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Abstract
With the arrival of the Noisy Intermediate-Scale
Quantum (NISQ) era and the fast development
of machine learning, variational quantum algo-
rithms (VQA) including Variational Quantum
Eigensolver (VQE) and quantum neural network
(QNN) have received increasing attention with
wide potential applications in foreseeable near
future. We study the problem of quantum archi-
tecture search (QAS) for VQA to automatically
design parameterized quantum circuits (PQC). We
devise a differentiable searching algorithm based
on Gumbel-Softmax in contrast to peer meth-
ods that often require numerous circuit sampling
and evaluation. Two versions of our algorithm
are provided, namely macro search and micro
search, where macro search directly searches for
the whole circuit like other literature while the
innovative micro search is able to infer the sub-
circuit structure from a small-scale and then trans-
fer that to a large-scale problem. We conduct
intensive experiments on unweighted Max-Cut,
ground state energy estimation, and image clas-
sification. The superior performance shows the
efficiency and capability of macro search, which
requires little prior knowledge. Moreover, the ex-
periments on micro search show the potential of
our algorithm for large-scale QAS problems.

1. Introduction
Over the last decade, quantum mechanics as well as quan-
tum computing has received increasing attention and nu-
merous studies have been conducted to seek potential
quantum supremacy. Quantum algorithms have demon-
strated their supremacy over classical ones in certain
fields, e.g. Shor (Shor, 1994) for integer factorization,
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QAOA (Farhi et al., 2014) for combinatorial optimization,
UCCSD (Romero et al., 2017) for ground state energy esti-
mation, etc. Recently, automatically designing a parameter-
ized quantum circuits (PQC) for VQAs has drawn increasing
attention (Grimsley et al., 2019; Ostaszewski et al., 2021;
Zhang et al., 2022; Du et al., 2022; Wang et al., 2022a)
which greatly reduces the labour of human experts and finds
better PQCs for certain VQA problems.

The problem of QAS for VQA in this paper can be formu-
lated as follows. Given a candidate quantum gate set G,
we find the best composition in the form of PQC and its
corresponding unitary Û(A, θ), which minimizes the loss
of the original VQA problem. Here A is the optimal cir-
cuit, θ is the best rotation parameters. U denotes the unitary
transformation for the circuit and can be calculated by Eq. 1.

One could further consider two VQA-related settings of
QAS by the criterion that if there exist input data samples
or not: i) search for VQE (without input data), namely
Variational Quantum Eigensolver: it evolves the expectation
value of the quantum system w.r.t. an observable, often
a Hamiltonian, with a classical optimizer. ii) search for
QNN (with input data and ground truth), namely quan-
tum neural network: given a dataset with samples x and the
corresponding labels y in a way of supervised learning. This
is akin to Neural Architecture Search (NAS) (Elsken et al.,
2019) or more broadly speaking, AutoML on classic com-
puters. In this case, the goal in search directly refers to the
loss e.g. cross-entropy for a supervised quantum classifier
(or an unsupervised one when labels are unavailable).

Neural Architecture Search (NAS), which automatically
generates good neural network architectures (with parame-
ters for training) without human labor, has achieved wide
success in real-world problems, especially in vision e.g.
image classification (Liu et al., 2018) and object detec-
tion (Wang et al., 2022c). QAS methods have long been
inspired by NAS techniques and imitated their classical
counterparts, e.g. the adoption of evolutionary algorithms
(EA) (Las Heras et al., 2016) and reinforcement learning
(RL) (Ostaszewski et al., 2021). Notably, the differentiable
architecture search paradigm (DARTS) has not been adopted
to QAS although it is dominantly popular in NAS litera-
ture (Liu et al., 2018). Instead of searching over a discrete
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set of candidate architectures, DARTS relaxes the search
domain to a continuous one to optimize the architecture
(as well as trainable parameters) by gradient descent. How-
ever, QAS requires an extra physical constraint that the
normalized weighted summation of the candidate gate uni-
tary matrices must be unitary, while the Softmax scheme for
updating architecture weights in DARTS literature cannot
guarantee this property. One pertinent work that achieves
differentiable search with both architecture weights A and
rotation parameters θ for QAS refers to (Zhang et al., 2022),
whereby Monte Carlo sampling is used to estimate the gra-
dient by sampling multiple circuits at each epoch to approxi-
mate the continuous distribution of the architecture weights,
which we believe is less efficient.

To achieve higher efficiency, in this paper we resort to the
Gumbel-Softmax technique (Gumbel, 1954; Bengio et al.,
2013; Jang et al., 2017) for circuit sampling to fill the above
gap in QAS literature. This trick has been well adopted in
machine learning literature including its use in inference-
stage neural network speedup (Luo, 2017; Herrmann et al.,
2020) and architecture design (Dong & Yang, 2019), etc.
Specifically, we first sample a circuit based on the architec-
ture weights and the Gumbel distribution. Then we update
the rotation parameters in the circuit. We iteratively update
the architecture weights and the rotation parameters until
convergence. With the help of Gumbel-Softmax, we can use
argmax to sample one candidate gate at a time during the
forward propagation and update the architecture weights by
Softmax during the backward propagation. This can guar-
antee the unitary property of the generated quantum circuit
and greatly reduce the search time.

Perhaps more interestingly, for scalability, we propose a
new paradigm that performs sub-circuit search and then
stacks them into a complete quantum circuit. This is in
contrast to many existing QAS literature (Du et al., 2022;
Ostaszewski et al., 2021) on directly searching on the whole
quantum circuit which may suffer from scalability issue as
the search space increases exponentially when the circuit
becomes larger. We term these two search schemes by micro
search and macro search as shown in Fig. 1.

In line with the QAS literature (Zhang et al., 2022), our ex-
periments are conducted under a full amplitude simulation
written in Python, on three representative VQA tasks for
macro search. The first two i.e. Unweighted Max-Cut and
ground state energy estimation of molecules are well-studied
VQE problems. Our method nails the unweighted Max-Cut
problem on graphs with 10 nodes and achieves admissible re-
sults (within the chemical accuracy) for ground state energy
estimation, with much fewer gates and shallower circuits
compared to UCCSD (Romero et al., 2017). We also test
our algorithm on image classification on MNIST (LeCun
et al., 1998) in both noiseless and noisy environments. Our
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Figure 1. The pipeline of the proposed QuantumDARTS. First,
we sample quantum gates from the candidate set with Gumbel-
Softmax to achieve architecture search differentiability as well
as the unitary property. The sampling probability of each gate is
associated with αij . We denote the sampling coefficients of all
the candidate gates by A = {αij}, which is also the architecture
weights. Then, for macro search, we use the sampling results to
construct the circuit directly. For micro search, we just sample a
sub-circuit and then constitute the circuit with sub-circuits accord-
ing to some predefined rules. Finally, we calculate the loss based
on the output state |ψ〉 , and update the architecture A’s weights
and rotation parameters θ with gradient descent.

method outperforms classical CNN and QCNN (Hur et al.,
2022). The highlights of this paper are:

1) We present an efficient QAS algorithm QuantumDARTS
for VQA problems. By adopting Gumbel-Softmax for cir-
cuit sampling, we can efficiently update the architecture
weight by gradient descent.

2) We propose two separate versions of our algorithm,
namely macro search and micro search. Macro search aims
to directly search for the whole circuit and micro search
searches for quantum sub-circuits efficiently which are fur-
ther stacked to form the whole circuit.

3) Experimental results on two VQE tasks and one QNN
task verify the superior performance and cost-efficiency
of our macro search compared with state-of-the-art QAS
methods (Du et al., 2022; Zhang et al., 2022) and manual
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designs. Moreover, the experiments on micro search show
the potential for large-scale QAS problems.

