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Abstract

Foundation models have achieved great advances
in multi-task learning with a unified interface of
unimodal and multimodal tasks. However, the
potential of such multi-task learners has not been
exploited during transfer learning. In this work,
we present a universal parameter-efficient trans-
fer learning method, termed Predict-Interpolate
Tuning (π-Tuning), for vision, language, and
vision-language tasks. It aggregates the parame-
ters of lightweight task-specific experts learned
from similar tasks to aid the target downstream
task. The task similarities are predicted in a
unified modality-independent space, yielding a
scalable graph to demonstrate task relationships.
π-Tuning has several appealing benefits. First,
it flexibly explores both intra- and inter-modal
transferability between similar tasks to improve
the accuracy and robustness of transfer learn-
ing, especially in data-scarce scenarios. Sec-
ond, it offers a systematical solution for trans-
fer learning with multi-task prediction-and-then-
interpolation, compatible with diverse types of
parameter-efficient experts, such as prompt and
adapter. Third, an extensive study of task-level
mutual benefits on 14 unimodal and 6 multi-
modal datasets shows that π-Tuning surpasses
fine-tuning and other parameter-efficient transfer
learning methods both in full-shot and low-shot
regimes. The task graph also enables an in-depth
interpretable analysis of task transferability across
modalities. The code will be available at https:
//github.com/TencentARC/pi-Tuning.
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Figure 1. Heatmap of the predicted task similarities, composed of
both unimodal and multimodal tasks. Vision-language tasks are
more similar to vision tasks compared to language tasks. Best
viewed in color.

1. Introduction
With the development of Transformer architectures (Doso-
vitskiy et al., 2021; Devlin et al., 2018; Brown et al., 2020),
foundation models (Cho et al., 2021; Lu et al., 2022; Wang
et al., 2022) pre-trained with large-scale data are capable
of multiple tasks across modalities in a unified sequence-to-
sequence manner, taking one more step toward mimicking
the human brain. These foundation models are natural multi-
task learners with universal representation and I/O interfaces
for both unimodal and multimodal tasks. But unfortunately,
these properties have not been fully exploited in downstream
tasks, as few studies investigated how to properly transfer
these models.

In this work, we tackle the problem of transfer learning of
multimodal foundation models with unified sequence-to-
sequence interfaces. Most of our experiments are based on
OFA (Wang et al., 2022), an open-source model, without
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loss of generality. Some previous attempts (Pruksachatkun
et al., 2020) empirically observed that pre-finetuning with
similar tasks may be beneficial while dissimilar tasks are
harmful. It is intuitive to leverage auxiliary tasks that are
similar to the target domain to boost transfer learning. The
measurement of task similarities turns out to be a criti-
cal problem. Rather than the brute-force probing as in
Pruksachatkun et al. (2020), we embed tasks into a uni-
fied space with Fisher Information Matrix (Achille et al.,
2019), yielding task graphs across modalities (see Fig. 1).
We are the first to explore task relationships among com-
puter vision (CV), natural language processing (NLP), and
vision-language (VL) tasks. The graph is computationally
efficient and easily scalable for new tasks, which is espe-
cially suitable for recent arts that unify increasingly more
tasks in one model.

Given the similar tasks predicted from the computed graph,
naı̈ve multi-task fine-tuning is effective for achieving sat-
isfactory performance but inefficient for training, espe-
cially with increasing tasks and model sizes. Inspired by
the parameter-efficient transfer learning methods (Houlsby
et al., 2019; Hu et al., 2021; Li & Liang, 2021) with only
a few trainable parameters, we propose Predict-Interpolate
Tuning (π-Tuning), which interpolates between predicted
parameter-efficient experts (e.g., adapter, prompt) for trans-
fer learning. To be specific, as demonstrated in Fig. 2, the
parameter-efficient experts are trained individually on each
task before being selected according to the predicted task
similarities. The weights of selected experts are then effi-
ciently tuned to be ensembled for the downstream task. We
empirically and theoretically found that those task-specific
experts trained on similar tasks may lie in the basin of the
loss landscape for the target task, which makes a simple
interpolation of different experts possibly yielding strong
performance, with no need for elaborately designed and
highly parameterized fusion modules (Pfeiffer et al., 2020).

In addition to the newly proposed transfer learning method,
several interesting findings were observed by macroscopi-
cally analyzing the relationship between CV, NLP, and VL
tasks. 1) VL tasks are closer to CV tasks than NLP tasks,
interpreting the state-of-the-art performance VL models
achieved in vision benchmarks. 2) Image captioning sits in
the central position among all the tasks, i.e., being close to
many tasks, demonstrating its importance in VL pre-training.
These findings may well inspire future multimodal studies.

Some pioneer works (Vu et al., 2020; Poth et al., 2021; Vu
et al., 2022) in NLP attempted to aggregate prompt em-
beddings from several source tasks to the target domain.
However, they focus on limited language tasks and did not
systematically come up with the philosophy of task integra-
tion, rendering limited scalability for a broader domain.

Our key contributions are three-fold:

• We for the first time investigate the task relationships
among vision, language, and vision-language tasks in a
unified task space. Building upon the task graph, inter-
esting phenomena are demonstrated across modalities.

• We introduce a new parameter-efficient transfer learn-
ing method, namely π-Tuning, which effectively and
efficiently aggregates unimodal and multimodal knowl-
edge across tasks.

• Empirically, we conduct extensive experiments on vi-
sion, language, and vision-language downstream tasks
to demonstrate the superiority, generalization, and scal-
ability of our approach. Theoretically, we indicate the
plausibility of similar task interpolation.

2. Method
2.1. Preliminary
We use a unified sequence-to-sequence (Seq2Seq) model
(e.g., OFA (Wang et al., 2022)) as it can process heteroge-
neous data via a universal interface, which is helpful for
us to analyze multimodal tasks. We specify this model as
y = fθ0(x), where θ0 is the pre-treained weight of OFA.
Here, we refer a task to a specific dataset as τi = (Xi, Yi),
where i ∈ {1, 2, · · · , n} represents the i-th task from all of
n tasks. Xi = {x1

i , x
2
i , · · · , x

si
i } is the input data, which

can be CV, NLP, or VL data and si is the dataset size of
τi. Yi = {y1i , y2i , · · · , y

si
i } is the label set, which later will

be processed by a verbalizer (Schick & Schütze, 2020) in
OFA. We utilize parameter-efficient tuning methods, which
keep the pre-trained weight θ0 frozen and only tune extra
added parameters φ to adapt to multiple downstream tasks.
Given a task τi, we represent the corresponding optimized
parameters as φi.

