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Abstract
We study the problem of estimating the distri-
bution of the return of a policy using an offline
dataset that is not generated from the policy, i.e.,
distributional offline policy evaluation (OPE). We
propose an algorithm called Fitted Likelihood Es-
timation (FLE), which conducts a sequence of
Maximum Likelihood Estimation (MLE) and has
the flexibility of integrating any state-of-the-art
probabilistic generative models as long as it can
be trained via MLE. FLE can be used for both
finite-horizon and infinite-horizon discounted set-
tings where rewards can be multi-dimensional
vectors. Our theoretical results show that for both
finite-horizon and infinite-horizon discounted set-
tings, FLE can learn distributions that are close
to the ground truth under total variation distance
and Wasserstein distance, respectively. Our theo-
retical results hold under the conditions that the
offline data covers the test policy’s traces and that
the supervised learning MLE procedures succeed.
Experimentally, we demonstrate the performance
of FLE with two generative models, Gaussian
mixture models and diffusion models. For the
multi-dimensional reward setting, FLE with diffu-
sion models is capable of estimating the compli-
cated distribution of the return of a test policy.

1. Introduction
Traditional Reinforcement Learning (RL) focuses on study-
ing the expected behaviors of a learning agent. However,
modeling the expected behavior is not enough for many
interesting applications. For instance, when estimating the
value of a new medical treatment, instead of just predicting
its expected value, we may be interested in estimating the
variance of the value as well. For a self-driving car whose
goal is to reach a destination as soon as possible, in addition
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to predicting the expected traveling time, we may be inter-
ested in estimating the tails of the distribution of traveling
time so that customers can prepare for worst-case situations.
Other risk-sensitive applications in finance and control often
require one to model beyond the expectation as well.

In this work, we study how to estimate the distribution of
the return of a policy in Markov Decision Processes (MDPs)
using only an offline dataset that is not necessarily gener-
ated from the test policy (i.e., distributional offline policy
evaluation). Estimating distributions of returns has been
studied in the setting called distributional RL (Bellemare
et al., 2017), where most existing works focus on solving
the regular RL problem, i.e., finding a policy that maximizes
the expected return by treating the task of predicting addi-
tional information beyond the mean as an auxiliary task.
Empirically, it is believed that this auxiliary task helps rep-
resentation learning which in turn leads to better empirical
performance. Instead of focusing on this auxiliary loss per-
spective, we aim to design distributional OPE algorithms,
which can accurately estimate the distribution of returns
with provable guarantees. We are also interested in the set-
ting where the one-step reward could be multi-dimensional
(i.e., multi-objective RL), and the state/action spaces could
be large or even continuous. This requires us to design new
algorithms that can leverage rich function approximation
(e.g., state-of-art probabilistic generative models).

Our algorithm, Fitted Likelihood Estimation (FLE), is
inspired by the classic OPE algorithm Fitted Q Evaluation
(FQE) (Munos & Szepesvári, 2008). Given a test policy and
an offline dataset, FLE iteratively calls a supervised learning
oracle — Maximum Likelihood Estimation (MLE) in this
case, to fit a conditional distribution to approximate a target
distribution constructed using the distribution learned from
the previous iteration. At the end of the training procedure,
it outputs an estimator which approximates the true
distribution of the return of the test policy. Our algorithm
is simple: like FQE, it decomposes the distributional OPE
problem into a sequence of supervised learning problems
(in this case, MLE). Thus it has great flexibility to leverage
any state-of-art probabilistic generative models as long as
it can be trained via MLE. Such flexibility is important,
especially when we have large state/action spaces, and
reward vectors coming from complicated high-dimensional
distributions. FLE naturally works for both finite-horizon
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setting and infinite-horizon discounted setting.

Theoretically, we prove that our algorithm, FLE, can learn
an accurate estimator of the return distribution for both
finite-horizon MDPs and infinite-horizon discounted MDPs,
under the assumptions that (1) MLE can achieve good
in-distribution generalization bounds (i.e., supervised learn-
ing succeeds), and (2) the offline state-action distribution
covers the test policy’s state-action distribution. The first
condition is well studied in statistical learning theory, and in
practice, the state-of-the-art probabilistic generative models
trained via MLE (e.g., FLOW models (Dinh et al., 2014)
and Diffusion models (Sohl-Dickstein et al., 2015)) indeed
also exhibit amazing generalization ability. The second
condition is necessary for offline RL and is widely used in
the regular offline RL literature (e.g., Munos & Szepesvári
(2008)). In other words, our analysis is modular: it simply
transfers the supervised learning MLE in-distribution
generalization bounds to a bound of distributional OPE.
The accuracy of the estimator computed by FLE is
measured under total variation distance and p-Wasserstein
distance, for finite-horizon setting and infinite-horizon
discounted setting, respectively. To complete the picture,
we further provide concrete examples showing that MLE
can provably have small in-distribution generalization
errors. To the best of our knowledge, this is the first PAC
(Probably Approximately Correct) learning algorithm for
distributional OPE with general function approximation.

Finally, we demonstrate our approach on a rich observation
combination lock MDP where it has a latent structure with
the observations being high-dimensional and continuous
(Misra et al., 2020; Agarwal et al., 2020a; Zhang et al.,
2022b). We consider the setting where the reward comes
from complicated multi-dimensional continuous distribu-
tions (thus existing algorithms such as quantile-regression
TD (Dabney et al., 2018) do not directly apply here). We
demonstrate the flexibility of our approach by using two
generative models in FLE: the classic Gaussian mixture
model and state-of-the-art diffusion model (Ho et al., 2020).

1.1. Related Works

Distributional RL. Quantile regression TD (Dabney et al.,
2018) is one of the common approaches for distributional
OPE. A very recent work (Rowland et al., 2023) demon-
strates that quantile regression TD can converge to the TD
fixed point solution of which the existence is proved under
an ℓ∞-style norm (i.e., sup over all states). Rowland et al.
(2023) do not consider the sample complexity of OPE and
the impact of learning from off-policy samples, and their
convergence analysis is asymptotic. Also, quantile regres-
sion TD only works for scalar rewards. Another popular
approach is categorical TD (Bellemare et al., 2017), where
one explicitly discretizes the return space. However, for

high-dimensional rewards, explicitly discretizing the return
space evenly can suffer the curse of dimensionality and
fail to capture some low-dimensional structures in the data
distribution. Moreover, there is no convergence or sample
complexity analysis of the categorical algorithm for OPE.
Another direction in distributional RL concentrates on esti-
mating cumulative distribution functions (CDFs) instead of
densities (Zhang et al., 2022a; Prashanth & Bhat, 2022). In
addition, there are also methods based on generative models
that aim to effectively represent continuous return distribu-
tions (Freirich et al., 2019; Doan et al., 2018; Li & Faisal,
2021). We discuss some closely related works below.

Ma et al. (2021) studied distributional offline policy opti-
mization. They focused on tabular MDPs with scalar re-
wards, and their algorithm can learn a pessimistic estimate
of the true inverse CDF of the return. Keramati et al. (2020)
also uses the distributional RL framework to optimistically
estimate the CVaR value of a policy’s return. Their analysis
also only applies to tabular MDPs with scalar rewards. In
contrast, we focus on distributional OPE with general func-
tion approximation beyond tabular or linear formats and
MDPs with multi-dimensional rewards.

Zhang et al. (2021) also consider learning from vector-
valued rewards. They propose a practical algorithm that
minimizes the Maximum Mean Discrepancy (MMD) with-
out a sample complexity analysis. In contrast, we use MLE
to minimize total variation distance, and our error bound
is based on total variation distance. Note that a small total
variation distance implies a small MMD but not vice versa,
which implies that our results are stronger.

Huang et al. (2021; 2022) explore return distribution esti-
mation for contextual bandits and MDPs using off-policy
data. They focus on learning CDFs with an estimator that
leverages importance sampling and learns the transition and
reward of the underlying MDP to reduce variance while
maintaining unbiasedness. However, their estimator can
incur exponential error in the worst case due to importance
sampling. Moreover, they measure estimation error using
the ℓ∞ norm on CDFs, which is upper bounded by total
variation distance but not the other way around. They fur-
ther showed how to estimate a range of risk functionals
via the estimated distribution. Notably, our method is also
applicable to risk assessment, as shown in Remark 4.8.

Offline policy evaluation. Fitted Q evaluation (FQE)
(Munos & Szepesvári, 2008; Ernst et al., 2005) is one of the
most classic OPE algorithms. Many alternative approaches
have been recently proposed, such as minimax algorithms
(Yang et al., 2020; Feng et al., 2019; Uehara et al., 2020).
Somewhat surprisingly, algorithms based on FQE are often
robust and achieve stronger empirical performance in vari-
ous benchmark tasks (Fu et al., 2021; Chang et al., 2022).
Our proposed algorithm can be understood as a direct gener-
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alization of FQE to the distributional setting. Note sequen-
tial importance sampling approaches (Jiang & Li, 2016;
Precup et al., 2000) in regular RL have been applied to esti-
mate distributions (Chandak et al., 2021). However, these
methods suffer from the curse of the horizon, i.e., the vari-
ance necessarily grows exponentially in the horizon.

2. Preliminaries
In this section, we introduce the setup of the Markov deci-
sion process and the offline policy evaluation.

Notations. We define ∆(S) as the set of all distributions
over a set S. For any a, b ∈ R, we denote [a, b] =
{x ∈ R : a ≤ x ≤ b}. For any integer N , we denote
[N ] as the set of integers between 1 and N inclusively.
Given two distributions P1 and P2 on a set S, we denote
dtv as the total variation distance between the two distri-
butions, i.e., dtv(P1, P2) = ∥P1 − P2∥1/2. We denote
dw,p as the p-Wasserstein distance, i.e., dw,p(P1, P2) =
(infc∈C Ex,y∼c ∥x− y∥p)1/p where C denotes the set of all
couplings of P1 and P2. We note that dtv dominates dw,p
when the support is bounded (see Lemma C.6 for details):

dpw,p(P1, P2) ≤ diamp(S) · dtv(P1, P2) (1)

where diam(S) = supx,y∈S ∥x− y∥ is the diameter of S.

2.1. Finite-Horizon MDPs

We consider a finite-horizon MDP with a vector-valued re-
ward function, which is a tuple M(X ,A, r, P,H, µ) where
X and A are the state and action spaces, respectively,
P is the transition kernel, r is the reward function, i.e.,
r(x, a) ∈ ∆([0, 1]d) where d ∈ Z+, H is the length of
each episode, and µ ∈ ∆(X ) is the initial state distribu-
tion. A policy is a mapping π : X → ∆(A). We denote
z ∈ [0, H]d as the accumulative reward vector across H
steps, i.e., z =

∑H
h=1 rh. Note that z is a random vec-

tor whose distribution is determined by a policy π and the
MDP. We denote Zπ ∈ ∆([0, H]d) as the distribution1 of
the random variable z under policy π. In this paper, we are
interested in estimating Zπ using offline data. We also de-
fine conditional distributions Zπh (x, a) ∈ ∆([0, H]d) which
is the distribution of the return under policy π starting with
state action (xh, ah) := (x, a) at time step h. It is easy
to see that Zπ = Ex∼µ,a∼π(x) [Zπ1 (x, a)]. We define dπh
as the state-action distribution induced by policy π at time
step h, and dπ =

∑H
h=1 d

π
h/H as the average state-action

distribution induced by π.

We denote the distributional Bellman operator (Morimura
et al., 2012) associated with π as T π, which maps a condi-

1Formally, they are called probability density functions in the
continuous setting and probability mass functions in discrete set-
tings, which are different from cumulative distribution functions.

tional distribution to another conditional distribution: given
a state-action conditional distribution f ∈ X × A 7→
∆([0, H]d), we have T πf ∈ X × A 7→ ∆([0, H]d), such
that for any (x, a, z):

[T πf ](z |x, a)
= Er∼r(s,a),x′∼P (x,a),a′∼π(x) [f (z − r|x′, a′)] .

We can verify that T πZπh+1 = Zπh for all h.

