
Personalized Federated Learning under Mixture of Distributions

Yue Wu * 1 Shuaicheng Zhang * 2 Wenchao Yu 3 Yanchi Liu 3 Quanquan Gu 1 Dawei Zhou 2 Haifeng Chen 3

Wei ChengB 3

Abstract
The recent trend towards Personalized Federated
Learning (PFL) has garnered significant atten-
tion as it allows for the training of models that
are tailored to each client while maintaining data
privacy. However, current PFL techniques pri-
marily focus on modeling the conditional distri-
bution heterogeneity (i.e. concept shift), which
can result in suboptimal performance when the
distribution of input data across clients diverges
(i.e. covariate shift). Additionally, these tech-
niques often lack the ability to adapt to unseen
data, further limiting their effectiveness in real-
world scenarios. To address these limitations, we
propose a novel approach, FedGMM, which uti-
lizes Gaussian mixture models (GMM) to effec-
tively fit the input data distributions across diverse
clients. The model parameters are estimated by
maximum likelihood estimation utilizing a feder-
ated Expectation-Maximization algorithm, which
is solved in closed form and does not assume
gradient similarity. Furthermore, FedGMM pos-
sesses an additional advantage of adapting to new
clients with minimal overhead, and it also enables
uncertainty quantification. Empirical evaluations
on synthetic and benchmark datasets demonstrate
the superior performance of our method in both
PFL classification and novel sample detection.

1. Introduction
The sheer volume of data at our disposal today is often se-
questered in isolated silos, making it challenging to access
and utilize. Federated Learning (FL) presents a ground-
breaking solution to this conundrum, enabling collaborative

*Equal contribution 1Department of Computer Science, Uni-
versity of California, Los Angeles, USA. 2Department of Com-
puter Science, Virginia Tech, Blacksburg, USA. 3NEC Laborato-
ries America, Princeton, USA. Correspondence to: Wei Cheng
<weicheng@nec-labs.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

learning across distributed data sources without compro-
mising the confidential nature of the original training data,
while also being fully compliant with government regula-
tions (Lim et al., 2020; Aledhari et al., 2020; Mothukuri
et al., 2021). This method has drawn a lot of attention in
recent years since it enables model training on diverse, de-
centralized data while protecting privacy and security. In
many applications, the model needs to be adjusted for each
device or user, notably the cross-device scenarios. These
situations are the focus of Personalized Federated Learning
(PFL), which tries to provide client-specific model parame-
ters for a certain model architecture. In this scenario, each
client aims to obtain a local model with a respectable test
result on its own local data distribution (Wang et al., 2019).

In order to cater to the unique needs of individual clients
and address the statistical diversity that exists among them,
existing PFL studies frequently resort to an elegant amal-
gamation of federated learning and other sophisticated ap-
proaches, such as meta-learning (Sim et al., 2019), client
clustering (Ghosh et al., 2020), multi-task learning (Marfoq
et al., 2021), knowledge distillation (Zhu et al., 2021), and
the lottery ticket hypothesis(Wang et al., 2022), to achieve
the desired level of personalization. For example, clients
can be assigned to many clusters, and clients in the same
cluster are assumed to use the same model via clustered FL
techniques (Ghosh et al., 2020). To train a global model as
a meta-model and then fine-tune the parameters for each
client, several researchers have embraced meta-learning
based methodologies (Sim et al., 2019; Jiang et al., 2019).
Wang et al. (Wang et al., 2022) suggested utilizing a rout-
ing hypernetwork to expertly curate and assemble modular
blocks from a globally shared modular pool, in order to
craft bespoke local networks through the application of the
lottery ticket theory. A recent study (Marfoq et al., 2021)
that leveraged the multi-task learning concept posited that
each client’s data distribution was a composite of M under-
lying distributions, and proposed the use of a linear mixture
model to make tailored decisions based on the shared com-
ponents among them. It optimizes the varying conditional
distribution Pc(y|x) under the assumption that the marginal
distributions Pc(x) = Pc′(x) are the same for all clients
(Assumption 2 in (Marfoq et al., 2021)).