Task Definition. We have a task set T = {τ1, τ2, · · · , τn}
and the pre-trained model fθ0 . For a specific task τi, the
objective of traditional parameter-efficient tuning is of the
following form:

φi ← argmin
φi

L(τi; θ0, φi), (1)

where L represents the loss function. In the Seq2Seq model,
it is typically the Cross-Entropy (CE) loss.

For the target task τt ∈ T , we want to leverage all
of the tasks and their corresponding trained parameters
Φ = {φ1, φ2, · · · , φn} in pursuit of more accurate and
robust generalization performance.

Fisher Information Matrix (FIM). The Fisher information
matrix (Amari, 1998) can indicate the sensitivity of the
model towards a small perturbation and the curvature of the
loss surface, which can be used as task embedding (Achille
et al., 2019). Formally, it is the expected covariance of
the gradients of the log-likelihood for model parameters θ,

2



π-Tuning: Transferring Multimodal Foundation Models with Optimal Multi-task Interpolation

Pretrained Model𝜑1

Pretrained Model𝜑𝑛

⋮

Parameter Efficient Transfer 
Learning

Step 1 Step 2

Predict Similar Tasks
Ta
sk
t

𝜑𝑡 Pretrained Model

Ta
sk
1

Ta
sk
n

Tuning expert parameters on 
the different downstream tasks.

Vision Language Vision+Language

A

Pool of Tasks

⋮

Select topk similar tasks
and collect experts.

Ta
sk
1

Ta
sk
n

Ta
sk
t

Pool of Experts

𝜑𝑘
sim𝜑1

sim ⋮
𝜑𝑡

A

Multimodal
Tasks

Choose a PETL method.

LoRA
Adapter

Prompt Tuning
....

Step 3

Interpolate Multiple Experts

⋮

Pool of Experts

𝜑𝑘
sim𝜑1

sim

𝛼1 𝛼𝑘 𝛼𝑡

Interpolate Weight

⋮
𝜑𝑡

ത𝜑

/

Pretrained Model𝜑∗

Ta
sk
t

ത𝜑 Pretrained Model

Train interpolation weight 
(and experts) on the target task.

Figure 2. Overview of the π-Tuning method. Step 1 is the traditional parameter-efficient transfer learning (PETL) pipeline. Given the
target task, π-Tuning further adds Step 2 and Step 3 to utilize task relationships to enhance the target expert. Specifically, we find the most
similar tasks in a large pool of tasks and interpolate those experts with our target expert on the target task.

where P (x, y) represents the data distribution of the task:

F i
θ = E

(x,y)∼Pθ(x,y)
∇θlogPθ(y|x)∇θlogPθ(y|x)T. (2)

Specifically, we use the empirical Fisher to compute task
embedding for task τi:

F i
θ =

1

si

si∑
j=1

[∇θlogPθ(y
j
i |x

j
i )∇θlogPθ(y

j
i |x

j
i )

T
]. (3)

2.2. π-Tuning
Our core hypothesis is that similar tasks help enrich domain-
relevant or task-relevant training data, while dissimilar tasks
may be harmful to the model to perform well in the target
task. Based on this hypothesis, we first retrieve a subset
of similar tasks given the target task τt of the task set T .
Then we combine parameter-efficient experts trained for
those similar tasks, which is considered to contain useful
knowledge towards corresponding tasks, with the target task
expert via interpolation to seek a transfer gain. We refer to
this approach as Predict-Interpolate Tuning (π-Tuning for
short). Fig. 2 shows the overall framework.

Task similarity prediction. Since the combination num-
ber of the task set T is exponential for n, it is computation-
ally expensive to identify the subset R ⊆ T of similar tasks
given a target task brutally. Therefore, we try to embed each
task into a vector to compute task similarity. We choose the
FIM to extract the task feature as mentioned in Sec. 2.1. We
keep the pre-trained weights θ0 frozen and tune φi for each
task τi via parameter-efficient tuning.

Next, given task τi, we compute the task embedding based
on the Fisher of the task expert’s weights φ. As the dimen-
sion of Fθ is extremely large, we make an approximation by
only considering its diagonal entries following the practice
in Achille et al. (2019). The task embedding F is therefore
measured via F = diag(Fθ) = [Fθ1 , Fθ2 , · · · , Fθn ], where
θi denotes the i-th parameter of the expert. Intuitively, the
approximation is made under the assumption that correla-
tions between different parametric modules in the expert are
not essential.

We compute the cosine similarity between the embedding of
the target task τt and the candidate source task. We then rank
the similarity score in descending order to select Top-k sim-
ilar tasks to form the subset R = {τ sim1 , τ sim2 , · · · , τ simk }.
Both the task set T and the similar task subset R are dy-
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Method
RefCOCO RefCOCO+ RefCOCOg SNLI-VE COCO Captions VQA

val testA testB val testA testB val-u test-u dev test B@4 M C S test-dev test-std

Previous SOTAs

UNITER (Chen et al., 2019) 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77 79.40 79.40 - - - - 73.80 74.00

VILLA (Gan et al., 2020) 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71 80.20 80.00 - - - - 74.70 74.90

MDETR (Kamath et al., 2021) 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 80.90 81.20 - - - - 77.70 77.60

VL-T5 (Cho et al., 2021) - - - - - - 71.20 71.30 - - 34.50 28.70 116.5 21.90 - 70.30

UNICORN (Yang et al., 2021) 88.29 90.42 83.06 80.30 85.05 71.88 83.44 83.93 - - 35.80 28.40 119.10 21.50 - -

OFA-Base

Finetuning (Wang et al., 2022) 88.48 90.67 83.30 81.39 87.15 74.29 82.29 82.31 89.30 89.20 41.00 30.90 138.2 24.20 78.00 78.10

BitFit (Zaken et al., 2021) 76.32 81.21 72.80 67.29 74.14 59.21 68.79 69.61 84.84 84.48 39.80 30.20 134.6 23.86 73.03 73.26

LoRA (Hu et al., 2021) 81.91 85.89 76.90 72.29 79.22 62.28 72.55 73.26 87.83 87.93 39.80 30.20 134.5 23.73 75.57 75.67