2.2. Discounted Infinite-Horizon MDPs

The discounted infinite-horizon MDP is a tuple
M(X ,A, r, P, γ, µ). The return vector is defined
as z =

∑∞
h=1 γ

h−1rh. We call γ ∈ (0, 1) the dis-
count factor. The distribution of return z is thus
Zπ ∈ ∆([0, (1 − γ)−1]d). We also define the con-
ditional distribution Z̄π(x, a) ∈ ∆([0, (1 − γ)−1]d)
which is the distribution of the return under policy π
starting with state action (x, a). It is easy to see that
Zπ = Ex∼µ,a∼π(x)

[
Z̄π(x, a)

]
. The state-action distribu-

tion of a given policy π is also defined in a discounted
way: dπ = (1 − γ)−1

∑∞
h=1 γ

h−1dπh where dπh is the
state-action distribution induced by π at time step h.
The distributional Bellman operator maps a state-action
conditional distribution f ∈ X ×A 7→ ([0, (1− γ)−1]d) to
T πf ∈ X ×A 7→ ([0, (1− γ)−1]d) for which

[T πf ](z |x, a)

= Er∼r(x,a),x′∼P (x,a),a′∼π(x)

[
f

(
z − r

γ

∣∣∣∣x′, a′)] .
for any (x, a, z). We can verify that Z̄π is a fixed point of
the distributional Bellman operator, i.e., T πZ̄π = Z̄π .

2.3. Offline Policy Evaluation Setup

We consider estimating the distribution Zπ using offline
data which does not come from π (i.e., off-policy setting).
We assume we have a dataset D = {xi, ai, ri, x′i}ni=1 that
contains i.i.d. tuples, such that x, a ∼ ρ ∈ ∆(X ×A), s′ ∼
P (·|s, a), and r ∼ r(s, a). For finite-horizon MDPs, we
randomly and evenly split D into H subsets, D1, . . . ,DH ,
for the convenience of analysis. Each subset contains n/H
samples. For infinite-horizon MDPs, we split it into T
subsets in the same way. Here T is the number of iterations
which we will define later.

We consider learning distribution Zπ via general function
approximation. For finite-horizon MDPs, we denote Fh
as a function class that contains state-action conditional
distributions, i.e., Fh ⊂ X ×A 7→ ∆([0, H]d), which will
be used to learn Zπh . For infinite-horizon MDPs, we assume
a function class F ⊂ X ×A 7→ ∆([0, (1− γ)−1]d).
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3. Fitted Likelihood Estimation
In this section, we present our algorithm — Fitted Likeli-
hood Estimation (FLE) for distributional OPE. Algorithm 1
is for finite-horizon MDPs, and Algorithm 2 is for infinite-
horizon MDPs.

Algorithm 1 takes the offline dataset D = {Dh}Hh=1 and the
function class {Fh}Hh=1 as inputs and iteratively performs
Maximum likelihood estimation (MLE) starting from H to
time step h = 1. For a particular time step h, given f̂h+1

which is learned from the previous iteration, FLE treats
T π f̂h+1 as the target distribution to fit. To learn T π f̂h+1,
it first generates samples from it (Line 6), which is doable
as long as we can generate samples from the conditional
distribution f̂h+1(·|x, a) given any (x, a). Once we generate
samples from T π f̂h+1, we fit f̂h to estimate T π f̂h+1 by
MLE (Line 13). The algorithm returns f̂1 to approximate
Zπ1 . To estimate Zπ , we can compute Ex∼µ,a∼π(x)f̂1(x, a),
recalling µ is the initial state distribution.

Algorithm 2 is quite similar to Algorithm 1 but is for infinite-
horizon MDPs, and it has two distinctions. First, we in-
troduce the discount factor γ. Second, compared to Al-
gorithm 1 where we perform MLE in a backward manner
(from h = H to 1), here we repeatedly apply MLE in a time-
independent way. Particularly, it treats T π f̂t−1 as the target
distribution to fit by MLE at round t. To finally estimate
Zπ , we can compute Ex∼µ,a∼π(x)f̂T (x, a).

To implement either algorithm, we need a function f that
has the following two properties: (1) it can generate sam-
ples given any state-action pair, i.e., z ∼ f(·|x, a), and (2)
given any triple (x, a, z) we can evaluate the conditional
likelihood, i.e., we can compute f(z|x, a). Such function
approximation is widely available in practice, including dis-
crete histogram-based models, Gaussian mixture models,
Flow models (Dinh et al., 2014), and diffusion model (Sohl-
Dickstein et al., 2015). Indeed, in our experiment, we imple-
ment FLE with Gaussian mixture models and diffusion mod-
els (Ho et al., 2020), both of which are optimized via MLE.

Regarding computation, the main bottleneck is the MLE
step (Line 13 and 10). While we present it with a
argmax oracle, in both practice and theory, an ap-
proximation optimization oracle is enough. In the-
ory, as we will demonstrate, as long as we can find
some f̂h that exhibits good in-distribution generaliza-
tion bound (i.e., Ex,a∼ρdtv(f̂h(x, a), [T π f̂h+1](x, a)) or
Ex,a∼ρdtv(f̂t(x, a), [T π f̂t−1](x, a)) is small), then we can
guarantee to have an accurate estimator for Zπ. Note that
here ρ is the training distribution for MLE, thus we care
about in-distribution generalization. Thus our approach is
truly a reduction to supervised learning: as long as the super-
vised learning procedure (in this case, MLE) learns a model
with good in-distribution generalization performance, we

Algorithm 1 Fitted Likelihood Estimation (FLE) for finite-
horizon MDPs

1: Input: dataset {Dh}Hh=1 and function classes {Fh}Hh=1

2: for h = H,H − 1, . . . , 1 do
3: D′

h = ∅
4: for x, a, r, x′ ∈ Dh do
5: if h < H then
6: a′ ∼ π(x′), y ∼ f̂h+1(· |x′, a′)
7: Set z = r + y
8: else
9: Set z = r

10: end if
11: D′

h = D′
h ∪ {(x, a, z)}

12: end for
13: f̂h = argmaxf∈Fh

∑
(x,a,z)∈D′

h
log f(z |x, a)

14: end for

Algorithm 2 Fitted Likelihood Estimation (FLE) for infinite-
horizon MDPs

1: Input: dataset {Dt}Tt=1 and function classes F
2: for t = 1, 2, . . . , T do
3: D′

t = ∅
4: for x, a, r, x′ ∈ Dt do
5: a′ ∼ π(x′)

6: y ∼ f̂t−1(· |x′, a′)
7: z = r + γy
8: D′

t = D′
t ∪ {(x, a, z)}

9: end for
10: f̂t = argmaxf∈F

∑
(x,a,z)∈D′

t
log f(z |x, a)

11: end for

can guarantee good prediction performance for FLE. Any
advancements from training generative models via MLE
(e.g., better training heuristics and better models) thus can
immediately lead to improvement in distributional OPE.
Remark 3.1 (Comparison to prior models). The categorical
algorithm (Bellemare et al., 2017) works by minimizing the
cross-entropy loss between the (projected) target distribu-
tion and the parametric distribution, which is equivalent to
maximizing the likelihood of the parametric model.
Remark 3.2 (FQE as a special instance). When reward is
only a scalar, and we use fixed-variance Gaussian distri-
bution f(·|x, a) := N (g(x, a), σ2) where g : X × A 7→
[0, H], and σ > 0 is a fixed (not learnable) parameter, MLE
becomes a least square oracle, and FLE reduces to FQE —
the classic offline policy evaluation algorithm.

4. Theoretical Analysis
In this section, we present the theoretical guarantees of FLE.
As a warm-up, we start by analyzing the performance of
FLE for the finite-horizon setting (Section 4.1) where we
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bound the prediction error using total variation distance.
Then we study the guarantees for the infinite-horizon dis-
counted scenario in Section 4.2 where the prediction error
is measured under p-Wasserstein distance. Note that from
Equation (1), TD distance dominates p-Wasserstein distance,
which indicates that our guarantee for the finite horizon
setting is stronger. This shows an interesting difference be-
tween the two settings. In addition, we present two concrete
examples (tabular MDPs and linear quadratic regulators) in
Appendix B. All proofs can be found in Appendix D.

4.1. Finite Horizon

We start by stating the key assumption for OPE, which
concerns the overlap between π’s distribution and the
offline distribution ρ.

Assumption 4.1 (Coverage). We assume there exists a con-
stant C such that for all h ∈ [H] the following holds

sup
fh∈Fh

fh+1∈Fh+1

Ex,a∼dπh d
2
tv (fh(x, a), [T πfh+1](x, a))

Ex,a∼ρ d2tv (fh(x, a), [T πfh+1](x, a))
≤ C.

The data coverage assumption is necessary for off-policy
learning. Assumption 4.1 incorporates the function class
into the definition of data coverage and is always no larger
than the usual density ratio-based coverage definition,
i.e., suph,x,a d

π
h(x, a)/ρ(x, a) which is a classic coverage

measure in offline RL literature (e.g., Munos & Szepesvári
(2008)). This type of refined coverage is used in the regular
RL setting (Xie et al., 2021; Uehara & Sun, 2021).

Next, we present the theoretical guarantee of our approach
under the assumption that the MLE can achieve good super-
vised learning-style in-distribution generalization bound.
Recall that in each iteration of our algorithm, we per-
form MLE to learn a function f̂h to approximate the target
T π f̂h+1 under the training data from ρ. By supervised learn-
ing style in-distribution generalization error, we mean the
divergence dtv between f̂h and the target T π f̂h+1 under the
training distribution ρ. Such an in-distribution generaliza-
tion bound for MLE is widely studied in statistical learning
theory literature (Van de Geer, 2000; Zhang, 2006), and
used in RL literature (e.g., Agarwal et al. (2020b); Uehara
et al. (2021); Zhan et al. (2022)). The following theorem
demonstrates a reduction framework: as long as supervised
learning MLE works, our estimator of Zπ is accurate.

Theorem 4.2. Under Assumption 4.1, suppose we have a
sequence of functions f̂1, . . . , f̂H : X × A 7→ ∆([0, H]d)
and a sequence of values ζ1, . . . , ζH ∈ R such that(

Ex,a∼ρ d2tv
(
f̂h(x, a), [T π f̂h+1](x, a)

))1/2

≤ ζh

holds for all h ∈ [H]. Let our estimator f̂ :=

Ex∼µ,a∼π(x) f̂1(x, a). Then we have

dtv

(
f̂ , Zπ

)
≤

√
C

H∑
h=1

ζh.

Here recall that C is the coverage definition. Thus the
above theorem demonstrates that when ρ covers dπ (i.e.,
C < ∞), small supervised learning errors (i.e., ζh) imply
small prediction error for distributional OPE.

Now to complete the picture, we provide some sufficient
conditions where MLE can achieve small in-distribution
generalization errors. The first condition is stated below.
Assumption 4.3 (Bellman completeness). We assume the
following holds:

max
h∈[H],f∈Fh+1

min
g∈Fh

Ex,a∼ρ dtv
(
g(x, a), [T πf ](x, a)

)
= 0.

We call the LHS of the above inequality inherent (distribu-
tional) Bellman error.

This condition ensures that in each call of MLE in our
algorithm, the function class Fh contains the target T π f̂h+1.
It is possible to relax this condition to a setting where the
inherent Bellman error is bounded by a small number δ (i.e.,
for MLE, this corresponds to agnostic learning where the
hypothesis class may not contain the target, which is also a
well-studied problem in statistical learning theory (Van de
Geer, 2000)). Here we mainly focus on the δ = 0 case.

The Bellman completeness assumption (or, more generally,
inherent Bellman error being small) is standard in offline RL
literature (Munos & Szepesvári, 2008). Indeed, in the regu-
lar RL setting, when learning with off-policy data, without
such a Bellman completeness condition, algorithms such as
TD learning or value iteration-based approaches (e.g., FQE)
can diverge (Tsitsiklis & Van Roy, 1996), and the TD fixed
solution can be arbitrarily bad in terms of approximating
the true value (e.g., Munos (2003); Scherrer (2010); Kolter
(2011)). Since distributional RL generalizes regular RL, to
prove convergence and provide an explicit sample complex-
ity, we also need such a Bellman completeness condition.

The second condition is the bounded complexity of Fh. A
simple case is when F is discrete where the standard statis-
tical complexity of F is ln(|Fh|). We show the following
result for MLE’s in-distribution generalization error.
Lemma 4.4. Assume |Fh| < ∞. For FLE (Algorithm 1),
under Assumption 4.3, MLEs have the following guarantee:

E
x,a∼ρ

d2tv

(
f̂h(x, a), [T π f̂h+1](x, a)

)
≤ 4H

n
log(|Fh|H/δ)

for all h ∈ [H] with probability at least 1− δ.

