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Abstract

Cutting out an object and estimating its opacity
mask, known as image matting, is a key task in im-
age and video editing. Due to the highly ill-posed
issue, additional inputs, typically user-defined
trimaps or scribbles, are usually needed to reduce
the uncertainty. Although effective, it is either
time consuming or only suitable for experienced
users who know where to place the strokes. In
this work, we propose a decomposed-uncertainty-
guided matting (dugMatting) algorithm, which
explores the explicitly decomposed uncertainties
to efficiently and effectively improve the results.
Basing on the characteristic of these uncertain-
ties, the epistemic uncertainty is reduced in the
process of guiding interaction (which introduces
prior knowledge), while the aleatoric uncertainty
is reduced in modeling data distribution (which
introduces statistics for both data and possible
noise). The proposed matting framework relieves
the requirement for users to determine the interac-
tion areas by using simple and efficient labeling.
Extensively quantitative and qualitative results
validate that the proposed method significantly
improves the original matting algorithms in terms
of both efficiency and efficacy.
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1. Introduction
Digital image matting is the estimation of the opacity of
foreground or background from an image, which is one of
the fundamental elements in many applications, e.g., com-
positing live-action and rendered elements together, and
performing local color corrections. Specifically, given an
image I , image matting can be regarded as a linear com-
bination of foreground F ∈ RH×W×C and background
B ∈ RH×W×C with the alpha matte µ ∈ [0, 1]H×W as
follows:

Im = µmFm + (1− µm)Bm,

where m = (x, y) denotes the pixel position.

Since the estimation of µ without any extra information is
a highly ill-posed problem, traditional algorithms (Levin
et al., 2007; Chen et al., 2013; Lutz et al., 2018; Xu et al.,
2017; Li & Lu, 2020; Liu et al., 2021b; Park et al., 2022)
usually introduce a trimap to confine the solution space.
The trimap separates a picture into two known foreground
and background regions along with an unknown transition
region. Hence, the matting task is simplified as the problem
of estimating the opacity in the transition region. Based
on this simplification, the recently proposed matteformer
(Park et al., 2022) achieves the state-of-the-art performance.
However, drawing a suitable trimap is still time-consuming
and tedious. For some complex cases, it will even cost more
than 10 minutes (Wei et al., 2021).

Recently, some trimap-free matting algorithms attempt to
eliminate the model dependence on the prior labeling. How-
ever, the performance of trimap-free methods (Li et al.,
2022; Ke et al., 2022; Qin et al., 2020; Chen et al., 2018; Li
et al., 2021) still lags far behind the trimap-based methods.
The inherent reason is that these models cannot determine
which foreground target should be extracted without the
guidance of trimap. Therefore, existing trimap-free methods
are only able to extract the class-specific objects (e.g., por-
trait, animal) or salient objects after training on large-scale
matting data. Moreover, trimap-free methods is powerless
when users want to choose a new category. To balance the
efficiency and effectiveness, some novel interactive strate-
gies have been introduced for matting. With user scribbles
or clicks, interactive matting achieves similar performance
to the trimap-based approaches in relatively low labeling
cost (Wei et al., 2021). However, a promising outcome
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Figure 1. Motivation of the proposed dugMatting. The matting
performance could be significantly improved by reducing the de-
composed epistemic and aleatoric uncertainties (top row), where
these uncertainties are ubiquitous in learning-based image matting
(middle and bottom rows). The epistemic uncertainty cannot be
reduced by model but can be reduced by user interaction, while the
aleatoric uncertainty is difficult to be reduced by human but can
be reduced by handling the data noise. Therefore, it is attractive to
decompose these uncertainties and exploit them accordingly.

usually requires multiple interactions because the interac-
tions heavily rely on user experience, leading to long-term
interaction (the shortest click interaction method still takes
about 20 seconds (Wei et al., 2021)). Besides, the matting
performance may be unstable due to the ambiguity of the
user interaction.

To relieve the restriction of user experience, we propose a
decomposed-uncertainty-guided matting (dugMatting) algo-
rithm, which elegantly exploits the decomposed epistemic
and aleatoric uncertainties. As shown in Figure 1, the epis-
temic uncertainty basically results from insufficient training
data while the aleatoric uncertainty often appears in transi-
tion regions due to the inherent noise. Based on the obser-
vation that the absolute error is highly correlated with the
these uncertainties, a natural question is can we effectively
reduce the decomposed uncertainty?

