify the Knowledge in GNNs?
Based on the above experimental and theoretical analysis,
a key issue in GNN-to-MLP distillation may be to provide
more and reliable supervision for training student MLPs.
Next, we first describe how to quantify the reliability of
knowledge in GNNs, and then propose how to sample more
reliable supervision through a knowledge-inspired manner.

Knowledge Quantification. Given a graph G = (A,X)
and a pre-trained teacher GNN fθ(·, ·), we propose to quan-
tify the reliability of a knowledge point (node) vi ∈ V in
GNNs by measuring the invariance of its information en-
tropy to noise perturbations, which is defined as follows

ρi =
1

δ2
E

X′∼N (X,Σ(δ))

[∥∥H(Y′
i)−H(Yi)

∥∥2
]
,

where Y′ = fθ(A,X′) and Y = fθ(A,X)

(5)

where δ is the variance of Gaussian noise andH(·) denote
the information entropy. The smaller the metric ρi is, the
higher the reliability of knowledge point vi is. The quan-
tification of GNN knowledge defined in Eq. (5) has the
following three strengths: (1) It measures the robustness
of knowledge in teacher GNNs to noise perturbations, and
thus more truly reflects the reliability of different knowl-

edge points, which is very important for reliable distillation.
(2) The message passing is what makes GNNs special over
MLPs, so the key to quantify GNN knowledge is to measure
its topology-awareness capability. Compared with node-
wise information entropy, Eq. (5) not only reflects the node
uncertainty, but also takes into account the contextual infor-
mation from the neighborhood. (3) As will be analyzed next,
the knowledge quantified by Eq. (5) shows the roles played
by different knowledge points spatially and temporally.

Spatial Distribution of Knowledge Points. To explore
the spatial distribution of different knowledge points in the
graph, we first visualize the embeddings of teacher GNNs
and student MLPs in Fig. 3(a) and Fig. 3(c), and then we
mark the knowledge points with the reliability ranked in the
top 20% and bottom 10% as green and orange in Fig. 3(b)
and Fig. 3(d). To make it clearer, we only report the results
for two classes on the Cora dataset; more visualizations
can be found in Appendix C. We find that different knowl-
edge points are differentially distributed in the graph, where
most reliable knowledge points are distributed around the
class centers regardless of being in teacher GNNs or stu-
dent MLPs, while those unreliable ones are distributed at
the class boundaries. The spatial distribution of knowledge
points explains well why most of the False Negatice samples
are located in regions with high uncertainty in Fig. 2(c).
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Figure 4. Percentage of highly reliable knowledge points on Cora
to show the distillation speeds of different knowledge points.

Temporal Distribution of Knowledge Points. To see the
distillation speed of different knowledge points, we explore
which knowledge points the student MLPs will be fitted to
first during the training process. We considered those knowl-
edge points that are correctly predicted by student MLPs
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and ranked in the top 50% of reliability, among which we
calculate the percentage of points with the top 20% of re-
liability in Fig. 4. It can be seen that student MLPs will
quickly fit to those highly reliable knowledge points first as
the training proceeds, and then gradually learn from those
relatively less reliable knowledge points. This indicates that
different knowledge points play different roles in the distil-
lation process, which inspires us to sample some reliable
knowledge points from teacher GNNs in a dynamic manner
to provide more additional supervision for training MLPs.

4.3. Knowledge-inspired Reliable Distillation

In this subsection, we first model the probability of each
node being an informative and reliable knowledge point
based on the knowledge quantification defined by Eq. (5).
Next, we propose a knowledge-based sampling strategy to
make full use of those reliable knowledge points as addi-
tional supervision for more reliable distillation into MLPs.
A high-level overview of the proposed Knowledge-inspired
Reliable Distillation (KRD) framework is shown in Fig. 5.

Teacher
GNNs 

Sampled Points

Student
MLPs 

Knowledge
Quantification

GNN

MLP
Student
MLPs 

Probability
Estimation

Reliable Distillation

Knowledge Reliability

Sample Reliable
Knowledge

Momentum
Updating

Figure 5. A high-level overview of the proposed KRD framework.