While these approaches are adept at addressing the issue of

1

Personalized Federated Learning under Mixture of Distributions

conditional distribution heterogeneity, commonly referred
to as concept shift, within PFL, they fall short in addressing
the more comprehensive issue of general statistical hetero-
geneity which encompasses other forms of variability, such
as feature distribution skew (i.e., covariate shift) (Kairouz
et al., 2021), that is each client has different input marginal
distributions (i.e., Pc(x) ̸= Pc′(x)). For example, even
with handwriting recognition, users may exhibit variations
in stroke length, slant, and other nuances when writing the
same phrases. In reality, data on each client may be deviated
from being identically distributed, say, Pc ̸= Pc′ for clients
c and c0. That is, the joint distribution Pc(x,y) (can be
rewritten as Pc(y|x)Pc(x)) may be different across clients.
We refer to it as the “joint distribution heterogeneity” prob-
lem. Current approaches fall short of fully encapsulating the
intricacies of the variations in the joint distribution among
clients, owing to their tendency to impose a presumption of
constancy on one term while adjusting the other (Marfoq
et al., 2021; Zhu et al., 2021).

Besides, cross-device federated learning applications are
often faced with a phenomenon known as client drift. This
occurs when the learning model is deployed in a real-world
online setting, and the distribution of inputs it encounters
differs from the distribution it was trained on. As a result,
the model’s performance may be severely impacted. For
instance, a PFL model trained on the historical medical
records of a specific patient population may exhibit sig-
nificant regional or demographic biases when tested on a
new patient (Shukla & Marlin, 2019; Purushotham et al.,
2017). To mitigate this, it is crucial to develop a cutting-
edge PFL methodology that can easily adapt to new clients
while incorporating the capability to perform uncertainty
quantification. The key to achieving this lies in the ability to
identify and account for any outliers that may deviate from
the established training data distribution. Such a methodol-
ogy would elevate PFL to a practical solution, enabling it to
be deployed in a wide range of applications with confidence.

In this study, we propose a Federated Gaussian Mixture
Model (FedGMM) approach, which utilizes Gaussian mix-
ture models to tackle the aforementioned issues. Our ap-
proach operates under the assumption that the joint distribu-
tion of data is a linear mixture of several base distributions.
FedGMM builds up PFL by maximizing the log-likelihood
of the observed data. To maximize the log-likelihood of
the mixture model, we suggest a federated Expectation-
Maximization (EM) algorithm for model parameter learn-
ing. The update rule for the Gaussian components has a
closed-form solution and does not resort to gradient meth-
ods. To ensure convergence of the EM update rule, we
incorporate our algorithm with the theoretical analysis of
federated EM for GMMs. The Gaussian parameters inferred
by the server offer a detailed global statistical descriptor of
the data, and can be applied for various purposes, including

density estimation and clustering, etc.

To sum up, our contributions are as follows:

• For the first time, this study explicitly addresses the
challenging issue of joint distribution heterogeneity in
PFL. Our approach serves as a novel solution to this
problem, enabling the capability to perform uncertainty
quantification. Furthermore, the proposed approach is
designed to be highly flexible, allowing for easy in-
ference of new clients, who did not participate in the
training phase. This is achieved by learning their per-
sonalized mixture weights with a small computational
overhead.

• Our method presents a highly adaptable framework that
is independent of supervised discriminative learning
models, making it easily adaptable to other learning
models. The model parameters are learned in an end-to-
end fashion via maximum likelihood estimation, specif-
ically a federated Expectation-Maximization (EM) al-
gorithm. Furthermore, we have theoretically analyzed
the convergence bound of our log-likelihood function,
providing a solid theoretical foundation for our ap-
proach. The federated learning process for the Gaus-
sian mixture is a novel federated unsupervised learning
approach, which may be of independent interest.

• In the experiments, we assessed our technique on both
artificial and real-world datasets to validate its efficacy
in simulating the mixture joint distribution of PFL data
for classification, as well as its capacity to discover
novel samples. The outcomes show that our technique
performs significantly better than the state-of-the-art
(SOTA) baselines.