Contribution. Epistemic uncertainty is often due to a lack
of training data and thus it is difficult to be reduced by
models themselves, while it can be reduced by interaction.
Aleatoric uncertainty refers to the uncertainty inherent in the

observations, e.g., measurement noise or inaccurate label-
ing, which is more intricate but can be reduced by handling
possible noise, e.g., using data augmentation (Ning et al.,
2022; Sambyal et al., 2022). We propose a decomposed-
uncertainty-guided matting framework, where the epistemic
uncertainty (Kendall & Gal, 2017; Amini et al., 2020) is
used to identify proposal regions for user interaction. Ac-
cordingly, users only need labeling these regions. To reduce
the aleatoric uncertainty, a plug-and-play module based on
the estimated data distribution is devised where the augmen-
tation is realized. Specifically, we model the matting output
as a Normal-Inverse-Gamma distribution, which hierarchi-
cally characterizes the uncertainties and accordingly pro-
motes both regression accuracy and trustworthiness (Amini
et al., 2020). Different from the standard setting, the Normal-
Inverse-Gamma distribution depends on both the input im-
age and interaction. Therefore, multiple interactions on an
image yield multiple NIG distributions, where we introduce
NIG summation (Ma et al., 2021; Qian, 2018) to combine
these multiple NIG distributions improving the stability.
The contributions of this work are summarized as follows:

• For the first time, we reveal the relationship between
epistemic/aleatoric uncertainties and the matting er-
ror, and thus transform the matting promotion into the
problem of epistemic/aleatoric uncertainties reduction.

• We propose a decomposed-uncertainty-guided matting
algorithm, where the epistemic uncertainty is utilized
to actively provide interaction proposals for users and
the aleatoric uncertainty is used to guide the matte
refinement in a plug-and-play module.

• We conduct extensive experiments on multiple real-
world benchmarks, which demonstrate that the pro-
posed method not only improves the performance of
trimap-based matting, but also enables trimap-free mat-
ting to extract novel foreground.

2. Related Work
2.1. Image Matting

Image matting refers to extracting interesting foreground or
background with fine details from an image, which can be di-
vided into prior-based matting (Levin et al., 2007; Lutz et al.,
2018; Xu et al., 2017; Yu et al., 2021c; Park et al., 2022)
and prior-free matting (Li et al., 2022; Ke et al., 2022; Chen
et al., 2018; Li et al., 2021; Qin et al., 2020). The prior-based
matting methods require an additional prior for constraining
the solution space. One typical trimap separates an image
into foreground, background, and transition regions, where
only the opacity of transition regions is unknown. Before
the deep learning period, some well-established methods
(Zheng & Kambhamettu, 2009; Chen et al., 2013; Levin
et al., 2007; Grady et al., 2005; Chuang et al., 2001; Feng
et al., 2016; He et al., 2011) solve the matting task based on

2



dugMatting: Decomposed-Uncertainty-Guided Matting

trimap prior. For example, the closed-form matting (Levin
et al., 2007) derives a cost function based on local smooth-
ing of foreground and background colors, and the globally
optimal alpha matting is accordingly induced by solving a
sparse system of linear equations. In the era of deep learning,
data-driven methods have emerged in matting community,
exhibiting much better performance than conventional meth-
ods. For example, deep image matting (DIM) (Xu et al.,
2017) uses a convolutional network to refine the alpha matte
predicted under the encoder-decoder framework, allowing
for higher accuracy and sharper edges. A guided contextual
attention block is designed in GCANet (Li & Lu, 2020) to in-
tegrate the alpha stream information and image information,
and improve the details of matting as well. LPFNet (Liu
et al., 2021b) models the long-range context features outside
the reception fields to improve the alpha matte results. To
relieve the load in manually constructing a trimap, the prior-
free methods often divide the matting task into a triamp
generation and a trimap-based matting subtasks (Li et al.,
2022). However, these trimap-free methods fail to handle
arbitrary foreground due to the model ambiguity without
guidance.

2.2. Uncertainty Estimation

Uncertainty estimation in deep networks has attracted sig-
nificant attention (Buisson et al., 2010; Gal & Ghahramani,
2016; Kendall & Gal, 2017; Amini et al., 2020; Sensoy et al.,
2018; Angelopoulos et al., 2022; Zhou & Levine, 2021), es-
pecially when the systems are deployed in safety-critical
tasks such as autonomous car control and medical diagnosis.
Basically, uncertainty can be roughly divided into aleatoric
uncertainty and epistemic uncertainty, in which aleatoric
uncertainty captures noise inherent in the observations and
epistemic uncertainty captures our ignorance about which
model generated our collected data (Kendall & Gal, 2017).
For modeling aleatoric uncertainty, the network often out-
puts a Gaussian distribution with a learnable variance. For
modeling epistemic uncertainty, Bayesian-based methods
(Weise & Woger, 1993; Maddox et al., 2019; Oakley &
O’Hagan, 2002; Daxberger et al., 2021) form a predictive
distribution by marginalizing the distribution over model pa-
rameters. To reduce the computation of Bayesian network,
dropout or ensemble are used to approximate variational
Bayesian inference (Buisson et al., 2010; Gal & Ghahra-
mani, 2016), but these methods require multiple forwards.
In contrast, some models directly predict the parameters
of conjugate prior distribution on the predicted target dis-
tribution. Then, one forward pass can estimate the target
and the associated uncertainty. Most of those models focus
on classification and thus usually estimate the parameters
of a Dirichlet distribution (Biloš et al., 2019; Sensoy et al.,
2018; Charpentier et al., 2020; Stadler et al., 2021; Nandy
et al., 2020). Since image matting is an intrinsically re-

gression problem, we introduce a Normal-Inverse-Gamma
(NIG) distribution (Kuleshov et al., 2018) to characterize
the uncertainty.