2. Related Work
2.1. Quantum Architecture Search Algorithms

Evolutionary Algorithms. EA, especially genetic algo-
rithms (GA), has been used to automatically design quantum
circuits since (Williams & Gray, 1999). Numerous liter-
ature (Massey et al., 2004; Bang & Yoo, 2014; Las Heras
et al., 2016; Lamata et al., 2018; Potoček et al., 2018) have
demonstrated that GA is capable of evolving simple quan-
tum circuits, such as quantum error correction code or quan-
tum adder. GA requires a genetic representation of the
solution domain and a fitness function to evaluate the so-
lutions. The performance is severely affected by the gene
length and the size of the candidate gate set. Moreover, it
can not handle parameterized rotation gates, which hinders
GA from being widely used in evolving VQA ansätze.

Reinforcement Learning Algorithms. The action in QAS
is to select a gate from the candidate gate set and the envi-
ronment is the whole circuit. The reward is used to train the
agent to pick the right gates. One of the signature work in
this track is (Ostaszewski et al., 2021). The authors focus
on the VQE problems and test their algorithm on the ground
state energy estimation problem on the 4-qubit and 6-qubit
Hamiltonians of LiH. The circuit depth and number of gates
used by the algorithm are much less than UCCSD (Romero
et al., 2017) and the results are within the chemical accuracy.
The works (Ye & Chen, 2021; Kuo et al., 2021) also use RL
to search for quantum circuits. However, these two works
only tested their algorithms on 2-qubit Bell state and 3-qubit
GHZ state with circuit noise.

Sampling Based Learning Algorithm. (Grimsley et al.,
2019; Tang et al., 2021) introduce adaptive VQE ansatz
search for ground state energy estimation. (Du et al., 2022)
searches for a quantum ansatz, which applies single-qubit
gate layers and two-qubit gate layers alternatively. It sam-
ples a circuit from the candidate set and then updates the
rotation parameters. (Zhang et al., 2022) uses Monte Carlo
sampling to sample circuits from the candidate set and also
searches for circuits based on task-wise predefined circuit
structures. The algorithm is tested on QFT and Max-Cut
problems. However, sampling from the candidate set is
indifferentiable (except for Monte Carlo sampling) and inef-
ficient. It also requires predefined circuit structures that limit
the applicability to an unseen quantum ansatz. In this paper,
we borrow the idea of Gumbel-Softmax to achieve quantum
meaningful differentiable search of architectures without
specific search space prior. We summarize the properties of
some QAS methods in Appendix G.1.

2.2. (Differentiable) Neural Architecture Search

In this section, we give a brief review of the classical NAS
approaches in vision, especially those using differentiable
sampling (Liu et al., 2018; Dong & Yang, 2019). Differ-
entiable neural architecture search (DARTS) is proposed
by (Liu et al., 2018), which has been further refined with
many critical improvements and generalizations. The key
idea of DARTS is to relax the discrete search space of the
neural architectures to a continuous domain and then end-
to-end optimize the target differentiably. Other dominant
approaches, such as RL (Zoph et al., 2018), EA (Real et al.,
2019), and Bayesian Optimization (Kandasamy et al., 2018)
are often less efficient since they treat NAS as a black-box
optimization over a discrete domain, which leads to a huge
number of architecture evolution. Beyond DARTS, there
are recent works in the between. In (Wang et al., 2022b), the
zero-order architecture search (ZARTS) is developed which
achieves efficient zero-order optimization for NAS. For
DARTS, when updating the architecture weights, it specifi-
cally uses Softmax for both forward and backward propaga-
tion. There are improvements as variants of DARTS. The
GDAS (Dong & Yang, 2019) introduces Gumbel-Softmax
technique to accelerate the searching process, which re-
sults in argmax during the forward and Softmax during the
backward propagation. To stabilize the searching process,
a skip connection suppression scheme is devised in (Chu
et al., 2021). To reduce the memory cost for maintaining
the search space in DARTS, the operation merge scheme is
developed in (Wang et al., 2020).

3. Method
3.1. Approach Overview and Key Idea

As shown in Fig. 1, we recall the problem formulation of
QAS in the beginning of Sec. 1: it seeks an optimal quantum
circuit with its unitary Û(A, θ) from a candidate gate set G.
For VQE when only the observable Hamiltonian is given,
the goal is to directly minimize the expectation. For the case
of QNN when only training data samples are given, it is
more akin to the NAS case by minimizing the loss L based
on the output quantum state and the ground truth of the
training samples. Note that in our implementation, we also
consider the multi-qubit gates in G, e.g. Toffoli, CNOT or
CZ, which require a target qubit and multiple control qubits.
Taking two-qubit gate CZ as an example, G = {CZ} is
an abbreviation of G = {CZ1, · · · ,CZn−1}, which means
each two-qubit gate will add n− 1 candidates to G. Without
loss of generality, we define the qubit which picks CZ from
G as the target qubit and the control qubit is determined by
the subscript number, which maps to all the qubits except
for the target iteratively.

For an n-qubit m-layer quantum circuit, we denote the se-
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Algorithm 1 Macro quantum architecture search

Require: Randomly initialized P , Q and θ, training epoch
num epoch, iteration number num iter
Initialize Û← I2n ;
for epoch← 1 to num epoch do

for layer ← 1 to m do
for qubit← 1 to n do

Obtain Ûqubit,layer based on Eq. 3;
Û := Ûqubit,layer × Û;

end for
end for
for iter ← 1 to num iter do

Calculate loss Lθ;
Update θ by gradient descent: θ := θ −∇θLθ;
Update Û with the updated θ;

end for
Calculate loss LA;
Update P by gradient descent: P := P −∇PLA;
Update Q by gradient descent: Q := Q−∇QLA;

end for
Fix the final circuit from A and optimize parameters θ.

lection of candidate gates as a matrix M ∈ Gn×m. Define
Uij = σ(Mij) which maps a quantum gate on the i-th qubit
and the j-th layer to a 2n× 2n unitary with all the irrelevant
qubits as identity. The unitary matrix of this circuit is

Û =

m∏
j=1

n∏
i=1

Ûij =

m∏
j=1

n∏
i=1

σ(Mij) (1)

For the position on the i-th qubit and the j-th layer, Mij is
sampled from a discrete probability distribution Tij , which
is deduced from the probability mass function:

T (k)
ij = Pr

(
Mij = G(k)

)
=

exp(α
(k)
ij )∑K

k′=1 exp(α
(k′)
ij )

, (2)

where α(k)
ij represents the k-th element of the parameter

αij ∈ RK(K = |G|), and G(k) denotes the k-th gate in
G. Notice that the back-propagation for gradients of αij
cannot apply to sampling from the discrete distribution Tij .
Therefore, we introduce the Gumbel-Softmax to allow back-
propagation (Dong & Yang, 2019):

Ûij = σ(Mij) =

K∑
k=1

h
(k)
ij σ(G(k))

s.t. hij = one-hot(arg max
k

(α
(k)
ij +Gk))

, (3)

where Gk is a set of random variables sampled from the
Gumbel distribution G = − log(− log(X)) with X ∼
U(0, 1) (Chang et al., 2019). However, this sampled hij

cannot be directly used in the neural network since arg max
is not differentiable. Gumbel-Softmax treats the problem by
sampling hij as Eq. 3 in the forward process and substitutes
arg max with Softmax to enable gradient back-propagation
in the backward process, during which the Gumbel-Softmax
estimation is (Dong & Yang, 2019):

h̃
(k)
ij =

exp
((

log(T (k)
ij ) +Gk

)
/τ
)

∑K
k′=1 exp

((
log(T (k′)

ij ) +Gk′
)
/τ
) , (4)

where τ is the temperature. When τ goes to zero, h̃(k)ij will

tend to h(k)ij . When τ increases, the approximated distri-
bution will gradually converge to a uniform distribution.
Introducing Gumbel-Softmax into the searching network
can fill the gaps between discrete sampling and gradient
back-propagation, which has been an infamous obstacle
blocking quantum arbitrary unitary approximation. Only
one gate is chosen at each step, ensuring the physical mean-
ing of the sampled circuit.