2. Problem Formulation
Notations We use lowercase letters/words to denote
scalars, lowercase bold letters/words to denote vectors, and
uppercase bold letters to denote matrices. We use ∥·∥ to indi-
cate the Euclidean norm. We also use the standard O and Ω
notations. For a positive integer N , [N] := {1, 2, . . . , N}.

We focus on the personalized federated classification task.
Suppose there exist C clients. Each client c ∈ [C] has its
own dataset of size Nc, where a sample sc,i = (xc,i,yc,i)
is assumed to be drawn from its distribution Pc(x,y). The
local data distribution Pc(x,y) can be different. Therefore,
it is natural to choose different hypotheses hc ∈ H for each
client c. Here, H can be some general and highly expressive
function class like neural networks.

In this work, we use hc(x,y) (sometimes denoted by hc(s))
to represent the likelihood of the sample s = (x,y). For
classification tasks, the goal is naturally to achieve the ex-

2

Personalized Federated Learning under Mixture of Distributions

pected maximum log-likelihood:

∀c ∈ [C], max
hc2H

E
(x,y)�Pc

�
log
�
hc(x,y)

��
.

2.1. Mixture of Joint Distributions

To facilitate federated learning, it is necessary to pose as-
sumptions on how the distributions of different clients are
similar, such that the data from one client can be utilized to
improve the learning of other clients. To this end, we adopt
the simple but general assumption that the distribution of
one client is a mixture of several base distributions:

Pc(x,y) =

MX
m=1

π�c (m)P(m)(x,y),∀c ∈ [C]. (1)

Here, P(m) denotes the m-th base distribution that is shared
across all clients, while π�c (m) can differ for different client
c. With this presumption, we may benefit from the fact
that any client can gain knowledge from datasets collected
from all other clients but eschew clear statistical assump-
tions about local data distributions, and the heterogeneous
joint distribution can be accurately modeled as well. This
assumption in a federated setting was first introduced by
Marfoq et al. (2021) and was named FedEM. What differs
is that Marfoq et al. (2021) additionally assumes that the
marginal distributions of each base distribution P(m)(x) are
the same. This implies that every client has the same input
distribution Pc(x) = Pc′(x), while the conditional distri-
butions Pc(y|x) are different across different clients, and
admit a form of linear mixtures.

Pc(y|x) =
MX

m=1

π�c (m)P(m)(y|x). (2)

This assumption simplifies what the clients must learn:
the mixture weights π�c (·) and the conditional distribu-
tion P(m)(y|x). In other words, the training objective
will degenerate to minimizing the cross entropy for clas-
sification, rather than to maximizing the likelihood of
{(xc,i,yc,i)}i2[Nc]. In contrast, if we allow P(m)(x) to
be different, then the conditional probability will appear in
the following form:

Pc(y|x) =
PM

m=1 π
�
c (m)P(m)(y|x)P(m)(x)PM

m=1 π
�
c (m)P(m)(x)

. (3)

It is clear that aside from learning the conditional distribu-
tion P(m)(y|x), to faithfully characterize the conditional
probability, we also need to learn the base input distribution
P(m)(x). Figure 1 shows that when P(m)(x) are indeed
different, there will be a fundamental gap between the clas-
sification errors.

(a) Same Pc(x) (b) Different Pc(x)

Figure 1. An illustrative example: data are drawn from a mixture
of two distributions: P(1)(x) = N (x;�2, 1.5), y = f (1)(x) =
1fx < �2g and P(2)(x) = N (x; 2, 1.5), y = f (2)(x) = 1fx <
2g. Figure (a) shows how an algorithm that assumes P(1) = P(2)

fails to predict the label correctly. Figure (b) shows that once the
input distribution is considered, the model can fully capture the
data distribution.

3. Proposed Method
3.1. Motivation

It is widely known that the likelihood maximization prob-
lem under a linear mixture structure can be solved by the
Expectation-Maximization (EM) technique. Consider the
following learning objective: ∀c ∈ [C],

max
πc,�,�

E
(x,y)�Pc

h
log
� MX

m=1

πc(m)P�m(x)P�m(y|x)
�i

.

Similar to Marfoq et al. (2021), this kind of problem can be
solved by optimizing the parameters �m and �m separately
via gradient methods. The difficulty in learning P(m)(x)
lies in that most modern density estimation models (such as
auto-regressive models, normalizing flows, etc) are either
very large, rendering it impractical for edge devices, or
taking extremely long training time.

