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Abstract
Federated bilevel optimization has attracted in-
creasing attention due to emerging machine learn-
ing and communication applications. The biggest
challenge lies in computing the gradient of the
upper-level objective function (i.e., hypergradient)
in the federated setting due to the nonlinear and
distributed construction of a series of global Hes-
sian matrices. In this paper, we propose a novel
communication-efficient federated hypergradient
estimator via aggregated iterative differentiation
(AggITD). AggITD is simple to implement and
significantly reduces the communication cost by
conducting the federated hypergradient estima-
tion and the lower-level optimization simultane-
ously. We show that the proposed AggITD-based
algorithm achieves the same sample complexity
as existing approximate implicit differentiation
(AID)-based approaches with much fewer com-
munication rounds in the presence of data het-
erogeneity. Our results also shed light on the
great advantage of ITD over AID in the feder-
ated/distributed hypergradient estimation. This
differs from the comparison in the non-distributed
bilevel optimization, where ITD is less efficient
than AID. Our extensive experiments demonstrate
the great effectiveness and communication effi-
ciency of the proposed method.

1. Introduction
Bilevel optimization has drawn significant attention from
the machine learning (ML) community due to its wide ap-
plications in ML including meta-learning (Finn et al., 2017;
Rajeswaran et al., 2019), automated hyperparameter opti-
mization (Franceschi et al., 2018; Feurer & Hutter, 2019),
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reinforcement learning (Konda & Tsitsiklis, 1999; Hong
et al., 2020), adversarial learning (Zhang et al., 2022; Liu
et al., 2021a), signal processing (Kunapuli et al., 2008) and
AI-aware communication networks (Ji & Ying, 2023). Ex-
isting studies on bilevel optimization have mainly focused
on the single-machine scenario. However, due to compu-
tational challenges such as the second-order hypergradient
computation and the increasing scale of problem models
(e.g., deep neural networks), learning on a single machine
turns out to be inefficient and unscalable. In addition, data
privacy has also arisen as a critical concern in the single-
machine setting recently (McMahan et al., 2017). These
challenges have greatly motivated the recent development of
federated bilevel optimization, with emerging applications
such as federated meta-learning (Tarzanagh et al., 2022),
hyperparameter tuning for federated learning (Huang et al.,
2022), resource allocation over edges (Ji & Ying, 2022) and
graph-aided federated learning (Xing et al., 2022) etc.

Mathematically, federated bilevel optimization takes the
following formulation with m clients.

min
x∈Rd1

f(x) =
1

m

m∑
i=1

fi(x, y
∗
(x))

subject to y∗(x) ∈ argmin
y∈Rd2

1

m

m∑
i=1

gi(x, y), (1)

where the upper- and lower-level functions fi(x, y) =
EξiFi(x, y; ξi) and gi(x, y) = EζiGi(x, y; ζi) for each
client i are jointly continuously differentiable. To efficiently
solve the distributed nested problem in Equation (1), the
biggest challenge lies in computing the gradient of the upper-
level objective, i.e., the hypergradient ∇f(x), due to the
approximation of a global Hessian inverse matrix and the
client drift induced by the data heterogeneity (Karimireddy
et al., 2020; Hsu et al., 2019). To overcome these issues,
existing approaches all focus on the AID-based federated
hypergradient estimation (Huang et al., 2022; Tarzanagh
et al., 2022). However, the AID-based approaches naturally
contain two consecutive loops at each outer iteration, each
of which contains a large number of communication rounds,
for minimizing the lower-level objective and constructing
the federated hypergradient estimate, separately, as shown
in the left illustration in Figure 1. This heavily complicates
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Figure 1. Comparison between AID-based FHE (left) in FedNest (Tarzanagh et al., 2022) and our proposed AggITD estimator (middle).
The right plot compares the performance among fully local hypergradient estimator (i.e., using only local information), AID-based FHE
and AggITD in federeated hyper-representation learning in the presence of data heterogeneity.

Hypergradient estimators Comm rounds/Outer itr Comm loops/Outer itr Sample complexity

AID-based FHE (Tarzanagh et al., 2022) 2N + T + 3 2 Õ(ϵ−2)

AggITD (this paper) 2N + 3 1 Õ(ϵ−2)

Table 1. Comparison of AID-based FHE and the proposed AggITD in the presence of data heterogeneity. Communication round: the
procedure that ”for i ∈ S, in parallel do”, where the participating clients send their local information (gradients or Hessian-vector
products) to the server for aggregation, and the aggregated information is then broadcast back to clients. N and T : the number of iterations
for optimizing the lower-level objective and approximating the global Hessian-inverse-vector product, respectively. Sample complexity:
the total number of samples to achieve an ϵ-accurate stationary point. Õ: hide log factors.

the implementation and increases the communication cost.

1.1. Main contributions

In this paper, we propose a new federated hypergradient esti-
mator (FHE) via aggregated iterative differentiation, which
we refer to as AggITD. As shown in Figure 1, our AggITD
estimator leverages intermediate iterates of the lower-level
updates on y for the federated hypergradient estimation
rather than the last iterate as in AID-based methods, and
hence admits a simpler implementation and much fewer
communication rounds by conducting the lower-level up-
dates on y and the Hessian-vector-based hypergradient es-
timation simultaneously within the same communication
loop. Our detailed contributions are summarized as below.

A new ITD scheme. We first show that existing ITD-based
approaches in the non-distributed setting (Franceschi et al.,
2018; Grazzi et al., 2020; Ji et al., 2021) rely on the accom-
plishment of the lower-level updates on y for the matrix-
vector-based hypergradient estimation, and hence still re-
quires two long communication loops for the federated hy-
pergradient estimation (see Section 2.2 for more details). In
contrast, we propose a new iterative differentiation process
suitable for the efficient distributed implementation, which
starts the matrix-vector based hypergradient estimation at a
randomly sampled intermediate lower-level iterate, as illus-
trated in Figure 1. We anticipate that our estimator can be
of independent interest to other distributed settings such as
decentralized or asynchronous bilevel optimization.

Communication-efficient bilevel optimization. Building
on the proposed AggITD, we further develop a federated
bilevel optimization algorithm named FBO-AggITD, which
incorporates the technique of federated variance reduction
into the lower- and upper-level updates on y and x to mit-
igate the impact of the client drift on the hypergradient
estimation accuracy. FBO-AggITD contains only a single
communication loop, where only efficient matrix-vector
products rather than Hessian or Hessian-inverse matrices
are computed and communicated for the global Hessian-
inverse-vector approximation.

New theoretical analysis. We provide a novel error and
convergence analysis for the proposed AggITD estimator
and FBO-AggITD algorithm, respectively. The analysis
addresses two major challenges. First, differently from the
AID-based estimator, the proposed AggITD depends on
less accurate intermediate iterates yt, t = Q + 1, ..., N at
a random index Q, which may introduce uncontrollable
estimation errors due to the client drift. Second, the random-
ness from stochastic Hessian matrices and gradients further
complicates the analysis. In fact, there has been no analysis
even for non-distributed stochastic ITD-based estimators.
To this end, a tighter recursion type of analysis is developed
by decoupling the errors induced by the lower-level updates
and the global Hessian-inverse-vector approximation. As
shown in Table 1, AggITD achieves the same sample com-
plexity of Õ(ϵ−2) as the AID-based FHE (Tarzanagh et al.,
2022), with much fewer communication rounds.
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Strong empirical performance. As shown in the right plot
of Figure 1, AggITD admits a much faster convergence rate
w.r.t. communication rounds and better test accuracy than
AID-based FHE. In addition, compared to the fully local
hypergradient estimator (which is computed using only local
client data), AggITD achieves a much higher test accuracy
with a comparable rate and is much more stable with lower
variance. This demonstrates the importance of aggregation
under the lower-level heterogeneity. Such comparisons are
also observed in the experiments in Section 5.

1.2. Related work
Bilevel optimization. A large body of bilevel optimization
methods have been proposed since the work in Bracken
& McGill 1973. For example, Hansen et al. 1992; Gould
et al. 2016; Shi et al. 2005; Sinha et al. 2017 reduced the
bilevel problem to the single-level constraint-based prob-
lem. Gradient-based methods have drawn more attention
in machine learning recently, which can be generally cat-
egorized into AID (Domke, 2012; Pedregosa, 2016; Liao
et al., 2018; Arbel & Mairal, 2022) and ITD (Maclaurin
et al., 2015; Franceschi et al., 2017; Finn et al., 2017; Sha-
ban et al., 2019; Grazzi et al., 2020) based methods. Vari-
ous stochastic bilevel optimizers have also been developed
via momentum (Yang et al., 2021; Huang & Huang, 2021;
Guo & Yang, 2021), variance reduction (Yang et al., 2021;
Dagréou et al., 2022), Neumann series (Chen et al., 2021b;
Ji et al., 2021). Theoretically, the convergence of bilevel
optimization has been analyzed by Franceschi et al. 2018;
Shaban et al. 2019; Liu et al. 2021b; Ghadimi & Wang 2018;
Ji et al. 2021; Hong et al. 2020. More results and details
can be found in the survey by Liu et al. 2021a. In this pa-
per, we propose a new stochastic ITD-based hypergradient
estimator, which is further extended to the federated setting.

Federated learning. Federated Learning was firstly intro-
duced to allow different clients to train a model collabora-
tively without sharing data (Konečnỳ et al., 2015; Shokri &
Shmatikov, 2015; Mohri et al., 2019). As one of the earliest
methods, FedAvg has been shown to effectively reduce the
communication cost (McMahan et al., 2017). An increasing
number of variants of FedAvg have been further proposed to
address the issues such as the slow convergence and client
drift via regularization (Li et al., 2020; Acar et al., 2021),
variance reduction (Mitra et al., 2021; Karimireddy et al.,
2020), proximal splitting (Pathak & Wainwright, 2020) and
adaptive optimization (Reddi et al., 2020). In the homo-
geneous setting, FedAvg is relevant to local SGD, and has
been analyzed in Stich 2019; Wang & Joshi 2018; Stich &
Karimireddy 2019; Basu et al. 2019. In the heterogeneous
setting, Li et al. 2020; Wang et al. 2020; Mitra et al. 2021;
Li et al. 2019; Khaled et al. 2019 provided the convergence
analysis of their methods.

Federated bilevel optimization. Recent works (Gao, 2022;

Li et al., 2022) focused on the homogeneous setting, and
proposed momentum-based methods with fully local hyper-
gradient estimators. The most relevant work (Tarzanagh
et al., 2022) proposed FedNest using an AID-based FHE,
and further provided its convergence rate guarantee despite
the data heterogeneity. This paper proposes a simple and
communication-efficient method via an ITD-based FHE.

Bilevel optimization has also been studied in other dis-
tributed setups such as decentralized bilevel optimiza-
tion (Chen et al., 2022; Yang et al., 2022; Lu et al., 2022)
and asynchronous bilevel optimization over directed net-
work (Yousefian, 2021). We anticipate that our proposed
ITD-based estimator can be also applied to these scenarios.

Notations. We use ∂f(x, y∗(x))/∂x to denote the gradient
of f as a function of x, and ∇xf and ∇yf are partial deriva-
tives of f with respect to x and y. For any vector v and
matrix M , we denote ∥v∥ and ∥M∥ as Euclidean and spec-
tral norms, respectively. We let f(x, y) = 1

m

∑m
i=1 fi(x, y)

and g(x, y) = 1
m

∑m
i=1 gi(x, y) denote the averaged upper-

and lower-level objective functions across all clients i. Fi-
nally, let S = {1, ...,m} denote the set of all clients.