Sampling Probability Modeling. We aim to estimate the
sampling probability of a knowledge point based on its quan-
tified reliability. As shown in Fig. 6, we plot the histograms
of “True Positive” sample density w.r.t the reliability metric
ρ on two datasets (see Appendix D for more results), where
the density has been min/max normalized. We model the
sampling probability si of node vi based on the metric ρi by
a learnable power distribution (with power α), as follows:

p(si | ρi, α) = 1− (
ρi
ρM

)α, ∀vi ∈ V (6)

where ρM = argmaxj ρj . When the ground-truth labels
are available, an optimal power αopt can be directly fitted
from histograms. However, the ground-truth labels are often
unknown in practice, so we propose to combine the student
MLPs gψ(t)(·) with the pre-trained teacher GNNs fθpre(·)
to model p

(
α(t) | fθpre(A,X), gψ(t)(A,X)

)
at t-th epoch,

which can be implementated by the following four steps:
(1) initializing the power α(0) = 1.0; (2) constructing a
histogram of sample density (predicted to be the same by
both teacher GNNs and student MLPs) w.r.t the knowledge
reliability metric ρ; (3) inferring a new power α(t)

new by fit-
ting the histogram; (4) updating power α(t−1) in a dynamic
momentum manner, which can be formulated as follows

α(t) ← ηα(t−1) + (1− η) ∗ α(t)
new (7)

where η is the momentum updating rate. We provide the fit-
ted curves with fixed and learnable powers in Fig. 6, which
shows that the fitted distributions of learnable powers are
more in line with the histogram. Moreover, we also include
the results of fitting by Gaussian and exponential distribu-
tions as comparisons, but it shows that they do not work
better. A quantitative comparison of different distribution
fitting schemes has been provided in Table. 2, and the fitted
results on more datasets are available in Appendix D.
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Figure 6. Histograms of “True Positive” sample density w.r.t the
reliability metric ρ, as well as five distribution fitting schemes for
modeling the sampling probability on the Cora and Citeseer
datasets, where the density has been min/max normalized.

Knowledge-based Sampling. Next, we describe how to
sample a set of reliable knowledge points as additional su-
pervision for training student MLPs. Given any target node
vi, we first sample some highly reliable knowledge points
vj ∈ Ni from its neighborhood according to the sampling
probability p(sj | ρi, α(t)). Then, we take sampled knowl-
edge points as multiple teachers and distill their knowledge
into student MLPs as additional supervision through a multi-
teacher distillation objective, which is defined as follows

LKRD=E
i

E
j∈Ni

j∼p(sj |ρi,α(t))

DKL

(
σ(z

(L)
j /τ), σ(h

(L)
i /τ)

)
(8)

where τ is the distillation temperature coefficient.

4.4. Training Strategy

The pseudo-code of the KRD framework is summarized in
Algorithm 1. To achieve GNN-to-MLP knowledge distilla-
tion, we first pre-train the teacher GNNs with the classifi-
cation loss Llabel =

1
|VL|

∑
i∈VL

CE
(
yi, σ(h

(L)
i )

)
, where

CE(·) denotes the cross-entropy loss. Finally, the total
objective function to distill reliable knowledge from the
teacher GNNs into the student MLPs is defined as follows

Ltotal =
λ

|VL|
∑
i∈VL

H
(
yi, σ(z

(L)
i )

)
+
(
1−λ

)(
LKD+LKRD

)
where λ is the weight to balance the influence of the classi-
fication loss and knowledge distillation losses.

4.5. Time Complexity Analysis

It is noteworthy that the main computational burden intro-
duced in this paper comes from additional reliable super-
vision as defined in Eq. (8). However, we sample reliable
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knowledge points in the neighborhood instead of the en-
tire set of nodes V , which has reduced the time complexity
from O(|V2|F ) to less than O(|E|F ). The training time
complexity of the KRD framework mainly comes from two
parts: (1) GNN training O(|V|dF + |E|F ) and (2) knowl-
edge distillation O(|E|F ), where d and F are the dimen-
sions of input and hidden spaces. The total time complexity
O(|V|dF+ |E|F ) is linear w.r.t the number of nodes |V| and
edges |E|, which is in the same order as GCNs and GLNN.