To learn the input distribution Pc(x) efficiently, we resort
to Gaussian mixture models (GMM); for the conditional
distribution Pc(y|x), we follow the same idea as Marfoq
et al. (2021), to use light-weighted, parameterized super-
vised learning models.

3.2. Models

Formally, we define our model as:

• All clients share the GMM parameters {�m1
,Σm1

}
for any m1 ∈ [M1].

• All clients share the supervised learning parameters
�m2

for m2 ∈ [M2].

• Each client c keeps its own personalized
learner weights πc(m1,m2), which satisfiesP

m1,m2
πc(m1,m2) = 1.

3

Personalized Federated Learning under Mixture of Distributions

Note that M1 is the number of Gaussian components, and
M2 is the number of learners. Under our definition of the
models above, for client c, its hypothesis is defined as:

hc(x,y) :=
X

m1,m2

πc(m1,m2)N (x;�m1 ,Σm1)P�m2
(y|x),

where N (·;�,Σ) denotes the probability density of multi-
variate Gaussian distribution1, and P�(y|x) is some
supervised-learning model parameterized by �.

Under this formulation, our optimization target becomes
∀c ∈ C (we omit M1 or M2 when clear):

max
�c;θ

E
(x;y)∼Pc

h
log
� X
m1;m2

πc(m1,m2)N (x; �m1
,�m1

)Pθm2
(yjx)

�i
.

3.3. The Centralized EM Algorithm

To reduce notation clutter, we use m = (m1,m2) and
Θm = (�m1

,Σm1
,�m2

). We denote our model as
Pπc,�(x,y) =

P
m πc(m)P�m

(x,y). Under this simpli-
fied notation, we can derive the EM algorithm as follows.
Here we first provide a brief derivation of the centralized EM
algorithm. Later on, we will extend it to the client-server
EM algorithm in a federated setting.

Denote qs(·) as a probability distribution over [M], where
s = (x,y). Also, for each sample, we assume it is drawn
by first sampling the latent random variable z ∼ πc(·) and
then sampling (x,y) ∼ P�z

(x,y).

To derive the centralized EM algorithm, we can establish
the following lower bound of the likelihood for a sample
(x,y):

log
�
P�c;�(x,y)

�
�

X
m∈[M]

qs(m) log

�
P�c;�(z = m,x,y)

qs(m)

�

=
X

m∈[M]

qs(m)

�
log

�
P�c;�(z = m)

qs(m)

�
+ log

�
P�c;�(x,yjz = m)

��

=
X

m∈[M]

qs(m)

�
log

�
πc(m)

qs(m)

�
+ log

�
P�m (x,y)

��
(4)

=
X

m∈[M]

qs(m)

�
log

�
P�c;�(z = mjx,y)

qs(m)

�
+ log

�
P�c;�(x,y)

��
,

(5)

where the first inequality is due to Jensen’s inequality. Equa-
tion (4) comes from the first equation (the line directly
above (4)); Equation (5) comes from the same line by de-
composing Pπc,�(z = m) into the conditional probability.

The EM algorithm will try to maximize Equation (4) and
(5) alternatively, to ensure the lower bound of the likelihood
(also called evidence lower bound) is maximized. This leads
to the following update form:

1The probability density of multi-variate Gaussian is defined as:
N (x;�,�) := 1p

(2π)ddet(Σ)
exp

�
� 1

2
(x��)>��1(x��)

�
.

• E-Step: Fix πc and Θ, maximize Equation (5) via
qs(m) for each s = (x,y), we see the optimal solution
will be

qs(m) = Pπc,�(z = m|x,y)
∝ Pπc,�(z = m,x,y) = πc(m)P�m

(x,y).

• M-Step: Fix qs(·|x,y), maximize Equation (4) via πc

and Θ, we see the optimal solution will be

πc(m) =
1

Nc

NcX
i=1

qsi(m),

Θm = argmax
�

NcX
i=1

qsi(m) log(P�(xi,yi)).