For infinite hypothesis classes, we use bracketing number
(Van de Geer, 2000) to quantify the statistical complexities.
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Definition 4.5 (Bracketing number). Consider a function
class F that maps X to R. Given two functions l and u,
the bracket [l, u] is the set of all functions f ∈ F with
l(x) ≤ f(x) ≤ u(x) for all x ∈ X . An ϵ-bracket is a
bracket [l, u] with ∥l − u∥ ≤ ϵ. The bracketing number of
F w.r.t. the metric ∥ · ∥ denoted by N[](ϵ,F , ∥ · ∥) is the
minimum number of ϵ-brackets needed to cover F .

We can bound MLE’s generalization error using the bracket
number of F .

Lemma 4.6. For FLE (Algorithm 1), under Assumption 4.3,
we have

E
x,a∼ρ

d2tv

(
f̂h(x, a), [T π f̂h+1](x, a)

)
≤ 10H

n
log
(
N[]

(
(nHd)−1,Fh, ∥ · ∥∞

)
H/δ

)
for all h ∈ [H] with probability at least 1− δ.

It is noteworthy that the logarithm of the bracketing number
is small in many common scenarios. We offer several ex-
amples in Section B. Previous studies have also extensively
examined it (e.g., Van der Vaart (2000)).

With the generalization bounds of MLE, via Theorem 4.2,
we can derive the following specific error bound for FLE.

Corollary 4.7. Under Assumption 4.1 and 4.3, for FLE
(Algorithm 1), with probability at least 1− δ, we have

dtv

(
f̂ , Zπ

)
≤

√
C

H∑
h=1

√
4H

n
log(|Fh|H/δ)

when |Fh| <∞ for all h ∈ [H], and

dtv

(
f̂ , Zπ

)
≤

√
C

H∑
h=1

√
10H

n
log
(
N[]

(
(nHd)−1,Fh, ∥ · ∥∞

)
H/δ

)
.

for infinite function class Fh.

Overall, our theory indicates that if we can train accurate dis-
tributions (e.g., generative models) via supervised learning
(i.e., MLE here), we automatically have good predictive per-
formance on estimating Zπ. This provides great flexibility
for designing special algorithms.
Remark 4.8 (Offline CVaR Estimation). As a simple appli-
cation, FLE can derive an estimator for the CVaR of the
return under the test policy π. This is doable because CVaR
is Lipschitz with respect to distributions in total variation
distance, and thus our results can be directly transferred.
See Appendix A for details. Essentially, any quantity that
is Lipschitz with respect to distributions in total variation
distance can be estimated using our method and the error
bound of FLE directly applies.

4.2. Infinite Horizon

Next we introduce the theoretical guarantees of FLE for
infinite horizon MDPs. Although the idea is similar, there
is an obstacle: we can no longer obtain guarantees in terms
of the total variation distance. This is perhaps not surpris-
ing considering that the distributional Bellman operator
for discounted setting is not contractive in total variation
distance (Bellemare et al., 2017). Fortunately, we found
the Bellman operator is contractive under the Wasserstein
distance measure. Note that the contractive result we es-
tablished under Wasserstein distance is different from pre-
vious works (Bellemare et al., 2017; 2023; Zhang et al.,
2021) in that these previous works consider the supremum
Wasserstein distance: supx,a dw,p, while our contractive
property is measured under an average Wasserstein distance:
(Ex,a∼dπ d2pw,p)1/(2p) which is critical to get a sample com-
plexity bound for distributional OPE. More formally, the
following lemma summarizes the contractive property.

Lemma 4.9. The distributional Bellman oper-
ator is γ1−1/(2p)-contractive under the metric
(Ex,a∼dπ d2pw,p)1/(2p), i.e., for any f, f ′ ∈ X × A 7→
[0, (1− γ)−1]d, it holds that

(
E

x,a∼dπ
d2pw,p ([T πf ](x, a), [T πf ′](x, a))

) 1
2p

≤ γ1−
1
2p ·

(
E

x,a∼dπ
d2pw,p (f(x, a), f

′(x, a))

) 1
2p

.

We note that the contractive result in supx,a dw,p does not
imply the result in the above lemma, thus not directly appli-
cable to the OPE setting.

Due to the dominance of total variation distance over
Wasserstein distance on bounded sets (see (1)), MLE’s esti-
mation error under total variation distance can be converted
to Wasserstein distance. This allows us to derive theoretical
guarantees for FLE under Wasserstein distance. To that end,
we start again with the coverage assumption that is similar
to Assumption 4.1. Note that we have replaced the total
variation distance with the Wasserstein distance.

Assumption 4.10 (Coverage). We assume there exists a
constant C such that the following holds

sup
f,f ′∈F

Ex,a∼dπ d2pw,p (f(x, a), [T πf ′](x, a))

Ex,a∼ρ d2pw,p (f(x, a), [T πf ′](x, a))
≤ C.

As similar to Theorem 4.2, the following theorem states that
as long as the supervised learning is accurate, our estimator
of Zπ will be accurate as well under p-Wasserstein distance.

Theorem 4.11. Under Assumption 4.10, suppose we have
a sequence of functions f̂1, . . . , f̂T : X ×A 7→ ∆([0, (1−
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γ)−1]d) and an upper bound ζ ∈ R such that(
Ex,a∼ρ d2pw,p

(
f̂t(x, a), [T π f̂t−1](x, a)

)) 1
2p

≤ ζ

holds for all t ∈ [T ]. Let our estimator f̂ :=

Ex∼µ,a∼π(x) f̂T (x, a). Then we have, for all p ≥ 1,

dw,p

(
f̂ , Zπ

)
≤ 2C

1
2p

(1− γ)
3
2

· ζ +
√
d · γ T

2

(1− γ)
3
2

. (2)

The upper bound in (2) is actually a simplified version as
we aim to present a cleaner result. For a more refined upper
bound that has detailed p-dependent terms, please refer to
Theorem D.2 in the appendix. For the first additive term in
(2), we will later demonstrate that the ζ obtained from MLE
depends on p−1 at an exponential rate. The second term is
insignificant as it converges to zero at the rate of γT/2.

To proceed, we introduce the Bellman completeness assump-
tion for infinite-horizon MDPs, a key condition for MLE to
achieve small in-distribution generalization errors.

Assumption 4.12 (Bellman completeness). We assume the
following holds:

max
f∈F

min
g∈F

Ex,a∼ρ dw,p
(
g(x, a), [T πf ](x, a)

)
= 0.

Similar to the previous result, when Bellman completeness
holds and the function class has bounded complexity, MLE
achieves small generalization error, as the following shows.

Lemma 4.13. For FLE (Algorithm 2), under Assump-
tion 4.12, by applying MLEs we have, for all t ∈ [T ],

E
x,a∼ρ

d2pw,p

(
f̂t(x, a), [T π f̂t−1](x, a)

)

≤

( √
d

1− γ

)2p
4T

n
log(|F|T/δ)

when |F| <∞, and

E
x,a∼ρ

d2pw,p

(
f̂t(x, a), [T π f̂t−1](x, a)

)
≤

( √
d

1− γ

)2p
10T

n
log

(
N[]

(
(1− γ)d

n
,F , ∥ · ∥∞

)
T
/
δ

)
when |F| = ∞, with probability at least 1− δ.

The multiplicative term T in the upper bounds above comes
from the data splitting (recall that we have split the dataset D
into T subsets: D1, . . . ,DT ). A more careful analysis may
be able to get rid of it, leading to a slightly better polynomial
dependence on the effective horizon 1/(1− γ) in the final
sample complexity bound. We leave this for future work.

In view of the above result, to derive the specific error bound
of FLE, we need to choose an appropriate T to make a good
balance. The T we choose is of the logarithmic order. It is
shown in the corollary below.

Corollary 4.14. We define

ι =

{
log(|F|/δ), if |F| <∞;

log
(
N[]

(
(1−γ)d
n ,F , ∥ · ∥∞

)/
δ
)
, if |F| = ∞.

Then under Assumption 4.10 and 4.12, for FLE (Algo-
rithm 2), if we pick

T = log

(
C

1
2p · ι

1
2p ·

(
1− γ

1
2

)−1

· n−
1
2p

)/
log
(
γ1−

1
2p

)
then with probability at least 1− δ, we have

dw,p

(
f̂ , Zπ

)
≤ Õ

(
C

1
2p · ι

1
2p ·

√
d

(1− γ)
5
2

· n−
1
2p

)

where f̂ := Ex∼µ,a∼π(x) f̂T (x, a).

The above upper bound depends on n−1/(2p), which seems
unsatisfactory, especially when p is large. However, we
believe that it is actually tight since the previous study
has shown that the minimax rate of estimating dw,p us-
ing i.i.d samples from the given distribution is around
O(n−1/(2p)) (Singh & Póczos, 2018). More formally, given
a distribution Q and n i.i.d samples from Q, any algorithm
that maps the n i.i.d samples to a distribution Q̂, must have
dw,p(Q̂,Q) = Ω̃(n−1/(2p)) in the worst case. Note that
distributional OPE is strictly harder than this problem.

5. Simulation

…

h=1 h=2 h=3 h=H-1 h=H

reward 𝑟!

reward 𝑟"

initial state terminal state

observation  𝑥# ∼ 𝜓(𝑤# , ℎ)

+ +

𝑤# ℎ noise

Figure 1. Visualization of the combination lock. The dotted lines
denote transiting from good states (white) to bad states (gray).
Once the agent transits to a bad state, it stays there forever. The
observation is composed of three parts: one-hot encoding of the
latent state wh, one-hot encoding of the step h, and random noise.
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In this section, we show the empirical performance of two
instances of FLE: GMM-FLE and Diff-FLE. The GMM-
FLE uses conditional Gaussian mixture models for F , for
which the weights and the mean and covariance of Gaus-
sians are all learnable. For Diff-FLE, we model the dis-
tribution f(· |x, a) as a conditional diffusion probabilistic
model (Sohl-Dickstein et al., 2015). The implementation is
based on DDPM (Ho et al., 2020). We elaborate on other
components of the experiments below. See Appendix E for
implementation details and a full list of results.

The combination lock environment. The combination lock
consists of two chains. One of the chains is good, while
the other is bad. The agent wants to stay on the good chain,
for which the only approach is to take the unique optimal
action at all time steps. See Figure 1 for an illustration.
Mathematically, the combination lock is a finite-horizon
MDP of horizon H . There are two latent states wh ∈ {0, 1}.
At any time step h ∈ [H], there is only one optimal action
a⋆h amongA actions. If the agent is in the latent statewh = 0
and takes a⋆h, it transits to wh+1 = 0, and otherwise transits
to wh+1 = 1. If it is already in wh = 1, no matter what
action it takes, it transits to wh+1 = 1. When h = H ,
it receives a random reward r+ if wH = 0; otherwise,
it gets r−. The agent cannot observe the latent state wh
directly. Instead, the observation it receives, ψ(wh, h), is the
concatenation of one-hot coding of the latent state wh and
the current time step h, appended with Gaussian noise. This
environment has been used in prior works (Misra et al., 2020;
Zhang et al., 2022b) where it was shown that standard deep
RL methods struggle due to the challenges from exploration
and high-dimensional observation.

Test policy. The test policy is stochastic: it takes a ran-
dom action with probability ϵ and takes the optimal policy
otherwise. In all experiments, we set ϵ = 1/7.

Offline data generation. The offline dataset is generated
uniformly. Specifically, for each time step h ∈ [H] and
each latent state wh ∈ {0, 1}, we first randomly sample
10000 observable state ϕ(wh). Then for each of them, we
uniformly randomly sample action and perform one step
simulation. It is clear that the offline data distribution here
satisfies the coverage assumption (Assumption 4.1).

5.1. One-Dimensional Reward

To compare to classic methods such as the categorical al-
gorithm (Bellemare et al., 2017) and quantile TD (Dab-
ney et al., 2018), we first run experiments with a 1-d re-
ward. Specifically, we have r+ ∼ N (1, 0.12) and r− ∼
N (−1, 0.12). The horizon is H = 20.

The categorical algorithm discretizes the range [−1.5, 1.5]
using 100 atoms. For quantile TD, we set the number of
quantiles to 100 as well. The GMM-FLE uses 10 atomic

Gaussian distributions, although eventually, only two are
significant. See Append E for a detailed description of im-
plementations. We plot the PDFs Ex∼ψ(0,h) f̂h(x, a⋆h) (here
0 denotes the good latent state in h) learned by different
methods in Figure 2, at three different time steps. As we
can see, GMM-FLE in general fits the ground truth the best.