Algorithm 1 Algorithm for KRD framework (Transductive)
Input: Graph G = (V, E), Node Features: X, # Epoch: E.
Output: Predicted labels YU , MLP parameters {Wl}L−1

l=0 .
1: Randomly initialize the parameters of GNNs and MLPs.
2: Pre-train the teacher GNNs until convergence by Llabel.
3: Quantify the reliability of knowledge points by Eq. (5).
4: for t ∈ {1, 2, · · · , E + 1} do
5: Calculate the node representations from teacher

GNNs and student MLPs by Eq. (1) and Eq. (2);
6: Estimate the sampling probability by Eq. (6);
7: Sample reliable knowledge points and calculate the

multi-teacher distillation loss LKRD by Eq. (8);
8: Calculate the total loss Ltotal and update the parame-

ters of student MLPs {Wl}L−1
l=0 by back propagation.

9: Momentum updating the power α(t) by Eq. (7).
10: end for
11: Predicted labels yi ∈ YU for those unlabeled nodes VU .
12: return Predicted labels YU and Parameters {Wl}L−1

l=0 .

5. Experiments
In this section, we evaluate KRD on seven real-world datasets
by answering the following six questions. Q1: How effec-
tive is KRD in the transductive and inductive settings? Is
KRD applicable to different teacher GNNs? Q2: How does
KRD compare to other leading baselines on graph knowledge
distillation? Q3: What happens if we model the sampling
probability using other distribution functions? Q4: How
does KRD perform by applying other heuristic knowledge
sampling approach? Q5: Can KRD improve the predictive
confidence of distilled MLPs? Q6: How do the two key
hyperparameters λ and η influence the performance of KRD?

Dataset. The effectiveness of the KRD framework is eval-
uated on seven real-world datasets, including Cora (Sen
et al., 2008), Citeseer (Giles et al., 1998), Pubmed (McCal-
lum et al., 2000), Coauthor-CS, Coauthor-Physics, Amazon-
Photo (Shchur et al., 2018), and ogbn-arxiv (Hu et al., 2020).
A statistical overview of datasets is placed in Appendix A.
Besides, each set of experiments is run five times with dif-
ferent random seeds, and the average accuracy and standard
deviation are reported. Due to space limitations, we defer
the implementation details and hyperparameter settings for
each dataset to Appendix C and supplementary materials.

Baselines. Three basic components in knowledge distil-
lation are (1) teacher model, (2) student model, and (3)
distillation objective. As a model-agnostic framework, KRD
can be combined with any teacher GNN architecture. In this
paper, we consider three types of teacher GNNs, including
GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al.,
2017), and GAT (Veličković et al., 2017). Besides, we adopt
pure MLPs (with the same layer number L and size F as
teacher GNNs) as the student model for a fair comparison.
The focus of this paper is to provide more reliable self-
supervision for GNN-to-MLP distillation. Thus, we only
take GLNN (Zhang et al., 2021) as an important benchmark
to demonstrate the necessity and effectiveness of additional
supervision. Besides, we also compare KRDwith some state-
of-the-art graph distillation baselines in Table. 2, including
CPF (Yang et al., 2021), RKD-MLP (Anonymous, 2023),
FF-G2M (Wu et al., 2023), RDD (Zhang et al., 2020b),
TinyGNN (Yan et al., 2020), LSP (Yang et al., 2020b), etc.

5.1. Classification Performance Comparison (Q1)

The reliable knowledge of three teahcer GNNs is distilled
into student MLPs in the transductive and inductive settings.
The experimental results on seven datasets are reported
in Table. 1, from which we can make three observations:
(1) Compared to the vanilla MLPs and intuitive KD base-
line - GLNN, KRD performs significantly better than them
in all cases, regardless of the datasets, teacher GNNs and
evaluation settings. For example, KRD outperforms GLNN
by 2.03% (GCN), 1.92% (SAGE), and 2.03% (GAT) av-
eraged over seven datasets in the transductive setting, re-
spectively. The superior performance of KRD demonstrates
the effectiveness of providing more reliable self-supervision
for GNN-to-MLP distillation. (2) The performance gain
of KRD over GLNN is higher on the large-scale ogbn-arxiv
dataset. We speculate that this is because the reliability of
different knowledge points probably differ more in large-
scale datasets, making those reliable knowledge points play
a more important role. (3) It can be seen that KRD works
much better in the transductive setting than in the inductive
one, since there are more node features that can be used for
training in the transductive setting, providing more reliable
knowledge points to serve as additional self-supervision.