Prompt Tuning (Yang et al., 2022) 84.53 85.21 77.36 76.34 81.44 67.68 75.61 76.57 88.18 88.59 39.70 30.10 134.2 23.50 74.31 74.47

Adapter (Houlsby et al., 2019) 86.63 90.01 81.71 79.45 84.89 71.36 79.58 80.35 87.90 87.67 39.80 30.60 134.6 23.80 75.59 75.94

π-Adapter 86.98 89.99 81.73 80.10 85.87 71.38 81.72 81.75 89.23 89.40 41.00 30.90 137.0 23.90 75.88 76.13

OFA-Large

Finetuning 90.05 92.93 85.26 84.60∗ 89.99∗ 77.71∗ 85.89 86.55 90.36∗ 89.91∗ 41.90∗ 31.40∗ 141.8∗ 24.50∗ 80.40 80.70

BitFit 89.61 92.20 84.91 82.60 88.08 75.16 84.66 84.68 89.70 89.42 41.02 30.92 138.8 24.23 78.23 78.44

LoRA 89.56 92.59 84.63 83.00 88.70 75.46 84.48 85.01 89.49 89.15 41.50 31.10 140.4 24.40 78.20 78.16

Prompt Tuning 90.05 92.31 85.59 84.54 89.40 77.77 85.27 85.89 89.19∗ 89.11∗ 41.60∗ 30.80∗ 140.5∗ 24.30∗ 78.30 78.53

Adapter 90.05 92.42 84.83 84.50 89.66 77.26 85.48 85.88 90.04 89.59 41.80 31.30 140.6 24.50 78.55 78.62

π-Adapter 90.49 92.93 85.91 84.92 90.03 77.91 86.60 86.92 90.16 90.01 41.70 31.40 140.7 24.50 78.78 78.82

Table 1. Comparison with state-of-the-art (SOTA) PETL and full fine-tuning methods. We report the experimental results on RefCOCO,
RefCOCO+, RefCOCOg, SNLI-VE, COCO Image Captioning, and VQA. The overall best result is underlined while bold signifies the
best among parameter-efficient methods. ∗ denotes the results of our re-trained models based on official codes.

namic. If there is a new task arrives, we can add it to our
task set and compute its task similarity given the target task
to check if it is the top-k similar task.

Interpolation of multiple lightweight experts. Given
the similar task subset R, we retrieve the expert subset
corresponding to R, i.e., ϕ = {φsim

1 , φsim
2 , · · · , φsim

k } ⊆ Φ.

Then we can derive the combined parameters φ̄ as follow:

φ̄ = softmax(α)0φt +

k∑
i=1

softmax(α)iφ
sim
i . (4)

Then, we may further tune φ̄ given the target task τt
1:

φ∗ ← argmin
φ̄

L(τt; θ0, φ̄). (5)

There will be no further inference latency introduced by
π-Tuning as the dimension of φ∗ is as same as before.

Relationship between FIM and landscape. We will pro-
vide complementary analytical analysis into the effective-
ness of π-Tuning to show that tasks with similar FIM
lead to close local optimums so that the similarity of FIM
can be a nice indicator for the effectiveness of interpo-
lation. For simplicity, we consider two tasks τ1 and τ2

1We achieve better performance when we tune ϕ ∪ {φt} in
addition to α so that our default setting is tuning both of φ and α.
Details in Sec. 3.5.

with loss function of cross-entropy, which is formulated
as L = E

(x,y)∼P
[− logPφ(y|x)]. Let φ1 and φ2 be the cor-

responding local minimum for τ1 and τ2, optimized from
the same initial parameters φ0, respectively. The FIM of
each task can be seen as the negative Hessian matrix of loss,
which serves as the second derivative of the loss function.

We now state our main theorem in Theorem 2.1, demonstrat-
ing the distance between φ1 and φ2 can be bounded when
they have similar non-singular FIM along the linear path
and their gradient at φ0 is close. The detailed derivation is
presented in Appendix B.

Theorem 2.1. Assume that the gradient of two tasks at
the initial parameters φ0 is close and we have similar non-
singular FIM of two tasks along the linear path. Then
the gap between two local minimal can be controlled by a
constant C, i.e., ||φ1 − φ2||2 ≤ C.

We note that, as previous works revealed that fine-tuned
checkpoints initialized from the same pre-train model lie
in the same basin of the error landscape (Neyshabur et al.,
2020), we further found that PETL methods trained for
similar tasks also have this property. Our method extends
weight averaging on fine-tuned checkpoints under varied
hyperparameter configurations for a single task (Wortsman
et al., 2022) to various PETL methods and various tasks. As
combined from different domains, our method shows a more
robust performance compared to fine-tuning and original
PETL methods when distribution shifts.
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Method Food101 Caltech101 DTD EuroSAT Aircraft Flowers102 Pets Cars AVG

Multimodal Pretrained Baseline Models

CLIP (Radford et al., 2021) 85.49 93.76 73.40 95.70 40.02 94.94 79.61 62.84 78.22

FLAVA (Singh et al., 2022) 88.51 95.74 77.29 97.26 47.31 96.37 84.82 70.87 82.27

16-shot on OFA-Base

Adapter 69.27 92.33 54.31 31.49 31.32 93.06 77.81 42.10 61.46

π-Adapter 69.85(+0.58) 92.74(+0.41) 57.33(+3.02) 36.49(+5.00) 43.71(+16.39) 94.52(+1.46) 79.39(+1.58) 54.04(+11.94) 66.01(+4.55)

full data on OFA-Base

Adapter 85.77 95.17 72.75 93.01 45.24 97.52 89.26 53.71 79.05

π-Adapter 86.16(+0.39) 95.82(+0.65) 73.70(+0.95) 93.94(+0.93) 52.42(+7.18) 98.05(+0.53) 90.35(+1.09) 61.30(+7.59) 81.47(+2.42)

Table 2. Experimental results on eight common vision tasks. We evaluate π-Tuning in both few-shot and full-data scenarios. The predicted
auxiliary experts for vision tasks all contain image captioning, verifying the cross-modal transfer benefits.