We also compute the approximated dtv between the learned
distribution and the true one. Ideally, we want to compute
dtv(Ex∼ψ(0,h) f̂h(x, a⋆h),Ex∼ψ(0,h) Zπh (x, a⋆h)). However,
since obtaining the density of certain models is impossible
(e.g., Diff-FLE) and certain other models have only discrete
supports, we use an approximated version: we sample 20k
points from each distribution, construct two histograms, and
calculate dtv between the two histograms. The results are
shown in Table 1. Again, GMM-FLE achieves the smallest
total variation distance. This intuitively makes sense since
the ground truth return is a mixture of Gaussians. More-
over, we notice that GMM-FLE, Diff-FLE, and categorical
algorithms achieve significantly better performance than the
quantile regression TD algorithm. This perhaps is not sur-
prising because our theory has provided performance guar-
antees for those three algorithms under dtv (recall that the
categorical algorithm can be roughly considered a specifica-
tion of FLE, see Remark 3.1), while it is unclear if quantile
regression TD can achieve similar guarantees in this setting.

h Cate Alg Quan Alg Diff-FLE GMM-FLE

1 0.071 ± 0.015 0.603 ± 0.011 0.292 ± 0.073 0.039 ± 0.004
10 0.079 ± 0.017 0.494 ± 0.018 0.234 ± 0.043 0.044 ± 0.012
19 0.078 ± 0.011 0.167 ± 0.019 0.109 ± 0.031 0.018 ± 0.008

Table 1. Approximated dtv between Ex∼ψ(0,h) f̂h(x, a
⋆
h) and

Ex∼ψ(0,h) Z
π
h (x, a

⋆
h) in the 1-d case. The means and standard

errors are computed via five independent runs.

5.2. Two-Dimensional Reward

We also conducted experiments on two-dimensional rewards
where r+ is sampled from a ring in R2 of radius 2 and r−

follows a Gaussian centered at the origin. The horizon is
H = 10. The categorical algorithm discretizes the range
[−4, 4]2 into 30 atoms per dimension (totaling 900 atoms).
Although the 2-d version of the categorical algorithm is not
introduced in the original paper (Bellemare et al., 2017), the
extension is intuitive. The GMM-FLE employs 30 atomic
Gaussian distributions, but only up to six prove significant
in the end. We note that extending quantile regression TD
to multi-dimensional rewards is not straightforward.

We plotted the 2-d visualization of the learned distribution
in Figure 3 and computed the approximated TV distance
using the same method as in the 1-d case, which is shown
in Table 2. Diff-FLE achieves the smallest TV error (Ta-
ble 2) and captures the correlation among dimensions (i.e.,
see Figure 3 where Diff-FLE captures the ring structures in
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Figure 2. Plots of Ex∼ψ(0,h) f̂h(x, a
⋆
h) and Ex∼ψ(0,h) Z

π
h (x, a

⋆
h).

The histograms are generated via 50k samples.

all steps). However, the GMM-FLE also doesn’t perform
well since it is hard for vanilla GMM with a finite number
of mixtures to capture a ring-like data distribution. The
two-dimensional categorical algorithm performed badly as
well, even though it uses a larger number of atoms (recall
that for the 1-d case it only uses 100 atoms and already
achieves excellent performance), implying that it suffers
from the curse of dimensionality statistically, i.e., explicitly
discretizing the 2-d return space evenly can fail to capture
the underlying data structure (e.g., in our ring example, data
actually approximately lives in a sub-manifold). Moreover,
the training is also significantly slower. In our implemen-
tation, we found that running the 2-d categorical algorithm
with 1002 atoms is about 100 times slower than running the
1-d algorithm with 100 atoms, while the training time of

h CATE ALG DIFF-FLE GMM-FLE

1 0.483 ± 0.003 0.357 ± 0.031 0.438 ± 0.008
5 0.466 ± 0.001 0.310 ± 0.019 0.493 ± 0.050
9 0.453 ± 0.001 0.207 ± 0.014 0.502 ± 0.094

Table 2. Approximated dtv between Ex∼ψ(0,h) f̂h(x, a
⋆
h) and

Ex∼ψ(0,h) Z
π
h (x, a

⋆
h) in the 2-d case. The means and standard

errors are computed via five independent runs.
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Figure 3. Plots of Ex∼ψ(0,h) f̂h(x, a
⋆
h) (generated via 50k sam-

ples), and the ground truth Ex∼ψ(0,h) Z
π
h (x, a

⋆
h) (top row).

Diff-FLE and GMM-FLE does not change too much.

6. Discussion and Future Work
We proposed Fitted Likelihood Estimation (FLE), a simple
algorithm for distributional OPE with multi-dimensional
rewards. FLE conducts a sequence of MLEs and can in-
corporate any state-of-the-art generative models trained via
MLE. Thus, FLE is scalable to the setting where reward
vectors are high-dimensional. Theoretically, we showed that
the learned distribution is accurate under total variation dis-
tance and p-Wasserstein distance for the finite-horizon and
infinite-horizon discounted setting, respectively. In practice,
we demonstrated its flexibility in utilizing generative models
such as GMMs and diffusion models.

Our work may offer several promising avenues for future
research in distributional RL. One immediate direction is
to adapt our algorithms to the policy optimization. Another
direction is the development of more efficient algorithms
that can work in more complex environments.
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A. Offline CVaR Evaluation
We consider estimating the CVaR of Zπ with d = 1. Given a threshold τ ∈ (0, 1), the CVaRτ of Zπ is defined as (assuming
finite-horizon MDPs):

CVaRτ (Zπ) := max
b∈[0,H]

(
b− 1

τ
Ez∼Zπ max {b− z, 0}

)
.

CVaR intuitively measures the expected value of the random variable belonging to the tail part of the distribution and is
often used as a risk-sensitive measure. The following lemma shows that CVaRτ (Zπ) is Lipschitz continuous with respect
to metric dtv and the Lipschitz constant is 2H/τ .

Lemma A.1. Let f, f ′ ∈ ∆([0, H]) be two densities. Then we have

CVaRτ (f)− CVaRτ (f ′) ≤
2H

τ
· dtv(f, f ′).

Proof. Let f, f ′ ∈ ∆([0, H]) denote two densities. Then we have

CVaRτ (f)− CVaRτ (f ′)

= max
b∈[0,H]

(
b− 1

τ
Ez∼f max {b− z, 0}

)
− max
b∈[0,H]

(
b− 1

τ
Ez∼f ′ max {b− z, 0}

)
≤
(
b0 −

1

τ
Ez∼f max {b0 − z, 0}

)
−
(
b0 −

1

τ
Ez∼f ′ max {b0 − z, 0}

)
=
1

τ

(
Ez∼f ′ max {b0 − z, 0} − Ez∼f max {b0 − z, 0}

)
=
1

τ

∫
[0,H]

(
f ′(z)− f(z)

)
max{b0 − z, 0}dz

≤H
τ

∫
[0,H]

∣∣f ′(z)− f(z)
∣∣dz

≤2H

τ
dtv(f, f

′)

where the first inequality holds by picking b0 = argmaxb∈[0,H]

(
b− 1

τ Ez∼f max {b− z, 0}
)
.

Thus using our bound from Corollary 4.7, we get:

∣∣∣CVaRτ (Zπ)− CVaRτ (f̂)
∣∣∣ ≤ 4C1/2H2.5

τ

√
log(maxh |F|h/δ)

n
,

with probability at least 1− δ.

B. Examples
In this section, we discuss two examples: one is tabular MDPs, and the other is Linear Quadratic Regulators. For simplicity
of presentation, we focus on scalar rewards and finite horizon.

B.1. Tabular MDPs

We consider tabular MDP (i.e., |X | and |A| are finite) with continuous known reward distributions. Specifically, we consider
the sparse reward case where we only have a reward at the last time step H and have zero rewards at time step h < H . For
each (x, a), Denote rH(x, a) ∈ ∆([0, 1]).

Note that in this setup, via induction, it is easy to verify that for any h, x, a, Zπh (·|x, a) is a mixture of the distributions
{rH(x, a) : x ∈ X , a ∈ A}, i.e., for any h, x, a, there exists a probability weight vector w ∈ ∆(|X ||A|), such that

12
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Zπh (·|x, a) =
∑
x′,a′∈X×A w(x

′, a′)rH(·|x′, a′). Note that the parameters w(x, a) are unknown due to the unknown
transition operator P , and need to be learned. Thus, in this case, we can design function class Fh as follows:

Fh =

{
f(·|x, a) =

∑
x′,a′∈X×A

wx,a(x
′, a′)rH(·|x′, a′) :

{
wx,a ∈ ∆(|X ||A|)

}
x,a∈X×A

}
.

It is not hard to verify that {Fh}Hh=1 does satisfy the Bellman complete condition. The log of the bracket number of Fh
is polynomial with respect to |X ||A|.
Lemma B.1. In the above example, the complexity of Fh in bounded: logN[](ϵ,Fh, ∥ · ∥∞) ≤
O(|X |2|A|2 log(r∞|X ||A|/ϵ)) where r∞ := ∥rH∥∞.

Thus Algorithm 1 is capable of finding an accurate estimator of Zπ with sample complexity scaling polynomially with
respect to the size of the state and action spaces and horizon.

B.2. Linear Quadratic Regulator

The second example is LQR. We have X ⊂ Rdx ,A ⊂ Rda .

xh+1 = Axh +Bah,

r(xh, ah) = −(x⊤hQxh + a⊤hRah) + ε

where ε ∼ N (0, σ2). Since the optimal policy for LQR is a linear policy, we consider evaluating a linear policy π(x) := Kx
where K ∈ Rda×dx . For this linear policy, Zπh (·|x, a) is a Gaussian distribution, i.e., Zπh (·|x, a) = N (µh(x, a), σh(x, a)),
where µh(x, a) and σh(x, a) has closed form solutions.

Lemma B.2. For LQR defined above, µh(x, a) and σh(x, a) has the following closed form solutions

µh(x, a) =− (Ax+Ba)⊤Uh+1(Ax+Ba)

− x⊤Qx− a⊤Ra,

σ2
h(x, a) =(H − h+ 1)σ2

where we denote Uh =
∑H
i=h((A+BK)i−h−1)⊤(Q+K⊤RK)(A+BK)i−h−1.

Thus our function class Fh can be designed as follows:

Fh =
{
f(·|x, a) = N

(
·
∣∣x⊤M1x+ a⊤M2x+ a⊤M3a,

(H − h+ 1)σ2
)
, ∀M1,M2,M3

}
We can show that this function class satisfies Bellman completeness. Furthermore, here, we can refine C in Assump-
tion 4.1 to a relative condition number following the derivation in Uehara & Sun (2021). More specifically, C is

supw ̸=0,h

w⊤Edπ
h
[ϕ(x,a)ϕ⊤(x,a)]w

w⊤Eρ[ϕ(x,a)ϕ⊤(x,a)]w
where ϕ(x, a) = (x⊤, a⊤)⊤ ⊗ (x⊤, a⊤)⊤ is a quadratic feature and ⊗ is the Kronecker

product. Under some regularity assumption (i.e., the norms of M1,M2,M3 are bounded, which is the case when the
dynamical system induced by the linear policy is stable), this function class has bounded statistical complexity.

Lemma B.3. We assume there exist parameters mx,ma,m1,m2,m3 for which ∥x∥2 ≤ mx for all x ∈ X and ∥a∥2 ≤ ma

for all a ∈ A, and ∥Mi∥F ≤ mi for i = 1, 2, 3. Then we have

logN[](ϵ,Fh, ∥ · ∥∞) ≤ Poly
(
dx, da, log

mxmam1m2m3

ϵσ

)
.

It is unclear if quantile regression TD or categorical TD can achieve meaningful guarantees on LQR since the function
classes used by them do not satisfy Bellman completeness (i.e., given any conditional density f(·|x, a), T πf will not be
discrete since here r(x, a) is continuous). Even for regular RL, without Bellman completeness, in the off-policy setting,
it is possible that TD-based algorithms may diverge, and TD fixed point solutions can be arbitrarily bad.
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C. Supporting Lemmas
C.1. Maximum Likelihood Estimation

In this section, we adapt the theoretical results of MLE (Agarwal et al., 2020b) to more general versions. We will follow the
notation in Appendix E of Agarwal et al. (2020b) and restate the setting here for completeness.