2. Federated Hypergradient Computation
2.1. Federated Hypergradient and Existing Approach

Federated hypergradient. The biggest challenge of fed-
erated bilevel optimization lies in computing the aggre-
gated hypergradient ∇f(x) = 1

m

∑m
i=1

∂fi(x,y
∗
(x))

∂x due to
the implicit dependence of the global lower-level solution
y∗(x) on x. Using the implicit function theorem (Griewank
& Walther, 2008) and if g(·) is twice differentiable and
∇2

yg(x, y
∗
(x)) is invertible, an explicit form of ∇f(x) is

∇f(x) =
1

m

m∑
i=1

(
∇xfi(x, y

∗
(x))−∇x∇yg(x, y

∗
(x))

×
[
∇2

yg(x, y
∗
(x))

]−1∇yfi(x, y
∗
(x))

)
, (2)

where the first and second terms on the right side are di-
rect and indirect parts of the federated hypergradient. As
shown by Equation (2), two challenges arise in the feder-
ated hypergradient computation. First, the second-order
derivatives ∇x∇yg(x, y

∗
(x)) and ∇2

yg(x, y
∗
(x)) are all global

information that is not accessible to each client i. This
greatly complicates the design of an unbiased estimate of
∇f(x). For example, it can be seen that a straightforward
estimator by replacing such two global quantities with their
local counterparts, i.e., ∇x∇ygi(x, y

∗
(x)) and ∇2

ygi(x, y
∗
(x))

is a biased approximation of ∇f(x) due to the client drift.
Second, it is highly infeasible to compute and communicate
second-order information (such as Hessian inverse or even
Hessian/Jacobian matrices) due to the restrictive computing
and communication resource.
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AID-based FHE. To address these challenges, Tarzanagh
et al. 2022 recently proposed a matrix-vector-based FHE
building on a non-federated AID-based estimate used in
Ghadimi & Wang 2018, which takes the form of

ĥI(x) =
1

m

m∑
i=1

[
∇xFi(x, y

N ; ξi)−∇x∇yGi(x, y
N )pT ′

]
where yN is first obtained to estimate the global y∗(x) via a
FedSVRG (Mitra et al., 2021; Konečnỳ et al., 2016) type of
method with 2N communication rounds and an aggregated
Hessian-inverse-vector (HessIV) estimate

pT ′ =

T ′∏
t=1

(
I − λ

1

|St|
∑
i∈St

∇2
yGi(x, y

N ; ζi,t)
)
p0

with p0 =
λT

|S|
∑
i∈S

∇yFi(x, y
N ; ξi,0)

is then constructed based on the inner output yN using extra
T ′ communication rounds as, for t = 1, ..., T ′

Local client i: pi,t = (I − λ∇2
yGi(x, y

N ; ζi,t))pt−1

Server aggregates: pt =
1

|St|
∑
i∈St

pi,t,

where T ′ is chosen from {0, ..., N−1} uniformly at random.
However, several challenges still remain, as elaborated in
the next Section 2.2.

2.2. Our Method: Aggregated Iterative Differentiation

Challenges in AID-based FHC. Note that at each outer
iteration k, AID-based FedIHGP includes two major com-
munication loops, i.e., 2N rounds for inner y updates and
T ′ rounds for outer FHC, which introduce two challenges
in practice. First, the construction of an AID-based hyper-
gradient estimate is built on the output yN is inherently
separated from the inner y updating loop, and the result-
ing two communication and optimization loops complicate
the implementation in practice. Second, the separate T ′

(which can be large at an order of κ log 1
ϵ in the worst

case (Tarzanagh et al., 2022)) communication rounds for
the HessIV estimation can add a non-trivial communication
burden on the FL systems due to the limited communication
bandwidth and resource (e.g., in wireless setting). Then,
an important question here is: Can we develop a new FHE
that can address these implementation and communication
challenges simultaneously, while achieving better commu-
nication and computational performance in theory and in
practice? In this section, we provide an affirmative answer
to this question by developing a novel aggregated iterative
differentiation (AggITD) for communication-efficient FHC.

Our idea. Instead of constructing the federated hypergra-
dient after obtaining the inner output yN , our idea is to uti-
lize the intermediate iterates y1, ..., yN and communication

Algorithm 1 h̃, yN = AggITD(x, y, β)

1: Set y0 = y and choose Q from {0, ..., N} UAR
2: for t = 0, 1, 2, ..., N do
3: for i ∈ S in parallel do
4: Compute qti = ∇yGi(x, y

t; ζi,t) for y updates
5: if t = Q, compute rti = ∇yFi(x, y

t; ξi,t)
6: if t ≥ Q + 1 and t ≤ N , compute zti = zt−1 −

∂⟨∇yGi(x,y
t;ui,t),z

t−1⟩
∂yt via autograd

7: end for
8: if t ≤ N − 1 then
9: Server aggregates and broadcasts qt =

1
|S|

∑
i∈S qti

10: yt+1 = One-Round-Lower(x, yt, qt, β)
11: end if
12: if t = Q, aggregate zt := rt = 1

|S|
∑

i∈S rti
13: if t ≥ Q+1 and t ≤ N , aggregate zt = 1

|S|
∑

i∈S zti
14: end for
15: p = λ(N + 1)zN−1 if Q < N or λ(N + 1)zN otherwise.
16: for i ∈ S in parallel do
17: h̃i = ∇xFi(x, y

N ; ξi)− ∂⟨∇yGi(x,y
N ;χi),p⟩

∂x
18: end for
19: Server aggregates h̃ = 1

|S|
∑

i∈S h̃i

rounds of the inner y loop also for the federated hypergra-
dient approximation, and hence remove the expensive T ′

communication rounds. To do this, one possible solution
is to use the idea of an ITD-based method from the non-
federated bilevel optimization (Ji et al., 2021; Grazzi et al.,
2020), which approximates the hypergradient ∂f(x,y∗(x))

∂x

by computing ∂f(x,yN )
∂x via the automatic differentiation,

where yN is the N -step output of gradient descent1, i.e.,
yt+1 = yt−α∇yg(x, yt) for t = 0, ..., N − 1. The explicit

form of the indirect part of ∂f(x,yN )
∂x is then taken as

−α

N−1∑
t=0

∇x∇yg(x, y
t)

×
N−1∏
j=t+1

(I − α∇2
yg(x, y

j))∇yf(x, y
N ), (3)

which, however, still needs an extra communication loop
for the construction because its matrix-vector computations
require the information of ∇yf(x, y

N ) at the output yN ,
and in addition, the N summations complicate the feder-
ated implementation. To this end, we next provide a novel
aggregated ITD-based estimator for FHC, which uses the
same communication loop for both the y updates and the
federated hypergradient construction.

1We take GD as an illustration example, and other solvers can
also be used
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Algorithm 2 y+ = One-Round-Lower(x, y, q, β)
1: for i ∈ S in parallel do
2: yi0 = y and choose βi ∈ (0, β]
3: for υ = 0, 1, 2, ..., τi − 1 do
4: qiυ = ∇yGi(x, y

i
υ; ζ

i
υ)−∇yGi(x, y; ζ

i
υ) + q

5: yiυ+1 = yiυ − βiqiυ
6: end for
7: end for
8: y+ = 1

|S|
∑

i∈S yiτi

Proposed AggITD. As shown in Algorithm 1 and the il-
lustration in Figure 1, AggITD first samples an index Q
from the set {0, ..., N} uniformly at random, and then at
each inner iteration t, each client i computes the local gradi-
ent ∇yGi(x, y

t; ζi,t), which are aggregated for optimizing
the lower-level objective via the federated SVRG-type One-
Round-Lower sub-procedure in Algorithm 2. The steps in
lines 5-6 and 12-13 provide an efficient iterative way to con-
struct a novel estimate of federated Hessian-inverse-vector
product (∇2

yg(x, y
∗
(x)))

−1∇yf(x, y
∗
(x)), which is given by

ĤessIV =λ(N + 1)

Q+1∏
t=N

(
I − λ

|S|
∑
i∈S

∇2
yGi(x, y

t;ui,t)
)

×
[

1

|S|
∑
i∈S

∇yFi(x, y
Q; ξi,Q)

]
,

where we use
∏N+1

j=N (·) = I for simplicity. Note that these
steps for the FHC process compute and communicate only
efficient Hessian-vector products ∂⟨∇yGi(x,y

t;ui,t),z
t−1⟩

∂yt =

∇2
yGi(x, y

t;ui,t)z
t−1 using automatic differentiation (e.g.,

torch.autograd), rather than Hessian or Hessian inverse
matrices. After broadcasting the global ĤessIV, each client
i builds a local FHE h̃i(x) = h̃D

i (x) − h̃I
i (x), where the

direct and indirect parts are given by

h̃D
i (x) =∇xFi(x, y

N ; ξi)

h̃I
i (x) =∇x∇yGi(x, y

N ;χi)ĤessIV.

Then, the aggregated hypergradient estimate is given by
h̃(x) = h̃D(x)− h̃I(x) = 1

|S|
∑

i∈S h̃i(x). Meanwhile, we
would like to point out the differences between our method
and distributed bilevel problems, such as (Yang et al., 2022).
First, in our algorithm, the server is to aggregate the local
weights from clients and broadcast the aggregated weights
back to the clients. In contrast, for such decentralized meth-
ods, the server needs to compute the gradients or hypergra-
dients. Then, our method runs multiple local updates to
improve communication efficiency, whereas the decentral-
ized methods do not have such operations. Third, all such
decentralized methods use the AID-based hypergradient es-
timator, whereas our method uses the ITD-based scheme.

However, to analyze this AggITD-based estimator, several
technical challenges arise as below.

Technical challenges. First, differently from the AID-based
FHE that is evaluated at the last iterate yN , our proposed
estimator depends on less accurate intermediate iterates
yt, t = Q + 1, ..., N , which may introduce larger or even
uncontrollable estimation errors given the client drift effect.
Thus, a more careful and tighter analysis is required. Sec-
ond, the randomness from stochastic Hessian matrices and
gradients further complicates the analysis. In fact, there
has been no analysis for even non-federated (i.e., |S| = 1)
stochastic ITD-based estimators. Third, the aggregation
1
|S|

∑
i∈S complicates the bias and variance analysis.

3. Proposed Algorithm
We now develop a new federated bilevel optimizer named
FBO-AggITD based on the proposed AggITD estimator.
As shown in Algorithm 3, FBO-AggITD first obtains the
federated hypergradient estimate h̃ and the approximate
yk+1 = yNk of the lower-level solution y∗k via the AggITD
sub-procedure in Algorithm 1. Then, building on h̃ and
yk+1, similarly to (Tarzanagh et al., 2022), we use a local
SVRG-type One-Round-Upper sub-procedure for solving
the upper-level problem w.r.t. x, where each client i runs τi
steps based on the radient hi,υ given by

hi,υ =h−∇xFi(x, y+; ξ
i
υ) +∇xFi(x

i
υ, y+; ξ

i
υ)

=h̃D(x)− h̃I(x)−∇xFi(x, y+; ξ
i
υ)

+∇xFi(x
i
υ, y+; ξ

i
υ),

where the direct part h̃D(x) = 1
|S|

∑
i∈S ∇xFi(x, y+; ξi)

of the global hypergradient estimate h̃ uses different samples
ξi from ξiυ of the local gradient ∇xFi(x, y+; ξ

i
υ), i ∈ S to

provide an SVRG-type variance reduction effect on the
direct part of the hypergradient. This is in contrast to the
upper update in FedNest (Tarzanagh et al., 2022) where the
data samples ξi and ξiυ are chosen to be the same. Note
that we do not apply the SVRG-type updates to the entire
hypergradient but only the direct part because the indirect
part requires the global Hessian information at iterates xi

υ,
which is infeasible at each client i.