Method MNLI QQP MRPC QNLI RTE SST2 AVG
Multimodal Pretrained Baseline Models
VisualBERT (Li et al., 2019) 81.6 89.4 71.9 87.0 56.6 89.4 79.3
UNITER (Chen et al., 2020) 80.9 89.2 69.3 86.0 55.6 89.7 78.5
Uni-Perceiver (Zhu et al., 2022) 81.7 87.1 86.6 89.9 64.3 90.2 83.3
zero shot on OFA-Large
OFA-L 37.12 37.31 62.99 49.50 49.46 55.85 36.53
π-Adapter 44.36(+7.24) 61.68(+24.37) 69.85(+6.86) 55.98(+6.48) 51.99(+2.53) 56.77(+0.92) 42.58(+6.05)
full data on OFA-Large
Adapter 85.99 90.70 87.50 92.49 72.20 93.81 87.12
π-Adapter 86.06(+0.07) 91.16(+0.46) 87.75(+0.25) 92.66(+0.17) 76.53(+4.33) 93.81(+0.00) 88.00(+0.88)
full data on T5-Base
Adapter 86.03 91.02 89.71 92.51 73.57 94.72 87.93
π-Adapter 86.19(+0.16) 91.13(+0.11) 90.20(+0.49) 92.62(+0.11) 82.86(+9.29) 95.07(+0.35) 89.68(+1.75)

Table 3. Experimental results on natural language understanding tasks from the GLUE benchmark (Wang et al., 2018). We experiment
with π-Tuning in both zero-shot and full-data settings with respect to two backbone models, OFA and T5.

3. Experiments
This section presents our key experimental findings. We
begin with experimental settings (described in Sec. 3.1),
and then verify the effectiveness of π-Tuning on both cross-
modal and uni-modal tasks (described in Sec. 3.2). Next, we
give the rationality of the similarity measurement and the
interpolation operation (described in Sec. 3.3). Afterward,
we study the task-level transferability of the model after
π-tuning(described in Sec. 3.4). Finally, ablation studies of
the key design choices are presented (described in Sec. 3.5).

3.1. Experimental Settings
Implementation details. We choose the vision-language
foundation model OFA (Wang et al., 2022) as the pretrained
model, with the mostly-used base-size and large-size ver-
sion, whose parameters are 180M and 470M, respectively.
We set the default number of auxiliary experts k = 2. We
follow the few-shot data split used in Zhou et al. (2022a).
More experimental details are provided in Appendix A.

Multimodal task pool. We evaluate π-Tuning on a task
pool across vision, language, and VL tasks. For vision tasks,
we choose 8 common vision recognition tasks. For language

tasks, we evaluate the model on 8 tasks from GLUE (Wang
et al., 2018). For VL tasks, we experiment on both under-
standing and generation tasks, including RefCOCO, Ref-
COCO+ (Yu et al., 2016), RefCOCOg (Mao et al., 2016),
VQAv2 (Goyal et al., 2017), SNLI-VE (Xie et al., 2019)
and COCO image captioning (Chen et al., 2015). We follow
the evaluation metrics in Wang et al. (2022) for VL and
language tasks and Yang et al. (2022) for vision tasks.

Compared methods. We compare π-tuning with finetun-
ing and other four types of state-of-the-art PETL methods:

• Bitfit (Zaken et al., 2021) optimizes bias terms in all
linear layers at every Transformer layer.

• Adapter tuning (Houlsby et al., 2019) insert adapters
between transformer layers, consists of a down-project
Wdown ∈ Rh×r, followed by a nonlinear activation
function, and an up-project Wup ∈ Rr×h, where h is
the hidden size of the transformer model and r is a
hyperparameter of adapters as bottleneck dimension.
We set r = 128 in all experiments.

• Prompt tuning (Li & Liang, 2021) prepends vectors

5
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Method
Training Time
(GPU hours)

Throughput
(samples/sec)

Deployment
Params (%)

Training
Params (%)

Bitfit 203 19.04 0.04% 0.04%

LoRA 215 17.78 0.99% 0.99%

Prompt Tuning 292 18.45 1.03% 1.03%

Adapter 344 18.60 2.60% 2.60%

π-Adapter 17 18.60 2.60% 7.42%

Table 4. Computational costs of different methods on RefCOCO,
including the parameter proportion for tunable and deployment
parts of the network, as well as wall time during training versus
inference. Training time is measured by A100 GPU hours. The
inference cost is indicated by the throughput, which is the samples
processed per second by a single A100 GPU.

to keys and values of the attention module at every
layer. Specifically, there is a tunable prompt vector
embedding P ∈ RL×l×h, where L is the number of
layers and l is a hyper-parameter to define prefix vector
length, to retrieve each prefix vector at every layer. We
follow the setting of l in Yang et al. (2022).

• LoRA (Hu et al., 2021) decomposes weight matrices
of transformer layers as trainable parameters to ap-
proximate the weight updates. For a linear projection
h = Wx where W ∈ Rd×s, LoRA adds two trainable
matrices B ∈ Rd×r and A ∈ Rr×s, where the rank is
a hyperparameter and r ≪ min(d, s) so that the linear
projection is modified as h = Wx + BAx. We set
r = 16 in all experiments.

We refer π-tuning applied on adapters to π-Adapter, sim-
ilarly for π-Prompt and π-LoRA. We primarily use π-
Adapter for experiments since its superior performance.

3.2. Comparison with PETL Methods
Multi-/uni-modal tasks. Table 1 shows the results on 6
multimodal datasets of π-tuning as well as previous SOTA
results. We can see that (1) π-Tuning improves original
adapters across all tasks consistently; (2) π-Tuning out-
performs all the other parameter-efficient tuning methods
across all tasks, without introducing additional inference
latency, indicating that π-Tuning is stronger in storage-
constrained scenarios; (3) π-Tuning achieves better or com-
parable results towards fully finetuning on 5 out of 6 datasets
for the large-size model, while using significantly fewer
trainable parameters. Although inferior to finetuning for
base size, π-Tuning still offers non-trivial performance gain
for PETL methods, similar to the results in Yang et al.
(2022).