We consider a sequential conditional probability estimation problem. Let X and Y denote the instance space and the target
space, respectively. We are given a function class F : (X × Y) → R with which we want to model the true conditional
distribution f⋆. To this end, we are given a dataset D := {(xi, yi)}ni=1, where xi ∼ Di and yi ∼ p (· | xi) = f⋆(x, ·).

We only assume that there exists f⋆i for each i ∈ [n] such that Ex∼Di dtv(f
⋆
i (x), f

⋆(x)) = 0. Note that this assumption
only considers x on the support of Di and is thus weaker than saying f⋆ ∈ F .

For the data generating process, we assume the data distribution Di is history-dependent, i.e., it can depend on the previous
samples: x1, y1, . . . , xi−1, yi−1.

Let D′ = {(x′i, y′i)}ni=1 denote the tangent sequence which is generated by x′i ∼ Di and y′i ∼ p(· | x′i). The tangent
sequence is independent when conditioned on D.

Lemma C.1 (Adapted version of Lemma 25 (Agarwal et al., 2020b)). Let f1 ∈ X 7→ ∆(Y) be a conditional probability
density and f2 ∈ X × Y 7→ R≥0 (satisfying

∫
Y f2(x, y) dy ≤ s for all x ∈ X ). Let D ∈ ∆(X ) be any distribution. Then,

we have

E
x∼D

(∫
Y
|f1(x, y)− f2(x, y)|dy

)2

≤ (2 + 2s)

(
(s− 1)− 2 log E

x∼D,y∼f1(x,·)
exp

(
−1

2
log (f1(x, y)/f2(x, y))

))
.

Proof of Lemma C.1. First, we have

E
x∼D

(∫
Y
|f1(x, y)− f2(x, y)|dy

)2

= E
x∼D

(∫
Y

∣∣∣√f1(x, y)−√f2(x, y)∣∣∣ (√f1(x, y) +√f2(x, y))dy)2

≤ E
x∼D

∫
Y

(√
f1(x, y)−

√
f2(x, y)

)2
dy ·

∫
Y

(√
f1(x, y) +

√
f2(x, y)

)2
dy

= E
x∼D

∫
Y

(√
f1(x, y)−

√
f2(x, y)

)2
dy · 2

∫
Y

(
f1(x, y) + f2(x, y)

)
dy −

∫
Y

(√
f1(x, y)−

√
f2(x, y)

)2
dy

= E
x∼D

∫
Y

(√
f1(x, y)−

√
f2(x, y)

)2
dy · 2

∫
Y

(
f1(x, y) + f2(x, y)

)
dy

≤ E
x∼D

∫
Y

(√
f1(x, y)−

√
f2(x, y)

)2
dy︸ ︷︷ ︸

(∗)

·(2 + 2s).

where the first inequality holds for Cauchy–Schwarz inequality. For (∗), we have

(∗) = E
x∼D

∫
Y

(√
f1(x, y)−

√
f2(x, y)

)2
dy ≤ (s− 1) + 2− 2 E

x∼D

∫
Y

√
f1(x, y)f2(x, y) dy

=(s− 1) + 2

(
1− E

x∼D

∫
Y

√
f1(x, y)f2(x, y) dy

)
≤ (s− 1)− 2 log

(
E
x∼D

∫
Y

√
f1(x, y)f2(x, y) dy

)
≤(s− 1)− 2 log E

x∼D,y∼f1(x,·)

√
f2(x, y)/f1(x, y)

=(s− 1)− 2 log E
x∼D,y∼f1(x,·)

exp

(
−1

2
log (f1(x, y)/f2(x, y))

)
where the second inequality holds because 1− x ≤ − log x.

Lemma C.2 (Adapted version of Theorem 21 (Agarwal et al., 2020b)). Fix δ ∈ (0, 1). Let N[](ϵ,F , ∥ · ∥∞) denote the
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ϵ-bracketing number of F w.r.t. ∥ · ∥∞. Then for any estimator f̂ that depends on D, with probability at least 1− δ, we have

n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
≤

3nϵ2|Y|2

2
+ 2nϵ|Y|+

(
4 + 2ϵ|Y|

)(1

2

n∑
i=1

log
(
f⋆(xi, yi)/f̂(xi, yi)

)
+ logN[](ϵ,F , ∥ · ∥∞) + log(1/δ)

)

where |Y| denotes
∫
Y dy.

Proof of Lemma C.2. We take an ϵ-bracket of F , {[li, ui] : i = 1, 2, . . . }, and denote F̃ = {ui : i = 1, 2, . . . }. Pick f̃ ∈ F̃
satisfying f̂ ≤ f̃ , so f̃ also depends on D. Applying Lemma 24 of (Agarwal et al., 2020b) to function class F̃ and estimator
f̃ and using Chernoff method, we have

− log E
D′

exp(L(f̃(D), D′))︸ ︷︷ ︸
(i)

≤ −L(f̃(D), D) + logN[](ϵ,F , ∥ · ∥∞) + log(1/δ)︸ ︷︷ ︸
(ii)

. (3)

holds with probability at least 1− δ. We set L(f,D) =
∑n
i=1 −1/2 log(f⋆(xi, yi)/f(xi, yi)). Then the right hand side of

(3) is

(ii) =
1

2

n∑
i=1

log(f⋆(xi, yi)/f̃(xi, yi)) + logN[](ϵ,F , ∥ · ∥∞) + log(1/δ)

≤1

2

n∑
i=1

log(f⋆(xi, yi)/f̂(xi, yi)) + logN[](ϵ,F , ∥ · ∥∞) + log(1/δ).

On the other hand, by the definition of total variation distance and the fact that a2 ≤ 2b2 + 2c2 whenever 0 ≤ a ≤ b+ c, we
have

n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
=

1

4

n∑
i=1

E
x∼Di

(∫
Y

∣∣∣f̂(x, y)− f⋆(x, y)
∣∣∣dy)2

≤1

2

n∑
i=1

E
x∼Di

(∫
Y

∣∣∣f̂(x, y)− f̃(x, y)
∣∣∣dy)2

︸ ︷︷ ︸
(iii)

+
1

2

n∑
i=1

E
x∼Di

(∫
Y

∣∣∣f̃(x, y)− f⋆(x, y)
∣∣∣ dy)2

︸ ︷︷ ︸
(iv)

.

For (iii), by the definition of f̃ , we have (iii) ≤ nϵ2|Y|2. For (iv), we apply Lemma C.1 with f1 = f⋆ and f2 = f̃ (thus
s = 1 + ϵ|Y|) and get

(iv) =2nϵ|Y|(2 + ϵ|Y|)−
n∑
i=1

(8 + 4ϵ|Y|)
(
log E

x,y∼f⋆(x,·)
exp

(
−1

2
log
(
f⋆(x, y)/f̃(x, y)

)))

=2nϵ|Y|(2 + ϵ|Y|)−
n∑
i=1

(8 + 4ϵ|Y|)
(
log E

x,y∼Di

exp

(
−1

2
log
(
f⋆(x, y)/f̃(x, y)

)))

=2nϵ|Y|(2 + ϵ|Y|)− (8 + 4ϵ|Y|) log E
x,y∼D′

[
exp

(
n∑
i=1

−1

2
log
(
f⋆(x, y)/f̃(x, y)

))∣∣∣∣∣D
]

=4nϵ|Y|+ 2nϵ2|Y|2 + (8 + 4ϵ|Y|) · (i).

By plugging (iii) and (iv) back we get

n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
≤ 2nϵ|Y|+ 3

2
nϵ2|Y|2 + (4 + 2ϵ|Y|) · (i).

Notice that (i) ≤ (ii), so we complete the proof by plugging (ii) into the above.
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Lemma C.3. Fixed δ ∈ (0, 1). Let f̂ denote the maximum likelihood estimator,

f̂ = argmax
f∈F

n∑
i=1

log f(xi, yi).

Then according to different assumptions on the size of F , we have the following two conclusions:

(1) If |F| <∞, we have
n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
≤ 4 log |F|/δ (4)

with probability at least 1− δ.

(2) For general F , we have

n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
≤ 10 logN[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ (5)

with probability at least 1− δ.

Proof of Lemma C.3. By Lemma C.2, we have

n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
≤

3nϵ2|Y|2

2
+ 2nϵ|Y|+

(
4 + 2ϵ|Y|

)
1

2

n∑
i=1

log
(
f⋆(xi, yi)/f̂(xi, yi)

)
︸ ︷︷ ︸

(⋄)

+ logN[](ϵ,F , ∥ · ∥∞) + log(1/δ)


(6)

with probability at least 1− δ. Since f̂ is the maximum likelihood estimator and there exists f⋆i that agrees with f⋆ on the
support of Di, we have

log
(
f⋆(xi, yi)/f̂(xi, yi)

)
= log

(
f⋆i (xi, yi)/f̂(xi, yi)

)
≤ 0

and thus(⋄) ≤ 0. When |F| <∞, we can set ϵ = 0, and then (6) exactly becomes (4). For general F , we set ϵ = (n|Y|)−1

and then get

n∑
i=1

E
x∼Di

d2tv

(
f̂(x, ·), f⋆(x, ·)

)
≤ 3

2n
+ 2 +

(
4 +

2

n

)
logN[]((n|Y|)−1,F , ∥ · ∥∞)/δ)

≤4 + 6 logN[]((n|Y|)−1,F , ∥ · ∥∞)/δ ≤ 10 logN[]((n|Y|)−1,F , ∥ · ∥∞)/δ,

which is exactly (5).

C.2. Total Variation Distance and Wasserstein Distance

The following lemma states that the total variation distance is equal to the optimal coupling in a sense. The proof can be
found in Levin & Peres (2017) (Proposition 4.7).

Lemma C.4. Let f1 and f2 be two probability distributions on X . Then

dtv(f1, f2) = inf
c∈C

Pr
x,y∼c

(x ̸= y)

where C is the set of all couplings of f1 and f2.
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The following lemma shows the dual representation of the Wasserstein distance. The proof can be found in Villani (2021)
(Theorem 1.3) and Villani et al. (2009) (Theorem 5.10).

Lemma C.5 (Kantorovich duality). Let f1, f2 ∈ ∆(X ) where X is a Polish space (e.g., Euclidean space). It can be shown
that, for any 1 ≤ p <∞,

dpw,p(f1, f2) = sup
ψ,ϕ

∫
ψ(x)f1(x) dx−

∫
ϕ(x)f2(x) dx s.t. ψ(x)− ϕ(y) ≤ ∥x− y∥p, ∀x, y ∈ X .

Lemma C.6. Let f1 and f2 be two distributions on a bounded set X . Then

dpw,p(f1, f2) ≤ diamp(X ) · dtv(f1, f2)

where diam(X ) = supx,y∈X ∥x− y∥ is the diameter of X .

Proof. By definition, we have

dpw,p(f1, f2) = inf
c∈C

E
x,y∼c

∥x− y∥p = inf
c∈C

E
x,y∼c

[
1[x ̸= y] · ∥x− y∥p

]
≤diamp(X ) · inf

c∈C
E

x,y∼c
1[x ̸= y] = diamp(X ) · dtv(f1, f2)

where by C we denote the set of all couplings of f1 and f2, and the last equality holds because of Lemma C.4.

Corollary C.7. Let f1 and f2 be two distributions on [0,m]d. Then

dpw,p(f1, f2) ≤
(
m
√
d
)p

· dtv(f1, f2).

Since the total variation distance is at most one, we have the following.

Corollary C.8. Let f1 and f2 be two distributions on [0,m]d. Then

dpw,p(f1, f2) ≤
(
m
√
d
)p
.

D. Missing Proofs in Section 4
D.1. Proof of Theorem 4.2

Proof. Note that for all h ∈ [H], we have

E
x,a∼dπh

dtv

(
[T π f̂h+1](x, a), [T πZπh+1](x, a)

)

=
1

2
E

x,a∼dπh
sup

g:∥g∥∞≤1

∣∣∣∣∣∣∣∣∣∣
E

x′∼P (x,a)
a′∼π(x′)
r∼r(x,a)

(
E

y∼f̂h+1(·|x′,a′)

g
(
r + y

)
− E
y∼Zπ

h+1(·|x′,a′)
g
(
r + y

))
∣∣∣∣∣∣∣∣∣∣

≤1

2
E

x,a∼dπh
x′∼P (x,a)
a′∼π(·|x)
r∼r(x,a)

sup
g:∥g∥∞≤1

∣∣∣∣∣ E
y∼f̂h+1(·|x′,a′)

g
(
r + y

)
− E
y∼Zπ

h+1(·|x′,a′)
g
(
r + y

)∣∣∣∣∣

=
1

2
E

x,a∼dπh
x′∼P (x,a)
a′∼π(·|x)

sup
g:∥g∥∞≤1

∣∣∣∣∣ E
y∼f̂h+1(·|x′,a′)

g(y)− E
y∼Zπ

h+1(·|x′,a′)
g(y)

∣∣∣∣∣
= E
x′,a′∼dπh+1

dtv

(
f̂h+1(x

′, a′), Zπh+1(x
′, a′)

)
.