5.2. Comparision with Representative Baselines (Q2)

To answer Q2, we compare KRD with several representative
graph knowledge distillation baselines, including both GNN-
to-GNN and GNN-to-MLP distillation. As can be seen from
the results reported in Table 2, KRD outperforms all other
GNN-to-MLP baselines by a wide margin. More impor-
tantly, we are the first work to demonstrate the promising
potential of distilled MLPs to surpass distilled GNNs. Even
when compared with those state-of-the-art GNN-to-GNN
distillation methods, KRD still shows competitive perfor-
mance, ranking in the top two on 6 out of 7 datasets.
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Table 1. Classificatiom accuracy ± std (%) on seven real-world datasets in both transductive and inductive settings, where three different
GNN architectures (GCN, GraphSAGE, and GAT) have been considered as the teacher models. The best metrics are marked by bold.

Teacher Student Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv Average

Transductive Setting

MLPs - 59.58±0.97 60.32±0.61 73.40±0.68 78.65±1.68 87.82±0.64 88.81±1.08 54.63±0.84 -

GCN

- 81.70±0.96 71.64±0.34 79.48±0.21 90.63±1.53 90.00±0.58 92.45±0.53 71.20±0.17 -
GLNN 82.20±0.73 71.72±0.30 80.16±0.20 91.42±1.61 92.22±0.72 93.11±0.39 67.76±0.23 -

KRD (ours) 84.42±0.57 74.86±0.58 81.98±0.41 92.21±1.44 94.08±0.34 94.30±0.46 70.92±0.21 -
Improv. 2.22 3.14 1.82 0.79 1.86 1.19 3.16 2.03

GraphSAGE

- 82.02±0.94 71.76±0.49 79.36±0.45 90.56±1.69 89.29±0.77 91.97±0.91 71.06±0.27 -
GLNN 81.86±0.88 71.52±0.54 80.32±0.38 91.34±1.46 92.00±0.57 92.82±0.93 68.30±0.19 -

KRD (ours) 84.60±0.76 73.68±0.68 81.60±0.33 92.12±1.50 93.93±0.40 94.18±0.58 71.50±0.25 -
Improv. 2.74 2.16 1.28 0.78 1.93 1.36 3.20 1.92

GAT

- 81.66±1.04 70.78±0.60 79.88±0.85 90.06±1.38 90.90±0.37 91.97±0.58 71.08±0.19 -
GLNN 81.78±0.75 70.96±0.86 80.48±0.47 91.22±1.45 92.44±0.41 92.70±0.56 68.56±0.22 -

KRD (ours) 84.12±0.39 73.06±0.59 82.02±0.56 92.13±1.48 94.35±0.29 94.19±0.50 71.45±0.26 -
Improv. 2.34 2.10 1.54 0.91 1.91 1.49 2.89 1.88

Inductive Setting

MLPs - 59.20±1.26 60.16±0.87 73.26±0.83 79.02±1.42 87.90±0.58 89.10±0.90 54.46±0.52 -

GCN

- 79.30±0.49 71.46±0.36 78.10±0.51 89.32±1.63 90.07±0.60 92.05±0.78 70.88±0.35 -
GLNN 71.24±0.55 70.76±0.30 80.16±0.73 89.92±1.34 92.08±0.98 92.89±0.88 60.92±0.31 -

KRD (ours) 73.78±0.55 71.80±0.41 81.48±0.29 90.37±1.79 93.15±0.43 93.86±0.55 62.85±0.32 -
Improv. 2.54 1.04 1.32 0.45 1.07 0.97 2.93 1.47

GraphSAGE

- 79.56±0.47 70.24±0.62 79.40±0.48 89.76±1.51 89.96±0.56 91.79±0.69 71.13±0.32 -
GLNN 71.82±0.35 70.26±0.71 80.46±0.34 89.94±1.70 92.06±0.69 92.97±0.94 60.46±0.26 -

KRD (ours) 73.48±0.43 70.94±0.49 81.36±0.51 90.37±1.79 92.96±0.44 93.91±0.63 62.56±0.33 -
Improv. 1.66 0.68 0.90 0.43 0.90 0.94 2.10 1.09