To further enlarge the parameter space and stabilize the
searching process, we decompose the K dimensional vec-
tor αij into two matrix denoted as Pij × Qij , where
Pij ∈ R1×K′ and Qij ∈ RK′×K (K ′ is a predefined hy-
perparameter). The number of parameters for position ij
increases from K to K ′ × (K + 1), which leads to better
performance of our model (detailed ablation study is shown
in Appendix H). We denote P = {Pij} and Q = {Qij}.

We further propose two different versions of our algorithm.

3.2. QuantumDARTS: Macro Search

Macro search as most peer QAS methods do, aims to directly
discover the entire quantum circuit from the candidate gate
set. With the expansion of the circuit size, macro search will
be much more difficult since the search space will increase
exponentially. Unlike previous QAS works (Zhang et al.,
2022; Du et al., 2022) which usually have predefined circuit
structures, we have very little specific prior knowledge for
the macro search except for the basic and general search
space1: for an n-qubit m-layer circuit with K candidate
gates, and the search space for our macro search is Kn×m.

The objective is to find a certain quantum circuit that min-
imizes the loss L which varies according to the setting of
VQE and QNN as discussed in Sec. 3.1. By utilizing Eq. 4,
we can make sure the sampling procedure is differentiable
and we can learn a distribution of the candidate gate set G.
The circuit architecture weights P , Q and rotation param-
eters θ are updated iteratively as given in Alg. 1. For each

1In contrast to the NAS literature where search space (SS) have
been well developed, the SS is more subtle and not well defined in
QAS literature, and we here adopt a general SS. This also makes
the search technique comparison independent from SS.
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Figure 2. Sub-circuits in QAOA (Farhi et al., 2014). Sub-
circuit1(2) is matched with edge e13(e12). Hence, the gates in
it only function on qubit 1 and 3(1 and 2). Other sub-circuits share
the same structure but act on different pairs of qubits.

epoch, we sample a circuit based on hij and calculate the
overall unitary Û of this circuit. We obtain the loss Lθ and
LA from the loss customized to each task. The rotation pa-
rameters θ are updated for iter num iterations to guarantee
that we minimize the loss for this certain circuit architecture
and then we update the architecture parameters P and Q.
The complexity of our algorithm is analyzed in Appendix B.

3.3. QuantumDARTS: Micro Search

Micro search aims to discover quantum sub-circuits and
designs the overall quantum circuit by stacking many copies
of the discovered sub-circuits. Introducing micro search
is very important for searching for large-scale quantum
circuits. The essence of micro search is to infer the structure
of sub-circuits in a small-scale problem, and then share
the architecture weights for the sub-circuits and apply it
multiple times to a large-scale problem. The QAOA circuit
is a typical example for micro search. As shown in Fig. 2,
each edge eij which connects node vi and vj maps to a sub-
circuit on the i-th qubit and the j-th qubit. The sub-circuit
structure is an RZZ gate (CNOT-Rz(θ)-CNOT), which is
only a 2-qubit 3-layer circuit. Searching for this sub-circuit
and then applying the sub-circuit multiple times based on
the graph structure is much easier than directly searching
for the whole circuit.

Given an n×m circuit with the sub-circuit of size n′ ×m′
(n′ < n, m′ < m). The search space for micro search is
reduced to kn

′×m′(k < K). We have a predefined rule that
indicates where to apply the sub-circuits. During the training
process, we have only one group of architecture weights
and we can have multiple groups of rotation parameters for
different sub-circuits.

4. Macro Search Experiments
Our proposed model is tested in three representative VQA
tasks in recent literature, i.e. ground state energy estima-
tion, unweighted Max-Cut, and image classification. Be-
sides manual designs, we also compare our model with
DQAS (Zhang et al., 2022), QCAS (Du et al., 2022), and

random sampling (RS) in the first and third task. RS is based
on our method with the architecture randomly sampled ini-
tially and then fixed.

Experiments are performed on a commodity workstation
with 4 CPUs with 224 cores Intel(R) Xeon(R) Platinum
8276 CPU @ 2.20GHz, and a GPU (NVIDIA A100 PCIe).
The source code is written using PyTorch v1.12.1. The
candidate set G is set as {RzRyRz, I, CNOT} in all the exper-
iments for its strong expressivity (see proof in Appendix C).
We use the Adam optimizer and a cosine annealing sched-
ule (Loshchilov & Hutter, 2016) to train our model.

4.1. Task I: Ground State Energy Estimation (VQE)

4.1.1. BACKGROUND

In quantum chemistry, the ground state of a molecule is its
stationary state with the lowest allowed energy, i.e. ground
state energy E0, which can be estimated given the types
and relative coordinates of its atoms. This energy is closely
related to the molecular HamiltonianHm, which is an oper-
ator embodying the energy of the electrons and nuclei in a
molecule. Given the state vector |ψ〉, we have:

E0 ≤
〈ψ|Hm |ψ〉
〈ψ|ψ〉

, (5)

where the equality holds if and only if |ψ〉 is the ground
state. In fact, the ground state energy is the smallest eigen-
value of the molecular Hamiltonian and the corresponding
eigenvector is the ground state (Richard & David, 1993).
With the Hartree-Fock method (Slater, 1951), we can ap-
proximate the molecular Hamiltonian according to the types
and relative coordinates of atoms in a molecule.

To accelerate the estimating process and also improve accu-
racy, manually-designed VQE ansätze have been proposed
in the literature, e.g. the hardware-efficient ansatz (Kandala
et al., 2017) and the UCCSD ansatz (Hoffmann & Simons,
1988; Bartlett et al., 1989). The former fixes its architec-
ture as sequential rotation gates and two-qubit entangling
gates, while the latter designs a specialized ansatz for each
molecule based on the unitary coupled cluster (UCC) theory.
Specifically, UCCSD utilizes Trotter-Suzuki decomposition
to generate the circuit, which is extremely large and could be
practically intractable. Here we aim to obtain an estimated
value of E0 within the chemical accuracy yet at the cost of
fewer gates. The chemical accuracy, approximately 0.0016
Hartree (Ha), is essential for realistic chemical predictions.

4.1.2. EXPERIMENT SETTING

We use the output of the quantum circuit as the state vector
|ψ〉. By convention, the input state of quantum circuits
is set to |ψ0〉 = |0〉⊗n, where n is the number of qubits.
We denote the matrix of the quantum circuit as Um(A, θ).
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Figure 3. Learning curves of different molecules. Energy error
means the gap between our estimated energy and the accurate
ground state energy. We only depict a part of the training process,
in which all learning curves reach relatively low values. The purple
dashed line indicates the chemical accuracy.

Then, we have |ψ〉 = Um(A, θ) |ψ0〉. Since every gate in
the quantum circuit can be represented by a unitary matrix,
Um(A, θ) is also a unitary matrix, indicating that 〈ψ|ψ〉 =
1. Hence, we rewrite Eq. 5 as:

E0 ≤ 〈ψ0|U†m(A, θ)HmUm(A, θ) |ψ0〉 , (6)

We formulate our loss function L(A, θ) as:

L(A, θ) = 〈ψ0|U†m(A, θ)HmUm(A, θ) |ψ0〉 . (7)

Theoretically, we can approximate the ground state energy
E0 closely enough by minimizing L(A, θ).