3. Proposed Method
3.1. Preliminary of Evidence-based Uncertainty

We briefly introduce the regression under the evidence-based
uncertainty estimation. Regression task can be solved from
a maximum likelihood perspective with Gaussian distribu-
tion. Given the training data D = {xi, yi}Ni=1, maximum
likelihood estimation (MLE) is achieved by minimizing the
negative log likelihood loss function

Li(θ) =
(yi − µ)2

2σ2
+ log σ,

where θ denotes the parameters of matting network, µ and
σ denote the mean and variance parameters of Gaussian
distribution respectively, which are typically learned through
deep neural networks. Existing matting networks target at
learning the alpha matte (mean µ) only. When µ and σ are
all learnable, the likelihood function successfully models
the aleatoric uncertainty (variance), also known as the data
uncertainty. However, epistemic uncertainty, also known
as model uncertainty, often requires additional estimation
based on the Bayesian framework, e.g., MC Dropout (Gal
& Ghahramani, 2016) and ensemble (Buisson et al., 2010).

To jointly model aleatoric and epistemic uncertainties,
the mean µ and variance σ2 are assumed to be drawn
from Gaussian and Inverse-Gamma distributions, respec-
tively. Then the Normal Inverse-Gamma (NIG) distribution
NIG(γ, ω, α, β) can be considered as a higher-order conju-
gate prior of the Gaussian distribution

yi ∼N (µ, σ),

µ ∼ N (γ, σ2ω−1), σ2 ∼ Γ−1(α, β),

where Γ(·) denotes the gamma function. In this case, the
distribution of y takes the form of a NIG(γ, ω, α, β) distri-
bution

p(µ, σ|γ, ω, α, β) = βα

Γ(α)

√
ω

σ
√
2π

(
1

σ2
)α+1

exp−2β + ω(σ − µ)2

2σ2
,

where γ ∈ R, ω > 0, α > 1 and β > 0. The total evidence
is the sum of all vitual-observations counts 2ω+α. To solve
the NIG distribution during training phase, the following
loss (Amini et al., 2020) is induced to minimize the negative
log likelihood

LNLL(θ) =
1

2
log(

π

ω
)− α log(Ω)+

(α+
1

2
) log((y − γ)2ω +Ω) + logΦ,

(1)
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Figure 2. Illustration of the proposed decomposed-uncertainty-guided matting framework. The matting network fits a NIG distribution,
proposing interactive regions for user based on epistemic uncertainty and detail regions for refined module based on aleatoric uncertainty.

where Ω = 2β(1 + ω) and Φ =
(

Γ(α)

Γ(α+ 1
2 )

)
. To further

constrain the incorrect evidence, a regularizer is introduced
in the total loss

LNIG(θ) = LNLL(θ) + λLR(θ),

whereLR(θ) = |yi−γ|·(2ω+α) is the penalty for incorrect
evidence, and the coefficient λ > 0 balances these two loss
terms.

3.2. Integrating Uncertainty into Matting

Image matting can be considered as a regression task, where
the output is the alpha matte µ ∈ [0, 1] conditioning on the
user map U

µ = Fθ(xi|U),

where Fθ denotes the matting network, and the user map U
is empty for trimap-free matting. In order to characterize
uncertainty for existing matting networks, we propose to
replace the deterministic output with a NIG distribution
following Section 3.1

NIG(γ, ω, α, β) = Fθ(xi|U),

where γ ∈ [0, 1], ω > 0, α > 1, and β > 0. Specifically,
we first extend the last layer of matting network to output
γ, ω, α, β by four independent linear layers with shared
features as shown in Figure 2. Then, we apply activation
functions sigmoid, softplus, softplus + 1, softplus for
γ, ω, α, β to ensure the proper ranges. Although simple,
the modification well fits most existing matting networks.
Accordingly, the aleatoric and epistemic uncertainties are

obtained as

E[σ2] =
β

α− 1︸ ︷︷ ︸
aleatoric

, V ar[γ] =
β

ω(α− 1)︸ ︷︷ ︸
epistemic

.

Algorithm 1 Uncertainty-Guided Interaction.
Input: Epistemic uncertainty uepis, predicted matte γ, in-

put image x, threshold t, patch number K, and se-
lection number N .

Initialization: Initialize the user map U .
Divide uepis into K ×K patches.
Compute the patch-level uncertainty up ∈ RK×K

+ .
P ← Top N uncertainty patches from {up|up > t}.
for p in P do

Calculate the index I of p in input image x.
Users select a label from foreground, background, or
transition for x[I].
Update user map U .

end
Output: User map U .

3.3. Epistemic Uncertainty-based Interaction

Traditional interaction (Wei et al., 2021; Ding et al., 2022)
implicitly contains two steps: users first empirically locate
the interacted regions and then conduct interactive operation
by trimap, scribble, or click. In our method, we estimate
the epistemic uncertainty to automatically determine the
interaction regions and then users could only select labels
(foreground, background, or transition) for them as shown in
Figure 3. This novel interaction avoids the time-consuming
region searching. Specifically, we divide the epistemic un-
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Figure 3. The proposed interaction allows the users to focus on
selection.

certainty map into K ×K patches, where the patch-level
epistemic uncertainty is the average on all pixels in each
patch. Then, the proposal patch set for interaction is con-
structed satisfying two conditions: top N patch-level epis-
temic uncertainty and greater than a threshold t. Finally,
users select a label for each proposal patch. The simplified
interactive process is summarized in Algorithm 1.