GAT

- 79.96±0.63 69.58±0.43 79.02±0.43 90.54±1.73 90.50±0.97 91.99±1.08 70.65±0.23 -
GLNN 71.10±0.86 70.20±0.69 81.28±0.58 90.57±1.59 92.15±0.75 93.17±0.92 60.38±0.30 -

KRD (ours) 72.48±0.53 70.64±0.38 82.00±0.65 91.10±1.69 93.23±0.48 94.02±0.73 62.16±0.24 -
Improv. 1.38 0.44 0.72 0.53 1.08 0.85 1.78 0.97

Table 2. Performance comparison with leading graph distillation algorithms, where bold and underline denote the best and second metrics.
The experiments are conducted by adopting GCN as the teacher in the transductive setting (same for Table. 3, Table. 4, Fig. 7, and Fig. 8).

Category Method Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv Avg. Rank

Vanilla MLPs 59.58±0.97 60.32±0.61 73.40±0.68 78.65±1.68 87.82±0.64 88.81±1.08 54.63±0.84 12.0
Vanilla GCNs 81.70±0.96 71.64±0.34 79.48±0.21 90.63±1.53 90.00±0.58 92.45±0.53 71.20±0.17 10.1

GNN-to-GNN

LSP 82.70±0.43 72.68±0.62 80.86±0.50 91.74±1.42 92.56±0.45 92.85±0.46 71.57±0.25 7.4
GNN-SD 82.54±0.36 72.34±0.55 80.52±0.37 91.83±1.58 91.92±0.51 93.22±0.66 70.90±0.23 8.3
TinyGNN 83.10±0.53 73.24±0.72 81.20±0.44 92.03±1.49 93.78±0.38 93.70±0.56 72.18±0.27 4.7

RDD 83.68±0.40 73.64±0.50 81.74±0.44 92.18±1.45 94.20±0.48 94.14±0.39 72.34±0.17 2.1
FreeKD 83.84±0.47 73.92±0.47 81.48±0.38 92.38±1.54 93.65±0.43 93.87±0.48 72.50±0.29 2.9

GNN-to-MLP

GLNN 82.20±0.73 71.72±0.30 80.16±0.20 91.42±1.61 92.22±0.72 93.11±0.39 67.76±0.23 9.7
CPF 83.56±0.48 72.98±0.60 81.54±0.47 91.70±1.50 93.42±0.48 93.47±0.41 69.05±0.18 6.4

RKD-MLP 82.68±0.45 73.42±0.45 81.32±0.32 91.28±1.48 93.16±0.64 93.26±0.37 69.87±0.25 7.3
FF-G2M 84.06±0.43 73.85±0.51 81.62±0.37 91.84±1.42 93.35±0.55 93.59±0.43 69.64±0.26 4.9

KRD (ours) 84.42±0.57 74.86±0.58 81.98±0.41 92.21±1.44 94.08±0.34 94.30±0.46 70.92±0.21 2.1

5.3. Evaluation on Distribution Fitting Function (Q3)

To evaluate the effectiveness of different distribution fitting
functions and the momentum updating defined in Eq. (7), we
compare the learnable power distribution defined in Eq. (6)
with the other four schemes: (A) exponential distribution
p(si | ρi, α) = α exp

−α· ρi
ρM with learnable rate α; (B)

Gaussian distribution p(si | ρi, α) = N (0, α) with learn-
able variance α; (C) power distribution with fixed power
α = 1; and (D) power distribution with fixed power α = 3.
From the results reported in Table. 3, it can be seen that
(1) when modeling the sampling probability with power
distribution, the learnable power is consistently better than
the fixed power on all datasets, and (2) the exponential,
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Gaussian and power distributions perform differently on
different datasets, but the power distribution can achieve
better overall performance than the other two distributions.

Table 3. Performance comparison of different distribution fitting
functions and the momentum updating of Eq. (7), where bold and
underline denote the best and second metrics on each dataset.