Since the memory cost rises exponentially with the number
of qubits, we only compute the ground state energy of three
small molecules, i.e. hydrogen (H2), lithium hydride (LiH)
and water (H2O). Given the types and relative coordinates
of every atom in a molecule, we can derive its Hamiltonian
easily with the Python package OpenFermion (McClean
et al., 2020). The Hamiltonians of these three molecules
require 4, 12 and 14 qubits, respectively. Following the
protocol in peer literataure (Ostaszewski et al., 2021) to
make the experiments within an affordable GPU memory
cost, we reduce the scales of the Hamiltonians for H2O from
14 to 8 qubits, and LiH from 12 to 6 and 4 qubits, at a trivial
cost of accuracy. We denote these molecules as H2, LiH-4,
LiH-6 and H2O-8. The relative 3D coordinates of these
molecules are provided in Appendix D.1. To balance the
accuracy and circuit complexity, we study the relationship
between accuracy and the number of layers in Appendix D.2.

4.1.3. RESULTS AND DISCUSSION

As shown in Fig. 3, the estimated energy of all four
molecules reaches a low value. The gap between the esti-
mated energy and the true ground state energy is far enough

Figure 4. Comparison between the complexity of our model and
the UCCSD ansatz. The depth and number of gates are measured
through Qiskit. The number of parameters here equals the number
of rotation gates in a circuit. The vertical axis is logarithmic.

Table 1. Comparison of energy errors in Hartree among different
models. Energy errors within chemical accuracy are underlined.

MODEL H2 LiH-4 LiH-6 H2O-8

UCCSD 5.5× 10−11 4.0× 10−5 4.0× 10−5 4.0× 10−6

OURS 4.3× 10−6 1.7× 10−4 2.9× 10−4 3.1× 10−4

QCAS 2.2× 10−2 8.6× 10−2 7.3× 10−2 7.0× 10−1

DQAS 3.1× 10−4 5.3× 10−4 1.5× 10−3 5.2× 10−1

RS 1.9× 10−2 1.3× 10−2 6.2× 10−3 4.0× 10−1

within chemical accuracy. Tbl. 1 shows the performance of
different methods on ground state energy estimation. Our
method surpasses peer QAS methods (DQAS (Zhang et al.,
2022) and QCAS (Du et al., 2022)) in both accuracy and
efficiency. Performance of some other QAS methods is
discussed in Appendix G.2. Though UCCSD outperforms
our model, the energy errors of our model are already far
lower than the chemical accuracy 1.6×10−3 Ha, which is
sufficient for realistic chemical predictions. Note that the
reported energy errors may be a little different from results
in Fig. 3, because the results in Fig. 3 may not be the lowest
value in the whole training process.

We also compare the complexity of our model with the
UCCSD ansatz (Romero et al., 2017) in Fig. 4. The UCCSD
ansatz is constructed via the Python package Qiskit (Alek-
sandrowicz et al., 2019). Although the UCCSD ansatz can
approach the ground state energy more closely, it demands
a substantial number of gates. Especially given a large
number of qubits, e.g. H2O-8, the number of gates and
the circuit depth of UCCSD are almost an order of mag-
nitude larger than those of our model. On a quantum de-
vice, a deeper circuit will be more prone and vulnerable
to circuit noise (Cerezo et al., 2021) and might lead to the
phenomenon called quantum decoherence (Zeh, 1970). Our
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Table 2. Statistics of our generated graphs by the Erdős–Rényi
model with 10 vertices for Max-Cut. Pe is the probability of edge
creation. |E| represents the number of edges. D, Dmin and Dmax

denote the mean, minimum and maximum degree, respectively.

Pe |E| D Dmin Dmax

0.25 12.6± 3.0 2.5± 1.3 0.6± 0.5 4.6± 1.4
0.50 22.1± 3.8 4.4± 1.6 2.5± 1.0 6.6± 0.8
0.75 33.5± 3.1 6.7± 1.4 5.0± 0.9 8.4± 0.5

method is capable of solving ground state energy estimation
with more physically realizable quantum circuits.

4.2. Task II: Unweighted Max-Cut (VQE)

4.2.1. BACKGROUND

The unweighted Max-Cut problem is a classical combi-
natorial optimization problem. Given the topology of an
unweighted graph, we partition all the vertices into two com-
plementary sets so that the number of edges between these
two sets is maximized. We can formulate this problem as:

max
∑

0<i<j≤n

wi,j
1− xixj

2

s.t. xk∈ {−1, 1}, 1 ≤ k ≤ n
wi,j= 1eij∈E , 1 ≤ i < j ≤ n ,

(8)

where E is the edge set and n is the number of nodes in
the graph. The statement eij ∈ E is equivalent to an edge
linking node vi with node vj . This problem is proved to
be NP-hard (Karp, 1972), which means that no polynomial-
time algorithms for it are known. To leverage the quantum
supremacy, quantum annealing is used to seek potential
polynomial-time algorithms for the Max-Cut problem. A
typical example is the quantum approximation optimization
algorithm (QAOA) (Farhi et al., 2014).

Now we reformulate this problem in a quantum computing
genre. Each graph in Max-Cut is matched with a Hamilto-
nianHc and each qubit represents a node in the graph. The
Hamiltonian can be calculated as:

Hc =
∑
eij∈E

1

2

(
In − Z(i)

n Z(j)
n

)
, (9)

where In is an n-qubit identity matrix, and Z(i)
n indicates a

Pauli-Z gate operating on the i-th qubit. The largest eigen-
value ofHc amounts to the maximal cut value.

4.2.2. EXPERIMENT SETTING

Akin to ground state energy estimation, the loss function
L(A, θ) in Max-Cut is defined as:

L(A, θ) = −〈ψh|U†c(A, θ)HcUc(A, θ) |ψh〉 , (10)

where Uc(A, θ) is the matrix of our circuit, and the minus
sign ensures that this is a minimization problem. Following
QAOA, we set the input state |ψh〉 to |+〉⊗n, obtained by a
layer of Hadamard gates H:

|ψh〉 = |+〉⊗n = H⊗n |ψ0〉 .

We will further explain how to derive the predicted partition
from the output of our circuit in Appendix E.

We generate random graphs according to the Erdős–Rényi
model (Erdős et al., 1960). We generate graphs with 10 ver-
tices and vary the density of graphs by setting the probability
of edge creation Pe as 0.25, 0.50 and 0.75, respectively. For
each density, we sample 10 random graphs. Some statistics
on the generated graphs are listed in Tbl. 2.

4.2.3. RESULTS AND DISCUSSION

In the experiments, we fix the number of layers as 15 and
repeat each experiments three times. Our model succeeds in
finding the maximal cut values of all the generated graphs.
We demonstrate an optimal solution found by our model
for each Pe in Fig. 5. The performance of our model is
consistent under different density of graphs. We refer to
Appendix I for generated circuits of these three graphs. Be-
sides, a brief comparison between other QAS method and
ours is offered in Appendix G.3.

4.3. Task III: Image Classification (QNN)

4.3.1. BACKGROUND

For image classification, given a set of images X and corre-
sponding labels Y , the goal is to find a mapping f so that
the prediction Ŷ = f(X) is as close to Y as possible. For
classical models, Convolutional neural networks (CNNs)
like ResNet (He et al., 2016) are widely used. Attention
mechanism (Vaswani et al., 2017) has also been adapted
to image classification as proposed in Vision Transformer
(ViT) (Dosovitskiy et al., 2020). Correspondingly, (Cong
et al., 2019) proposes quantum convolutional neural net-
works (QCNNs), and (Hur et al., 2022) further evaluates it
on the MNIST dataset. Following the setting in (Hur et al.,
2022), we compare the performance of our model with both
CNN and QCNN. MNIST contains hand-written digits from
0 to 9. Each sample is an image of 28× 28 pixels.