To incorporate the results in previous interactions for stabi-
lization, a direct way is to integrate the corresponding NIG
distributions into a uniform one. A natural way is using the
following additive way

NIG(γ, ω, α, β) =
1

M

M∑
m=1

NIG(γm, ωm, αm, βm),

where M denotes the number of interactions. Although
simple in form, unfortunately, it is intractable to infer the
parameters for the fused NIG distribution since there is no
closed-form solution. Therefore, inspired by multi-modal
learning (Ma et al., 2021) and multi-source learning (Qian,
2018), we employ the simple NIG summation operation to
approximately solve this problem

NIG(γ, ω, α, β) ≜ NIG(γ1, ω1, α1, β1)

⊕NIG(γ2, ω2, α2, β2)

⊕ · · ·
⊕NIG(γM , ωM , αM , βM ),

(2)

where M denotes the number of interaction, ⊕ denotes the
summation operation of two NIG distributions as follows,

⊕



γ = (ω1 + ω2)
−1(ω1γ1 + ω2γ2),

ω = ω1 + ω2,

α = α1 + α2 +
1

2
,

β = β1 + β2 +
1

2
ω1(γ1 − γ)2 +

1

2
ω2(γ2 − γ)2.

The NIG summation can reasonably make use of predic-
tions with different qualities. Specifically, the parameter ω
indicates the confidence of a NIG distribution for the mean
γ. If one matte is more confident with its prediction, then
it will contribute more to the final prediction. Moreover,
β directly reflects both aleatoric uncertainty and epistemic
uncertainty which consists of two parts, i.e., the sum of β1

and β2 from multiple mattes and the variance between the
final prediction and that of every single matte.

3.4. Aleatoric Uncertainty-based Refinement

Some methods (Sambyal et al., 2022; Ning et al., 2022) con-
strain invariant predictions for the simulated inherent noise
by data augmentation, i.e., enhancing the robustness by ex-
plicitly modeling noise to reduce the aleatoric uncertainty.
Given the noise ϵ ∼ N (0, ε) for input χ, a simple way to
reduce aleatoric uncertainty is constraining consistent pre-
diction for samples from N (χ, ε) (Sambyal et al., 2022).
However, characterizing the noise of the data requires addi-
tional self-supervised training, such as image reconstruction.
To simplify the training steps, we propose a plug-and-play
moduleRϕ to reduce aleatoric uncertainty and also to refine
the matting details. Instead of modeling the noise during
the input, we directly model the output noise in terms of
the aleatoric uncertainty E(σ2). In other words, we regard
the matting output γ as χ, and the noise ϵ ∼ N (0,E(σ2)),
and then, we attempt to keep the consistent prediction for
data sampling from N (γ,E(σ2)). Furthermore, we use the
variance V ar(σ2) to filter out the regions whose aleatoric
uncertainty E(σ2) may be inaccurate. The V ar(σ2) (Cook,
2008) is defined as

V ar[σ2] =
β2

(α− 1)2(α− 2)
,

where α > 2.

The objective of the refinement module is to restore high-
aleatoric uncertainty matting details without redundant cal-
culation, thus it only concentrates on local patch refinement.
We first obtain the coarse matte γs, sampling once from
N (γ,E(σ2)) due to small variance as shown in Figure 2.
Then, we use OTSU (Otsu, 1979) and V ar[σ2] to adaptively
select the pixels of reliable high aleatoric uncertainty. Fi-
nally, the 32 × 32 patches centered on the selected pixels
corresponding to γs are fed into our refinement module
Rϕ, and the obtained predictions replace the coarse matte
corresponding position to obtain the refined alpha matte γr.

3.5. Optimization

We train the proposed dugMatting in two stages to enhance
the stability, i.e., optimizing Fθ to empower the epistemic
uncertainty-based interaction andRϕ to refine details.

For the optimization of Fθ, intuitively, we need to simu-
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Table 1. Comparison results on the benchmarks P3M-500-P (Li et al., 2022) and P3M-500-NP (Li et al., 2022). ‡, † denote predictions
without and with user map, respectively. For all metrics, the smaller value indicates the better performance.