We further show π-Tuning is competitive on uni-modal
tasks, including both vision and language tasks. The out-
come is demonstrated in Table 2 and Table 3. π-Tuning
achieves a consistent performance gain. Specifically, we

Method
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val-u test-u

Prompt Tuning 84.53 85.21 77.36 76.34 81.44 67.68 75.61 76.57

π-Prompt 85.75 88.85 79.67 77.84 83.09 69.61 77.41 78.06

LoRA 81.91 85.89 76.90 72.29 79.22 62.28 72.55 73.26

π-LoRA 85.82 88.97 81.77 78.41 83.95 69.22 77.53 78.38

Table 5. π-Tuning results based on Prompt Tuning and LoRA
for the base size model on referring expression comprehension
datasets, indicating that π-Tuning is agnostic to PETL methods
and can provide a consistent gain.

observe cross-modal transfer benefits in these experiments,
where experts for image captioning can help with vision
tasks and language entailment tasks can be benefited from
experts for visual entailment. We attribute this to the sim-
ilar semantics of tasks, as captioning can be regarded as a
more detailed classification task and some visual entailment
samples may directly rely on language entailment.

We list and discuss the computational costs of different
PETL methods during training versus inference. As demon-
strated in Table 4, our π-Adapter shows the same through-
put and parameters during inference as original adapters.
π-Adapter requires more parameters for training due to the
interpolation of multiple experts from similar tasks, which
is the core insight of our paper. However, the training time
for such an interpolation is quite short as the experts have
been well-trained. We would like to clarify that the per-
formance improvement of π-Adapter does not come from
increasing tunable parameters. As shown in Table 7 of our
paper, the performance decreases when solely scaling up
the tunable parameters without initialization from experts
of similar tasks, indicating the effectiveness of transferring
knowledge from similar tasks’ experts.

Few/zero-shot setting. To have a better understanding
of the benefit of knowledge transferred from similar task
experts, we experiment under two low-data settings, zero-
shot natural language understanding and few-shot image
classification to validate the effectiveness of π-Tuning when
data is scarce. We show the 16-shot image classification re-
sults in Table 2, where π-Tuning brings more improvement
compared to the full-data setting, with an average of 4.55%
accuracy improvement across 8 tasks. For the zero-shot
setting, as we can not derive the target expert, we test the
zeros-shot transfer performance of the target task using the
expert of its nearest neighbor (most similar task), The zero-
shot natural language understanding results are presented
in Table 3, where the average improvement across tasks is
more than that under the full-data setting.
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Figure 3. (a) Accuracy when linearly interpolating between the parameter-efficient tuning checkpoint of RefCOCOg and checkpoints
of other tasks (RefCOCO+ and RefCOCO). The advantage of interpolating is correlated with the FIM similarity between tasks. The
interpolation of similar tasks’ performance maximum is higher than dissimilar tasks and needs a greater interpolation weight. (b) Direct
transfer performance (accuracy at α = 1) also correlates to FIM similarity. (c) The test error surface on RefCOCOg (Mao et al., 2016), as
a function of model weights in a two-dimensional subspace3. It shows that checkpoints of similar tasks lie in the same basin of the surface.
Interpolation of those checkpoints could achieve lower test error on the surface. The visualization follows Garipov et al. (2018), which
derives an orthonormal basis û, v̂ by three checkpoints.

Pretrained foundation models. We also extend π-Tuning
on a uni-modal pretrained foundation model, T5 (Raffel
et al., 2020), to solve natural language understanding tasks.
We demonstrate the results in Table 3, where we find that
RTE is the task that benefits most with an improvement of
9.29% accuracy.

Experts from PETL methods. In Table 5, experiments
on RefCOCO, RefCOCO+, and RefCOCOg datasets with
the base-size model show that π-Tuning is agnostic to PETL
methods, providing significant and consistent performance
gain for LoRA and Prompt Tuning. π-LoRA improves a
large margin of 4.20% on average accuracy across three
datasets towards original LoRA and 1.94% for π-Prompt
towards original Prompt Tuning.

3.3. Task Relationships
Linear mode connectivity. As defined in Frankle et al.
(2020), two parameters w1 and w2 are linear mode connec-
tivity if the error barrier (Garipov et al., 2018; Draxler et al.,
2018) height ≈ 0 along the linear path between them. To
provide our intuition, we first study the performance along
the linear path between the target task expert φt and experts
for other tasks from the task set to see whether they have
linear mode connectivity. We use adapters as parameter-
efficient experts to store task information and RegCOCOg
as the target task. We vary interpolation coefficient α from
0 to 1, with an interval of 0.05, and the combined expert φ̄
is given by (1− α)φt + αφ, φ ∈ Φ, which is a special case
of k = 1 as we defined in Sec. 2.2.

As shown in Fig. 3(a), the model can benefit from interpo-
lation compared to the original target task expert φt when
α = 0 and there is linear mode connectivity between the
target task expert and experts of similar tasks, while for

dissimilar tasks there is large error barrier along the linear
path. Furthermore, these results suggest that (1) experts with
higher similarity need a greater interpolation coefficient, and
(2) direct transfer (α = 1) performance and maximum inter-
polation performance correlate with similarity.

Task similarity measurement. To investigate the correla-
tion between task similarity and interpolation performance,
we consider interpolation performance on the validation and
test split of RefCOCO, RefCOCO+, and RefCOCOg. We
compare the average accuracy across those splits for the
interpolated experts with different similarities. The results
are illustrated in Fig. 3(b), where the interpolation accuracy
increases when experts with higher similarity to the target
task are interpolated. We also visualize the task similarity
of each task pair from our task space, which consists of
both unimodal and multimodal tasks, in Fig. 1. The re-
sults illustrate that task embedding of vision tasks is closer
to vision&language tasks compared to language and the
embedding of image captioning task is similar to almost
all the vision and VL tasks. We assume that is one of the
reasons why image captioning is important in image-text
multimodal pretraining.

Error landscape visualization. We also visualize two
slices of the test error landscape when interpolating experts
in Fig. 3(c), where the error contours are basin-shaped and
none of the individual domain-specific experts is optimal.
The results suggest that interpolation may reach a better
point in the basin of the landscape.

3.4. Cross-Task Transferability
Distribution shift. The boxplot in Fig. 4 summarizes the
relative performance drop of π-Adapter due to test distri-
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Figure 4. Relative performance drop (%) of π-Adapter compared
to domain-specific models on referring expression comprehension
datasets (RefCOCO, RefCOCO+, RefCOCOg). FT represents
finetuning and the green triangles denote the mean.