4.3.2. EXPERIMENT SETTING

Since we focus on binary classification, we screen out class
0 and class 1 from MNIST to form a new dataset. The
training set and test set contain 12,665 and 2,115 sam-
ples, respectively. Following the pre-processing protocol
in (Hur et al., 2022), we use Principal Component Anal-
ysis (PCA) or an autoencoder (AE) to reduce the original
28 × 28 image to an m-dimension vector xi as the input.
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(c) Pe = 0.75.

Figure 5. Optimal solutions of the Max-Cut problem found by our model via micro search under different edge creation probability Pe.
All nodes in the graph are partitioned into two complementary sets (colored in pink and blue). Edges between these two complementary
sets are colored in black, while others are colored in gray. The maximal cut values for 5a, 5b and 5c are 13, 15 and 24 respectively.

Table 3. Average numbers of used parameters under four settings
for converting the raw image into an embedded vector.

SETTING OURS CNN QCNN

PCA-ANGLE 37.8 44.0 51.0
AE-ANGLE 29.8 26.0 51.0
PCA-DENSE 30.2 56.0 51.0
AE-DENSE 35.4 34.0 51.0

We set m = 8 if using angle encoding, and m = 16 if using
dense angle encoding. Details on the above autoencoder and
data encoding schemes can be found in Appendix F. Sup-
posing that the data input is xi = (x

(1)
i , x

(2)
i , . . . , x

(m)
i )

(m is even) and the encoded state is |ψ(xi)〉, we then
input |ψ(xi)〉 into our model and obtain the output state
|ψt(xi)〉 = Ur(A, θ) |ψ(xi)〉. Recalling that we target bi-
nary classification, we only need to measure the last qubit.
The cross-entropy loss can be written by:

L(A, θ) =
1

N

N∑
i=1

(
yi log Pr

(
M
(
|ψt(xi)〉

)
= |1〉

)
+(1− yi) log Pr

(
M
(
|ψt(xi)〉

)
= |0〉

))
,

(11)
where yi is the binary label of xi and Pr

(
M
(
|ψt(xi)〉

)
=

|k〉
)

denotes the probability that the measured state of the
last qubit is |k〉 (k ∈ {0, 1}). See derivation in Appendix F.

The compared CNN and QCNN are both from (Hur et al.,
2022). We train CNN, QCNN and our model on the whole
training set by 5 epochs and evaluate them on the test set.
The parameters in each model are tuned to a similar amount
for fair comparison. Specifically, the CNN is composed of
two 2×2 1D convolutional layers (each followed by a ReLU
activation and a 1D max pooling layer) and an FC layer.

PCA-angle AE-angle PCA-dense AE-dense
Setting

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Macro Search (Ours)
Micro Search (Ours)
CNN
QCNN
QCAS

DQAS
Random Sampling
Macro Search with noise (Ours)
QCNN with noise

Figure 6. Accuracy on MNIST under different settings. Four set-
tings use different combinations of dimension reduction and data
encoding methods. Each experiment is repeated five times.

4.3.3. RESULTS AND DISCUSSION

As shown in Fig. 6, our model consistently outperforms
QCNN and other QAS methods in all four settings by a
large gap. Besides, our model significantly surpasses CNN
under PCA-angle and PCA-dense settings, while it keeps
competitive under the other two settings. It seems our model
is more compatible with PCA and angle encoding. We refer
to Appendix G.4 for comparison with more QAS methods.

We compare the average number of parameters in Tbl. 3.
Our model uses fewer parameters than CNN and QCNN, but
it still yields higher accuracy, verifying its cost-efficiency.

To test the performance under circuit noise, we add a 4.77%
bit flip and a 4.77% phase flip as the readout noise (the error
rate is obtained from Sycamore (Arute et al., 2019) and
Zuchongzhi (Wu et al., 2021)). The depolarizing noise re-
quires the density operator instead of quantum states, which
greatly increases the memory cost to simulate the whole
quantum process. Thus, we use the readout noise for now.
Results in Fig. 6 showcases that our model still performs
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|0〉

|0〉 Rz(θ1) Ry(θ2) Rz(θ3)

Figure 7. A sub-circuit found by our model resembles QAOA sub-
circuits. Only 2 out of 10 qubits are depicted for simplicity. Identity
gates are omitted since it makes no difference to the circuit.

better than QCNN in noisy environments.

5. Micro Search Experiments
Instead of directly searching for the macro circuit, we focus
on its micro sub-circuits in this section. Inspired by QAOA,
we try to utilize the intrinsic symmetry in the unweighted
Max-Cut problem. Since every edge shares the same prop-
erty (i.e. weight) and the only difference is the nodes they
connect, we can safely assume that the sub-circuits encoding
the edge information in the circuit share the same structure.
In other words, every edge is mapped to a sub-circuit acting
on two qubits matched with its two vertices. Then, each sub-
circuit is stacked into the whole circuit one by one according
to the edges in Max-Cut. A detailed example is given in
Fig. 10. Besides, a layer of rotation gates RzRyRz is added
at the end to improve the expressiveness of our model. Note
that rotation parameters in sub-circuits vary. The results
show that our model finds all the 5 distinct solutions for
the graph in Fig. 5b and the predicted probability for each
solution is divided equally, i.e. 0.2. Therefore, our model
perceives the symmetry in Max-Cut and can find multiple
optimal solutions simultaneously. Note the two swapped
complementary sets are regarded as the same solution.

We use the same parameters in all the sub-circuits to enhance
the symmetry in our model. To our surprise, similar sub-
circuits are found in QAOA, which proves that our model
can find promising sub-circuits with structures suited to the
particular properties in the problem. Since sub-circuits share
the parameters, the number of parameters is reduced from
59 to 6. We refer to Fig. 7 for more details.

We also test micro search on image classification to elu-
cidate the mechanism of micro search. The micro search
architecture for image classification is depicted in Fig. 8.
We design a sub-circuit (denoted as Uij) with two qubits (qi
and qj) as input and the qubit with smaller index as the out-
put for successors. This sub-circuit entangles two qubits and
integrates their information into one qubit, which functions
like the traditional convolutional layer and pooling layer. As
for our experimental setting, the image data is encoded into
8 qubits. We apply 4 sub-circuits (U01, U23, U45, U67) in
the first layer, 2 sub-circuits (U02, U46) in the second layer
and 1 sub-circuit (U04) at the last layer to form the entire
circuit. All the 7 sub-circuits share the same architecture

U01

U23

U45

U67

U02

U46

U04

q0

q1

q2

q3

q4

q5

q6

q7

Figure 8. The architecture of micro search for image classification.

weights but have different rotation parameters. Finally, q0
is measured to predict the label. Fig. 6 shows that micro
search can achieve comparable accuracy to macro search.

The advantage of micro search is inferring the structure of
sub-circuits in small-scale problems with the properties of
problems and then stacking them to construct the whole
circuit in large-scale problems. The inferred sub-circuits
can be similar to or even better than some existing manually
designed ones like QAOA. Since architecture search in large-
scale problems is more difficult and time-consuming, let
alone manual design, our scheme can be a shortcut to avoid
this issue, strengthening the scalability of our model.

6. Conclusion and Future Work
We have presented an end-to-end differentiable QAS al-
gorithm via the Gumbel-Softmax technique, specifically
with two versions, namely macro search and micro search.
Experiments for macro search on three mainstream and
well-studied VQA tasks demonstrate the efficiency and ca-
pability of our algorithm. Experiments for micro search
on unweighted Max-Cut and image classification illustrate
its potential scalability to infer the sub-circuit structure on
small-scale and apply it to large-scale problems. Our algo-
rithm is expected to be of practical value for automatically
designing the quantum oracles as well as generating VQA
ansätze, which are building blocks in the NISQ era.