Algorithm 3 FBO-AggITD
1: Input: K,N ∈ N, αk, βk > 0, initializations x0, y0.
2: for k = 0, 1, 2, ...,K do
3: h̃, yk+1 = AggITD(xk, yk, βk)

4: xk+1 = One-Round-Upper(xk, yk+1, h̃, αk)
5: end for
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Algorithm 4 x+ = One-Round-Upper(x, y+, h, α)
1: for i ∈ S in parallel do
2: xi

0 = x and choose αi ∈ (0, α]
3: for υ = 0, 1, 2, ..., τi − 1 do
4: hi,υ = h−∇xFi(x, y+; ξ

i
υ) +∇xFi(x

i
υ, y+; ξ

i
υ)

5: xi
υ+1 = xi

υ − αihi,υ

6: end for
7: end for
8: x+ = 1

|S|
∑

i∈S xi
τi

4. Main Results
4.1. Definitions and Assumptions

Let z = (x, y) ∈ Rd1+d2 . Throughout this paper, we make
the following definitions and standard assumptions on the
lower- and upper-level objectives, as also adopted in stochas-
tic bilevel optimization (Ji et al., 2021; Hong et al., 2020;
Khanduri et al., 2021; Chen et al., 2021a) as well as in the
federated bilevel optimization (Tarzanagh et al., 2022).

Definition 1. A mapping f is L-Lipschitz continuous if for
∀ z, z′, ∥f(z)− f(z′)∥ ≤ L∥z − z′∥.

Since the objective f(x) is nonconvex, algorithms are ex-
pected to find an ϵ-accurate stationary point defined below.

Definition 2. We say x̄ is an ϵ-accurate stationary point of
the objective function f(x) if E∥∇f(x̄)∥2 ≤ ϵ, where x̄ is
the output of an algorithm.

Assumption 1. The lower-level function Gi(x, y; ζi) is µ-
strongly-convex w.r.t. y for any ζi.

The following assumption imposes the Lipschitz conditions
on the lower- and upper-level functions for each client i.

Assumption 2. The objective functions satisfy

• The function Fi(z; ξi) is M -Lipschitz continuous.

• The gradients ∇Fi(z; ξi) and ∇Gi(z; ζi) are unbiased
estimators of ∇fi(z) and ∇gi(z).

• The gradients ∇Fi(z; ξi) and ∇Gi(z; ζi) are Lf - and
Lg-Lipschitz continuous, respectively.

Assumption 3. The second-order derivatives satisfy

• The derivatives ∇x∇yGi(z; ζi) and ∇2
yGi(z; ζi) are

unbiased estimators of ∇x∇ygi(z) and ∇2
ygi(z).

• The derivatives ∇x∇yGi(z; ζi) and ∇2
yGi(z; ζi) are

ρ-Lipschitz continuous.

Assumption 4. The variances of gradients ∇Fi(z; ξi) and
∇Gi(z; ζi) are bounded by σ2

f and σ2
1 . Moreover, the lower-

level client dissimilarity E∥∇gi(z)−∇g(z)∥2 ≤ σ2
2 .

In this paper, let σ2
g = max{σ2

1 , σ
2
2} for notational sim-

plicity. Assumption 4 is commonly adopted in the hetero-

geneous FL, and it is reduced to the homogeneous setting
when σ2 = 0. It is worth noting that our assumptions are ex-
actly the same as existing AID-based federated/distributed
bilevel studies such as (Tarzanagh et al., 2022).

4.2. Estimation Properties for AggITD

We analyze the estimation properties of AggITD. Let

BI =E
[
∥E[h̃I(x)]−∇x∇yg(x, y

N )

× (∇2
yg(x, y

N )−1)∇yf(x, y
N )∥2 |x, yN

]
denote the estimation error of the indirect part of h̃I(x).

Proposition 1. Suppose Assumptions 1-4 are satisfied and
let y∗(x) = argminy g(x, y). Further, set λ ≤ min{10, 1

Lg
}

and βi = β
τi

and any stepsize α > 0, where β ≤
min{1, λ, 1

6Lg
}. Then, we have

BI ≤ [4λ2L2
gM

2α1(N) + 4λ2L2
fL

2
gα3(N)]E ∥y − y∗(x)∥

2

+
4L2

gM
2(1− λµ)2N+2

µ2
+ 400λ2β2L2

gM
2σ2

gρ
2α2(N)

+
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ
, (4)

where α1(N) = 4(N+1)(1− βµ
2 )N [ ρ2

λµ3 +
4ρ2

βµ3 ], α2(N) =

N(N+1)(1+(1−λµ)2)
λµ3 and α3(N) =

3(N+1)(1− βµ
2 )N

λµ .

Proposition 1 provides an upper bound on the second
moment of the estimation bias of the AggITD estimator.
As shown in Equation (4), the first two terms O((1 −
βµ
2 )N E[∥y−y∗(x)∥

2]) and O((1−λµ)2N+2) correspond to
the estimation errors without the client drift, which can be
made small by choosing N properly. In addition, the initial-
ization gap E[∥y − y∗(x)∥

2] further relaxes the requirement
of N due to the warm start yk = yNk−1 (see Algorithm 3),
as shown in the final convergence analysis. It is worth
mentioning that these two terms match the error bound of
the stochastic AID-based hypergradient estimator in non-
federated setting (Ji et al., 2021; Ghadimi & Wang, 2018;
Chen et al., 2021a), and hence our analysis can be of inde-
pendent interest to non-federated bilevel optimization. Also
note that the last two error terms O(λ2β2) and O(λβ2) are
induced by the client drift in the y updates, which exists
especially in the FL, can be addressed by choosing a suffi-
ciently small stepsize β. Technically, we first show via a
recursive analysis that the key approximation error between
the expected indirect part of the AggITD estimator

E[h̃I(x)|x, yN ] =λ∇x∇yg(x, y
N )

×
N∑

Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
Q) (5)
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and the underlying truth is bounded by

O
( N∑

Q=0

(1− λµ)2N−2Q∥yQ − y∗
(x)∥2 + ∥yN − y∗

(x)∥2
)
.

Note from Equation (5) that although the optimality gap
∥yQ − y∗(x)∥ can be large for small Q (which is induced
by our ITD-based construction), the coupling factor (1 −
λµ)2N−2Q still makes the overall bound to be small, and
this validates the design principle of our AggITD estimator.
Then, unconditioning on x, yN , incorporating the conver-
gence bounds on the iterates yQ with intrinsic client drift,
we derive the final estimation bounds on AggITD. The fol-
lowing proposition characterizes the estimation variance of
the global indirect hypergradient estimate h̃I

i (x) and the
local hypergradient estimate at iteration υ of client i.

Proposition 2. Suppose Assumptions 1-3 are satisfied. Set
λ ≤ min{10, 1

Lg
}. Then, conditioning on x, y+, we have

E ∥h̃I
i (x)− h̄I

i (x)∥2 ≤ σ2
h,

E ∥h̃D
i (xi

υ, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)∥2 ≤ D2
h

where the constants are given by σ2
h =

λ(N+1)L2
gM

2

µ and

D2
h = 12M2 +

4λ(N+1)L2
gM

2

µ .

Proposition 2 demonstrates that the varaince of our AggITD
estimation is bounded. Based on the important bias and
variance characterizations in Propositions 1 and 2, we next
provide the total convergence and complexity analysis for
the proposed FBO-AggITD algorithm.

4.3. Convergence and Complexity Analysis

We first provide a descent lemma on the total objective f(x).

Lemma 1 (Objective descent). Suppose Assumptions 1-4
hold. Let y∗ = argminy g(x, y). Further, we set λ ≤
min{10, 1

Lg
}, αi = α

τi
with τi ≥ 1 for some positive α and

βi = β
τi

, where β ≤ min{1, λ, 1
6Lg

} ∀i ∈ S. We have

E[f(x+)]− E[f(x)]

≤ −α

2
E[∥∇f(x)∥2] + 4α2(σ2

h + σ2
f )L

′
f + 2α2M2L′

f

− α

2
(1− 4αL′

f )E
∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

h̄D
i (xi

υ, y+)− h̄I(x)
∥∥∥2

+
3α

2

[
BI(x, y) +

M2
f

m

m∑
i=1

1

τi

τi−1∑
υ=0

E[∥xi
υ − x∥2]

+M2
f E[∥y+ − y∗∥2]

]
(6)

where the estimation bias BI(x, y) is defined in Proposi-
tion 1, and the expected quantities h̄I(x) = E[h̃I(x)|x, y+],
h̄D
i (xi

υ, y+) = E[h̃D
i (xi

υ, y+)|xi
υ]

Note from Lemma 1 that the bound on the total objective
descent contains three error terms including the FHC bias
BI(x, y), which is handled by Proposition 1, the lower-level
estimation error E∥y+ − y∗∥2, which is handled by the de-
scent lemma on the lower-level objective function g(x, ·),
and the upper-level client drift

∑m
i=1

1
τi

∑τi−1
υ=0 E[∥xi

υ −
x∥2]. Also note that the bias error BI(x, y) contains the
lower-level initialization gap E∥y − y∗∥2, which is charac-
terized by the following lemma.
Lemma 2 (Lower-level initialization gap under warm start).
Suppose Assumptions 1-4 hold. Let y∗ = argminy g(x, y)

and y∗(x+) = argminy g(x+, y). Further, set αi = α
τi

with
τi ≥ 1 with some α > 0, ∀i ∈ S. Then, we have

E[∥y+ − y∗(x+)∥
2]

≤b1(α)E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥2]

+ b2(α)E[∥y+ − y∗∥2] + b3(α)(2σ
2
h + 2σ2

f +M2)

where the constants are given by b1(α) = 4L2
yα

2 +
L2

yα
2

4γ +
2Lyxα

2

η , b2(α) = 1 + 4γ +
ηLyxD

2
hα

2

2 , b3(α) = 4α2L2
y +

2Lyxα
2

η with a flexible parameter γ > 0.

As shown in the above Lemma 2, the lower-level ini-
tialization gap contains a hypergradient estimate norm
O(α2)E

∥∥ 1
m

∑m
i=1

1
τi

∑τi−1
υ=0

(
h̄D
i (xi

v, y+) − h̄I(x)
)∥∥2,

which is dominated by the same hypergradient norm with
the factor Θ(−α) in Lemma 1 for the stepsize α small
enough. Then, the remaining step is to upper bound the
upper-level client drift E∥xi

υ − x∥2.
Lemma 3 (Upper client drift). Suppose Assumptions 1-4
are satisfied. Set λ ≤ min{10, 1

Lg
}, αi = α

τi
and βi =

β
τi
, τi ≥ 1 where α ≤ 1

324M2
f+6Mf

≤ 1
6Mf

, β ≤
min{1, λ, 1

6Lg
} ∀i ∈ S. Recall the definitions of y∗ =

argminy g(x, y), h̄(x) = E[h̃(x)|x, y+]. Then, we have

E[∥xi
υ − x∥2] ≤ 18τ2i (α

i)2
[
3M2

f E[∥y+ − y∗∥2]

+3E[∥∇f(x)∥2] +BI(x, y) + 3σ2
h + 6σ2

f

]
where the bias BI(x, y) is defined in Proposition 1.

It can be seen from Lemma 3 that the upper-level client drift
is bounded by the lower-level estimation error E∥y+−y∗∥2,
the total gradient norm E∥∇f(x)∥2 and the hypergradient
estimation bias BI(x, y), which can be addressed by the de-
scent lemmas on y and x (i.e., Lemma 1) and Proposition 1
for the stepsize αi small enough. By combining the above
lemmas, we next provide the general convergence analysis.
Theorem 1. Suppose Assumptions 1-4 are satisfied. Set λ ≤
min{10, 1

Lg
}, αi

k = αk

τi
and βi

k = βk

τi
for i ∈ S. Choose
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Figure 2. Hyper-representation on MNIST dataset with a 2-layer MLP with SVRG-type optimizer. Left two plots: comparison of
FBO-AggITD and Fednest (Tarzanagh et al., 2022) in the i.i.d. and non-i.i.d. cases. Right two plots: the impact of the number τ of local
update steps on FBO-AggITD.

