
On the Forward Invariance of Neural ODEs

Wei Xiao 1 Tsun-Hsuan Wang 1 Ramin Hasani 1 Mathias Lechner 1

Yutong Ban 1 Chuang Gan 2 Daniela Rus 1

Abstract
We propose a new method to ensure neural ordi-
nary differential equations (ODEs) satisfy output
specifications by using invariance set propaga-
tion. Our approach uses a class of control barrier
functions to transform output specifications into
constraints on the parameters and inputs of the
learning system. This setup allows us to achieve
output specification guarantees simply by chang-
ing the constrained parameters/inputs both dur-
ing training and inference. Moreover, we demon-
strate that our invariance set propagation through
data-controlled neural ODEs not only maintains
generalization performance but also creates an ad-
ditional degree of robustness by enabling causal
manipulation of the system’s parameters/inputs.
We test our method on a series of representation
learning tasks, including modeling physical dy-
namics and convexity portraits, as well as safe
collision avoidance for autonomous vehicles.

1. Introduction
Neural ODEs (Chen et al., 2018) are continuous deep learn-
ing models that enable a range of useful properties such as
exploiting dynamical systems as an effective learning class
(Haber & Ruthotto, 2017; Gu et al., 2021), efficient time
series modeling (Rubanova et al., 2019; Lechner & Hasani,
2022), and tractable generative modeling (Grathwohl et al.,
2018; Liebenwein et al., 2021).

Neural ODEs are typically trained via empirical risk min-
imization (Rumelhart et al., 1986; Pontryagin, 2018) en-
dowed with proper regularization schemes (Massaroli et al.,
2020) without much control over the behavior of the ob-
tained network and over the ability to account for coun-

1Computer Science and Artificial Intelligence Lab, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA. 2MIT-
IBM Watson AI Lab. Videos and code are available on the
website: https://weixy21.github.io/invariance/.
Correspondence to: Wei Xiao <weixy@mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Input Output

Input 
Invariance

Neural ODE
𝐼(𝑡)

Invariance propagation

Output 
spec

What if there is an obstacle in 
In the flow of a neural ODE?

Neural ODE with no Invariance

Neural ODE + Invariance

A B

C

We use Neural ODEs with Invariance

Figure 1. Invariance Propagation for neural ODEs. Output specifi-
cations can be guaranteed with invariance, including specification
satisfaction between samplings, e.g., spiral curve regression with
critical region avoidance.

terfactual inputs (Vorbach et al., 2021). For example, a
well-trained neural ODE instance that learned to chase a
spiral dynamic (Fig. 1B), would not be able to avoid an
object on its flow, even if it has seen this type of output
specification/constraint during training. This shortcoming
demands a fundamental fix to ensure the safe operation of
these models specifically in safety-critical applications such
as robust and trustworthy policy learning, safe robot control,
and system verification (Lechner et al., 2020; Kim et al.,
2021; Hasani et al., 2022).

In this paper, we set out to ensure neural ODEs satisfy
output specifications. To this end, we introduce the concept
of propagating invariance sets. An invariance set is a form
of specification consisting of physical laws, mathematical
expressions, safety constraints, and other prior knowledge of
the structure of the learning task. We can ensure that neural
ODEs are invariant to noise and affine transformations such
as rotating, translating, or scaling an input, as well as to
other uncertainties in training and inference.

To propagate invariance sets through neural ODEs we can
use Lyapunov-based methods with forward invariance prop-
erties such as a class of control barrier functions (CBFs)
(Ames et al., 2017), to formally guarantee that the output

1

https://weixy21.github.io/invariance/


On the Forward Invariance of Neural ODEs

specifications are ensured. In order to account for non-
linearity of the model, high-order CBFs (Xiao & Belta,
2019), a general form of CBFs, are required since high-
relative degree constraints are introduced in such cases.
CBFs perform this via migrating output specifications to
the learning system’s parameters or its inputs such that we
can solve the constraints via forward calls to the learning
system equipped with a quadratic program (QP). However,
doing this requires a series of non-trivial novelties which we
address in this paper. 1. CBFs are model-based Lyapunov
methods, thus, they can only be used with data and systems
with known dynamics. Here, we extend their formalism
to work with unknown dynamics by the properties of neu-
ral ODEs. 2. CBFs are typically applied to systems with
affine transformations. For neural ODEs with nonlinear
activations, the propagation of invariance sets becomes a
challenge. We fix this by incorporating a virtually linear
space within the neural ODE to find simple parameter/input
constraints.

Going back to Fig. 1C, we observe that by applying our
forward invariance propagation method, we can correct the
model and force the system trajectories to stay away from
the red obstacles while maintaining the path of the ground
truth spiral curve.

In summary, we make the following new contributions:

• We incorporate formal guarantees into neural ODEs via
invariance set propagation.

• We use the class of Higher-order CBFs (Xiao & Belta,
2022) to propagate the invariance set in neural ODEs while
addressing their challenges such as handling unknown
dynamics and the nonlinearity of the neural ODEs as well
as connecting the order concept in HOCBFs to that of
network depth in neural ODEs.