P3M-500-P P3M-500-NP
Method SAD MSE MAD Grad SADbf SADt Conn SAD MSE MAD Grad SADbf SADt Conn
SHM (Chen et al., 2018) 26.84 1.26 1.65 20.18 16.90 9.94 23.30 30.20 1.46 1.93 20.31 17.99 12.21 26.06
U2Net (Qin et al., 2020) 73.48 1.99 4.51 33.06 48.54 26.91 53.81 70.67 1.89 4.51 34.89 42.75 27.91 53.29
MODNet (Ke et al., 2022) 23.86 1.11 1.46 23.74 16.40 7.46 21.02 25.39 1.20 1.61 21.15 17.41 7.98 22.22
GFM (Li et al., 2022) 12.90 0.58 0.79 14.61 5.98 6.93 11.33 17.01 0.85 1.09 14.54 8.84 8.17 14.86
P3MNet (Li et al., 2021) 12.73 0.56 0.78 13.89 5.95 6.78 11.14 16.49 0.80 1.05 12.75 8.97 7.54 14.35
SHM (dugMatting) ‡ 21.43 1.26 1.51 17.82 11.57 10.07 19.32 39.67 1.66 2.43 17.23 28.27 11.40 33.88
U2Net (dugMatting) ‡ 60.21 1.76 4.24 28.74 31.66 28.55 47.34 82.67 2.29 5.07 31.65 51.29 31.38 60.12
MODNet (dugMatting) ‡ 18.15 0.72 1.04 15.57 9.59 8.55 16.75 35.66 1.49 2.07 16.04 24.26 11.40 32.83
GFM (dugMatting) ‡ 9.25 0.40 0.63 13.79 3.18 6.71 9.29 19.01 0.86 1.14 14.14 9.27 9.73 16.45
P3MNet (dugMatting) ‡ 10.08 0.46 0.69 14.61 4.03 7.01 10.30 16.12 0.66 0.94 14.15 6.92 9.18 13.81
△ Average gain ‡ -2.13 -0.17 -0.21 0.13 -6.01 1.86 -1.54 14.31 0.15 0.29 1.02 6.67 5.02 7.86
SHM (dugMatting) † 13.87 0.36 0.85 15.21 4.83 9.04 11.42 18.22 0.51 1.11 13.99 6.57 11.65 15.16
U2Net (dugMatting) † 35.23 1.35 2.16 19.32 22.78 12.45 32.76 39.86 1.67 2.44 20.12 21.26 18.60 33.91
MODNet (dugMatting) † 9.62 0.29 0.55 12.88 2.63 6.98 9.05 11.08 0.33 0.64 11.75 3.19 7.88 10.99
GFM (dugMatting) † 7.90 0.23 0.46 12.31 1.29 6.60 6.59 9.55 0.28 0.55 11.01 2.12 7.42 7.95
P3MNet (dugMatting) † 7.72 0.22 0.45 12.56 1.01 6.71 6.42 8.79 0.24 0.51 11.08 1.34 7.47 7.23
△ Average gain † -15.09 -0.61 -0.94 -6.64 -12.24 -3.24 -10.87 -14.45 -0.63 -0.98 -7.13 -12.29 -2.15 -11.10

late and supervise different predictions in real interaction
process, including the initial prediction, the prediction after
interaction, and the fused prediction. To simplify the train-
ing process, we analyze the purpose of supervision in the
three predictions. The supervision of the initial prediction
aims to train the network to conduct matting without user
map. The supervision of the prediction after interaction
aims to relate the network predictions to interaction, which
assumes the user map is generated according to epistemic
uncertainty. The supervision of the fused prediction aims to
stabilize the the fusion result. Based on above analysis, we
can jointly supervise the initial prediction and the prediction
after interaction by generating random user map U includ-
ing the empty case. The details of user map can be found in
Appendix B.1. The supervision of the fused prediction can
be removed because the fusion strategy in Equation (2) is
exactly for stabilization. Therefore, the simplified supervi-
sion is similar to the previous interactive matting methods
(Wei et al., 2021), which only needs to pass through the
model once in each iteration. The loss of the first stage can
be expressed as

Lstage1 = LNIG(γ, ω, α, β; θ) + LM (γ; θγ),

where minimizing LNIG optimizes the parameters of NIG
distribution to replace the regression loss (e.g., l1 loss or
l2 loss) in common matting methods, and LM denotes the
additional terms (e.g., Laplacian loss (Li et al., 2022)) about
matte in the original matting methods.

For the optimization ofRϕ, we first freeze the parameters
θ of Fθ. Then, we can obtain the γs and k patches of
interest {γp

s}k according to Section 3.4. The l1 distance
with the ground truth y in matte and gradient map are used
for supervision. The loss of the second stage is

Lstage2 = ||y − γr||1 + ||▽y − ▽γr||1,

where γr = Rϕ(γ
k
s , γs), γs = (γ + ϵ), ϵ ∼ N (0,E(σ2)).

4. Experiments
4.1. Experimental Setup

Dataset. We conduct extensive experiments on standard nat-
ural matting dataset Composition-1k (Xu et al., 2017) and
the real-world portrait dataset P3M-10K (Li et al., 2021).
Composition-1k (Xu et al., 2017) contains 43,100 synthetic
images for training and 1000 synthetic images for testing.
P3M-10K (Li et al., 2021) consists of 10, 000 anonymized
high-resolution portrait images with face obfuscation, con-
taining 9, 421 images for training and 500 images denoted
as P3M-500-P for testing. Besides, for P3M-10K there are
additional 500 public Internet images without face obfus-
cation to test the matting performance on regular portrait
images, denoted as P3M-500-NP.