Algorithm Comm rounds/Outer itr Data Outer ep Comm rounds (90%) Final Accuracy

FedNest 2N+T+3
IID τ=1 1630 91.68%

τ=5 610 93.48%

NON-IID τ=1 1380 91.46%
τ=5 760 92.87%

FBO-AggITD 2N+3
IID τ=1 530 92.94%

τ=5 195 94.61%

NON-IID τ=1 520 92.67%
τ=5 305 93.88%

Table 2. Quantitative comparison between FBO-AggITD and FedNest.

parameters such that αk = min{ᾱ1, ᾱ2, ᾱ3,
ᾱ√
K
}, βk ∈[

max
{

β̄αk

N , λ
10

}
,min

{
1, λ, 1

6Lg

}]
, where ᾱ1, ᾱ2, ᾱ3, ᾱ

and β̄ are constants independent of K, whose specific forms
are given in Appendix D.1. Then, the outputs of the proposed
FBO-AggITD algorithms satisfy

1

K

K−1∑
k=0

E[∥∇f(xk)∥2] = O
(

1

min{ᾱ1, ᾱ2, ᾱ3}K
+

1

ᾱ
√
K

+
ᾱmax{c0, c1σ2

h, c2, c3}√
K

+ (1− λµ)2N
)
,

where c0, c1, c2, and c3 are positive constants independent
of K, whose complete forms are given in Appendix D.1.

By specifying the parameters N and ᾱ properly, we obtain
the following complexity results.

Corollary 1. Under the same setting as in Theorem 1, if we
choose N = O(κg), ᾱ = O(κ−4

g ), then we have

1

K

K−1∑
k=0

E[∥∇f(xk)∥2] = O(
κ4
g

K
+

κ4
g√
K

)

To achieve an ϵ-accurate stationary point, the total number
of samples required by FBO-AggITD is O(κ9

gϵ
−2).

As shown in Corollary 1, the overall sample complexity (i.e.,
the total number of data samples required to achieve an ϵ-
accurate stationary point) of our FBO-AggITD is O(κ9ϵ−2),
which matches the sample complexities of stocBiO (Ji et al.,
2021), BSA (Ghadimi & Wang, 2018) and ALSET (Chen

et al., 2021a) in the non-federated bilevel optimization and
FedNest (Tarzanagh et al., 2022) in the federated setting
despite the data heterogeneity. Note that our method uses
only (2N + 3)/(2N + T + 3) communication rounds of
FedNest (shown in Table 1) at each outer iteration. As
a result, in theory, our method achieves a constant-level
improvement over FedNest. To improve the dependence
on ϵ, we suspect that the server-level variance reduction or
periodic averaging can help, but this goes beyond the focus
of this paper. We are happy to leave it for future study.

5. Experiments
In this section, we compare the performance of the pro-
posed FBO-AggITD method with FedNest and LFedNest
in Tarzanagh et al. 2022 on a hyper-representation prob-
lem. Following the problem setup in Franceschi et al. 2018,
we use a 2-layer multilayer perceptron (MLP) as the back-
bone, where the hidden layer is optimized at the upper-level
problem and the head is optimized at the lower-level prob-
lem. We study the impact of data heterogeneity on the
comparison algorithms by considering both the i.i.d. and
non-i.i.d. ways of data partitioning of MNIST, following the
setup in McMahan et al. 2017.

The first two plots in Figure 2 compare our FBO-AggITD
method with FedNest in both i.i.d. and non-i.i.d. setups with
τ = 5, respectively. It can be seen that FBO-AggITD con-
verges much faster than FedNest, and achieves a higher test
accuracy with much fewer communication rounds. In the
non-i.i.d. case also shows that FBO-AggITD is more stable
with lower variance than FedNest. The last two plots in
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Figure 2 show that local updates are useful to improve com-
munication efficiency and stabilize the training. In Table 2,
it can be seen that to achieve an accuracy of 90%, our FBO-
AggITD uses more than 2-3 times fewer communication
rounds than FedNest, in both the i.i.d. and non-i.i.d. cases
and in addition, for all four setups, FBO-AggITD achieves
a higher final test accuracy than FedNest.
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Figure 3. Comparison under different client participation ratios.

In Figure 1 and Figure 3, we compare the performance of our
FBO-AggITD, FedNest, and LFedNest (which uses a fully
local AID-based hypergradient estimator) given different
client participation ratios (denoted as C) in the non-i.i.d. set-
ting. It can be seen that FBO-AggITD outperforms the
other two algorithms with higher communication efficiency
and higher accuracy. Note that LFedNest has the largest
variance and the lowest accuracy, and this validates the im-
portance of federated hypergradient computation. All above
experiments use SVRG-type optimizer which outperforms
the SGD-type optimizer, shown in Figure 4.
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Figure 4. Performance using SGD-type optimizer.

Figure 4 compares the performance of FBO-AggITD,
FedNest and LFedNest when the One-Round-Lower uses
the SGD-type FedAvg methed. In the both i.i.d. and
non-i.i.d. settings, our method (which is defined as FBO-
AggITDSGD) still performs the best with the fastest con-
vergence rate w.r.t. the number of communication rounds.
Another observation is that using the the SGD-type lower-
level solver introduces a larger variance and fluctuation than
the SVRG-type optimizer, by comparing Figure 2 and Fig-
ure 4. This validates the importance of variance reduction in
mitigating the impact of the client drift on the convergence
performance.

Finally, Figure 5 shows the performance of FBO-AggITD
on CIFAR-10 with MLP/CNN network in the i.i.d. setting.
We found that FedNest could not converge in this task after

an extensive grid search on hyperparameters. However, our
method can converge with both MLP and CNN backbones.
However, the test accuracy is not satisfactory here. We
suspect that it is because the objective function in hyper-
representation is not good for federated setting, and a more
careful network architecture should be designed for more
challenging datasets. We would like to leave this for the
future work.

Figure 5. Performance on CIFAR-10 with MLP and CNN.

6. Conclusions
In this paper, we propose a simple and communication-
efficient federated hypergradient estimator based on a novel
aggregated iterative differentiation (AggITD). We show that
the proposed AggITD-based algorithm achieves the same
sample complexity as existing approaches with much fewer
communication rounds on non-i.i.d. datasets. We anticipate
our new estimator can be further applied to other distributed
scenarios such as decentralized bilevel optimization.
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Supplementary Materials

A. Further Specifications on Experiments
A.1. Additional experiments

Experiments on MNIST with CNN networks. Figure 6 compares the performance of FBO-AggITD, FedNest and
LFedNest on MNIST when the backbone is chosen as CNN and One-Round-Lower uses the SVRG-type method. In the
non-i.i.d. setting, it turns out that both FedNest and LFedNest failed to converge depsite of a grid search for stepsizes. The
grid search on inner step sizes and outer step sizes of 4 settings are [(0.003, 0.01), (0.001, 0.005), (0.0005, 0.003), (0.0003,
0.001)]. However, our method (which is defined as FBO-AggITD) can have the ability to converge in both non-i.i.d. and
i.i.d. cases with high training accuracies. The inner step szie and outer step size are chosen as [0.003, 0.01] after grid search.
The training accuracies after 2000 communication rounds in i.i.d. and non-i.i.d. cases are 97.6% and 96.7%, respectively.

Figure 6. Performance of LFedNest, FedNest and FBO-AggITD on MNIST when the backbone is chosen as CNN and One-Round-Lower
uses the SVRG-type method.

Running time comparison. The following Figure 7 shows the running time comparison between FedNest, FBO-AggITD
and gossip-based method, Algorithm 2 in (Yang et al., 2022). Our FBO-AggITD archives a running time comparable to that
of FedNest because both methods consume a similar number of gradient and Hessian-vector computations.However, our
FBO-AggITD converges much faster than this gossip-based method, which is slower due to the computation of the Hessian
and Jacobian matrices. Since no codes are provided in (Yang et al., 2022), we wrote a code for comparison.

Figure 7. Performance of FedNest, FBO-AggITD and gossip-based method on MNIST when the backbone is chosen as MLP with i.i.d.
data.

A.2. Model Architectures

We first follow the same experiment in (Tarzanagh et al., 2022), thus the model is a 2-layer multilayer perceptron (MLP)
with 200 hidden units. The outer problem optimizes the hidden layer with 157,000 parameters, and the inner problem
optimizes the output layer with 2,010 parameters. Additionally, for the CIFAR-10-CNN experiment, we use the 7-layer
CNN (LeCun et al., 1998) model to train CIFAR-10. We optimize the last two fully connected layers’ parameters for solving
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the lower-level problem and optimize the rest layers’ parameters for solving the upper-level problem.

A.3. Hyperparameter settings

For all comparison methods, we optimize their hyperparameters via grid search guided by the default values in their source
codes, to ensure the best performance given the algorithms are convergent.

Parameter selection for the experiments in Figure 2 and Figure 7. For FedNest and FBO-AggITD, we used the same
hyperparameter configuration for both the i.i.d. and non-i.i.d. settings. In particular, the inner-stepsize is 0.003, the outer-loop
stepsize is 0.01, the constant λ = 0.01 and the number of inner-loop steps is 5. The choice of the number τ of outer local
epochs and the data setup are indicated in the figures. Then the default value for the client participation ratio is C = 0.1.
Here, it is worth mentioning that for all comparison methods, we optimize their hyperparameters via grid search guided by
the default values in their source codes, to ensure the best performance given the algorithms are convergent.

Parameters selection for the experiments in Figure 3 and Figure 4.

In Figure 3 and Figure 4, the choice of stepsizes and constant λ of FedNest and FBO-AggITD is the same as in Figure 2.
For LFedNest, we choose the same hyperparameters as FedNest and FBO-AggITD, except that in the non-i.i.d. case, the
inner- and outer-stepsizes are set smaller to be 0.001 and 0.005 to avoid the overfitting. The number τ of outer local epochs
is set to be 1 for all cases. In Figure 4, the client participation ratio is C = 0.1, and the update optimizer in the inner loop is
the SGD-type FedAvg method rather than FedSVRG. The choice of hyperparameters for Figure 6 is indicated above and for
Figure 5 the choice of inner step size and the outer step size are 0.002 and 0.01, respectively while the other options keep the
same.

B. Notations
For simplicity, we remove subscript k as long as the involved definitions are clear in the context. In some proof steps, we
will use x and x+ (similarly for y and y+) to denote xk and xk+1 (similarly yk and yk+1), where the definitions of xk and
yk are given in Algorithm 3. Based on Algorithm 3, we also have the definition of y+ = yN . We recall and define useful
notations for the ease of presentation.

Direct parts. h̃D
i (xi

υ, y+) = ∇xFi(x
i
υ, y+; ξ

i
υ), h̃

D
i (x) = ∇xFi(x, y+; ξi), ∇̄fD

i (x, y) = ∇xfi(x, y)

Indirect parts. h̃I
i (x) = λ(N + 1)∇x∇yGi(x, y

N ;χi)

Q+1∏
t=N

(I − λ∇2
yG(x, yt;ut))∇yF (x, yQ; ξQ)

∇̄f I
i (x, y) = ∇x∇ygi(x, y)(∇2

yg(x, y))
−1∇yf(x, y), (7)

where ξiυ and ξi are different data samples and two crucial components are defined by

∇yF (x, yQ; ξQ) =
1

|S|
∑
i∈S

∇yFi(x, y
Q; ξi,Q), ∇2

yG(x, yt;ut) =
1

|S|
∑
i∈S

∇x∇yGi(x, y
t;ui,t).