• We demonstrate the effectiveness of our method on a vari-
ety of learning tasks and output specifications, including
the modeling of physical systems and the safety of neural
controllers for autonomous vehicles.

2. Preliminaries
In this section, we provide background on neural ODEs and
forward invariance in control theory.

2.1. Neural ODEs

A neural ordinary differential equation (ODE) is defined in
the form (Chen et al., 2018):

ẋ(t) = fθ(x(t)), (1)

where n ∈ N is state dimension, x ∈ Rn is the state and
ẋ denotes the time derivative of x, fθ : Rn → Rn is a

neural network model parameterized by θ. The output of
the neural ODE is the integral solution of (1). It can also
take in external input, where the model is defined as:

ẋ(t) = f
′

θ(x(t), I(t)), (2)

where nI ∈ N is external input dimension, I(t) ∈ RnI , f
′

θ :
Rn × RnI → Rn is a neural network model parameterized
by θ. For notation convenience, we write as,

fθ = fθK,K+1
◦ · · · ◦ fθ1,2 (3)

where K is the number of layers, fθk,k+1
, k ∈ [1,K]

is the forward process of the k’th layer, and we denote
zk = (fθk,k+1

◦ · · · ◦fθ1,2)(·) ∈ Rnk the intermediate repre-
sentation at the k’th layer and zK = ẋ is the output. nk ∈ N
denotes the number of neurons at layer k and nK = n.

2.2. Forward Invariance in Control Theory

Consider an affine control system of the form

ẋ = f(x) + g(x)u (4)

where x ∈ Rn, f : Rn → Rn and g : Rn → Rn×q are
locally Lipschitz, and u ∈ U ⊂ Rq, where U denotes a
control constraint set.

Definition 2.1. (Set invariance): A set C ⊂ Rn is forward
invariant for system (4) if its solutions for some u ∈ U
starting at any x(t0) ∈ C satisfy x(t) ∈ C, ∀t ≥ t0.

Definition 2.2. (Relative degree): The relative degree of
a differentiable function b : Rn → R (or constraint b(x) ≥
0) with respect to the system (4) is the number of times
b(x) needs to be differentiated along dynamics (4) until
any component of u explicitly shows in the corresponding
derivative.

Definition 2.3. (Class K function): A Lipschitz continuous
function α : [0, a) → [0,∞), a > 0 belongs to class K if it
is strictly increasing and α(0) = 0.

Definition 2.4. (High Order Barrier Function (HOBF)):
A function b : Rn → R of relative degreem is a HOBF with
a sequence of functions ψi : Rn → R such that ψm(x) ≥ 0,

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m},
(5)

where ψ0(x) := b(x) and αi(·) is a (m− i)’th order differ-
entiable class K function. We define a sequence of sets,

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (6)

Definition 2.5. (High Order Control Barrier Function
(HOCBF) (Xiao & Belta, 2022)): Let ψi and Ci be defined
by (5) and (6), respectively, for i ∈ {1, . . . ,m}. A function
b : Rn → R is a HOCBF of relative degree m if there exists

2



On the Forward Invariance of Neural ODEs

(m − i)th order differentiable class K functions αi, i ∈
{1, . . . ,m} such that

sup
u∈U

[Lm
f b(x) + [LgL

m−1
f b(x)]u+O(b(x))

+αm(ψm−1(x))] ≥ 0,
(7)

for all x ∈ C1∩, . . . ,∩Cm. Lf and Lg denote Lie deriva-
tives w.r.t. x along f and g, respectively, and O(b(x)) =∑m−1

i=1 Li
f (αm−i ◦ ψm−i−1)(x). The satisfaction of (7) is

equivalent to the satisfaction of ψm(x) ≥ 0 defined in (5).

The HOCBF is a general form of the CBF (Ames et al.,
2017) (a HOCBF with m = 1 degenerates to a CBF), and
it can be applied to arbitrary relative degree systems, such
as the invariance propagation to nonlinear layers of a neural
ODE in this work.

Theorem 2.6. (Xiao & Belta, 2022)): Given a HOCBF
b(x) from Def. 2.5 with the sets C1, . . . , Cm defined by (6),
if x(t0) ∈ C1∩, . . . ,∩Cm, then any Lipschitz continuous
controller u(t) that satisfies the constraint in (7), ∀t ≥ t0
renders C1∩, . . . ,∩Cm forward invariant for system (4).

In this work, we map the forward invariance in control
theory to forward invariance in neural ODEs, where we
tackle arbitrary dynamics defined by neural ODE fθ (which
can be nonlinear as opposed to an affine control system in
the form of (4)).

3. Invariance Propagation
In this section, we present the theoretical framework of In-
variance Propagation (IP) to guarantee forward invariance
(in short, invariance) of a neural ODE. We first provide
formalisms of the proposed method. Then, we describe
invariance propagation to (i) linear layer (ii) nonlinear layer
(iii) external input.

Output Specification. A continuously differentiable func-
tion h : Rn → R constructs an output specification
h(x) ≥ 0 for a neural ODE. Typical output specifications in-
clude system safety (e.g., collision avoidance in autonomous
driving), physical laws (e.g., energy conservation), mathe-
matical formulae (e.g., Cauchy Schwarz inequality), etc.