Method
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val-u test-u

OFA-Base

Adapter 86.34 89.61 80.82 74.60 83.20 69.79 79.74 80.65

π-Adapter 87.12 90.30 82.16 79.46 84.63 71.43 80.84 82.00

OFA-Large

Adapter 90.00 92.88 85.24 83.81 89.08 76.54 85.99 85.96

π-Adapter 90.55 93.12 85.85 84.77 90.31 77.68 86.91 86.88

Table 6. π-Tuning can improve the performance compared to di-
rectly optimization in a multitask setting, achieving task specific
model’s performance across all task splits.

bution shift compared to domain-specific models, which
are optimized directly on the test domain. Specifically,
we conduct experiments on referring expression compre-
hension datasets. As combined with experts trained from
other domains, π-Adapter shows more robust performance
than adapters and fine-tuning trained on the specific domain
when the test distribution is shifted. Even though π-Adapter
is further tuned on another specific domain, it still can be
benefited from the interpolation with experts trained from
other domains, while direct optimization of adapters or fine-
tuning all the parameters may fit on the specific domain,
lacking domain generalization ability.

Multi-task learning. As interpolation with experts of differ-
ent tasks can be regarded as an implicit multitask learning,
we experiment with π-Tuning in a multitask setting, demon-
strated in Table 6 shows. Compared to direct multitask learn-
ing on different tasks, we observe that π-Tuning performs
better in all task splits, even exceeding the task-specific
model’s performance.

Method
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val-u test-u

w/o init. 89.95 92.36 84.79 83.81 89.31 76.87 85.36 85.68

only scale 90.67 92.75 85.55 84.64 89.71 77.03 86.34 86.75

π-Adapter 90.49 92.93 85.91 84.92 90.03 77.91 86.60 86.92

Table 7. Ablation of π-Tuning. “w/o init.” denotes we randomly
initialize auxiliary experts and “only scale” means we only tune
the interpolation weight
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Figure 5. The ablation of the number of experts used in π-Tuning.
The performance first rises to a maximum when the number of
auxiliary experts increases and then gradually falls.

3.5. Ablation Study
The ablation of π-Tuning. The ablation study of the pro-
posed method is shown in Table 7. “w/o init.” denotes we
randomly initialize auxiliary experts, which performs even
worse than the original adapter. “Only scale” means we only
tune the interpolation weight α, achieving better results than
the original adapter while slightly worse than π-Adapter,
which is reasonable as it only updates a subspace of param-
eters in π-Tuning.

The ablation of the number of experts. We experimen-
tally explored the relationship between performance on 3
target tasks and the number of auxiliary experts for each
of them, demonstrated in Fig. 5. We observe that the per-
formance first rises to a maximum when k increases and
then gradually falls, and the best value of k is around 2.
We conjecture that the reason may lie in that as interpo-
lation is conducted in descending order of task similarity,
early interpolation with highly similar tasks can improve
performance while following mixing dissimilar experts has
negative inference on the target task.

4. Scope and Limitations
While this work has so far demonstrated that interpolation of
the experts learned from similar tasks is a useful technique
for improving accuracy and robustness, this section explores
the limitations of the approach which are expected to be
addressed in future studies.
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Task similarity measurement. The task similarities in π-
Tuning are measured by a diagonal approximation of FIM
following the practice in (Achille et al., 2019). While it
works well for multi-task interpolation in our paper, there
can be other solutions without the unmanageable computa-
tional overhead of a full FIM. Recently, Vu et al. (2022);
Zhou et al. (2022b) demonstrate that the parameters of the
expert itself can be regarded as the task embedding, which
can be a substitute solution to be applied to our approach.

Applicability. We verify the effectiveness of π-Tuning on
OFA-Base/Large and T5-Base foundation models due to
the limitation of computational resources. We notice that
parameter-efficient experts work well in the field of AIGC,
like Mou et al. (2023), which combines several adapters
tuned for different conditions to achieve controllable image
synthesis. More evaluations on much larger backbones and
more fields would make the work more practical. And the
number of tasks used for interpolation is manually desig-
nated in the current version. It is promising to determine the
number of tasks adaptively.

5. Related Work
Parameter efficient transfer learning. In recent years,
large-scale models pre-training on huge datasets have shown
great capability in downstream tasks. However, the cost of
directly finetuning the large-scale models is expensive in
memory and storage. To mitigate this problem, researchers
proposed several PETL methods to adapt large-scale pre-
trained models with a few trainable parameters. Houlsby
et al. (2019) proposed inserting adapter layers between trans-
former layers. Hu et al. (2021) proposed injecting trainable
low-rank matrices into transformer layers to approximate
the weight updates. Li & Liang (2021); Lester et al. (2021);
Liu et al. (2021) proposed optimizing the input word em-
beddings. However, these PETL methods tend to be limited
to the target downstream task, ignoring the potential com-
plementarity between different tasks and modalities.

Identifying beneficial task relationships. Poth et al.
(2021); Aghajanyan et al. (2021); Lu et al. (2020) have
shown that pre-finetuning, an additional large-scale mul-
titask learning stage between pre-training and finetuning,
can significantly improve performance on the downstream
tasks. However, multitask learning may appear conflicts
between different tasks, or even have an adverse impact on
target tasks. To identify beneficial task relationships, Bingel
& Søgaard (2017) rely on features derived from learning
curves and Alonso & Plank (2017) proposed using character-
istics of datasets. Zamir et al. (2018) proposed representing
the CV task relationships as an affinity matrix and optimiz-
ing the affinity matrix to get the most training-efficient task
set. Achille et al. (2019); Vu et al. (2020) proposed using
Fisher information matrix to extract task relationships.

Averaging model weights. Ensembling the outputs of mul-
tiple models is an important method for improving the per-
formance of deep learning models (Dietterich, 2000; Laksh-
minarayanan et al., 2017). However, when the size of the
model is huge, ensembling the outputs of multiple models
would be prohibitively expensive. Unlike model ensembles,
averaging the weights of models is a foundational technique
in convex optimization and deep learning without any extra
costs at inference time. Neyshabur et al. (2020) find that
when two models are fine-tuned from the same pre-trained
initialization, the interpolated model would get at least the
accuracy of the endpoints. Wortsman et al. (2022) proposed
to produce a better model by averaging the weights of mod-
els finetuned with different hyperparameter configurations.