Based on the notations in Equation (7), we also recall the important forms of our stochastic hypergradient estimate h̃(x)

constructed by the proposed AggITD method as well as its expectation form h̄(x) = E[h̃(x)|x, y+], and an auxiliary
hypergradient notation ∇̄f(x, y+), respectively.

h̃(x) =
1

|S|
∑
i∈S

h̃i(x) =
1

|S|
∑
i∈S

[h̃D
i (x)− h̃I

i (x)] = h̃D(x)− h̃I(x)

=∇xF (x, y+; ξ)− λ(N + 1)∇x∇yG(x, yN ;χ)

Q+1∏
t=N

(I − λ∇2
yG(x, yt;ut))∇yF (x, yQ; ξQ)

h̄(x) =
1

|S|
∑
i∈S

h̄i(x) =
1

|S|
∑
i∈S

[h̄D
i (x)− h̄I

i (x)] = h̄D(x)− h̄I(x)

=∇xf(x, y+)− λ∇x∇yg(x, y
N )

N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
Q)
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∇̄f(x, y) =
1

|S|
∑
i∈S

∇̄fi(x, y) =
1

|S|
∑
i∈S

[∇̄fD
i (x, y)− ∇̄f I

i (x, y)] = ∇̄fD(x, y)− ∇̄f I(x, y)

=∇xf(x, y)−∇x∇yg(x, y)(∇2
yg(x, y))

−1∇yf(x, y), (8)

Based on Equation (8), it is noted that the hypergradient ∇f(x) = ∇̄f(x, y∗(x)). By the analysis in Ghadimi & Wang 2018
and Chen et al. 2021a, the following lemma characterizes the continuity and smoothness properties of the inner and outer
functions (fi, gi) for all i ∈ S.

Lemma 4. Suppose Assumption 1-Assumption 3 hold, for all x1 and x2:

∥∇f(x1)−∇f(x2)∥ ≤L′
f∥x1 − x2∥,

∥y∗(x1)
− y∗(x2)

∥ ≤Ly∥x1 − x2∥,
∥∇y∗(x1)

−∇y∗(x2)
∥ ≤Lyx∥x1 − x2∥.

(9)

Besides, for all i ∈ S, x1, x2 and y, we have

∥∇̄fi(x1, y)− ∇̄fi(x1, y
∗
(x1)

)∥ ≤Mf∥y∗(x1)
− y∥

∥∇̄fi(x2, y)− ∇̄fi(x1, y)∥ ≤Mf∥x2 − x1∥,

where all constants are given by

Ly :=
Lg

µ
= O(κg)

Lyx :=
ρ+ ρLy

µ
+

Lg(ρ+ ρLy)

µ2
= O(κ3

g)

Mf :=Lf +
LgLf

µ
+

M

µ
(ρ+

Lgρ

µ
) = O(κ2

g)

L′
f :=Lf +

Lg(Lf +Mf )

µ
+

M

µ
(ρ+

Lgρ

µ
) = O(κ3

g)

(10)

where all other Lipschitzness constants are provided in Assumptions 1-4.

C. Proof of Proposition 1 and Proposition 2
For the estimator, recall from Equation (8) that the indirect part is given by

h̃I(x) = λ(N + 1)∇x∇yG(x, yN ;χ)

Q+1∏
t=N

(I − λ∇2
yG(x, yt;ut))∇yF (x, yQ; ξQ),

where Q is drawn form {0, ..., N} uniformly at random.

C.1. Proof of Proposition 1

Proof. First, based on the definition of h̃I(x) in Equation (8) and conditioning on x, yN , we have

E[h̃I(x)] =E
[
λ(N + 1)∇x∇yG(x, yN ;χ)

Q+1∏
t=N

(I − λ∇2
yG(x, yt;ut))∇yF (x, yQ; ξQ)

]
(i)
=λ∇x∇yg(x, y

N )

N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
Q), (11)

where (i) follows from the fact that Q is drawn from {0, ..., N} uniformly at random and from the independence among
χ, ut, ξQ for t = 1, ..., N . Then the estimation bias of h̃I(x) is bounded by

∥E[h̃I(x)]−∇x∇yg(x, y
N )(∇2

yg(x, y
N ))−1∇yf(x, y

N )∥2
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≤
[
∥∇x∇yg(x, y

N )∥2
∥∥∥λ N∑

Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
Q)− (∇2

yg(x, y
N ))−1∇yf(x, y

N )
∥∥∥2]

(i)

≤L2
g

[∥∥∥λ N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
Q)− (∇2

yg(x, y
N ))−1∇yf(x, y

N )
∥∥∥2]

=L2
g

[∥∥∥λ N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
Q)− λ

N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
N )

+ λ

N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))∇yf(x, y
N )− (∇2

yg(x, y
N ))−1∇yf(x, y

N )
∥∥∥2]

(ii)

≤ 2λ2L2
g

[∥∥∥ N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))[∇yf(x, y
Q)−∇yf(x, y

N )]
∥∥∥2]

+ 2L2
g

[∥∥∥λ N∑
Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))− (∇yg(x, y
N ))−1

∥∥∥2∥∇yf(x, y
N )∥2

]
(iii)

≤ 2λ2L2
fL

2
g (N + 1)

N∑
Q=0

(1− λµ)2N−2Q[∥yQ − yN∥2]︸ ︷︷ ︸
1⃝

+ 2L2
gM

2
∥∥∥λ N∑

Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))− (∇yg(x, y
N ))−1

∥∥∥2, (12)

where (i) uses Assumption 2, (ii) follows from Young’s inequality, and (iii) follows from Lemma 4 and Assumption 2.
Then, unconditioning on xk, y

N
k yields

E
[
∥E[h̃I(x)]−∇x∇yg(x, y

N )(∇2
yg(x, y

N ))−1∇yf(x, y
N )∥2 |x, yN

]
≤2λ2L2

fL
2
g (N + 1)

N∑
Q=0

(1− λµ)2N−2Q E[∥yQ − yN∥2]︸ ︷︷ ︸
1⃝

+ 2L2
gM

2 E
[∥∥∥λ N∑

Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))− (∇yg(x, y
N ))−1

∥∥∥2]. (13)

Based on Theorem 4 in Mitra et al. 2021, for all t ∈ [0, ..., N − 1], we obtain

E[∥yt+1 − y∗(x)∥
2] ≤ (1− βµ

2
)E[∥yt − y∗(x)∥

2] + 25β2σ2
g (14)

which, by telescoping over t from 0 to Q− 1 for any Q ∈ {0, ..., N}, yields

E[∥yQ − y∗(x)∥
2] ≤ (1− βµ

2
)Q E[∥y − y∗(x)∥

2] + 25Nβ2σ2
g . (15)

Now we provide the upper bound of the first term on the RHS of Equation (12) as

1⃝ ≤(N + 1)
N∑

Q=0

(1− λµ)2N−2Q
[
2E[∥yQ − y∗(x)∥

2] + 2E[∥yN − y∗(x)∥
2]
]

(i)

≤2(N + 1)

N∑
Q=0

(1− λµ)2N−2Q
[
(1− βµ

2
)N E[∥y − y∗(x)∥

2] + (1− βµ

2
)Q E[∥y − y∗(x)∥

2] + 50Nβ2σ2
g

]
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(ii)

≤ 2(N + 1)
( (1− βµ

2 )N

λµ
+

(1− βµ
2 )N

1− (1−λµ)2

1− βµ
2

)
E[∥y − y∗(x)∥

2] +
100N(N + 1)β2σ2

g

λµ

≤2 (N + 1)
3(1− βµ

2 )N

λµ︸ ︷︷ ︸
α3(N)

E[∥y − y∗(x)∥
2] +

100N(N + 1)β2σ2
g

λµ
, (16)

where (i) follows from Equation (15), (ii) follows because (1−λµ)2

1− βµ
2

≤ 1−λµ

1− βµ
2

≤ 1−λµ

1−λµ
2

≤ 1 as the selection that β < λ ≤ 1
Lg

.
Then we provide the upper bound of the second term in Equation (12) as

E
[∥∥∥λ N∑

Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))− (∇2
yg(x, y

N ))−1
∥∥∥2]

=λ2 E
[∥∥∥ N∑

Q=0

Q+1∏
t=N

(I − λ∇2
yg(x, y

t))−
N∑

Q=0

(I − λ∇2
yg(x, y

N ))N−Q −
∞∑

Q=N+1

(I − λ∇2
yg(x, y

N ))Q
∥∥∥2]

(i)

≤2λ2(N + 1)

N∑
Q=0

E
[∥∥∥Q+1∏

t=N

(I − λ∇2
yg(x, y

t))− (I − λ∇2
yg(x, y

N ))N−Q
∥∥∥2︸ ︷︷ ︸

M2
N−Q

]
+

2(1− λµ)2N+2

µ2
(17)

where (i) follows from the Young’s inequality. Now we provide the upper bound of the term MN−Q as

MN−Q =
∥∥∥Q+1∏

t=N

(I − λ∇2
yg(x, y

t))− (I − λ∇2
yg(x, y

N ))N−Q
∥∥∥

=
∥∥∥(I − λ∇2

yg(x, y
N ))

[Q+2∏
t=N

(I − λ∇2
yg(x, y

t))− (I − λ∇2
yg(x, y

N ))N−Q−1
]

+ (λ∇2
yg(x, y

N )− λ∇2
yg(x, y

Q+1))

Q+2∏
t=N

(I − λ∇2
yg(x, y

t))
∥∥∥

(i)

≤(1− λµ)
∥∥∥Q+2∏

t=N

(I − λ∇2
yg(x, y

t))− (I − λ∇2
yg(x, y

N ))N−Q−1
∥∥∥︸ ︷︷ ︸

MN−Q−1

+λρ(1− λµ)N−Q−1∥yN − yQ+1∥

(ii)

≤ (1− λµ)N−QM0 + λρ(1− λµ)N−Q−1
N∑

τ=Q+1

∥yτ − yN∥

(iii)

≤ λρ(1− λµ)N−Q−1
N∑

τ=Q+1

∥yτ − yN∥, (18)

where (i) follows from the Assumption 1 and Assumption 3, (ii) can be obtained after telescoping over t from 0 to N − 1
and (iii) follows from that M0 = 0. Then substitute Equation (18) into Equation (17), we obtain,

(N + 1)

N∑
Q=0

E[M2
N−Q] ≤λ2ρ2(N + 1)

N∑
Q=0

[
(1− λµ)2N−2Q−2

]
(N −Q)

N∑
τ=Q+1

[
2
(
1− βµ

2

)τ

E[∥y − y∗(x)∥
2]

+ 2
(
1− βµ

2

)N

E[∥y − y∗(x)∥
2] + 50Nβ2σ2

g + 50τβ2σ2
g

]
≤λ2ρ2(N + 1)

N∑
Q=0

(1− λµ)2N−2Q−2(N −Q)
[4(1− βµ

2 )Q+1

βµ
E[∥y − y∗(x)∥

2]

17
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+ 2(N −Q)
(
1− βµ

2

)N

E[∥y − y∗(x)∥
2 + 100N(N −Q)β2σ2

g

]
=2(N + 1)λ2ρ2

N∑
Q=0

(1− λµ)2N−2Q−2(N −Q)2(1− βµ

2
)N E[∥y − y∗(x)∥

2]

+ 4(N + 1)λ2ρ2
N∑

Q=0

(1− λµ)2N−2Q−2(N −Q)
(1− βµ

2 )Q+1

βµ
E[∥y − y∗(x)∥

2]

+ 100β2σ2
gλ

2ρ2N(N + 1)

N∑
Q=0

(1− λµ)2N−2Q−2(N −Q)2

< 4(N + 1)(1− βµ

2
)N

( ρ2

λµ3
+

4ρ2

βµ3

)
︸ ︷︷ ︸

α1(N)

E[∥y − y∗(x)∥
2]

+ 100β2ρ2σ2
g

[N(N + 1)(1 + (1− λµ)2)

λµ3

]
︸ ︷︷ ︸

α2(N)

, (19)

where the last inequality follows because
∑N

t=0(1− λµ)2N−2t−2(N − t)2 < 1+(1−λµ)2

λ3µ3 and
∑N

t=0(1− λµ)2N−2t−2(N −
t)(1− βµ

2 )t+1 < 1(
1− (1−λµ)2

1− βµ
2

)2 ≤ (2−λµ)2

λ2µ2 . Substituting Equation (19) into Equation (17), and applying Equation (19) and

Equation (16) to Equation (12), we have

E
[
∥E[h̃I(x)]−∇x∇yg(x, y

N )(∇2
yg(x, y

N )−1)∇yf(x, y
N )∥2 |x, yN

]
≤4λ2L2

fL
2
gα3(N)E[∥y − y∗(x)∥

2] +
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ

+
4L2

gM
2(1− λµ)2N+2

µ2
+ 4λ2L2

gM
2α1(N)E[∥y − y∗(x)∥

2] + 400λ2β2L2
gM

2σ2
gρ

2α2(N)

=[4λ2L2
gM

2α1(N) + 4λ2L2
fL

2
gα3(N)]E[∥y − y∗(x)∥

2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ 400λ2β2L2
gM

2σ2
gρ

2α2(N) +
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ
,

which completes the proof.