Future Work. The QAS problem has various applications
apart from the VQA problems. (Li et al., 2017; Deibuk &
Biloshytskyi, 2015; Lamata et al., 2018) search for quantum
oracles and (Rigby, 2021; Nautrup et al., 2019) utilize
the QAS approaches to design quantum error correction
codes. We would further evaluate our method on different
applications and especially for large-scale quantum circuits.
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Potoček, V., Reynolds, A. P., Fedrizzi, A., and Corne, D. W.
Multi-objective evolutionary algorithms for quantum cir-
cuit discovery. arXiv preprint arXiv:1812.04458, 2018.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelli-
gence, volume 33, pp. 4780–4789, 2019.

Richard, C. and David, H. Methoden der mathematischen
Physik. Springer Berlin, Heidelberg, 1993.

Rigby, A. Heuristics in quantum error correction. PhD
thesis, University of Tasmania, 2021.

Romero, J., Babbush, R., McClean, J., Hempel, C., Love,
P., and Aspuru-Guzik, A. Strategies for quantum comput-
ing molecular energies using the unitary coupled cluster
ansatz. arXiv preprint arXiv:1701.02691, 2017.

Seeley, J. T., Richard, M. J., and Love, P. J. The bravyi-
kitaev transformation for quantum computation of elec-
tronic structure. The Journal of chemical physics, 137
(22):224109, 2012.

Shor, P. W. Algorithms for quantum computation: discrete
logarithms and factoring. In Proceedings 35th annual
symposium on foundations of computer science, pp. 124–
134. Ieee, 1994.

Slater, J. C. A simplification of the hartree-fock method.
Physical review, 81(3):385, 1951.

Tang, H. L., Shkolnikov, V., Barron, G. S., Grimsley,
H. R., Mayhall, N. J., Barnes, E., and Economou, S. E.
qubit-adapt-vqe: An adaptive algorithm for constructing
hardware-efficient ansätze on a quantum processor. PRX
Quantum, 2(2):020310, 2021.

11



QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, volume 30, 2017.

Wang, H., Ding, Y., Gu, J., Lin, Y., Pan, D. Z., Chong, F. T.,
and Han, S. Quantumnas: Noise-adaptive search for ro-
bust quantum circuits. In IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pp. 692–708. IEEE, 2022a.

Wang, X., Xue, C., Yan, J., Yang, X., Hu, Y., and Sun, K.
Mergenas: Merge operations into one for differentiable
architecture search. In International Joint Conferences
on Artificial Intelligence, 2020.

Wang, X., Guo, W., Su, J., Yang, X., and Yan, J. Zarts: On
zero-order optimization for neural architecture search. In
Neural Information Processing Systems, 2022b.

Wang, X., Lin, J., Zhao, J., Yang, X., and Yan, J. Eau-
todet: Efficient architecture search for object detection.
In European Conference on Computer Vision, 2022c.

Williams, C. P. and Gray, A. G. Automated design of
quantum circuits. In NASA International Conference
on Quantum Computing and Quantum Communications,
pp. 113–125. Springer, 1999.

Williams, C. P., Clearwater, S. H., et al. Explorations in
quantum computing. Springer, 1998.

Wu, Y., Bao, W.-S., Cao, S., Chen, F., Chen, M.-C., Chen,
X., Chung, T.-H., Deng, H., Du, Y., Fan, D., et al. Strong
quantum computational advantage using a superconduct-
ing quantum processor. Physical review letters, 127(18):
180501, 2021.

Ye, E. and Chen, S. Y.-C. Quantum architecture search
via continual reinforcement learning. arXiv preprint
arXiv:2112.05779, 2021.

Zeh, H. D. On the interpretation of measurement in quantum
theory. Foundations of Physics, 1(1):69–76, 1970.

Zhang, S.-X., Hsieh, C.-Y., Zhang, S., and Yao, H. Differ-
entiable quantum architecture search. Quantum Science
and Technology, 7(4):045023, 2022.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 8697–8710, 2018.

12



QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms

A. Preliminaries
Similar to a bit in the classical computation, a quantum bit (qubit) is the fundamental concept in quantum computing.
Though a bit must be either in states 0 or 1, a qubit can be in a superposition of states |0〉 and |1〉, i.e. |ψ0〉 = a |0〉+ b |1〉.
|·〉 is the Dirac notation. The complex number a and b satisfy |a|2 + |b|2 = 1.

The state space in quantum computing is defined on the Hilbert space. A quantum system can be completely described by a
unit state vector |ψ〉 ∈ Cd. If the system is represented by n qubits, d will be equal to 2n.

A quantum circuit can be used to simulate the evolution of a quantum system. A quantum gate, as the basic component of a
quantum circuit, is instantiation of a unitary operator or unitary matrix U . The evolution process from |ψ〉 to |ψ′〉 through it
can be expressed as |ψ′〉 = U |ψ〉.

Quantum measurements will cause the collapse of a quantum state. For example, the qubit |ψ0〉 will be either in states |0〉 or
|1〉 instead of a superposition of |0〉 and |1〉 when measured. The probability of being measured as |0〉 and |1〉 is |a|2 and
|b|2, respectively. We refer to the textbook (Nielsen & Chuang, 2002) for more detailed information on quantum computing.

B. Complexity of Our Approach
First, we analyze the spatial complexity of our method. The candidate gate set G has K candidates, taking O(K) space.
The rotation parameters are allocated for each location in the circuit so it takes O(mn) space, where m and n denotes the
number of layers and qubits, respectively. The architecture weights require O(K ′K) memory for each location as explained
in Sec.3.1. Hence, the memory cost for architecture weights is O(mnK ′K). Then, the total memory cost is approximately
O(mnK ′K). When running the circuit, there exist unitary matrices with size 2n × 2n, which take additional O(4n) space.

For time complexity, the bottleneck of our method is the forward process. For each iteration, it has to execute tensor product
operations and matrix multiplication. The time complexity of tensor product operations in one layer can be calculated by:

22 × 22 + 24 × 22 + 26 × 22 + · · ·+ 22(n−1) × 22 = 22 × 22 × 22(n−1) − 1

22 − 1
=

4(n+1) − 16

3
.

Hence, tensor product operations take altogetherO(4nm) time. Then, matrix multiplication of a 2n×2n matrix and a 2n×1
matrix will be repeated m times in each iteration. Every multiplication takes O(4n) time, adding up to total O(4nm) time
complexity. Supposing that the number of iterations is d, the overall time complexity of our algorithm will be O(4nmd).

Note that we utilize the basic tensor product operations and matrix multiplication to simulate the quantum circuit on classical
computers, without leveraging any optimization skills. If equipped with such skills, the complexity of our algorithm will be
further reduced.

C. Expressivity of Our Candidate Gate Set G
Lemma C.1. Any single-qubit quantum gate U can be decomposed into a sequence of Rz, Ry and Rz gates, and a
phase (Barenco et al., 1995).

U = eiαRz(θ2)Ry(θ1)Rz(θ0)

Proof. The matrices of all the quantum gates are unitary. Hence, U can be rewritten as

U = eiα
[
a −b∗
b a∗

]
= eiαV,

where a, b are complex while α is real, and detV = aa∗ + bb∗ = |a|2 + |b|2 = 1 (* denotes the conjugate operator). Then,
we have

detU = e2iα detV = e2iα.

Hence, we can obtain the phase angle α:

α =
1

2
arctan2

(
Im(detU), Re(detU)

)
.
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Then, we plug in the matrices of rotation gates:

U =eiα

[
e−i

θ2
2 0

0 ei
θ2
2

] [
cos θ12 − sin θ1

2

sin θ1
2 cos θ12

] [
e−i

θ0
2 0

0 ei
θ0
2

]

=eiα

[
e−i

θ0+θ2
2 cos θ12 −ei

θ0−θ2
2 sin θ1

2

ei
θ2−θ0

2 sin θ1
2 ei

θ0+θ2
2 cos θ12

]

=eiα
[
V00 V01
V10 V11

]
Hence, we derive the angles of rotation gates:

θ1 = 2 arccos |V00|
θ0 + θ2 = 2arctan2

(
Im(|V11|), Re(|V11|)

)
θ2 − θ0 = 2arctan2

(
Im(|V10|), Re(|V10|)

)
θ2 = arctan2

(
Im(|V11|), Re(|V11|)

)
+ arctan2

(
Im(|V10|), Re(|V10|)

)
θ0 = arctan2

(
Im(|V11|), Re(|V11|)

)
− arctan2

(
Im(|V10|), Re(|V10|)

)
.