Now we substitute m = (m1,m2) and Θm =
{�m1 ,Σm1 ,�m2}. We can index the base component
Pm1,m2(x,y) = N (x;�m1 ,Σm1) · P�m2

(y|x). Substi-
tuting the specific model into the EM update rules proposed
before, we can write the update rule at step t as:

• E-Step: For each client c ∈ [C], for each i ∈ [Nc],

q(t)
sc;i(m1,m2) / π(t�1)

c (m1,m2)N (xc,i;�
(t�1)
m1

,�(t�1)
m1

)

� P
θ

(t−1)
m2

(yc,ijxc,i). (E)

• M-Step: For each client c ∈ [C], m1 ∈ [M1], m2 ∈
[M2],

π(t)
c (m1,m2) =

1

Nc

NcX
i=1

q(t)
sc;i(m1,m2), (M)

�(t)
m1,c =

PNc
i=1

P
m2

q
(t)
sc;i(m1,m2)xc,iPNc

i=1

P
m2

q
(t)
sc;i(m1,m2)

,

�(t)
m1

=

PNc
i=1

P
m2

q
(t)
sc;i(m1,m2)(xc,i � �(t)

m1,c)(xc,i � �(t)
m1,c)

>PNc
i=1

P
m2

q
(t)
sc;i(m1,m2)

,

�(t)
m2,c = arg max

θ

NcX
i=1

X
m1

q(t)
sc;i(m1,m2) log(Pθ(yijxi)).

The update rule for � and Σ in the M-step is obtained by
explicitly solving the optimization problem. Notice that
for �m2,c, the maximization objective is equivalent to the
(weighted) cross-entropy loss for classification.

3.4. The Client-Server EM Algorithm

Federated learning restricts that each client can only access
their own data. In this section, we describe how to extend
the centralized EM algorithm to the federated client-server
setting. Equation (E) and (M) describes how the client
should maintain their personalized weights π(t)

c , their own
estimation of the shared GMM bases (�(t)

m1,c,Σ
(t)
m1,c) and

the base learners �(t)
m2,c. When a central server is present,

4

Personalized Federated Learning under Mixture of Distributions

each client shall send their own parameters to the server
and the server will aggregate the parameters and broadcast
the aggregated parameter back to all clients. The detailed
federated algorithm 1 is included in Appendix A.

More speci�cally, at each round, (1) the central server
broadcasts the aggregated base models to all clients; (2)
each client locally updates the parameter of the base
models and the mixture weights according to Equa-
tion (E) and (M); (3) the clients send the updated com-
ponents(� (t)

m 1 ;c ; � (t)
m 1 ;c); � (t)

m 2 ;c and the summed response
 (t)

c (m1; m2) =
P

i 2 [N c] q(t)
sc;i (m1; m2) back to the server;

4) the server aggregates the updates as follows:

� (t)
m 1

=

P
c2 [C]

P
m 2 2 [M 2] (t)

c (m1; m2)� (t)
m 1 ;c

P
c2 [C]

P
m 2 2 [M 2] (t)

c (m1; m2)
;

� (t)
m 1

=

P
c2 [C]

P
m 2 2 [M 2] (t)

c (m1; m2)� (t)
m 1 ;c

P
c2 [C]

P
m 2 2 [M 2] (t)

c (m1; m2)
;

� (t)
m 2

=

P
c2 [C]

P
m 1 2 [M 1] (t)

c (m1; m2)� (t)
m 2 ;c

P
c2 [C]

P
m 1 2 [M 1] (t)

c (m1; m2)
:

3.5. Theoretical Guarantees

Since most federated learning algorithms are gradient-based,
their convergence analyses usually assume the gradients of
different clients are similar. For small steps of updates, the
averaged updated parameters can still enjoy a decrease in
the training loss. This is not the case for our GMM updates,
because the M-step uses the closed-form solution for each
client and then aggregates them, which means the widely-
adopted gradient-similarity assumption will not help.

What we present in the following is an analysis of purely
federated Gaussian Mixture Models. The convergence guar-
antee for the gradient-updated parameter� will have identi-
cal assumptions and proof as in Marfoq et al. (2021). We
choose to omit the convergence result for� . When leaving
� out, we obtain a pure unsupervised likelihood maximiza-
tion algorithm 2 in Appendix A. The centralized version
of it is exactly the classical EM algorithm for GMM. The
federated learning process for the Gaussian mixture is a
novel federated unsupervised learning approach, which may
be of independent interest.