17



Distributional Offline Policy Evaluation with Predictive Error Guarantees

Here the inequality holds for Jensen’s inequality. The second equality holds since the randomness of r lies outside the
supremum, so we can consider r as a constant within the supremum, allowing us to set g̃(y) = g(r + y) for which we have
∥g̃∥∞ ≤ 1 thus removing the additive term r. Hence, by triangle inequality, we have

E
x,a∼dπh

dtv

(
f̂h(x, a), Z

π
h (x, a)

)
= E
x,a∼dπh

dtv

(
f̂h(x, a), [T πZπh+1](x, a)

)
≤ E
x,a∼dπh

dtv

(
f̂h(x, a), [T π f̂h+1](x, a)

)
︸ ︷︷ ︸

(i)

+ E
x,a∼dπh

dtv

(
[T π f̂h+1](x, a), [T πZπh+1](x, a)

)
︸ ︷︷ ︸

(ii)

.

By Assumption 4.1 and Jensen’s inequality, we have (i) ≤
√
Cζh because

E
x,a∼dπh

dtv

(
f̂h(x, a), [T π f̂h+1](x, a)

)
≤

{
E

x,a∼dπh
d2tv

(
f̂h(x, a), [T π f̂h+1](x, a)

)}1/2

≤
√
Cζh.

And by the above derivation we have (ii) ≤ Ex,a∼dπh+1
dtv

(
f̂h+1(x, a), Z

π
h+1(x, a)

)
. Hence,

E
x,a∼dπh

dtv

(
f̂h(x, a), Z

π
h (x, a)

)
≤

√
Cζh + E

x,a∼dπh+1

dtv

(
f̂h+1(x, a), Z

π
h+1(x, a)

)
.

Summing over h = 1, . . . ,H on both sides, we get

E
x,a∼dπ1

dtv

(
f̂1(x, a), Z

π
1 (x, a)

)
≤

√
C

H∑
h=1

ζh + E
x,a∼dπH+1

dtv

(
f̂H+1(x, a), Z

π
H+1(x, a)

)
=

√
C

H∑
h=1

ζh.

where the equality holds since f̂H+1 = ZπH+1 = 0 by definition. Now we complete the proof by noticing the following

dtv

(
f̂ , Zπ

)
=

1

2
sup

g:∥g∥∞≤1

∣∣∣∣∣ E
x,a∼dπ1

(
E

y∼f̂1(·|x,a)
g(y)− E

y∼Zπ(·|x,a)
g(y)

)∣∣∣∣∣
≤1

2
E

x,a∼dπ1
sup

g:∥g∥∞≤1

∣∣∣∣∣ E
y∼f̂1(·|x,a)

g(y)− E
y∼Zπ(·|x,a)

g(y)

∣∣∣∣∣ = E
x,a∼dπ1

dtv

(
f̂1(x, a), Z

π
1 (x, a)

)
.

D.2. Proof of Lemma 4.4

Proof. Observing Algorithm 1, when h = H , we are estimating the conditional distribution ZπH via MLE. Under Assump-
tion 4.3 which implies that there exists a function g ∈ FH that agrees with ZπH on the support of ρ, we can apply Lemma C.3,
which leads to

E
x,a∼ρ

d2tv

(
f̂H(x, a), ZπH(x, a)

)
≤ 4H

n
log(|FH |/δ)

with probability at least 1− δ. When h < H , we are estimating the conditional distribution T π f̂h+1 via MLE. Also note
that thanks to the random data split, we have f̂h+1 being independent of the dataset Dh (f̂h+1 only depends on datasets
Dh+1, . . .DH ). Therefore, under Assumption 4.3 which implies that there exists a function g ∈ Fh that agrees with T π f̂h+1

on the support of ρ, we can apply Lemma C.3, which leads to

E
x,a∼ρ

d2tv

(
f̂h(x, a), [T π f̂h+1](x, a)

)
≤ 4H

n
log(|FH |/δ)

with probability at least 1− δ. We complete the proof by taking the union bound for h ∈ [H].
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D.3. Proof of Lemma 4.6

Proof. The proof is similar to Lemma 4.4. Observing Algorithm 1, when h = H , we are basically estimating the conditional
distribution ZπH via MLE. Hence, under Assumption 4.3 which implies that there exists a function g ∈ FH that agrees with
ZπH on the support of ρ, we can apply Lemma C.3, which leads to

E
x,a∼ρ

d2tv

(
f̂H(x, a), ZπH(x, a)

)
≤ 10H

n
log
(
N[]

(
(nHd)−1,FH , ∥ · ∥∞

)
/δ
)

with probability at least 1− δ. When h < H , we are estimating the conditional distribution T π f̂h+1 via MLE. Therefore,
under Assumption 4.3 which implies that there exists a function g ∈ Fh that agrees with T π f̂h+1 on the support of ρ, we
can apply Lemma C.3, which leads to

E
x,a∼ρ

d2tv

(
f̂h(x, a), [T π f̂h+1](x, a)

)
≤ 10H

n
log
(
N[]

(
(nHd)−1,Fh, ∥ · ∥∞

)
/δ
)

with probability at least 1− δ. We complete the proof by taking the union bound for h ∈ [H].

D.4. Proof of Lemma 4.9

Proof. First, it deserves to verify that the “metric” (Ex,a∼dπ d2pw,p)1/(2p) we are using satisfies the triangle inequality and
is thus indeed a metric. To this end, we note that, for any three densities f1, f2, f3 : X × A 7→ ∆([0, (1 − γ)−1]d), the
following holds since dw,p is a metric,(

E
x,a∼dπ

d2pw,p(f1(x, a), f2(x, a))

) 1
2p

≤
(

E
x,a∼dπ

(
dw,p(f1(x, a), f3(x, a)) + dw,p(f3(x, a), f2(x, a))

)2p) 1
2p

.

Then by Minkowski inequality, the above

≤
(

E
x,a∼dπ

d2pw,p(f1(x, a), f3(x, a))

) 1
2p

+

(
E

x,a∼dπ
d2pw,p(f3(x, a), f2(x, a))

) 1
2p

,

for which we conclude triangle inequality for (Ex,a∼dπ d2pw,p)1/(2p). Since other axioms of metrics are trivial to verify, we
conclude that it is indeed a metric. Hence, we can safely proceed.

To establish the contractive property, we start with the following lemma, which shows that the distributional Bellman
operator is roughly “γ-contractive” in a sense but with distribution shifts.

Lemma D.1. For any f, f ′ ∈ F , x ∈ X and a ∈ A, we have

dpw,p ([T πf ](x, a), [T πf ′](x, a)) ≤ E
x′∼P (x,a),a′∼π(x′)

γpdpw,p (f(x
′, a′), f ′(x′, a′)) .

Proof of Lemma D.1. By the dual form of Wasserstein distance (Lemma C.5), we have

dpw,p ([T πf ](x, a), [T πf ′](x, a)) = sup
(ψ,ϕ)∈Γ

E
z∼[T πf ](x,a)

ψ(z)− E
z∼[T πf ′](x,a)

ϕ(z)

= sup
(ψ,ϕ)∈Γ

E
x′∼P (x,a)
a′∼π(x′)
r∼r(x,a)

(
E

y∼f(x′,a′)
ψ(r + γy)− E

y∼f ′(x′,a′)
ϕ(r + γy)

)

≤ E
x′∼P (x,a)
a′∼π(x′)
r∼r(x,a)

sup
(ψ,ϕ)∈Γ

(
E

y∼f(x′,a′)
ψ(r + γy)− E

y∼f ′(x′,a′)
ϕ(r + γy)

)
︸ ︷︷ ︸

(∗)

(7)

where Γ = {(ψ, ϕ) : ψ(x)− ϕ(y) ≤ ∥x− y∥p}. The second equality holds by the definition of Bellman operator.
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Regarding (∗), for any (ψ, ϕ) ∈ Γ, we define ψ̃(y) = ψ(r + γy)/γp and ϕ̃(y) = ϕ(r + γy)/γp. Then, we have

(∗) = γp sup
(ψ,ϕ)∈Γ

(
E

y∼f(x′,a′)
ψ̃(y)− E

y∼f ′(x′,a′)
ϕ̃(y)

)
.

We note that, for any x, y,

ψ̃(x)− ϕ̃(y) =
ψ(r + γx)− ϕ(r + γy)

γp
≤ ∥(r + γx)− (r + γy)∥p

γp
= ∥x− y∥p.

Here the inequality holds since (ψ, ϕ) ∈ Γ. Hence, (ψ̃, ϕ̃) ∈ Γ as well. In other words, for any given ψ and ϕ, their
correspondences ψ̃ and ϕ̃ are also in Γ. Thus we can take the supremum directly over the latter, which leads to

(∗) ≤ γp sup
(ψ̃,ϕ̃)∈Γ

(
E

y∼f(x′,a′)
ψ̃(y)− E

y∼f ′(x′,a′)
ϕ̃(y)

)
= γpdpw,p

(
f(x′, a′), f ′(x′, a′)

)
where the equality holds due to the dual form of Wasserstein distance (Lemma C.5) again. Then we plug the above into (7)
and get

dpw,p ([T πf ](x, a), [T πf ′](x, a)) ≤ E
x′∼P (x,a),a′∼π(x′)

γpdpw,p
(
f(x′, a′), f ′(x′, a′)

)
.

where we have removed the randomness of r ∼ r(x, a) originally appeared in (7) since the the term inside the expectation is
now completely independent of r.

By Lemma D.1, we have(
E

x,a∼dπ
d2pw,p ([T πf ](x, a), [T πf ′](x, a))

) 1
2p

=

(
E

x,a∼dπ

(
dpw,p ([T πf ](x, a), [T πf ′](x, a))

)2) 1
2p

≤γ ·

(
E

x,a∼dπ

(
E

x′∼P (x,a),a′∼π(x′)
dpw,p (f(x

′, a′), f ′(x′, a′))

)2
) 1

2p

≤γ ·

 E
x,a∼dπ

x′∼P (x,a),a′∼π(x′)

d2pw,p (f(x
′, a′), f ′(x′, a′))

︸ ︷︷ ︸
(†)



1
2p

where the last inequality holds because of Jensen’s inequality. Since dπ(x, a) = γ Ex̃,ã∼dπ P (x|x̃, ã)π(a|x) + (1 −
γ)µ(x)π(x|a), we have Ex̃,ã∼dπ P (x|x̃, ã)π(a|x) ≤ γ−1dπ(x, a). Therefore,

(†) ≤ γ−1 E
x,a∼dπ

d2pw,p (f(x, a), f
′(x, a)) .

Hence, we conclude that (
E

x,a∼dπ
d2pw,p ([T πf ](x, a), [T πf ′](x, a))

) 1
2p

≤γ ·
(
γ−1 E

x,a∼dπ
d2pw,p (f(x, a), f

′(x, a))

) 1
2p

=γ1−
1
2p ·

(
E

x,a∼dπ
d2pw,p (f(x, a), f

′(x, a))

) 1
2p

.
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D.5. Proof of Theorem 4.11

Proof. We will prove the following theorem which is more general.

Theorem D.2. Under Assumption 4.10, suppose we have a sequence of functions f̂1, . . . , f̂T : X ×A 7→ ∆([0, (1−γ)−1]d)
and a sequence of values ζ1, . . . , ζT ∈ R such that(

Ex,a∼ρ d2pw,p
(
f̂t(x, a), [T π f̂t−1](x, a)

)) 1
2p

≤ ζt

holds for all t ∈ [T ]. Let our estimator f̂ := Ex∼µ,a∼π(x) f̂T (x, a). Then we have, for all p ≥ 1,

dw,p

(
f̂ , Zπ

)
≤
(

C

1− γ

) 1
2p

T∑
t=1

γ(T−t)(1− 1
2p ) · ζt +

√
d · γT(1−

1
2p )

(1− γ)1+
1
2p

. (8)

Proof of Theorem D.2. Recall that we defined the conditional distribuions Z̄π(x, a) ∈ ∆([0, (1 − γ)−1]d) which is the
distribution of the return under policy π starting with state action (x, a). It is easy to see that Zπ = Ex∼µ,a∼π(x)

[
Z̄π(x, a)

]
.