Therefore, U is decomposed into a sequence of Rz, Ry and Rz gates, and a phase.

Corollary C.2. Any single-qubit quantum gate U can be decomposed into a set of RzRyRz and phase shift gates.

Proof. Based on Lemma C.1, we just need to decompose eiα into a set of RzRyRz and the phase shift gates P :

U =eiαV

=

[
eiα 0
0 eiα

]
V

=

[
eiα 0
0 e−iα

] [
1 0
0 e2iα

]
V

=Rz(−2α)P (2α)V

=Rz(−2α)Ry(0)Rz(0)P (2α)V

=Rz(−2α)Ry(0)Rz(0)P (2α)Rz(θ2)Ry(θ1)Rz(θ0)

.

Theorem C.3. The union of the set of single-qubit gates and CNOT is universal. (Williams et al., 1998)

Since the RzRyRz gate and the phase shift gate can express any single-qubit gate according to Corollary C.2, the set
of RzRyRz, P and CNOT is universal based on Theorem C.3. Hence, the candidate gate set {RzRyRz, P, CNOT} can
approximate any unitary matrix. We remove the phase shift gate P from our candidate gate set G because the global phase
eiα caused by P makes no difference to our results. Supposing the output state vector is |ψ〉, we add a global phase eiα to it
and get |ψp〉 = eiα |ψ〉. For VQE tasks, the expectation value of the HamiltonianH satisfies:

〈ψp|H|ψp〉 = e−iα 〈ψ|H|ψ〉 eiα = 〈ψ|H|ψ〉 .

For image classification, the probability of the i-th basis state is calculated by | |ψ〉(i) |2, which satisfies:

| |ψ〉(i) |2 = |eiα|2| |ψ〉(i) |2 = |eiα |ψ〉(i) |2 = | |ψp〉(i) |2.

Hence, the predicted probability of each class will not change. Therefore, the global phase has no effect on our experiment
results and our candidate gate set G={RzRyRz, I, CNOT} is sufficient for the expressivity in our tasks (the identity gate I is
added as a placeholder).
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Figure 9. Relationship between the energy error and the number of layers. Every experiment is repeated five times. The dot or cross
denotes the mean energy error of five trials, and the shade indicates the 95% confidence interval.

D. Supplements to the Ground State Energy Estimation Task
D.1. Molecule Information

We list the number of qubits, mapping methods and atom coordinates of each molecule in Tbl. 4. In particular, the
Hamiltonians of LiH-4 and LiH-6 are taken directly from (Ostaszewski et al., 2021).

Table 4. Configurations of the molecules involved in our experiments. The coordinates are in angstrom (Å).
MOLECULE #QUBIT MAPPING COORDINATES

H2 4 JORDAN–WIGNER (JORDAN & WIGNER, 1993) H (0, 0, -0.35)
H (0, 0, 0.35)

LiH-4 4 PARITY (SEELEY ET AL., 2012) Li (0, 0, 0)
H (0, 0, 2.2)

LiH-6 6 JORDAN–WIGNER Li (0, 0, 0)
H (0, 0, 2.2)

H2O-8 8 JORDAN–WIGNER H (-0.021, -0.002, 0)
O (0.835, 0.452, 0)
H (1.477, -0.273, 0)

D.2. Sensitivity Analysis

Fig. 9 reveals the relation between the energy error and the number of layers. With the more layers, the mean energy error of
both LiH-4 and H2 quickly declines and attains the chemical accuracy when the number of layers reaches 20. In general, the
performance benefits from the growth of the number of layers, and it will saturate at a certain point.

E. Supplements to the Unweighted Max-Cut Task
To derive the ultimate result we want, we need to decode the circuit output |ψ〉. We already know that 〈ψ|ψ〉 = 1. Therefore,
the probability ~τ of basis states can be calculated by:

~τ = |ψ〉 � |ψ〉,

where � means the hadamard product, and |ψ〉 denotes the conjugate of |ψ〉. Take a 3-qubit circuit for example. Supposing
that ~τ = (0.0, 0.1, 0.1, 0.1, 0.3, 0.1, 0.1, 0.2), the probability of basis states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉
and |111〉 will be 0.0, 0.1, 0.1, 0.1, 0.3, 0.1, 0.1 and 0.2, respectively.

15



QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms

For unweighted Max-Cut, since the probability of basis state |100〉 is the biggest, the solution will be x1 = 1, x2 = −1,
x3 = −1 according to Eq. (8).

0 1

3 2

Sub-circuit

Figure 10. A detailed example of micro search for unweighted Max-Cut (best viewed in color). Each edge is matched with a sub-circuit.
For instance, the green edge linking node 1 with node 3 is mapped to the green sub-circuit which acts on qubit 1 and qubit 3.

F. Supplements to the Image Classification Task
Autoencoder. Autoencoder is a neural network that first reduces the data to a compact encoding with an encoder, and then
expands it back to the original dimension with a decoder. We use it to implement dimension reduction in our experiment.
Following (Hur et al., 2022), the encoder and decoder are a fully connected layer with ReLU and sigmoid activation function,
respectively. The hidden dimension is set as 8 for angle encoding and 16 for dense encoding. We train the autoencoder for
10 epochs on the training set with the mean squared error (MSE) loss. The Adam optimizer is used for optimization.

Data encoding schemes. To encode the data input xi = (x
(1)
i , x

(2)
i , . . . , x

(m)
i ) into our quantum circuit (m is even), the

angle encoding and dense angle encoding are leveraged because they require fewer gates to implement. Angle encoding
maps the initial state |ψ0〉 to

|ψ(xi)〉 =

m⊗
j=1

(
Ry(x

(j)
i ) |0〉

)
,

while dense angle encoding maps it to

|ψ(xi)〉 =

m/2⊗
j=1

(
Ry(x

(j+m/2)
i )Rx(x

(j)
i ) |0〉

)
.

Fig. 11 shows our data encoding layers. Rotation gates are used to embed the reduced data input into our circuit.

Derivation of probability. To obtain the final result, we compute the probability P
(
M
(
|ψt(xi)〉

)
= |0〉

)
by summing

over the probability of even basis states, namely |000〉, |010〉, |100〉 and |110〉 (see the example in Appendix E). The
probability P

(
M
(
|ψt(xi)〉

)
= |1〉

)
is naturally the sum of odd basis states, i.e. |001〉, |011〉, |101〉 and |111〉. Obviously,

we have P
(
M
(
|ψt(xi)〉

)
= |0〉

)
+ P

(
M
(
|ψt(xi)〉

)
= |1〉

)
= 1.

G. Experimental Results for Other QAS Algorithms
Since there is no unified experimental settings, we cannot replicate the performance of some QAS approaches under our
setting. Therefore, we list all the reported results and corresponding setting of the three tasks in this section to get a brief
view of the performance of these QAS approaches.