Implementation Details. For class-specific matting, we
train all models with the same data augmentations setting
for a fair comparison, including random horizontal flipping,
random blurring, random sharpen, random shadow, and
then random cropping to 512× 512 in the end. All models
are optimized using the Adam optimizer (Kingma & Ba,
2014), and the base learning rate is set to 1× 10−3 with the
cosine learning rate scheduler (He et al., 2019), 100 epochs
iteration, and batch size of 16. For natural image matting,
we use the standard setting as specified by MatteFormer
(Park et al., 2022). Our implementation 1 is based on the
open source framework Pytorch . All the experiments were
run on two GeForce RTX 3090 GPUs.

Evaluation Metrics. For Composition-1k, we employ mul-

1Code is available at https://github.com/
Fire-friend/dugMatting.
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Table 2. Quantitative comparison results of natural matting on Composition-1K (Xu et al., 2017) benchmark.
Method User Map SAD (103) ↓ MAD↓ MSE (10−3) ↓ Grad ↓ Conn↓
Learning Based Matting (Zheng & Kambhamettu, 2009) Trimap 113.9 0.0501 48.0 91.6 122.2
Closed-Form Matting (Levin et al., 2007) Trimap 168.1 0.0739 91.0 126.9 167.9
KNN Matting (Chen et al., 2013) Trimap 175.4 0.0771 103.0 124.1 176.4
Deep Image Matting (Xu et al., 2017) Trimap 50.4 0.0221 14.0 31.0 50.8
AlphaGan (Lutz et al., 2018) Trimap 52.4 0.0231 30.0 38.0 -
IndexNet (Lu et al., 2019) Trimap 45.8 0.0201 13.0 25.9 43.7
HAttMatting (Qiao et al., 2020) Trimap 44.0 0.0193 7.0 29.3 46.4
AdaMatting (Cai et al., 2019) Trimap 41.7 0.0183 10.0 16.8 -
sampleNet (Tang et al., 2019) Trimap 40.4 0.0177 9.9 - -
Fine-Grained Matting (Liu et al., 2021a) Trimap 37.6 0.0165 9.0 18.3 35.4
Context-Aware Matting (Hou & Liu, 2019) Trimap 35.8 0.0157 8.2 17.3 33.2
GCA Matting (Li & Lu, 2020) Trimap 35.3 0.0155 9.1 16.9 32.5
HDMatt (Yu et al., 2021b) Trimap 33.5 0.0147 7.3 14.5 29.9
MG Matting (Yu et al., 2021c) Mask 31.5 0.0138 6.8 13.5 27.3
TIMNet (Liu et al., 2021c) Trimap 29.1 0.0128 6.0 11.5 25.4
SIM (Sun et al., 2021) Mask 28.0 0.0123 5.8 10.8 24.8
MatteFormer (Park et al., 2022) Trimap 23.8 0.0104 4.0 8.7 18.9
MG Matting (dugMatting) w/o 36.5 0.0161 8.5 17.8 33.6
MG Matting (dugMatting) 1-Selection 32.3 0.0142 7.1 14.2 28.6
MG Matting (dugMatting) 2-Selection 30.2 0.0132 6.4 11.8 26.1
MatteFormer (dugMatting) w/o 34.1 0.0149 5.7 15.6 31.2
MatteFormer (dugMatting) 1-Selection 25.8 0.0112 4.3 9.7 22.3
MatteFormer (dugMatting) 2-Selection 23.4 0.0102 3.9 7.2 18.8

tiple quantitative metrics, i.e., sum of absolute differences
(SAD), mean absolute difference (MAD), mean squared
error (MSE), gradient (Grad), and connectivity (Conn). For
P3M-10K, we also adopt the above metrics and report the
additional SADbf and SADt to compute the SAD within
the foreground-background regions and transition regions.

4.2. Quantitative Analysis

Class-specific Matting. To validate our methods on class-
specific matting task, we compare our algorithm with state-
of-the-art trimap-free methods (Chen et al., 2018; Qin et al.,
2020; Ke et al., 2022; Li et al., 2022; 2021) on real-world
portrait dataset (Li et al., 2021). As shown in Table 1, dug-
Matting without interaction outperforms the original trimap-
free methods on P3M-500-P, demonstrating that the way of
modeling uncertainty can improve the matting performance.
In addition, dugMatting significantly improves performance
when introducing once interaction, particularly by roughly
50% on P3M-500-NP, demonstrating that the interaction
is still useful even when dealing with data from different
domains.

Natural Image Matting. The natural image matting ex-
pects to extract the interesting foreground with the guidance
of user interaction. We first investigate the natural matting
methods (Zheng & Kambhamettu, 2009; Chen et al., 2013;
Xu et al., 2017; Levin et al., 2007; Lutz et al., 2018; Lu
et al., 2019; Qiao et al., 2020; Cai et al., 2019; Tang et al.,
2019; Liu et al., 2021a; Hou & Liu, 2019; Li & Lu, 2020; Yu
et al., 2021b;c) on Composition-1k (Xu et al., 2017). Then,

we employ the effective MG Matting (Yu et al., 2021c) and
MatteFormer (Park et al., 2022) as foundation models, inte-
grating our method to validate the performance on natural
matting task. Since the Composition-1k is a synthetic set,
it allows for the extraction of target objects without any
initial interaction. However, when dealing with arbitrary
images in real-world, we suggest providing an initial user
map through a single click and then utilizing our method
for further interaction. The quantitative results are shown
in Table 2. With only one or two interactions, our dugMat-
ting outperforms advanced trimap-based matting algorithms.
The reason is that reducing the decomposed uncertainties
can accurately improve the matte. We also conduct ex-
periments to compare the efficiency of existing interaction
methods in Appendix C.1.