To show the convergence of the proposed client-server EM
algorithm, we consider the case that� m is �xed to I , and
only � is updated and aggregated. This assumption is widely
adopted in previous works regarding the convergence of
EM algorithms for GMM. It is also well known that if the
covariance matrix� m is not restricted, GMM can assign
one componentN (�; � m ; � m) to one single data pointx
such that� m = x and� m ! 0, so that the likelihood goes
to positive in�nity. Assuming� m = I prevents this kind of

unwanted divergence.

Theorem 1. DenoteF (� 1:M ; � 1:C) as the log-likelihood
function, then we have

1
T

TX

t =1

jF (� (t)
1:M ; � (t)

1:C) � F (� (t � 1)
1:M ; � (t � 1)

1:C)j = O(T � 1):

Theorem 1 implies that the log-likelihood will �nally con-
verge to a maximum. The idea of the proof (details included
in Appendix B) relies on the use of �rst-order surrogates
of F to establish that each M-step will always increase the
log-likelihood.

4. Experiments

4.1. Datasets

Synthetic dataset.The synthetic dataset can be seen as a
d-dimensional extension of Figure 1. More speci�cally,
assume there areM Gaussian componentsP(m) (x) =
N (x; � m ; I d), with a corresponding labeling function
F (m) (x) = 1f (x � � m)> vm > 0g, where� m andvm are
speci�ed beforehand. For each clientc, the data generation
is as follows: 1). sample� c from the Dirichlet distribution
Dir(�) with � = 0 :4 to serve as the heterogeneous mix-
ture weight; 2). for each samplei 2 [Nc], �rst generate
zi � � c(�); 3). then drawx i � P(zi) (x i) = N (x; � zi ; I d)
andyi = F (zi) (x i). For the experiments, we setM = 3
andd = 32. We generateC = 300 clients and each client
has aroundNc = 3000 samples.

Real datasets. We also use three federated benchmark
datasets spanning different machine learning tasks to evalu-
ate the proposed approach: image classi�cation on CIFAR-
10 and CIFAR-100 (Krizhevsky et al., 2009), handwriting
character recognition on FEMNIST (Caldas et al., 2018a).
We preprocessed all the datasets in the same manner as pre-
viously in (Marfoq et al., 2021) to build the testbed. To sim-
ulate the joint distribution heterogeneity, we sample 50% of
image data (denoted asD2, D = D1 [D 2) to perform a two-
step approach for prepossessing image data: 1) we simulate
heterogeneity ofPc(x) by transforming sampled images
with 90-degree rotation, horizontal �ip and inverse (Shorten
& Khoshgoftaar, 2019) (denoted asT(�)); 2) we introduce
heterogeneity inPc(y jx) by applying a randomly generated
permutation (denoted asPA) to the labels of the transformed
image data. Formally, the new dataset, denoted asbD, is de-
�ned as follows: bD = D1 [f (T(x); PA (y)) j(x ; y) 2 D 2g:
In this way, we can obtain data from different joint distri-
butions. We create the federated setting of CIFAR-10 by
distributing samples with the same label across the clients
according to a symmetric Dirichlet distribution with param-
eter 0.4, as in (Marfoq et al., 2021). CIFAR-100 data are
distributed following (Marfoq et al., 2021). For all tasks, we
randomly split each local dataset into training (60%), valida-

5

Personalized Federated Learning under Mixture of Distributions

tion (20%), and test (20%) sets. In Table 1, we summarize
the datasets, tasks, number of clients, the total number of
samples, and backbone discriminative architectures.