Methods Cora Citeseer Pubmed Photo CS Physics

Exponential 83.30 73.84 81.10 92.12 93.80 93.63
Gaussian 84.12 74.52 81.56 92.10 94.15 94.08
Power (fixed α=1) 83.84 74.18 81.44 92.04 93.93 93.93
Power (fixed α=3) 83.54 74.32 81.34 91.95 94.01 93.75
Power (learnable) 84.42 74.86 81.98 92.21 94.08 94.30

5.4. Evaluation on Knowledge Sampling Strategy (Q4)

To explore how different sampling strategies influence the
performance of distillation, we compare our knowledge-
inspired sampling with other three schemes: (A) Non-
sampling: directly takes all nodes in the neighborhood as
additional supervision and distills their knowledge into the
student MLPs; (B) Random Sampling: randomly sampling
knowledge points with 50% probability in the neighborhood
for distillation; (C) Entropy-based Sampling: performing
min/max normalization on the information entropy of each
knowledge point to [0-1], and then sampling by taking en-
tropy as sampling probability. Besides, we also include the
performance of vanilla GCN and GLNN as a comparison.
We can observe from Table. 3 that (1) Both non-sampling
and random sampling help to significantly improve the per-
formance of GLNN, again demonstrating the importance of
providing additional supervision for training student MLPs.
(2) Entropy- and knowledge-based sampling performs much
better than non-sampling and random sampling, suggest-
ing that different knowledge plays different roles during
distillation. (3) Compared with entropy-based sampling,
knowledge-based sampling fully takes into account the con-
textual information of the neighborhood as explained in
Sec. 4.2, and thus shows better overall performance.

Table 4. Performance comparison of different sampling strategies,
where the best/second metrics are marked in bold and underline.

Methods Cora Citeseer Pubmed Photo CS Physics

Vanilla GCN 81.70 71.64 79.48 90.63 90.00 92.45
GLNN 82.54 71.92 80.16 90.48 91.48 92.81
Non-sampling 83.26 73.58 80.74 91.45 93.04 93.42
Random 82.42 73.10 81.08 91.28 92.57 93.74
Entropy-based 83.64 73.74 81.32 91.58 93.35 93.63

Knowledge-based 84.42 74.86 81.98 92.21 94.08 94.30

5.5. Evaluation on Confidence Distribution (Q5)

To explore whether providing additional reliable supervision
can improve the predictive confidence of distilled MLPs,
we compare the confidence distribution of KRD with that
of GLNN in Fig. 7 on four datasets. It can be seen that the
predictive confidence of student MLPs in GLNN (optimized
with only the distillation term defined by Eq. (3) is indeed

not very high. Instead, KRD provides additional reliable
self-supervision defined in Eq. (8), which helps to greatly
improve the predictive confidence of student MLPs.
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Figure 7. Confidence distribution of the distilled MLPs in GLNN
and KRD on four datasets, where GCN is adopted as the teacher.

5.6. Evaluation on Hyperparameter Sensitivity (Q6)

We provide sensitivity analysis for two hyperparameters,
loss weights λ and momentum updating rate η in Fig. 8(a)
and Fig. 8(b), from which we observe that (1) setting the
loss weight λ too large weakens the contribution of the dis-
tillation term, leading to poor performance; (2) too large
or small η are both detrimental to modeling sampling prob-
ability and extracting informative knowledge. In practice,
η = 0.9, 0.99 often yields pretty good performance. In prac-
tice, we can determine λ and η by selecting the model with
the highest accuracy on the validation set by the grid search.
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Figure 8. Hyperparameter sensitivity analysis on λ and η.

6. Conclusion
In this paper, we identified a potential under-confidence
problem for GNN-to-MLP distillation, and more impor-
tantly, we described in detail what it represents, how it
arises, what impact it has, and how to deal with it. To
address this problem, we design a perturbation invariance-
based metric to quantify the reliability of knowledge in
GNNs, based on which we propose a Knowledge-inspired
Reliable Distillation (KRD) framework to make full use of
those reliable knowledge points as additional supervision
for training MLPs. Limitations still exist; for example, com-
bining our work with other more powerful and expressive
teacher/student models may be another promising direction.
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A. Dataset Statistics

Seven publicly available real-world graph datasets have been
used to evaluate the proposed KRD framework. An overview
summary of the statistical characteristics of these datasets
is given in Table. A1. For the three small-scale datasets,
namely Cora, Citeseer, and Pubmed, we follow the data split-
ting strategy in (Kipf & Welling, 2016). For the three large-
scale datasets, including Coauthor-CS, Coauthor-Physics,
and Amazon-Photo, we follow (Zhang et al., 2021; Yang
et al., 2021) to randomly split the data into train/val/test
sets, and each random seed corresponds to a different data
splitting. For the ogbn-arxiv dataset, we use the public data
splits provided by the authors (Hu et al., 2020).