4.3. Qualitative Analysis

Visual Comparison with State-of-the-art Methods. In
Figure 4, we visualize some results for intuitive comparison.
Although dugMatting uses a weaker prior, the results is
comparable to other trimap-based methods. In addition,
benefiting from modeling data noise, dugMatting produces
a matte that is more uniform and smooth. For instance, the
ground truth of the second example has some local opacity
mutations that do not occur in the real world, but dugMatting
also achieves a smooth outcome.

Visualization of Step-by-step Results in dugMatting. Fig-
ure 5 visualizes the step-by-step results of our dugMatting.
Our interaction can effectively improve the incorrect matting
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Input Trimap GT Closed-Form Learning DIM

IndexNet CAM GCA Matting MG Matting MatteFormer Ours

Input Trimap GT Closed-Form Learning DIM

IndexNet CAM GCA Matting MG Matting MatteFormer Ours

Figure 4. Qualitative examples on the Composition-1k (Xu et al., 2017) test set.

regions, and our refinement module can improve the details.
The reason is that external knowledge by user interaction
significantly reduces epistemic uncertainty, complementing
the unlearned foreground and background patches. Mean-
while, our refinement of modeling high-frequency noise
reduces the aleatoric uncertainty, enhancing the robustness
in patches containing more details.

Uncertainty Evaluation. We evaluate the uncertainty from
two aspects. The first one is to verify the region proposal
of our interaction and refinement, while the second one
is to validate the ability of uncertainty estimation which
is detailed in Appendix C.2. As shown in Figure 6, there
are much higher proportion of foreground and background
regions with large epistemic uncertainty (a). Thus select-
ing patches with top K patch-levels epistemic uncertainty
enables the user to concentrate on the annotation of fore-
ground and background. We further evaluate the ROC curve
between the regions obtained by two strategies and the real
transition (b). Our refined aleatoric uncertainty-based algo-
rithm significantly improves the AUC, demonstrating the
refined aleatoric uncertainty can improve more details.

4.4. Ablation Study

In this subsection, we first investigate the proposed com-
ponents and then independently analyze our plug-and-play
module. Furthermore, we perform additional experiment to

Table 3. Ablation study (SAD↓) of the NIG distribution and the
proposed module on the P3M-500-P dataset.

Method Original w/ NIG w/ NIG & Module
SHM (Chen et al., 2018) 26.84 24.65 21.43
U2Net (Qin et al., 2020) 73.48 69.76 60.21

MODNet (Ke et al., 2022) 23.86 20.04 18.15
GFM (Li et al., 2022) 12.90 10.89 9.25

P3MNet (Li et al., 2021) 12.73 12.03 10.38

Table 4. Ablation study (SAD↓) on our refined module on the P3M-
500-P dataset. Baseline uses the original trimap-free methods.

Method Baseline (Ke et al., 2022) Gaussian Module (our)
SADf 3.69 3.36 3.36
SADb 6.46 6.55 6.23
SADt 9.88 8.75 8.55

Aleatoric 0.0021 0.0015 0.0013

investigate the hyper-parameter of interaction numbers.

The Effectiveness of Each Component. We first evaluate
the uncertainty integration in matting, i.e., replacing the
deterministic output with a Normal-Inverse-Gamma distri-
bution, and then adding the proposed plug-and-play mod-
ule. As shown in Table 3, both NIG distribution and our
refinement module can improve the matting performance
over original methods, demonstrating the efficacy of the key
components in dugMatting.

The Effectiveness of Reducing Aleatoric Uncertainty.
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Figure 5. Visualization of step-by-step results in dugMatting. From left to right are input image, initial prediction, epistemic uncertainty,
user map, prediction after interaction, prediction after refinement, respectively.
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Figure 6. The correlation regions of decomposed uncertainties.
The proportion of foreground and background regions is higher
in high epistemic uncertainty. ROC of the obtained regions and
the real transition regions, refined aleatoric uncertainty-based algo-
rithm achieves better performance.

Following (Sambyal et al., 2022), we compare the augmen-
tation of our module and a Gaussian noise. The variance of
Gaussian noise is fixed, determined by the average aleatoric
uncertainty of all pixels. The augmentation of our module
also belongs to a Gaussian noise, but the variance is dy-
namic and determined by the aleatoric uncertainty of the
current pixel. The result of reducing the aleatoric uncer-
tainty is shown in Table 4. The proposed module achieves
the best performance, significantly decreasing the aleatoric
uncertainty and improving the performance.