6. Conclusion
This paper presents π-Tuning, a new parameter-efficient
transfer learning framework, to exploit universal representa-
tion across modalities by taking benefits from similar tasks.
Given a target task, π-tuning first retrieves several similar
tasks in arbitrary modalities and obtains a more transfer-
able model by the interpolation of cross-modal experts. We
theoretically and experimentally demonstrate the retrieved
tasks tend to locate around the same basin on the error land-
scape. Experiments on diverse unimodal and multimodal
tasks verify the cross-task transferability of the model in
both full-data and low-data scenarios.
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A. Experimentin Setups
A.1. Experimental Setting for VL Tasks
Referring Expression Comprehension We report the standard metric ACC@0.5 on the validation and test sets. Epochs
are set to 100, dropout is set to 0.1, warmup rate is set to 0.06, and label smoothing rate is set to 0.1. For prompt tuning, we
follow the experimental setting used in Yang et al. (2022), where the batch size is set to 128, the learning rate is set to 0.03,
and the prompt length is set to 100. For LoRA, the batch size is set to 256 for the base, and 1024 for the large, the learning
rate is set to 1e-4, and the rank is set to 16. For adapters, the batch size is set to 1024, the learning rate is set to 1e-4, and the
bottleneck dimension is set to 128.

Visual Entailment We report accuracy on both dev and test sets. Dropout is set to 0.1, warmup rate is set to 0.06, and
label smoothing rate is set to 0.1. For prompt tuning, we follow the experimental settings in Yang et al. (2022), where the
batch size is set to 128, the learning rate is set to 0.03, epochs are set to 100 and the prompt length is set to 64. For LoRA,
the batch size is set to 256 for the base, and 512 for the large, epochs are 100, the learning rate is set to 1e-4, and the rank is
set to 16. For adapters, the batch size is set to 512, epochs are set to 10, the learning rate is set to 1e-4, and the bottleneck
dimension is set to 128.

Image Captioning We report BLEU@4, METEOR, CIDEr, and SPICE scores on the Karpathy test split. Dropout is set to
0.1, warmup rate is set to 0.06, and label smoothing rate is set to 0.1. For prompt tuning, we follow the experimental setting
used in Yang et al. (2022), where the batch size is set to 256, the learning rate is set to 0.03, epochs are set to 100 and the
prompt length is set to 64. For LoRA, the batch size is set to 128, epochs are 100, the learning rate is set to 1e-4, and the
rank is set to 16. For adapters, the batch size is set to 512 for base and 128 for large, epochs are set to 10, the learning rate is
set to 1e-4, and the bottleneck dimension is set to 128.

Visual Question Answering We conduct experiments on VQA 2.0 and report the score on the test-dev and test-std set.
Dropout is set to 0.1, warmup rate is set to 0.04, Exponential Moving Average(EMA) with a decay rate is set to 0.9999, and
label smoothing rate is set to 0.1. For prompt tuning, we follow the experimental setting used in Yang et al. (2022), where
the batch size is set to 256, the learning rate is set to 0.03, epochs are set to 100 and the prompt length is set to 10. For
LoRA, the batch size is set to 128, epochs are 100, the learning rate is set to 1e-4, and the rank is set to 16. For adapters, the
batch size is set to 256, epochs are set to 30 for base and 15 for large, and the bottleneck dimension is set to 128. After
finetuning, we use beam search to generate our answer.

After we retrieve auxiliary experts, we apply the same optimization step as the initial experts to train the interpolation of
experts. All of the experiments are conducted in A100 40G and V100 32G.

A.2. Experimental Setting for Vision Tasks
We select 8 common vision tasks from COOP (Zhou et al., 2022a), following their splits. For few-shot image classification
each adapter for 200 epochs, with a batch size of 64 and a learning rate of 1e-4. The ratio for label smoothing is 0.1.
We follow the data augmentation used in Wang et al. (2022), where the same random resize cropping, random flipping,
RandAug, and random erasing transformations are conducted. We use Mixup and CutMix with an overall 0.5 probability to
be performed for each batch and alpha is set to 0.8 and 1.0.

A.3. Experimental Setting for Language Tasks
We select 6 language understanding tasks from GLUE benchmark (Wang et al., 2018) as Wang et al. (2022), including
both single-sentence classification tasks and sentence-pair classification tasks. We reuse the instructions of each task used
in Wang et al. (2022) in our experiments. For the hyper-parameters of adapters, we tune the training epochs among {5,
7, 10}, learning rate among {0.03, 1e-4, 5e-5}, batch size among {32, 64, 128}. We report the best performance on the
development set for each task following Wang et al. (2022).

B. Analysis For Relationship Between FIM and Landscape
Here we will give a detailed analysis of the relationship between FIM and local optimums. We begin this by restating and
adding to the notation used in Sec. 2.1.
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B.1. Notation and preliminaries
Let θ0 be the pre-trained weights and φ0 be the initial extra added parameters. For a model with pre-trained weights θ0, extra
added parameters φ and input vector x, we let Pφ(y|x) denote the model’s output distribution. The two loss functions of
tasks τi (i = 1, 2) can be formulated as L = E

(x,y)∼Pi

[− logPφ(y|x)], where Pi is the corresponding empirical distribution

of task τi. The FIM F i
φ of each task τi can be seen as the negative of the Hessian matrix of loss, which is formulated as

F i
φ = −∇2

φL
i
φ = Ex,y∼Pi

[∇φ logPφ(y|x)∇φ logPφ(y|x)T ]. Let φ1 and φ2 be the corresponding local minimum for τ1
and τ2, optimized from the same initial parameters φ0, respectively.

B.2. Restatement of Assumption
Before we start our proof of Theorem 2.1, we introduce the assumptions mentioned in Section 2.2 formally.

Assumption B.1. The gradient of two loss functions are similar at the initial point φ0, i.e., there is a constant C1 such that
||∇φL1(φ0)−∇φL2(φ0)||2 ≤ C1.

Assumption B.2. The Fisher information matrix in the linear line from φ0 to φ1 for two tasks are similar, i.e., there is a
constant C2 for φ along the line to have ||F 1

φ − F 2
φ||2 ≤ C2.

Assumption B.3. The Fisher information matrix for task τ2 in the interpolation line is similar to which at φ1, i.e., there is a
constant 0 < C3 < 1 for φ along the interpolation line to have the following property

||F 2
φ − F 2

φ1
||1 ≤

1− C3

n0||[F 2
φ1
]−1||2

=
1− C3

n

√
λmin([F 2

φ1
]tF 2

φ1
),

where n0 is the dimension of extra added parameters, λmin means to get the smallest one of eigenvalues.