G.1. Properties of Different QAS Algorithms

We list the properties of QCAS (Du et al., 2022), DQAS (Zhang et al., 2022), QuantumNAS (Wang et al., 2022a),
RLQAS (Ostaszewski et al., 2021) and our model in Tbl. 5. The main difference between all the QAS methods is the
architecture updating strategy. Sampling-based strategy (i.e. QCAS, DQAS, and QuantumNAS) is severely affected by the
scaling problem. To achieve satisfactory results, the sampling time will become prohibitively long when the number of
qubits increases. Updating through the reward function can achieve relatively good results on a certain problem, but the
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Figure 11. The structure of the angle encoding layer (left) and dense encoding layer (right). θ· is derived from either PCA or the
autoencoder and is scaled to [0, π].

effort of finding the optimal reward function on a certain problem is comparable with the effort to manually design a circuit.
Different types of noise are used and the error rate varies. The super-circuit stands for the pre-defined circuit structures to
assist the searching methods. In our opinion, the super-circuits in QCAS, DQAS, and QuantumNAS may lack scalability
and utilize too much prior. End-to-end learning refers to training the QAS model by applying gradient-based learning to
the model as a whole (both architecture weights updating and rotation parameters updating), which improves the training
efficiency. Some of the methods are not GPU-friendly or even do not support GPU, which makes the training of these
methods relatively slow.

Table 5. Properties of different QAS methods. Self-defined∗ denotes 2% to 20% bit flip in between two gates.
METHOD ARCHITECTURE UPDATE NOISE SUPER-CIRCUIT FREE END-TO-END GPU SUPPORT

QCAS SAMPLING DEPOLARIZING
DQAS MONTE-CARLO SAMPLING SELF-DEFINED∗

QUANTUMNAS SAMPLING IBM-Q
RLQAS REWARD FUNCTION —
OURS GRADIENT DESCENT READOUT

G.2. Ground State Energy Estimation

We find other two QAS approaches who have listed ground state energy estimation as one of their experiments. (Ostaszewski
et al., 2021) reports numerical results within the chemical accuracy, while (Wang et al., 2022a) tests their algorithm under
simulated circuit noise, which strongly affect the estimation accuracy.

(Ostaszewski et al., 2021) uses RL to search for VQE ansätze. They propose a reward policy based on the energy of a
given Hamiltonian. The chemical accuracy is used as a threshold, forming the condition for final reward together with
maximum layers. The gates are encoded into 4 decimal numbers, which indicate CNOT control qubit, CNOT target qubit,
rotation qubit and rotation axis. The authors evaluate their algorithm on two settings. The first experiment is conducted
with LiH-4bit Hamiltonian with three values of bond distances, 1.2Å, 2.2Å and 3.4Å. The second experiment is conducted
on the Jordan-Wigner mapping with the LiH-6bit Hamiltonian with the bond distance at 2.2Å. For each Hamiltonian, the
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authors give ten trials and count the number of trials achieving the chemical accuracy. In Experiment 1, the authors find that
using Global COBYLA optimization can achieve the best results. In Experiment 2, the proposed RL algorithm achieves
the chemical accuracy only in 7 out of 10 trials, and the minimum energy gap ever achieved during the training process
is slightly less than 1× 10−3 (no exact number in the paper), where our algorithm achieves 2.94× 10−4. Our algorithm
outperforms the results of (Ostaszewski et al., 2021) from both accuracy and stability. However, (Ostaszewski et al., 2021)
report that they achieve the results with very few gates as well as very low circuit depth. They only use an average of 16
layers and 35 gates to achieve the results for LiH 6-qubit Hamiltonian. This indicates that the circuit only have an average of
2 gates on each layer, which is totally different from our results. To sum up, our algorithm achieves better performance
compared to this RL approach with more gates (which is still much less than what UCCSD needs). Furthermore, we also
test our algorithm with more complicated Hamiltonians and different molecules.

(Wang et al., 2022a) mainly introduces the TorchQuantum library proposed by them and focuses on designing noise adaptive
quantum circuit for VQE algorithms. The proposed algorithm is a sampling based algorithm. They first construct and train
the SuperCircuit and then apply a noise-adaptive evolutionary co-search with iterative quantum pruning. The authors report
intensive results on LiH-6bit, H2O-6bit, CH4-6bit, CH4-10bit and BeH2-15bit. However, with the influence of the circuit
noise, the gap between the optimal energy and the obtained energy is rounded to 1 decimal place, and the gap for UCCSD
is more than 10 on H2O-6bit, CH4-6bit and CH4-10bit. The circuits obtained from the algorithm have much fewer gates
compared to UCCSD and trained under the noise environment, which explain why their performance is better than UCCSD
under the noisy environment. However, 100 times the chemical accuracy is no better than 10000 times the chemical accuracy.
Thus, we do not test our algorithm under the NISQ device and we will wait for the quantum error correction code to lead
quantum computing from the NISQ era to the next noiseless era.

G.3. Unweighted Max-Cut

Another QAS method reporting having successfully solved the Unweighted Max-Cut problem is (Zhang et al., 2022), which
is also to our knowledge, the only published work as a differentiable searching algorithm with both architecture weights
and rotation parameters updated by gradient descent. The authors use Monte Carlo sampling to approximate the gradient.
Comparing to our method, which uses Gumbel-Softmax to sample one circuit at each epoch, (Zhang et al., 2022) still needs
to sample multiple circuits at each epoch to approximate the continuous distribution of the weights. The experimental setting
of this paper involves additional uniquely defined gates for QAOA in the candidate set and also associates the connectivity
between nodes with the group of gates connecting qubits. The experiments are conducted under noiseless environment and
only have 8-node graphs for Max-Cut. No circuit depth or number of gates or running time is reported. Note that this paper
leverages the CVaR metric (Barkoutsos et al., 2020), which equals the average cut value of the top 20% cut values in all
measurements, to evaluate their method in Max-Cut. Hence, we also apply this metric to our model. The CVaR results for
graphs in Fig.5 are 13, 15 and 24, respectively. All of them are equal to the maximal cut values while (Zhang et al., 2022)
fails to reach the maximal cut value in its graph instance.

G.4. Image Classification

(Wang et al., 2022a) also reports results on classification tasks. Similar to ground state energy estimation, (Wang et al.,
2022a) conducts large amounts of experiments under very complicated settings. No comparison against classical CNN
or QCNN is reported and the results are also severely affected by the circuit noise. Since the paper mainly focuses on
noise-adaptive circuit search and the setting is also too complicated, we fail to follow the experiment setting of this paper.
The results for 2-class image classification for number 3 and 6 is around 0.95 accuracy on IBMQ-Yorktown, which is the
closest setting we can find to us (more than 0.99 accuracy on 0-1 classification with PCA encoding).

H. Ablation Study
We implement the decomposition of the architecture parameter Aij through two sequential linear layers. Tbl. 6 shows
the influence of the decomposition module. The experiment is performed under the same setup as Sec. 4.3.2. With the
decomposition module, the accuracy of our model increases by nearly 5 percent. Therefore, this module enhances the
expressivity of our architecture parameters, while only a trivial computation overhead is added.
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Table 6. The influence of the decomposition module. Each experiment is repeated five times.
MODEL PCA-ANGLE AE-ANGLE PCA-DENSE AE-DENSE

OURS 0.9920 ± 0.0011 0.9809 ± 0.0119 0.9922 ± 0.0018 0.9742 ± 0.0116
OURS WITHOUT DECOMPOSITION 0.9764 ± 0.0200 0.9410 ± 0.0487 0.9167 ± 0.0455 0.9252 ± 0.0296

I. Example Circuits Obtained by Our Algorithm
We visualize some circuits found by our model with Qiskit as below.
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Figure 12. The generated circuit for the graph in Fig. 5a. The number of parameters, number of gates, and depth are 41, 99 and 30.
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Figure 13. The generated circuit for the graph in Fig. 5b. The number of parameters, number of gates, and depth are 57, 114 and 33.
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Figure 14. The generated circuit for the graph in Fig. 5c. The number of parameters, number of gates, and depth are 96, 153 and 34.
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