The Hyper-parameter of Interaction Numbers. As shown
in Figure 7, regardless of SAD or epistemic uncertainty, the
most obvious improvement occurs in the first interaction,
and the performance improvement is slight improved after
the second interaction. Therefore, in order to balance the
performance and interaction time, the interaction number is
set as 1 unless otherwise specified.

5. Conclusion
In this paper, we propose a decomposed-uncertainty-guided
matting (dugMatting) algorithm for both trimap-free and
trimap-based matting. We first introduce epistemic uncer-
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Figure 7. SAD and epistemic uncertainty at different number of
interaction.

tainty to actively propose interactive regions, which sim-
plifies the search of difficult regions by user for trimap-
based matting. Besides, we propose a plug-and-play mod-
ule, which not only reduces the aleatoric uncertainty but also
improves the matting details. This is exciting because it first
explores different types of uncertainties in an explainable
and elegant way in matting. Extensive experiments are con-
ducted on natural matting and class-specific matting which
validates that the existing matting methods equipped with
dugMatting achieve superior performance than the original
ones. It would be interesting to further explore the image
structures (e.g., segments) for the goal of further computa-
tional efficiency and performance improvement. Another
direction for further research is to apply the proposed dug-
Matting to other related domains such as interactive image
segmentation.
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A. Proof
The marginal likelihood of Normal-Inverse-Gamma distribution by Type-II maximum likelihood technique is defined by

p(y|τ) =
∫
ζ

p(y|ζ)p(ζ|τ)dζ

=

∫ ∞

σ2

∫ ∞

µ=−∞
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=
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.

Maximizing the likelihood as Equation (1) by using the standard parameterization for Student t distribution makes our model
fit the data.

According to σ2 ∼ Γ−1(α, β), the V ar(σ2) is derived from

V ar(σ2) = E((σ2)2)− E((σ2))2,

where

E((σ2)n) =
β

Γ(α)

∫ ∞

0

σn−2α−2 exp(−β/σ2)dσ2

=
βα

Γ(α)

Γ(α− n)

βα−n

=
βnΓ(α− n)

(α− 1) · · · (α− n)Γ(α− n)

=
βn

(α− 1) · · · (α− n)
,

For α > 1, we have

E(σ2) =
β

α− 1
,

and for α > 2, we have

E((σ2)2) =
β2

(α− 1)(α− 2)
.

Accordingly, we can obtain the variance as

V ar(σ2) =
β2

(α− 1)2(α− 2)
.

B. More Details
B.1. Details of User Map

For the construction of user map U , we randomly sample L patches with 15 × 15, where L is drawn from a geometric
distribution with p = 1

6 . The user map U ∈ [−1, 0, 0.5, 1]1×H×W where foreground is 1, background is -1, transition is 0.5
and unknown is 0.
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B.2. Details of Refinement Module

Since the refinement module aims to recover the high-frequency details, we use the Naive Lite-HRNet-18 (Yu et al., 2021a)
and bilinear interpolation as the refinement module. The Naive Lite-HRNet-18 can efficiently preserve high-resolution
features with only 0.7M parameters.

C. More Experiments
C.1. Resource Comparison of Major Interaction

We also conduct a comparison experiment to explore the resource consumption of the major interaction methods. As shown
in Table 5, the trimap, scribble, and click methods do not require extra parameters while they need to take times between 17
and 260 seconds. In contrast, our method only takes 8 seconds and requires almost no extra parameters. The reason is that
our interaction method actively proposes the interaction area based on the epistemic uncertainty, allowing the user to focus
on the annotation. It significantly enhances the interaction efficiency.

Table 5. Comparison results of resource consuming on 10 samples of the Conposition-1K (Xu et al., 2017) benchmark.
Interaction method Times Extra Parameters

Trimap 261s -
Mask 234s -

scribble 171s -
Click 17s -

Selection (ours) 8s 0.7M

C.2. Uncertainty Estimation

We evaluate the epistemic uncertainty and aleatoric uncertainty on unseen P3M-500-NP test dataset using MODNet. The
input, absolute error, evaluation of epistemic uncertainty and aleatoric uncertainty are depicted in Figure 8. For the evaluation
of epistemic uncertainty, we use calibration curves to evaluate the estimation. Calibration curves are computed according
to (Kuleshov et al., 2018), and ideally follows y = x to represent, for example, that a target falls in a 90% confidence
interval approximately 90% of the time. It is observed that epistemic uncertainty matches error regions in most time. For the
evaluation of aleatoric uncertainty, we can find that the aleatoric uncertainty is misestimated in some cases, and the variance
of the aleatoric uncertainty can serve as an additional metric to identify these regions. Thus, it is appropriate for our strategy
to utilize epistemic uncertainty to identify areas of user interaction and aleatoric uncertainty to guide the refinement of
details.

(a) Input (b) Absolute 
error

(c) Epistemic
uncertainty

(e) Aleatoric
uncertainty

(f) Variance
of aleatoric

(g) Refined
aleatoric

(d) Calibration
curves

Figure 8. Uncertainty evaluation of MODNet. Epistemic uncertainty matches error regions in most time. Aleatoric uncertainty may
capture erroneous transition regions, the variance of aleatoric uncertainty can help to more precisely indicate transition regions.
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