Table A1. Statistical information of the datasets.
Dataset Cora Citeseer Pubmed Photo CS Physics ogbn-arxiv

# Nodes 2708 3327 19717 7650 18333 34493 169343
# Edges 5278 4614 44324 119081 81894 247962 1166243
# Features 1433 3703 500 745 6805 8415 128
# Classes 7 6 3 8 15 5 40
Label Rate 5.2% 3.6% 0.3% 2.1% 1.6% 0.3% 53.7%

B. Implementation Details

The following hyperparameters are set the same for all
datasets: Epoch E = 500, noise variance δ = 1.0,
and momentum rate η = 0.99 (0.9 for ogb-arxiv).
The other dataset-specific hyperparameters are deter-
mined by an AutoML toolkit NNI with the hyperpa-
rameter search spaces as: hidden dimension F =
{128, 256, 512, 1024, 2048}, layer number L = {2, 3},
distillation temperature τ = {0.8, 0.9, 1.0, 1.1, 1.2}, loss
weight α = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, learning rate
lr = {0.001, 0.005, 0.01}, and weight decay decay =
{0.0, 0.0005, 0.001}. For a fairer comparison, the model

with the highest validation accuracy is selected for testing.
Besides, the best hyperparameter choices of each setting are
available in the supplementary. Moreover, the experiments
on both baselines and our approach are implemented based
on the standard implementation in the DGL library (Wang
et al., 2019) using the PyTorch 1.6.0 with Intel(R) Xeon(R)
Gold 6240R @ 2.40GHz CPU and NVIDIA V100 GPU.

Transductive vs. Inductive. We evaluate our model under
two evaluation settings: transductive and inductive. Their
main difference is whether to use the test data for training.
Specifically, we partition node features and labels into three
disjoint sets, i.e., X = XL ⊔XU

obs ⊔XU
ind, and Y = YL ⊔

YUobs⊔YUind. Concretely, the input and output of two settings
are: (1) Transductive: training on X and YL and testing on
(XU , YU ). (2) Inductive: training on XL ⊔XU

obs and YL
and testing on (XU

ind, YUind) (Anonymous, 2023).

C. More Results on Spatial Distribution

The embeddings of teacher GNNs and student MLPs on the
Cora dataset are visualized in Fig. A1(a)(c). Then, we mark
the knowledge points with the reliability ranked in the top
20% and bottom 10% as green and orange in Fig. A1(b)(d),
respectively. It can be seen that most reliable knowledge
points are distributed around the class centers, while those
unreliable ones are distributed at the class boundaries.

D. More Results on Fitted Distributions

We report histograms of “True Positive” sample density
w.r.t the reliability metric ρ as well as the fitted distributions
in Fig. A2. It can be seen that the fitted distributions of the
sampling probability closely matches the true histograms.

(a) Visualizations in GNNs

Reliable KP
Unreliable KP

(b) Spatial Distribution in GNNs (c) Visualizations in MLPs

Reliable KP
Unreliable KP

(d) Spatial Distribution in MLPs

Figure A1. (a)(c) Visualizations of the embeddings of teacher GNNs and student MLPs for two classes on Cora. (b)(d) Spatial distribution
of knowledge points with the reliability ranked in the top 20% and bottom 10%, which are marked in green and orange, respectively.
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(a) Cora
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(b) Citeseer
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(c) Pubmed
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(d) Amazon-Photo

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
in

g 
Pr

ob
ab

ilit
y

Coauthor-CS
fitted
true

Kownledge Reliability Metric 

(e) Coauthor-CS
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Figure A2. Histograms of “True Positive” sample density w.r.t the reliability metric ρ, as well as the fitted distributions (by learnable
power distribution) of the sampling probability on six graph datasets, where the sample density has been min/max normalized to [0, 1].
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