C.2. Proof of Proposition 2

Based on the definition of h̃I(x) and h̄I
i (x), using the fact that Var(X) ≤ E[X2], and conditioning on x, yN , we have

E ∥h̃I
i (x)− h̄I

i (x)∥2 ≤ E ∥h̃I
i (x)∥2

≤E
∥∥∥λ(N + 1)∇x∇yGi(x, y

N ;χ)

Q+1∏
t=N

(I − λ∇2
yG(x, yt;ut))∇yF (x, yQ; ξQ)

∥∥∥2
(i)

≤λ2(N + 1)2L2
gM

2E
∥∥∥Q+1∏

t=N

(I − λ∇2
yG(x, yt;ut))

∥∥∥2
(ii)

≤ λ2(N + 1)2L2
gM

2EQ(1− λµ)2(N−Q)

=λ2(N + 1)L2
gM

2
N∑

Q=0

(1− λµ)2Q = λ2(N + 1)L2
gM

2 1− (1− λµ)2N

1− (1− λµ)2

(iii)

≤
λ(N + 1)L2

gM
2

µ
, (20)

18
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where (i) follows from Assumption 2, (ii) follows from Assumption 1 and (iii) follows from λ ≤ 1
Lg

. Then, the first part is
proved. For the second part, conditioning on x, y+, we have

E ∥h̃D
i (xi

υ, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)∥2

≤ 4E ∥h̃D
i (xi

υ, y+)∥2 + 4E ∥h̃D
i (xi

0, y+)∥2 + 4E
∥∥∥ 1

|S|
∑
i∈S

h̃D
i (x)

∥∥∥2 + 4E
∥∥∥ 1

|S|
∑
i∈S

h̃I
i (x)

∥∥∥2
(i)

≤ 8M2 + 4E ∥h̃D
i (x)∥2 + 4E ∥h̃I

i (x)∥2

(ii)

≤ 12M2 +
4λ(N + 1)L2

gM
2

µ
,

where (i) follows from Assumption 2 and (ii) follows from Equation (20). Then, the proof is complete.

D. Proof of Theorem 1 and Corollary 1
We now provide some auxiliary lemmas to characterize the Theorem 1 and Corollary 1.
Lemma 5 (Restatement of Lemma 1). Suppose Assumptions 1-4 are satisfied. Let y∗ = argminy g(x, y). Further, we set
λ ≤ min{10, 1

Lg
}, αi = α

τi
with τi ≥ 1 for some positive α and βi = β

τi
, where β ≤ min{1, λ, 1

6Lg
} ∀i ∈ S. Then, we

have the following inequality

E[f(x+)]− E[f(x)] ≤− α

2
E[∥∇f(x)∥2] + 4α2σ2

hL
′
f + 4α2σ2

fL
′
f + 2α2M2L′

f

− α

2
(1− 4αL′

f )E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

υ, y+)− h̄I(x)
)∥∥∥2]

+
3α

2

[(
4λ2L2

gM
2α1(N) + 4λ2L2

fL
2
gα3(N)

)
E[∥y − y∗∥2] +

4L2
gM

2(1− λµ)2N+2

µ2

+ 400λ2β2L2
gM

2σ2
gρ

2α2(N) +
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ

+
M2

f

m

m∑
i=1

1

τi

τi−1∑
υ=0

E[∥xi
υ − x∥2] +M2

f E[∥y+ − y∗∥2]
]

(21)

where h̄I(x) = E[h̃I(x)|x, y+], h̄D
i (xi

υ, y+) = E[h̃D
i (xi

υ, y+)|xi
υ] and α1(N), α2(N), α3(N) are defined in Proposition 1.

Proof. From Algorithm 4, we have, ∀i ∈ S

x+ =x− 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

υ, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,

where xi
0 = x and the data samples for h̃D

i (xi
0, y+) and h̃D(x) are different. Using the descent lemma yields

E[f(x+)]− E[f(x)] ≤E[⟨x+ − x,∇f(x)⟩] +
L′
f

2
E[∥x+ − x∥2]

=− E
[〈 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,∇f(x)

〉]
+

L′
f

2
E
[∥∥∥ 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∥∥∥2]. (22)

We next bound each term of the right hand side (RHS) of Equation (22). In specific, for the first term, we have

−E
[〈 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,∇f(x)

〉]
19
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=− E
[
E
[〈 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)
,∇f(x)

〉∣∣∣x, y+]]
(i)
= − E

[
E
[〈 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̄I(x)
)
,∇f(x)

〉∣∣∣xi
υ

]]
(ii)
= − αE

[〈 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
,∇f(x)

〉]
=− α

2
E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥2]− α

2
E[∥∇f(x)∥2]

+
α

2
E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
−∇f(x)

∥∥∥2], (23)

where (i) follows because h̄I(x) = E[h̃I(x)|x, y+] and E
[

1
m

∑m
i=1 α

i
∑τi−1

υ=0

(
− h̃D

i (xi
0, y+) + h̃D(x)

)∣∣∣x, y+] = 0, (ii)

follows because h̄D
i (xi

υ, y+) = E[h̃D
i (xi

υ, y+)|xi
υ]. The next step is to upper bound the last term of RHS of Equation (23).

Based on the notations in Equation (7) and Equation (8), we have∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
−∇f(x)

∥∥∥2
=
∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
− ∇̄f(x, y+) + ∇̄f(x, y+)−∇f(x)

∥∥∥2
=
∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− ∇̄fD
i (x, y+)

)
− h̄I(x) + ∇̄f I(x, y+) + ∇̄f(x, y+)−∇f(x)

∥∥∥2
(i)

≤3
∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− ∇̄fD
i (x, y+)

)
∥2 + 3

∥∥∥h̄I(x)− ∇̄f I(x, y+)
∥∥∥2 + 3∥∇̄f(x, y+)−∇f(x)∥2

(ii)

≤
3M2

f

m

m∑
i=1

1

τi

τi−1∑
υ=0

∥xi
υ − x∥2 + 3M2

f ∥y+ − y∗∥2 + 3∥h̄I(x)− ∇̄f I(x, y+)∥2 (24)

where (i) follows from the Young’s inequality and (ii) follows from Lemma 4 and Assumption 2. Then applying
Proposition 1 to Equation (24), we can obtain

E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)
−∇f(x)

∥∥∥2]
≤
12L2

gM
2(1− λµ)2N+2

µ2
+ [12λ2L2

gM
2α1(N) + 12λ2L2

fL
3
gα3(N)]E[∥y − y∗∥2]

+ 1200λ2β2L2
gM

2σ2
gρ

2α2(N) +
600λβ2σ2

gL
2
fL

2
gN(N + 1)

µ

+
3M2

f

m

m∑
i=1

1

τi

τi−1∑
υ=0

E[∥xi
υ − x∥2] + 3M2

f E[∥y+ − y∗∥2]. (25)

Then for the second term of Equation (22), we have

E
[∥∥∥ 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∥∥∥2]

(i)

≤2α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃I(x)
)∥∥∥2]+ 2α2 E

[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
− h̃D

i (xi
0, y+) + h̃D(x)

)∥∥∥2]
20



Federated Hypergradient Computation via Aggregated Iterative Differentiation

=2α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̃D
i (xi

υ, y+)− h̄D
i (xi

υ, y+) + h̄I(x)− h̃I(x) + h̄D
i (xi

υ, y+)− h̄I(x)
)∥∥∥2]

+ 2α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̃D
i (xi

0, y+)
)∥∥∥2]+ 2α2 E[∥h̃D(x)∥2]

(ii)

≤ 4α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

h̄D
i (xi

υ, y+)− h̄I(x)
∥∥∥2]

+ 4α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̃D
i (xi

υ, y+)− h̄D
i (xi

υ, y+) + h̄I(x)− h̃I(x)
)∥∥∥2]+ 4α2M2

(iii)

≤ 4α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

h̄D
i (xi

υ, y+)− h̄I(x)
∥∥∥2]+ 8α2 E

[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̃D
i (xi

υ, y+)− h̄D
i (xi

υ, y+)
)∥∥∥2

+ 8α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄I(x)− h̃I(x)

)∥∥∥2]+ 4α2M2

(iv)

≤ 4α2 E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

h̄D
i (xi

υ, y+)− h̄I(x)
∥∥∥2]+ 8α2σ2

f + 8α2σ2
h + 4α2M2 (26)

where (i) and (iii) follow from the Young’s inequality, (ii) follows from Young’s inequality and Assumption 2 and (iv)
follows from Assumption 4 and lemma 4. Plugging Equation (25) and Equation (26) into Equation (22) completes the
proof.

Lemma 6 (Restatement of Lemma 2). Suppose Assumptions 1-4 are satisfied. Let y∗ = argminy g(x, y) and y∗(x+) =

argminy g(x+, y). Further, set αi = α
τi

with τi ≥ 1 with some positive α, ∀i ∈ S. Then, we have

E[∥y+ − y∗(x+)∥
2] ≤b1(α)E

[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥2]+ b2(α)E[∥y+ − y∗∥2]

+ b3(α)(2σ
2
h + 2σ2

f +M2)

where the constants are given by

b1(α) :=4L2
yα

2 +
L2
yα

2

4γ
+

2Lyxα
2

η
, b2(α) := 1 + 4γ +

ηLyxD
2
hα

2

2
, b3(α) := 4α2L2

y +
2Lyxα

2

η

with a flexible parameter γ > 0 decided later.