We start with the following.(
E

x,a∼dπ
d2pw,p

(
f̂t(x, a), Z̄

π(x, a)
)) 1

2p

≤
(

E
x,a∼dπ

d2pw,p

(
f̂t(x, a), [T π f̂t−1](x, a)

)) 1
2p

+

(
E

x,a∼dπ
d2pw,p

(
[T π f̂t−1](x, a), Z̄

π(x, a)
)) 1

2p

≤ C
1
2p

(
E

x,a∼ρ
d2pw,p

(
f̂t(x, a), [T π f̂t−1](x, a)

)) 1
2p

+

(
E

x,a∼dπ
d2pw,p

(
[T π f̂t−1](x, a), [T πZ̄π](x, a)

)) 1
2p

≤C
1
2p ζt + γ1−

1
2p

(
E

x,a∼dπ
d2pw,p

(
f̂t−1(x, a), Z̄

π(x, a)
)) 1

2p

where the first inequality is due to triangle inequality (proved in Appendix D.4), the second inequality holds because of the
coverage assumption (Assumption 4.10), and the last inequality holds due to the contractive property of the distributional
Bellman operator (Lemma 4.9). Unrolling the recursion of t, we arrive at(

E
x,a∼dπ

d2pw,p

(
f̂T (x, a), Z̄

π(x, a)
)) 1

2p

≤
T∑
t=1

γ(T−t)(1− 1
2p )C

1
2p ζt + γT(1−

1
2p )
(

E
x,a∼dπ

d2pw,p

(
f̂0(x, a), Z̄

π(x, a)
)) 1

2p

≤
T∑
t=1

γ(T−t)(1− 1
2p )C

1
2p ζt + γT(1−

1
2p ) ·

√
d

1− γ
(9)

where the last inequality is due to Corollary C.8 which shows that

dw,p(f̂0(x, a), Z̄
π(x, a)) ≤ diam

(
[0, (1− γ)−1]d

)
≤

√
d

(1− γ)
.

Since dπ(x, a) = γ Ex̃,ã∼dπ P (x|x̃, ã)π(a|x) + (1− γ)µ(x)π(x | a), we have µ(x)π(x | a) ≤ (1− γ)−1dπ(x, a) and thus(
E

x∼µ,a∼π(x)
d2pw,p

(
f̂T (x, a), Z̄

π(x, a)
)) 1

2p

≤
(
(1− γ)−1 E

x,a∼dπ
d2pw,p

(
f̂T (x, a), Z̄

π(x, a)
)) 1

2p

=(1− γ)−
1
2p

(
E

x,a∼dπ
d2pw,p

(
f̂T (x, a), Z̄

π(x, a)
)) 1

2p

≤ (1− γ)−
1
2p

(
T∑
t=1

γ(T−t)(1− 1
2p )C

1
2p ζt + γT(1−

1
2p ) ·

√
d

1− γ

)
(10)
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where the last inequality is for (9).

Applying the dual representation of Wasserstein distance (Lemma C.5) to dpw,p
(
f̂ , Zπ

)
, we have

dpw,p

(
f̂ , Zπ

)
= dpw,p

(
E

x∼µ,a∼π(x)
f̂T (x, a), E

x∼µ,a∼π(x)
Z̄π(x, a)

)
= sup
ψ,ϕ∈Γ

E
x∼µ,a∼π(x)

(
E

z∼f̂T (x,a)

ψ(z)− E
z∼Z̄π(x,a)

ϕ(z)

)

≤ E
x∼µ,a∼π(x)

sup
ψ,ϕ∈Γ

(
E

z∼f̂T (x,a)

ψ(z)− E
z∼Z̄π(x,a)

ϕ(z)

)
= E
x∼µ,a∼π(x)

dpw,p

(
f̂T (x, a), Z̄

π(x, a)
)

≤
(

E
x∼µ,a∼π(x)

d2pw,p

(
f̂T (x, a), Z̄

π(x, a)
)) 1

2

. (11)

where Γ = {(ψ, ϕ) : ψ(x)− ϕ(y) ≤ ∥x− y∥p}. By chaining (10) and (11) we complete the proof.

By assuming there exists a common upper bound ζ (i.e., ζt ≤ ζ, ∀t), we can further simplify (8) by noticing the following.
First, since the sum of geometric series is bounded in the following sense

T∑
t=1

γ(T−t)(1− 1
2p ) ≤ 1

1− γ(1−
1
2p )

,

we can get

dw,p

(
f̂ , Zπ

)
≤
(

C

1− γ

) 1
2p ζ(

1− γ1−
1
2p

) +

√
d · γT(1−

1
2p )

(1− γ)1+
1
2p

.

Second, we note that the right-hand side above attains the maximum when p = 1. Therefore

dw,p

(
f̂ , Zπ

)
≤
(

C

1− γ

) 1
2p

· ζ

1− γ
1
2

+

√
d · γ T

2

(1− γ)
3
2

≤ 2C
1
2p

(1− γ)
3
2

· ζ +
√
d · γ T

2

(1− γ)
3
2

where the last inequality holds since 1− γ1/2 ≥ (1− γ)/2.

D.6. Proof of Lemma 4.13

Proof. We only show the proof for finite function class since the proof for infinite class is essentially the same.

For Algorithm 2, we are iteratively estimating the conditional distribution T π f̂t−1. Note that thanks to the random data
split, we have f̂t−1 being independent of the dataset Dt (f̂t−1 only depends on datasets D1, . . .Dt−1). Therefore, under
Assumption 4.12 which implies that there exists a function g ∈ F that agrees with T π f̂t−1 on the support of ρ, we can
apply Lemma C.3, which leads to

E
x,a∼ρ

d2tv

(
f̂t(x, a), [T π f̂t−1](x, a)

)
≤ 4T

n
log(|F|T/δ)

with probability at least 1− δ. Here we have taken the union bound for t ∈ [T ]. For the result of Wasserstein distance, we
apply Corollary C.7 and get

E
x,a∼ρ

d2pw,p

(
f̂t(x, a), [T π f̂t−1](x, a)

)
≤

( √
d

1− γ

)2p

E
x,a∼ρ

d2tv

(
f̂t(x, a), [T π f̂t−1](x, a)

)
.

22



Distributional Offline Policy Evaluation with Predictive Error Guarantees

D.7. Proof of Corollary 4.14

Proof. We only prove for the finite function class (|F| <∞) since the proof for the infinite function class is quite similar.

We start with Theorem 4.11, plug in the result of Lemma 4.13, and get

dw,p

(
f̂ , Zπ

)
≤ 2C

1
2p

(1− γ)
3
2

·
√
d

1− γ
·
(
4T

n
log(|F|T/δ)

) 1
2p

+

√
d · γ T

2

(1− γ)
3
2

=

√
d

(1− γ)
3
2

(
2C

1
2p

1− γ
·
(
4T

n
log(|F|T/δ)

) 1
2p

+ γ
T
2

)
(12)

We choose

T =
log
(
C

1
2p · ι

1
2p · (1− γ)

−1 · n−
1
2p

)
log
(
γ

1
2

) where ι = log(|F|/δ),

which leads to

γ
T
2 =

C
1
2p · ι

1
2p · n−

1
2p

1− γ
.

Thus, the second additive term of (12) will be smaller than the first one. Hence, we conclude that

dw,p

(
f̂ , Zπ

)
≤ 2 ·

√
d

(1− γ)
3
2

· 2C
1
2p

1− γ
·
(
4T

n
log(|F|T/δ)

) 1
2p

≤ Õ

√
d
(
C log(|F|T/δ)

) 1
2p

(1− γ)
5
2 · n

1
2p

 .

D.8. Proof of Lemma B.1

Proof. The bracketing number of the probability simplex ∆(|X ||A|) is bounded by N[](ϵ,∆(|X ||A|), ∥ ·∥∞) ≤ (c/ϵ)|X ||A|

where c is a constant. Hence, we have N[](ϵ, (∆(|X ||A|))|X ||A|, ∥ · ∥∞) ≤ (c/ϵ)|X |2|A|2 .

Let ∆̃ denote an ϵ-bracket of (∆(|X ||A|))|X ||A|. Then we can construct a bracket of Fh as follows

F̃h =

[f, f] : f(x, a) = ∑
x′,a′

wx,a(x
′, a′)rH(x′, a′), f(x, a) =

∑
x′,a′

wx,a(x
′, a′)rH(x′, a′), ∀[w,w] ∈ ∆̃

 .

We claim that F̃h is a ϵr∞|X ||A|-bracket of Fh. To see this, we have

∥∥∥f − f
∥∥∥
∞

≤
∑
x′,a′

∣∣wx,a(x′, a′)− wx,a(x
′, a′)

∣∣ rH(x′, a′) ≤ ϵ
∑
x′,a′

rH(x′, a′) ≤ ϵr∞|X ||A|.

Therefore, we concludeN[](ϵr∞|X ||A|,Fh, ∥·∥∞) ≤ |∆̃| ≤ (c/ϵ)|X |2|A|2 . By substitution we arrive atN[](ϵ,Fh, ∥·∥∞) ≤
(cr∞|X ||A|/ϵ)|X |2|A|2 . Then we complete the proof by taking a logatithm.
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D.9. Proof of Lemma B.2

µh(x, a) =

H∑
i=h

−(x⊤i Qxi + a⊤i Rai) = −x⊤Qx− a⊤Ra−
H∑

i=h+1

−(x⊤i Qxi + a⊤i Rai)

=− x⊤Qx− a⊤Ra−
H∑

i=h+1

(x⊤i Qxi + x⊤i K
⊤RKxi)

=− x⊤Qx− a⊤Ra−
H∑

i=h+1

x⊤i
(
Q+K⊤RK

)
xi

=− x⊤Qx− a⊤Ra−
H∑

i=h+1

(
(A+BK)i−h−1(Ax+Ba)

)⊤ (
Q+K⊤RK

) (
(A+BK)i−h−1(Ax+Ba)

)
=− x⊤Qx− a⊤Ra− (Ax+Ba)⊤

(
H∑

i=h+1

(
(A+BK)i−h−1

)⊤ (
Q+K⊤RK

)
(A+BK)i−h−1

)
(Ax+Ba).

D.10. Proof of Lemma B.3

Lemma D.3. For any x, a, b ∈ R, we have exp(−(x− a)2)− exp(−(x− b)2) ≤
√
2/e · |a− b|.

Proof of Lemma D.3. When a ≥ b, it is equivalent to exp(−(x−a)2)− exp(−(x− b)2) ≤
√

2/e · (a− b). Thus it suffices
to show that g(x, a) := exp(−(x− a)2)−

√
2/e · a is non-increasing in a. We take the first derivative with respect to a

and then get
∂

∂a
g(x, a) = 2(x− a) exp

(
− (x− a)2

)
−
√

2

e
≤ 0

since it is easy to verify that maxx |x exp(−x2)| ≤ 1/
√
2e. This completes the proof for a ≥ b.

When a < b, it suffices to show that h(x, a) := exp(−(x − a)2) +
√

2/e · a is non-decreasing in a. We take the first
derivative with respect to a and then get

∂

∂a
h(x, a) = 2(x− a) exp

(
− (x− a)2

)
+

√
2

e
≥ 0.

Thus we are done.

Lemma D.4. For any µ1, µ2 ∈ R, it holds that maxxN (x |µ1, σ
2)−N (x |µ2, σ

2) ≤ 1
σ2

√
2πe

· |µ1 − µ2|.

Proof of Lemma D.4.

N (x |µ1, σ
2)−N (x |µ2, σ

2) =
1

σ
√
2π

(
exp

(
−1

2

(
x− µ1

σ

)2
)

− exp

(
−1

2

(
x− µ2

σ

)2
))

≤ 1

σ
√
2π

·
√

2

e
·
∣∣∣∣ µ1

σ
√
2
− µ2

σ
√
2

∣∣∣∣ = 1

σ2
√
2πe

|µ1 − µ2|

where the inequality holds for Lemma D.3.

Lemma D.5. For LQR, let Mi (i = 1, 2, 3) denotes the set of possible matrices of Mi. We assume that, there exists
parameters mx and ma for which ∥x∥2 ≤ mx and ∥a∥2 ≤ ma for all x ∈ X and a ∈ A. Then we have

N[](ϵ,Fh, ∥ · ∥∞) ≤
∏

i=1,2,3

N

(
ϵσ2(H − h+ 1)

√
2πe

2(m2
x +mxma +m2

a)
,Mi, ∥ · ∥F

)
.