4.2. Baseline Methods

To demonstrate the ef�ciency of our method, we compare
the proposed FedGMM with the following baselines:

• Local: a personalized model trained only on the local
dataset at each client;

• FedAvg (McMahan et al., 2017): a generic FL method
that trains a unique global model for all clients;

• FedProx (Li et al., 2020): a re-parametrization of Fe-
dAvg to tackle statistical heterogeneity in FL;

• FedAvg+ (Jiang et al., 2019): a modi�cation of FedAvg
with two stages of training and local tuning;

• Clustered FL (Sattler et al., 2020): a framework ex-
ploiting geometric properties of the FL loss surface
which groups the client population into clusters using
conditional distributions;

• pFedMe (T Dinh et al., 2020): a bi-level optimization
PFL that decouples the optimization of personalized
models from learning the global model;

• FedEM (Marfoq et al., 2021): a federated multi-task
learning approach assuming that local data distribu-
tions are mixtures of underlying distributions.

4.3. Implementation Details

To properly initialize each base component of the GMM, we
employ a Resnet18 (He et al., 2016) encoder that has been
pre-trained on the ImageNet dataset to encode input images
and generate embeddings of dimension 512. Recognizing
that high dimensionality can lead to increased computational
complexity and reduced effectiveness of GMM, we utilize
PCA (Jolliffe, 1986) to project the encoded embeddings into
a lower-dimensional space of 48. For the sake of fairness in
comparison, it is important to note that the Resnet18 encoder
and PCA are exclusively employed for preprocessing inputs
of the GMM component, while the inputs for the supervised
backbone are raw images.

For each method, we follow (Marfoq et al., 2021) to tune
the learning rate via grid search. In our experiments, the
number of local epochs of each method is set to 1, the total
communication round is set to 200, and the batch size is set
to 128, as in (Marfoq et al., 2021). For a fair comparison,
we adopt the same supervised backbone architecture for all
baselines. More implementation2 details are included in
Appendix C.1.

4.4. Classi�cation

The results are shown in Table 2. The evolution of aver-
age test accuracy over time for each experiment is shown
in the Appendix. From the table, we observe that FedAvg
surpasses Local, which indicates that federated training im-
proves performance because of taking advantage of knowl-
edge from other clients. However, personalized methods
such as FedAvg+, ClusteredFL, and pFedMe perform worse
than FedAvg because they only locally adjust the global
model on each client. This strategy is not suf�cient to cap-
ture the diversity of the joint distribution and cannot handle
sample-speci�c personalization when samples come from
different marginal distributions have varying labeling func-
tions. ClusteredFL also fails to outperform FedAvg on all
datasets, highlighting the importance of knowledge sharing
between clusters for training good personalized models. Fe-
dEM, on the other hand, performs better than other PFL
baselines on most datasets by effectively modeling the het-
erogeneity of conditional distributions. As shown in the
table, FedGMM outperforms all baselines, achieving 26.1%
and 9.8% improvement on CIFAR-100 and Synthetic dataset
respectively compared to the leading baselines. This is a
result of its ability to construct personalized models based
on the joint data distribution, effectively capturing the het-
erogeneity of each sample across different clients.

Besides, to see how the simulation results would change if
we deviate from Gaussian assumptions, we conducted the
following synthetic experiments. We use two settings to
conduct the comparison. Setting 1 considers non-Gaussian
input distribution. Setting 2 is also a synthetic setting, where
some of the clients completely differ from others. Speci�-
cally, Setting 1 is the same as our Gaussian synthetic setting,
but the data-generating distribution is different. Here, we
adopt two different distributions, i.e., Laplace and Beta dis-
tributions. Other distributes would be similar. First, we
generate 3d-dimensional (d = 32) components based on
the selected distribution type. Each component is deter-
mined either by the mean vector� for Laplace distribution
or the vectors� and � for Beta distribution. Then, we
generate data from these components using multivariate dis-
tribution. We use Dirichlet distribution to distribute data
to each client. Totally, we have 30 clients. For Setting 2,
some clients sampled data from Gaussian, the others from
a different distribution (i.e., Laplace or Beta distribution).
Similarly, we also use 30 clients for simulation. The �rst 20
clients' data are sampled from Gaussian, and the data of the
last 10 clients are sampled from selected distribution, i.e.,
Laplace or Beta distribution. We use Dirichlet distribution
to distribute data to each client. The results are summarized
in Table. 3. From the table, we can observe that under
both settings, our method can still perform well since our

2https://github.com/zshuai8/FedGMMICML2023

6