Assumption B.1 and Assumption B.2 are mild as Assumption B.1 only requires the norm of gradient difference of two
tasks in the initial parameters φ0 can be bounded and B.2 is the formal restatement of our requirement of two similar tasks.
Assumption B.3 requires FIM in the interpolation line varies little for avoiding the Fisher information matrix degenerating
since when C3 > 1 the FIM in the interpolation line can degenerate. It corresponds to the non-singular requirement in
Theorem 2.1. We add this condition for the reason that a quick change of FIM in the interpolation line will lead to difficulty
in comparing FIM.

B.3. Proof of Theorem 2.1
We now begin our proof of Theorem 2.1:

Proof. Since φ1 and φ2 are local minimums for two loss functions, the gradient of loss there will be zero, i.e.

∇φLi(φi) = 0.

Let φt = φ0 + t(φ1 − φ0) and φ̂t = φ1 + t(φ2 − φ1) for 0 ≤ t ≤ 1. c = ||[F 2
φ1
]−1||2.

By the Newton-Leibniz formula, we have

0 = ∇φL1(φ1)−∇φL2(φ2)

= ∇φL1(φ0)−
∫ 1

0

F 1
φt
(φ1 − φ0)dt−∇φL2(φ0) +

∫ 1

0

F 2
φt
(φ1 − φ0)dt+

∫ 1

0

F 2
φ̂t
(φ2 − φ1)dt

= ∇φL1(φ0)−∇φL2(φ0)−
∫ 1

0

[F 1
φt
− F 2

φt
](φ1 − φ0)dt+

∫ 1

0

F 2
φ̂t
(φ2 − φ1)dt.

Moving the last term to the left, we will have the following statement[∫ 1

0

F 2
φ̂t
dt

]
(φ2 − φ1)

= ∇φL2(φ0)−∇φL1(φ0) +

[∫ 1

0

[F 1
φt
− F 2

φt
]dt

]
(φ1 − φ0).
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The formula on the left is the integration of FIM, in the interpolation line, multiplying the difference between two local
minimums. Thus we will check the difference between the integration and the FIM at φ1.

∣∣∣∣∣∣∣∣∫ 1

0

F 2
φ̂t
dt− F 2

φ1

∣∣∣∣∣∣∣∣
1

=

∣∣∣∣∣∣∣∣∫ 1

0

F 2
φ̂t
− F 2

φ1
dt

∣∣∣∣∣∣∣∣
1

≤
∫ 1

0

∣∣∣∣F 2
φ̂t
− F 2

φ1

∣∣∣∣
1
dt ≤

∫ 1

0

1− C3

n0||[F 2
φ1
]−1||2

dt =
1− C3

n0c
.

The last inequality rises from Assumption B.3. Let H =
∫ 1

0
F 2
φ̂t
dt , H0 = F 2

φ1
. Then the statement above can be

reformulated as
||H −H0||1 ≤

1− C3

n0||[F 2
φ1
]−1||2

=
1− C3

n0c
.

Since H0 = F 2
φ1

is symmetric, H0 can be diagonalized orthogonally. Thus we can assume H0 = PΛP−1, where Λ is
diagonal and P is orthogonal. We have∣∣∣∣P−1HP − Λ

∣∣∣∣
1
=

∣∣∣∣P−1(H −H0)P
∣∣∣∣
1
≤

∣∣∣∣P−1
∣∣∣∣
1
· ||P ||1 · ||H −H0||1 ;

Notice that for any square matrix M of size n0, we have ||M ||1 ≤
√
n0||M ||2. We immediately obtain∣∣∣∣P−1

∣∣∣∣
1
· ||P ||1 · ||H −H0||1 ≤

√
n0

∣∣∣∣P−1
∣∣∣∣
2
·
√
n0 ||P ||2 · ||H −H0||1

= n0 ||H −H0||1 ≤
1− C3

||H−1
0 ||2

=
1− C3

||Λ−1||2
.

The first equality rises from the properties of orthogonality of P and P−1. According to Gershgorin’s circle theorem,
the eigenvalues of P−1HP can be covered by n0 circles with centers of the diagonal elements of Λ and radius of all∣∣∣∣P−1HP − Λ

∣∣∣∣
1
. Since the diagonal elements of Λ are of norms at least 1

||Λ−1||2 and the radius is less than 1−C3

||Λ−1||2 , the

eigenvalues of P−1HP are of norms at least 1
||Λ−1||2 −

1−C3

||Λ−1||2 = C3

||Λ−1||2 . Therefore we have

||H−1||2 = ||(P−1HP )−1||2 ≤
||Λ−1||2

C3
=
||H−1

0 ||2
C3

=
c

C3
.

Since we already have

H(φ2 − φ1) = ∇φL2(φ0)−∇φL1(φ0) +

[∫ 1

0

[F 1
φt
− F 2

φt
]dt

]
(φ1 − φ0),

left multiplying the matrix H−1 on both sides we will get the following statement

φ2 − φ1 = H−1

[
∇φL2(φ0)−∇φL1(φ0) +

[∫ 1

0

[F 1
φt
− F 2

φt
]dt

]
(φ1 − φ0)

]
.

Thus the distance between two local minimums can be further bounded as

||φ2 − φ1||2 =

∣∣∣∣∣∣∣∣H−1

[
∇φL1(φ0)−∇φL2(φ0) +

[∫ 1

0

[F 1
φt
− F 2

φt
]dt

]
(φ1 − φ0)

]∣∣∣∣∣∣∣∣
2

≤ ||H
−1
0 ||2
C3

[
||∇φL1(φ0)−∇φL2(φ0)||2 +

∣∣∣∣∣∣∣∣[∫ 1

0

[F 1
φt
− F 2

φt
]dt

]
(φ1 − φ0)

∣∣∣∣∣∣∣∣
2

]
≤ ||H

−1
0 ||2
C3

[
||∇φL1(φ0)−∇φL2(φ0)||2 +

[∫ 1

0

||δFφt
||2 dt

]
· ||φ1 − φ0||2

]
≤ c

C3
[C1 + C2R0], (6)

where δF means F 1 − F 2. The last inequality rises from Assumption B.1 and B.2. The last term is a constant, which
finishes the proof.

According to (6), we see that the distance between two local minimums can be bounded by the difference of the gradient
∇φL(φ0) of two loss functions at φ0, and the difference between the two Fisher information matrices in the interpolation
line.
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