Proof. First note that

E[∥y+ − y∗(x+)∥
2] =E[∥y+ − y∗∥2] + E[∥y∗(x+) − y∗∥2] + 2E[⟨y+ − y∗, y∗ − y∗(x+)⟩]. (27)

In Equation (27), we bound the second term using Lemma 4 and Equation (26) as

E[∥y∗(x+) − y∗∥2] ≤L2
y E

[∥∥∥ 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∥∥∥2]

≤4α2L2
y E

[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥2]+ 8α2L2

yσ
2
h + 8α2L2

yσ
2
f + 4α2L2

yM
2,

and for the third term, we have

E[⟨y+ − y∗, y∗ − y∗(x+)⟩] =− E[⟨y+ − y∗,∇y∗(x+ − x)⟩]
− E[⟨y+ − y∗, y∗(x+) − y∗ −∇y∗(x+ − x)⟩]. (28)
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For the first term on the RHS of the above Equation (28), we have

−E[⟨y+−y∗,∇y∗(x+ − x)⟩]

=− E
[〈

y+ − y∗,E
[ 1

m
∇y∗

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̃D
i (xi

0, y+) + h̃D(x)− h̃I(x)
)∣∣∣x, y+]〉]

=− E
[〈

y+ − y∗,E
[ 1

m
∇y∗

m∑
i=1

αi
τi−1∑
υ=0

(
h̃D
i (xi

v, y+)− h̄I(x)
)∣∣∣xi

υ

]〉]
=− E

[〈
y+ − y∗,

1

m
∇y∗

m∑
i=1

αi
τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)〉]

(i)

≤ E
[
∥y+ − y∗∥

∥∥∥ 1

m
∇y∗

m∑
i=1

αi
τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥]

(ii)

≤ Ly E
[
∥y+ − y∗∥

∥∥∥ 1

m

m∑
i=1

αi
τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥]

(iii)

≤ 2γ E[∥y+ − y∗∥2] +
L2
yα

2

8γ
E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥2] (29)

where (i) follows from the Cauchy–Schwarz inequality, (ii) follows from Lemma 4, and (iii) follows from Young’s
inequality that ab ≤ 2γa2 + b2

2γ . For the second term of RHS of Equation (28), we have

−E[⟨y+ − y∗, y∗(x+) − y∗ −∇y∗(x+ − x)⟩]
≤E[∥y+ − y∗∥∥y∗(x+) − y∗ −∇y∗(x+ − x)∥]
(i)

≤Lyx

2
E[∥y+ − y∗∥∥x+ − x∥2]

(ii)

≤ ηLyx

4
E[∥y+ − y∗∥2∥x+ − x∥2] + Lyx

4η
E[∥x+ − x∥2]

≤ηLyx

4

1

m

m∑
i=1

α2

τi

τi−1∑
υ=0

E
[
∥y+ − y∗∥2 E[∥h̃D

i (xi
υ, y+)− h̃D

i (xi
0, y+) + h̃D(x)− h̃I(x)∥2|x, y+]

]
+

Lyx

4η
E[∥x+ − x∥2]

(iii)

≤ ηLyxD
2
hα

2

4
E[∥y+ − y∗∥2] + Lyxα

2

η
E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

v, y+)− h̄I(x)
)∥∥∥2]

+
Lyxα

2

η
(2σ2

h + 2σ2
f +M2) (30)

where (i) follows from the decent lemma by the smoothness of y∗(·), (ii) follows from the Young’s inequality, and (iii)
follows from Proposition 1 and Equation (26). Substituting Equation (29) and Equation (30) into Equation (28), and using
Equation (27), we complete the proof.

Lemma 7 (Restatement of Lemma 3). Suppose Assumptions 1-4 are satisfied. Set λ ≤ min{10, 1
Lg

}, αi = α
τi

and βi =
β
τi
, τi ≥ 1 where α ≤ 1

324M2
f+6Mf

≤ 1
6Mf

, β ≤ min{1, λ, 1
6Lg

} ∀i ∈ S. Recall the definitions of y∗ = argminy g(x, y),

h̄(x) = E[h̃(x)|x, y+]. Then, we have

E[∥xi
υ − x∥2] ≤18τ2i (α

i)2
[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ [4λ2L2
gM

2α1(N) + 4λ2L2
fL

2
gα3(N)]E[∥y − y∗∥2]
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+ 400λ2β2L2
gM

2ρ2σ2
gα2(N) +

200λβ2L2
fL

2
gN(N + 1)σ2

g

µ
+ 3σ2

h + 6σ2
f

]
(31)

where α1(N), α2(N), α3(N) are defined in Proposition 1.

Proof. The result holds for τi = 1 according to line 2 in Algorithm 4 where xi
0 = x, and hence we consider the case when

τi > 1. Based on the notations in Equation (8), we define

viυ :=h̄(x)− ∇̄f(x, y+),

ωi
υ :=∇xFi(x

i
υ, y+; ξi,υ)−∇xfi(x

i
υ, y+) +∇xfi(x, y+)

−∇xFi(x, y+; ξi,υ) + h̃(x)− h̄(x),

ziυ :=∇xfi(x
i
υ, y+)−∇xfi(x, y+) + ∇̄f(x, y+)−∇f(x) +∇f(x).

(32)

Based on Algorithm 4, for each i ∈ S, and ∀υ ∈ 0, ..., τi − 1, we have,

xi
υ+1 − x = xi

υ − x− αi(viυ + ωi
υ + ziυ). (33)

Based on Lemma 4 and Proposition 1, we bound viυ , ωi
υ , and ziυ as

E[∥viυ∥2] ≤
4L2

gM
2(1− λµ)2N+2

µ2
+ [4λ2L2

gM
2α1(N) + 4λ2L2

gL
2
fα3(N)]E[∥y − y∗∥2]

+ 400λ2β2L2
gM

2ρ2σ2
gα2(N) +

200λβ2σ2
gL

2
fL

2
gN(N + 1)

µ
,

E[∥ωi
υ∥2] ≤3E[∥∇xFi(x

i
υ, y+; ξi,υ)−∇xfi(x

i
υ, y+)∥2

+ ∥∇xfi(x, y+)−∇xFi(x, y+; ξi,υ)∥2 + ∥h̃(x)− h̄(x)∥2]
≤6σ2

f + 3σ2
h,

E[∥ziυ∥2] ≤3E[∥∇xfi(x
i
υ, y+)−∇xfi(x, y+)∥2

+ ∥∇̄f(x, y+)−∇f(x)∥2 + E ∥∇f(x)∥2]
≤3(M2

f E[∥xi
υ − x∥2] +M2

f E[∥y+ − y∗∥2] + E[∥∇f(x)∥2]).

(34)

Now, we bound RHS of Equation (33) as

E[∥xi
υ−x− αi(viυ + ωi

υ + ziυ)∥2]
(i)

≤(1 +
1

2τi − 1
)E[∥xi

υ − x∥2] + 2τi E[∥αi(viυ + ωi
υ + ziυ)∥2]

(ii)

≤ (1 +
1

2τi − 1
)E[∥xi

υ − x∥2] + 6τi(α
i)2 E[∥viυ∥2 + ∥ωi

υ∥2 + ∥ziυ∥2]

(iii)

≤ (1 +
1

2τi − 1
+ 18τi(α

i)2M2
f )E[∥xi

υ − x∥2]

+ 6τi(α
i)2

[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ [4λ2L2
gM

2α1(N) + 4λ2L2
gL

2
fα3(N)]E[∥y − y∗∥2] + 400λ2β2L2

gM
2ρ2σ2

gα2(N)

+
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ
+ 6σ2

f + 3σ2
h

]
(35)

where (i) follows from ∥x+ y∥2 ≤ (1 + c)∥x∥2 + (1 + 1
c )∥y∥

2, (ii) follows from the Young’s inequality, and (iii) uses
Equation (34). Substituting Equation (35) into Equation (33) yields

E[∥xi
υ+1 − x∥2] ≤(1 +

1

2τi − 1
+ 18τi(α

i)2M2
f )E[∥xi

υ − x∥2]
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+ 6τi(α
i)2

[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ [4λ2L2
gM

2α1(N) + 4λ2L2
gL

2
fα3(N)]E[∥y − y∗∥2] + 400λ2β2L2

gM
2ρ2σ2

gα2(N)

+
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ
+ 3σ2

h + 6σ2
f

]
≤(1 +

1

τi − 1
)E[∥xi

υ − x∥2]

+ 6τi(α
i)2

[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ [4λ2L2
gM

2α1(N) + 4λ2L2
gL

2
fα3(N)]E[∥y − y∗∥2] + 400λ2β2L2

gM
2ρ2σ2

gα2(N)

+
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ
+ 3σ2

h + 6σ2
f

]
, (36)

where the last inequality follows because αi ≤ 1/(6Mfτi). For all τi > 1, we have

υ−1∑
j=0

(1 +
1

τi − 1
)j =

(1 + 1
τi−1 )

υ − 1

(1 + 1
τi−1 )− 1

≤ τi(1 +
1

τi
)υ ≤ τi(1 +

1

τi
)τi ≤ exp(1)τi < 3τi. (37)

Finally, telescoping Equation (36) and using Equation (37), we have

E[∥xi
υ − x∥2] ≤18τ2i (α

i)2
[
3M2

f E[∥y+ − y∗∥2] + 3E[∥∇f(x)∥2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ [4λ2L2
gM

2α1(N) + 4λ2L2
gL

2
fα3(N)]E[∥y − y∗∥2] + 400λ2β2L2

gM
2ρ2σ2

gα2(N)

+
200λβ2σ2

gL
2
fL

2
gN(N + 1)

µ
+ 3σ2

h + 6σ2
f

]
.

Then, the proof is complete.

D.1. Proof of Theorem 1

Theorem 2 (Restatement of Theorem 1). Suppose Assumption 1-4 hold. Further set λ ≤ min{10, 1
Lg

}, αi
k = αk

τi
an

βi
k = βk

τi
for all i ∈ S. Define β̄ =

(
MfLy

2 ᾱ2 + 11MfLy + ηLyxD
2
hᾱ2 +

(6+
ᾱ2
3 )(N+1)λLyL

2
g

Mf

(
328ρ2M2

µ3 +
6L2

f

µ

))
1
µ ,

ᾱ1 = 1

8L′
f+16MfLy+

8MfLyx

ηLy

, ᾱ2 = 1
324M2

f+6Mf
, ᾱ3 =

N min{1,λ, 1
6Lg

}
2β̄

, and σ2
h =

λ(N+1)L2
gM

2

µ , where L′
f = Lf +

Lg(Lf+Mf )
µ + M

µ (ρ+
Lgρ
µ ), Mf = Lf +

LgLf

µ + M
µ (ρ+

Lgρ
µ ), Ly =

Lg

µ , and Lyx =
ρ+ρLy

µ +
Lg(ρ+ρLy)

µ2 . Besides, define

c0 =2L′
f + 4MfLy +

2LyxMf

ηLy
,

c1 =
1

4
+ 4L′

f + 8MfLy +
4LyxMf

ηLy
,

c2 =
1

2
+ 4L′

f + 8MfLy +
4LyxMf

ηLy
,

c3 =
25Mf

Ly

[
1 + (12 +

2αk

3
)(
2ᾱ2λ

2L2
gM

2ρ2Ly

NMf
α2(N) +

ᾱ2λL
2
fL

2
g(N + 1)Ly

µMf
) +

MfLyᾱ
2
2

4

+
11ᾱ2MfLy

2
+

ηLyxD
2
hᾱ

2
2

2

] β̄2

N
,
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where η =
Mf

Ly
and D2

h = 8M2 +
4λ(N+1)L2

gM
2

µ . Choose parameters such that αk = min{ᾱ1, ᾱ2, ᾱ3,
ᾱ√
K
}, βk ∈

[max{ β̄αk

N , λ
10},min{1, λ, 1

6Lg
}], where ᾱ is a parameter that can be tuned. Then we have

1

K

K−1∑
k=0

E[∥∇f(xk)∥2] = O
( 1

min{ᾱ1, ᾱ2, ᾱ3}K
+

1

ᾱ
√
K

+
ᾱmax{c0, c1σ2

h, c2, c3}√
K

+ (1− λµ)2N ). (38)

Proof. Now, we define a Lyapunov function

Wk := f(xk, y
∗
(xk)

) +
Mf

Ly
∥yk − y∗(xk)

∥2.