Here N[]() and N() denote the bracketing number and covering number, respectively.
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Proof of Lemma D.5. We denote by M̃1, M̃2, and M̃3 the ϵ-covers of M1, M2, and M3, respectively. We construct the
following function class

F̃h =
{
f̃(·|x, a) = N

(
·
∣∣x⊤M̃1x+ a⊤M̃2x+ a⊤M̃3a, (H − h+ 1)σ2

)
, ∀M̃1 ∈ M̃1, M̃2 ∈ M̃2, M̃3 ∈ M̃3

}
.

We claim that F̃h is a cover of Fh. To see this, note that for any f ∈ Fh, there exists f̃ ∈ F̃h (i = 1, 2, 3) for which
∥Mi − M̃i∥F ≤ ϵ, and thus∥∥∥f̃ − f

∥∥∥
∞

=max
x,a,z

∣∣∣N (z ∣∣x⊤M1x+ a⊤M2x+ a⊤M3a, (H − h+ 1)σ2
)

−N
(
z
∣∣x⊤M̃1x+ a⊤M̃2x+ a⊤M̃3a, (H − h+ 1)σ2

)∣∣∣
≤ 1

(H − h+ 1)σ2
√
2πe

∣∣∣x⊤(M1 − M̃1)x+ a⊤(M2 − M̃2)x+ a⊤(M3 − M̃3)a
∣∣∣︸ ︷︷ ︸

(♡)

.

where the last inequality holds for Lemma D.4. For (♡), we have

(♡) ≤ ∥x∥2∥M1 − M̃1∥F∥x∥2 + ∥a∥2∥M2 − M̃2∥F∥x∥2 + ∥a∥2∥M3 − M̃3∥F∥a∥2. ≤ ϵ(m2
x +mxma +m2

a).

Hence, we have ∥∥∥f̃ − f
∥∥∥
∞

≤ ϵ · m2
x +mxma +m2

a

(H − h+ 1)σ2
√
2πe

.

This implies

N

(
ϵ(m2

x +mxma +m2
a)

(H − h+ 1)σ2
√
2πe

,Fh, ∥ · ∥∞
)

≤ N(ϵ,M1, ∥ · ∥F) ·N(ϵ,M2, ∥ · ∥F) ·N(ϵ,M3, ∥ · ∥F).

We note that N[](2ϵ,Fh, ∥ · ∥∞) ≤ N(ϵ,Fh, ∥ · ∥∞). Hence we complete the proof.

Proof of Lemma B.3. Let Mi = {M : ∥M∥F ≤ mi} (i = 1, 2, 3) denote the set of possible matrices Mi. Then we have
N(ϵ,M1, ∥ · ∥F) ≤ (3m1/ϵ)

dx×dx , N(ϵ,M2, ∥ · ∥F) ≤ (3m2/ϵ)
dx×da , and N(ϵ,M3, ∥ · ∥F) ≤ (3m3/ϵ)

da×da . By
Lemma D.5, we have that

N[](ϵ,Fh, ∥ · ∥∞)

≤
(
6m1(m

2
x +mxma +m2

a)

ϵσ2(H − h+ 1)
√
2πe

)dx×dx (6m2(m
2
x +mxma +m2

a)

ϵσ2(H − h+ 1)
√
2πe

)dx×da (6m3(m
2
x +mxma +m2

a)

ϵσ2(H − h+ 1)
√
2πe

)da×da
≤
(
6m1(m

2
x +mxma +m2

a)

ϵσ2
√
2πe

)dx×dx (6m2(m
2
x +mxma +m2

a)

ϵσ2
√
2πe

)dx×da (6m3(m
2
x +mxma +m2

a)

ϵσ2
√
2πe

)da×da
.

Taking a logarithm on both sides, we get

logN[](ϵ,Fh, ∥ · ∥∞)

≤O
(
d2x log

m1(m
2
x +mxma +m2

a)

ϵσ2
+ dxda log

m2(m
2
x +mxma +m2

a)

ϵσ2
+ d2a log

m3(m
2
x +mxma +m2

a)

ϵσ2

)
.

E. Experiment Details
We release our code at https://github.com/ziqian2000/Fitted-Likelihood-Estimation.

E.1. Implementation Details of Combination Lock Environment

We first clarify our implementation of the combination lock environment.
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Reward. We denote r+ and r− as the random reward for latent state wH = 0 and wH = 1, respectively. For the
one-dimensional case, they are sampled from Gaussian distributions: r+ ∼ N (1, 0.12) and r− ∼ N (−1, 0.12). For the
second experiment with two-dimensional reward, they are defined as

r+ = x+
2x

∥x∥2
where x ∼ N

([
0
0

]
,

[
0.05 0
0 0.05

])
, r− ∼ N

([
0
0

]
,

[
0.05 0
0 0.05

])
.

Visually, most samples of r+ appear in a ring centered at the origin with a radius of 2.

State. The state is constructed by three components, that is, state x = (x1, x2, x3)
⊤ for which x1 is the one-hot encoding

of latent state, x2 is the one-hot encoding of time step h, and x3 is a vector of Gaussian noise sampled independently from
N (0, 0.12).

The optimal action a⋆h is chosen to be 0 for all h ∈ [H] for simplicity. We list other environment hyperparameters in Table 3
for reference.

Table 3. Hyperparameters for the combination lock environment. The two columns denote the respective hyperparameters employed in
one-dimensional and two-dimensional experiments.

1-DIMENSIONAL 2-DIMENSIONAL

HORIZON 20 10
NUMBER OF ACTIONS 2 2
DIMENSION OF STATES 30 30

E.2. Implementation Details of Algorithms

All algorithms, with the exception of Diff-FLE, is implemented by a neural network consisting of two layers, each with
32 neurons, connected by the ReLU activation functions. Diff-FLE employs a three-layered neural network, each layer
containing 256 neurons, connected by the ReLU functions. Some shared hyperparameters are listed in Table 4.

Table 4. Shared hyperparameters. Note that the size of the dataset is written as a product, which is determined by the way we generate the
offline data: the first number means the number of samples generated for each latent state and each time step, the second number means
the number of time steps (i.e., horizon), and the third number means the size of the latent space.

1-DIMENSIONAL 2-DIMENSIONAL

SIZE OF DATASET 10000× 20× 2 10000× 10× 2
BATCH SIZE 500 500

Categorical Algorithm. We present the implementation of the two-dimensional version of the categorical algorithm,
which is not presented in the prior work (Bellemare et al., 2017). As a reminder, for the one-dimensional counterpart, for
each atom of the next state, we first calculate its target position, then distribute the probability of that atom based on the
distance of the target position to the closest two atoms. In the two-dimensional case, we discretize on each dimension,
resulting in a grid-shaped discretization. Therefore, the probability of the atoms of the next state will be distributed based on
the distance to the four closest atoms (generally, it will be distributed to 2n atoms in the n-dimensional case). The other
implementation details are the same as the one-dimensional case. The list of hyperparameters can be found in the Table 5.

Quantile Algorithm. We followed the implementation of Dabney et al. (2018). The list of hyperparameters can be found
in the Table 6.

Diff-FLE. Our implementation is based on DDPM (Ho et al., 2020). However, our neural network is much simpler than
theirs, as mentioned above. The list of hyperparameters can be found in the Table 7.
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Table 5. Hyperparameters for the categorical algorithm.

1-DIMENSIONAL 2-DIMENSIONAL

NUMBER OF ATOMS 100 302

LEARNING RATE 10−2 3× 10−2

NUMBER OF ITERATIONS 200 100
DISCRETIZED RANGE [−1.5, 1.5] [−4, 4]2

Table 6. Hyperparameters for quantile Algorithm.

1-DIMENSIONAL

NUMBER OF QUANTILES 100
LEARNING RATE 10−3

NUMBER OF ITERATIONS 1000

GMM-FLE. For the training of GMM-FLE, we applied gradient ascent on the log-likelihood. While many classic
approaches (e.g., the Expectation-Maximization (EM) algorithm) exist, we found no significant performance gap between
gradient ascent and EM in our trials on both one-dimensional and two-dimensional data. Therefore, we opted for the gradient
ascent, which matches our theory better. The list of hyperparameters is listed in Table 8.

E.3. Full Experiment Results

Table 9 is the full version of Table 1, and Table 10 is the full version of Table 2.
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Table 7. Hyperparameters for Diff-FLE.

1-DIMENSIONAL 2-DIMENSIONAL

STEPS OF DIFFUSION PROCESS 200 200
STARING VARIANCE 10−3 10−3

FINAL VARIANCE 0.1 0.1
VARIANCE INCREASING LINEAR LINEAR

LEARNING RATE 10−3 10−3

NUMBER OF ITERATIONS 5000 15000

Table 8. Hyperparameters for GMM-FLE.

1-DIMENSIONAL 2-DIMENSIONAL

NUMBER OF GAUSSIAN DISTRIBUTION 10 10
LEARNING RATE 10−4 2× 10−4

NUMBER OF ITERATIONS 20000 10000

Table 9. Full version of Table 1.

h CATE ALG QUAN ALG DIFF-FLE GMM-FLE

1 0.071 ± 0.015 0.603 ± 0.011 0.292 ± 0.073 0.039 ± 0.004
2 0.067 ± 0.012 0.609 ± 0.014 0.305 ± 0.055 0.041 ± 0.005
3 0.068 ± 0.013 0.612 ± 0.017 0.305 ± 0.079 0.039 ± 0.009
4 0.073 ± 0.013 0.593 ± 0.015 0.288 ± 0.073 0.038 ± 0.003
5 0.074 ± 0.015 0.602 ± 0.009 0.285 ± 0.054 0.036 ± 0.009
6 0.077 ± 0.011 0.612 ± 0.010 0.268 ± 0.040 0.030 ± 0.008
7 0.080 ± 0.014 0.602 ± 0.014 0.290 ± 0.066 0.034 ± 0.004
8 0.080 ± 0.016 0.584 ± 0.018 0.273 ± 0.039 0.039 ± 0.013
9 0.081 ± 0.019 0.529 ± 0.028 0.247 ± 0.034 0.048 ± 0.010

10 0.079 ± 0.017 0.494 ± 0.018 0.234 ± 0.043 0.044 ± 0.012
11 0.080 ± 0.016 0.514 ± 0.018 0.244 ± 0.038 0.039 ± 0.012
12 0.089 ± 0.009 0.518 ± 0.013 0.232 ± 0.015 0.032 ± 0.007
13 0.089 ± 0.011 0.481 ± 0.016 0.219 ± 0.027 0.029 ± 0.016
14 0.081 ± 0.015 0.416 ± 0.026 0.221 ± 0.021 0.033 ± 0.012
15 0.083 ± 0.015 0.330 ± 0.028 0.178 ± 0.033 0.026 ± 0.015
16 0.081 ± 0.009 0.283 ± 0.017 0.170 ± 0.045 0.027 ± 0.013
17 0.082 ± 0.008 0.252 ± 0.008 0.167 ± 0.037 0.034 ± 0.013
18 0.070 ± 0.010 0.217 ± 0.012 0.133 ± 0.019 0.023 ± 0.008
19 0.078 ± 0.011 0.167 ± 0.019 0.109 ± 0.031 0.018 ± 0.008
20 0.077 ± 0.014 0.076 ± 0.009 0.067 ± 0.024 0.013 ± 0.005

Table 10. Full version of Table 2.

h CATE ALG DIFF-FLE GMM-FLE

1 0.483 ± 0.003 0.357 ± 0.031 0.438 ± 0.008
2 0.483 ± 0.003 0.344 ± 0.030 0.424 ± 0.048
3 0.480 ± 0.003 0.339 ± 0.023 0.450 ± 0.042
4 0.469 ± 0.002 0.327 ± 0.019 0.478 ± 0.048
5 0.466 ± 0.001 0.310 ± 0.019 0.493 ± 0.050
6 0.466 ± 0.001 0.289 ± 0.031 0.491 ± 0.061
7 0.470 ± 0.003 0.256 ± 0.032 0.510 ± 0.080
8 0.465 ± 0.002 0.234 ± 0.023 0.505 ± 0.099
9 0.453 ± 0.001 0.207 ± 0.014 0.502 ± 0.094

10 0.446 ± 0.002 0.143 ± 0.011 0.376 ± 0.101
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