Motivated by (Chen et al., 2021a), we bound the difference between two Lyapunov functions as

Wk+1 −Wk = f(xk+1, y
∗
(xk+1)

)− f(xk, y
∗
(xk)

) +
Mf

Ly
(∥yk+1 − y∗(xk+1)

∥2 − ∥yk − y∗(xk)
∥2). (39)

Recall that αi
k = αk

τi
, βi

k = βk

τi
,∀i ∈ S. Using such stepsizes and substituting Lemma 5 into Equation (39), we have

E[Wk+1]− E[Wk]

≤− αk

2
E[∥∇f(xk)] + 4α2

kσ
2
hL

′
f + 4α2

kσ
2
fL

′
f + 2α2

kM
2L′

f

− αk

2
(1− 4αkL

′
f )E

[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄D
i (xi

k,υ, y+)− h̄I(x)
)∥∥∥2]

+
3αk

2

[(
4λ2L2

gM
2α1(N) + 4λ2L2

fL
2
gα3(N)

)
E[∥yk − y∗(xk)

∥2] +
4L2

gM
2(1− λµ)2N+2

µ2

+ 400λ2β2
kL

2
gM

2σ2
gρ

2α2(N) +
200λβ2

kσ
2
gL

2
fL

2
gN(N + 1)

µ
+

M2
f

m

m∑
i=1

1

τi

τi−1∑
υ=0

E[∥xi
k,υ − xk∥2]

+M2
f E[∥yk+1 − y∗(xk)

∥2]
]
+

Mf

Ly
E[∥yk+1 − y∗(xk+1)

∥2 − ∥yk − y∗(xk)
∥2]. (40)

Then, following Lemma 6, Equation (40) can be rewritten as

E[Wk+1]− E[Wk]

≤4α2
kσ

2
hL

′
f + 4α2

kσ
2
fL

′
f + 2α2

kM
2L′

f +
Mf

Ly
b3(αk)(2σ

2
h + 2σ2

f +M2)

+
300αkλβ

2
kL

2
fL

2
gN(N + 1)σ2

g

µ
+

6αkL
2
gM

2(1− λµ)2N+2

µ2
+ 600αkλ

2β2
kL

2
gM

2ρ2σ2
gα2(N)

− αk

2
E[∥∇f(xk)∥2] +

3αkM
2
f

2m

m∑
i=1

1

τi

τi−1∑
υ=0

E[∥xi
k,υ − xk∥2] (41a)

−
(αk

2
− 2α2

kL
′
f − Mf

Ly
b1(αk)

)
E
[∥∥∥ 1

m

m∑
i=1

1

τi

τi−1∑
υ=0

(
h̄i(x

i
k,υ, y+)− h̄(x)

)∥∥∥2] (41b)

+
(3αkM

2
f

2
+

Mf

Ly
b2(αk)

)
E[∥yk+1 − y∗(xk)

∥2]

+
(
6αkλ

2L2
gM

2α1(N) + 6αkλ
2L2

fL
2
gα3(N)− Mf

Ly

)
E[∥yk − y∗(xk)

∥2]. (41c)

Set γ = MfLyαk. Then according to the selections in Theorem 2 that αk ≤ 1
324M2

f+6Mf
, αk ≤ 1

8L′
f+16MfLy+

8MfLyx

ηLy

,

and substituting Equation (15) in Equation (41c), the following results can be obtained.

(41a) ≤− αk

4
E[∥∇f(xk)∥2] +

α2
k

4
σ2
h +

α2
k

2
σ2
f +

α2
kL

2
gM

2(1− λµ)2N+2

3µ2
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+
100α2

kλ
2β2

kL
2
gM

2ρ2σ2
g

3
α2(N) +

50α2
kλβ

2
kL

2
fL

2
gN(N + 1)σ2

g

3µ
+

25Mf

Ly
(
MfLy

4
α2
k)Nβ2

kσ
2
g

+
Mf

Ly

[
(
MfLy

4
α2
k)(1−

βkµ

2
)N +

α2
kλ

2LyL
2
gM

2

3Mf
α1(N) +

α2
kλ

2LyL
2
fL

2
g

3Mf
α3(N)

]
E[∥yk − y∗(xk)

∥2], (42)

In (41b), we have
αk

2
− 2α2

kL
′
f − Mf

Ly
b1(αk) ≥ 0, (43)

(41c) ≤25Mf

Ly

(3αkMfLy

2
+ b2(αk)

)
Nβ2

kσ
2
g +

Mf

Ly

[(3αkMfLy

2
+ b2(αk)

)
(1− βkµ

2
)N

+
6αkλ

2L2
gLyM

2α1(N)

Mf
+

6αkλ
2L2

fLyL
2
g

Mf
α3(N)− 1

]
E[∥yk − y∗(xk)

∥2]. (44)

Then, adding Equation (42), Equation (43) and Equation (44) together, we have

E[Wk+1]− E[Wk]

≤− αk

4
E[∥∇f(x∗

k)∥2] +
α2
kσ

2
f

2
+

α2
kσ

2
h

4
+

50αkλβ
2
kL

2
fL

2
gN(N + 1)σ2

g

µ
(6 +

αk

3
)

+ 2α2
kL

′
f (2σ

2
f + 2σ2

h +M2) + 100αkλ
2β2

kL
2
gM

2ρ2σ2
g(6 +

αk

3
)α2(N) +

Mf (2σ
2
f + 2σ2

h +M2)

Ly
b3(αk)

+
2αkL

2
gM

2(1− λµ)2N+2

µ2
(3 +

αk

6
) +

25Mf

Ly
(
MfLy

4
α2
k +

3MfLyαk

2
+ b2(αk))Nβ2

kσ
2
g

+
Mf

Ly

((MfLy

4
α2
k +

3MfLyαk

2
+ b2(αk)

)
(1− βkµ

2
)N − 1 +

2αkλ
2LyL

2
gM

2

Mf
α1(N)(3 +

αk

6
)

+
2αkλ

2LyL
2
fL

2
g

Mf
α3(N)(3 +

αk

6
)
)
E[∥yk − y∗(xk)

∥2]

≤− αk

4
E[∥∇f(x∗

k)∥2] +
α2
kσ

2
f

2
+

α2
kσ

2
h

4
+

50αkλβ
2
kL

2
fL

2
gN(N + 1)σ2

g

µ
(6 +

αk

3
)

+ 2α2
kL

′
f (2σ

2
f + 2σ2

h +M2) + 100αkλ
2β2

kL
2
gM

2ρ2σ2
g(6 +

αk

3
)α2(N) +

Mf (2σ
2
f + 2σ2

h +M2)

Ly
b3(αk)

+
2αkL

2
gM

2(1− λµ)2N+2

µ2
(3 +

αk

6
) +

25Mf

Ly
(
MfLy

4
α2
k +

3MfLyαk

2
+ b2(αk))Nβ2

kσ
2
g

+
Mf

Ly

[(MfLy

4
α2
k +

3MfLyαk

2
+ b2(αk)

)
(1− βkµ

2
)N − 1

+
2αkλ

2LyL
2
gM

2

Mf
(6 +

αk

3
)(N + 1)(1− βkµ

2
)N

( 2ρ2

λµ3
+

80ρ2

λµ3

)
+

3αkλLyL
2
fL

2
g

µMf
(6 +

αk

3
)(N + 1)(1− βkµ

2
)N

]
E[∥yk − y∗(xk)

∥2], (45)

where in the last inequality, recalling from Lemma 6 and Proposition 1 that b2(α) := 1 + 4γ +
ηLyxD

2
hα

2
k

2 , α1(N) =

4(N + 1)(1 − βkµ
2 )N

(
ρ2

λµ3 + 4ρ2

βkµ3

)
, α3(N) = 3(N + 1) (1−βkµ)

N

λµ , we choose βk ≥ λ
10 . Based on the parameters

selections in Theorem 2 that βk ≥
(

MfLy

2 αk + 11MfLy + ηLyxD
2
hαk +

(6+
αk
3 )(N+1)λLyL

2
g

Mf

(
328ρ2M2

µ3 +
6L2

f

µ

))
αk

µN and
γ = MfLyαk, we have

⇒ exp
(MfLy

4
α2
k +

11MfLyαk

2
+

ηLyxD
2
hα

2
k

2
+

αk(6 +
αk

3 )(N + 1)λ2LyL
2
g

Mf
×

(164ρ2M2

λµ3
+

6L2
f

λµ

))
exp(−Nβkµ

2
) ≤ 1
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⇒
(MfLy

4
α2
k +

3MfLyαk

2
+ b2(αk)

)
(1− βkµ

2
)N +

2αkλ
2LyL

2
gM

2

Mf
α1(N)(3 +

αk

6
)

+
2αkλ

2LyL
2
fL

2
g

Mf
α3(N)(3 +

αk

6
)− 1 ≤ 0. (46)

Then plugging Equation (46) into Equation (45), we can obtain that

E[Wk+1]− E[Wk]

≤− αk

4
E[∥∇f(xk)∥2] +

2αkL
2
gM

2(1− λµ)2N+2

µ2
(3 +

αk

6
) +

(
2α2

kL
′
f +

Mf

Ly
b3(αk)

)
M2

+
(
4α2

kL
′
f +

α2
k

4
+

2Mf

Ly
b3(αk)

)
σ2
h +

(
4α2

kL
′
f +

α2
k

2
+

2Mf

Ly
b3(αk)

)
σ2
f

+
25Mf

Ly

(αkλ
2L2

gM
2ρ2Ly

NMf
(24 +

4αk

3
)α2(N) +

αkλL
2
fL

2
g(N + 1)Ly

µMf
(12 +

2αk

3
)

+
MfLyα

2
k

4
+

3αkMfLy

2
+ b2(αk)

) β̄2

N
α2
kσ

2
g

≤− αk

4
E[∥∇f(xk)∥2] +

2αkL
2
gM

2(1− λµ)2N+2

µ2
(3 +

αk

6
) + c0α

2
kM

2 + c1α
2
kσ

2
h + c2α

2
kσ

2
f + c3α

2
kσ

2
g (47)

where c0, c1, c2, c3 are defined in Theorem 2. Finally, telescoping Equation (47) yields

1

K

K−1∑
k=0

E[∥∇f(xk)∥2] ≤
4W0∑K−1
k=0 αk

+
4c0

∑K−1
k=0 α2

k∑K−1
k=0 αk

M2 +
4c1

∑K−1
k=0 α2

k∑K−1
k=0 αk

σ2
h +

4c2
∑K−1

k=0 α2
k∑K−1

k=0 αk

σ2
f

+
4c3

∑K−1
k=0 α2

k∑K−1
k=0 αk

σ2
g +

8L2
gM

2
∑K−1

k=0 αk(1− λµ)2N+2

µ2
∑K−1

k=0 αk

(3 +
αk

6
)

≤ 4W0

min{ᾱ1, ᾱ2, ᾱ3,
ᾱ√
K
}K

+
4c0ᾱ√
K

M2 +
4c1ᾱ√
K

σ2
h +

4c2ᾱ√
K

σ2
f +

4c3ᾱ√
K

σ2
g

+
8L2

gM
2(1− λµ)2N+2

µ2
(3 +

αk

6
)

≤ 4W0

min{ᾱ1, ᾱ2, ᾱ3}K
+

4W0

ᾱ
√
K

+
4c0ᾱ√
K

M2 +
4c1ᾱ√
K

σ2
h +

4c2ᾱ√
K

σ2
f +

4c3ᾱ√
K

σ2
g

+
8L2

gM
2(1− λµ)2N+2

µ2
(3 +

αk

6
)

=O
(

1

min{ᾱ1, ᾱ2, ᾱ3}K
+

1

ᾱ
√
K

+
ᾱmax{c0, c1σ2

h, c2, c3}√
K

+ (1− λµ)2N
)
. (48)

The proof is complete.

D.2. Proof of Corollary 1

Proof. Let η =
Mf

Ly
= O(κg). It follows from Lemma 4 and Theorem 2 that

Ly =O(κg), Lyx = O(κ3
g), Mf = O(κ2

g), L
′
f = O(κ3

g), σ
2
h = O(Nκg),

ᾱ1 =O(κ−3
g ), ᾱ2 = O(κ−4

g ), ᾱ3 = O(Nκ−4
g + κ−3

g ), β̄ = O(κ4
g +Nκ3

g),

c0 =O(κ3
g), c1 = O(κ3

g), c2 = O(κ3
g), c3 = O

((κ8
g

N
+Nκ6

g

)(
κg +Nκ−1

g

))
.

(49)

Now, if we select N = O(κg), ᾱ = O(κ−4
g ), we obtain from Equation (48) that

β̄ = O(κ4
g), c3 = O(κ8

g),
1

K

K−1∑
k=0

E[∥∇f(xk)∥2] = O(
κ4
g

K
+

κ4
g√
K

).
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To achieve an ϵ-stationary point, it requires K = O(κ8
gϵ

−2) and the number of samples in ξ and ζ are both O(κ9
gϵ

−2). Then
the proof is complete.
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