Definition 3.1. (Forward Invariance in Neural ODE):
The (forward) invariance of a neural ODE (1) or (2) with
fθ is defined w.r.t. its output specification h(x) ≥ 0 such
that if h(x(t0)) ≥ 0, then h(x(t)) ≥ 0,∀t ≥ t0, where
x(t) =

∫ t

t0
fθ(τ)dτ . Intuitively, this property guarantees

the satisfaction of output specification is forwarded in the
neural ODE across time.

Definition 3.2. (Invariance Propagation (IP)): Given an
output specification h(x) ≥ 0 and a neural ODE fθ, invari-
ance propagation describes a procedure to find a constraint

Ψ(d) ≥ 0, where Ψ : Rnd → R and d (nd ∈ N is its dimen-
sion) is either (i) a subset of parameters θ, (ii) the external
input I, or (iii) other auxiliary variables for the neural ODE,
such that if Ψ(d) ≥ 0, forward invariance defined in Def.
3.1 is satisfied. Intuitively, IP casts invariance w.r.t. output
specification to pose constraints on non-output in ODEs.

3.1. Invariance Propagation to Linear Layers

We start with a simple case where invariance is propagated
to linear layers of the neural ODE, which normally occurs
at the output layer without nonlinear activation functions.

Neural ODE Reformulation. Without loss of generality,
we follow (3) and assume a linear output layer fθK−1,K

,

ẋ =

n2∑
i=1

θiK−1,Kzi
K−1 = θPK−1,KzP

K−1 + θNK−1,KzN
K−1

(8)
where zK−1 = (fθK−1,K−2

◦ · · · ◦ fθ1,2)(x), θiK−1,K is the
i’th column of θK−1,K ∈ Rn×nK−1 , zi

K−1 is the i’th entry
of zK−1 ∈ RnK−1 , P and N describe sets of columns that
are updatable parameters (that the invariance is propagated
to) and constants, respectively. We drop the bias term for
cleaner notation.

Propagation to Linear Layers. Our goal is to propagate the
invariance to a subset of parameters. We treat θPK−1,K as a
variable while taking other parameters θNK−1,K as constants.
Given an arbitrary output specification h(x) ≥ 0, we can
define a ψ1 function in the form:

ψ1(x, θ
P
K−1,K) :=

dh(x)

dx
fθ(x) + α1(h(x)), (9)

where α1(·) is a class K function. Note that θPK−1,K is im-
plicitly defined in fθ. Combining (9) with (8), the following
theorem shows the invariance of the neural ODE (1):

Theorem 3.3. Given a neural ODE as in (8) and an output
specification h(x) ≥ 0, if there exist a class K function α1

and θPK−1,K such that with ψ1 as in (9),

Ψ(θPK−1,K |x) = ψ1(x, θ
P
K−1,K) ≥ 0, (10)

for all x such that h(x) ≥ 0, where Ψ(θPK−1,K |x) =
dh
dxθ

P
K−1,KzP

K−1 +
dh
dxθ

N
K−1,KzN

K−1 + α1(h(x)), then the
neural ODE is forward invariant.

The proof and existence of α1 are shown in Appendix A.1.

Brief Summary. Thm. 3.3 provides a condition on the
parameter θPK−1,K that implies the invariance of the neural
ODE. In other words, by modifying the parameter θPK−1,K

such that (10) is always satisfied, we can guarantee the
invariance. The algorithm is shown in the next section.
Moreover, since we only need to take the derivative of h(x)

3



On the Forward Invariance of Neural ODEs

Neural ODE

ℎ 𝒙 ≥ 0

Output invariance 

(spec.)
𝜓1 𝒙 ≔

ሶℎ 𝒙 + 𝛼1(ℎ 𝒙 )

Hidden invariance

𝜓2 𝒙 ≔
ሶ𝜓1 𝒙 + 𝛼2(𝜓1 𝒙 )

Auxiliary 

input invariance

Layer K

𝜃𝐾−1,𝐾

Invariance Propagation

Outputs
ሶ𝑥

Inputs
𝑥

Layer K-1

……

Layer 𝑘+1

……

Layer 𝑘

Layer 1

𝜃𝑘,𝑘+1
𝑃

𝑧𝐾−1

𝑑𝒙

𝑑𝑧𝐾−1,𝐾

𝑑𝑧𝑘−1,𝑘

𝑑𝜃𝑘,𝑘+1
𝑝

……
Chain rule

Virtual 

System

Figure 2. Invariance propagation to an arbitrary layer of the neural
ODE with auxiliary virtual linear space.

once, as shown in (10), this is analogous to a first-order
HOCBF (i.e., m = 1 in Def. 2.5).

IP to the Proper Parameters. By using the Theorem 3.3 ,
we can propagate the invariance to neural ODE parameters
in linear layers. However, note that we need to choose the
parameters such that all the output of the neural ODE are
able to be changed by modifying the target parameters. Oth-
erwise, the output specification may fail to be guaranteed.

3.2. Invariance Propagation to Nonlinear Layers

In this section, we consider how we may efficiently propa-
gate the invariance to the weight parameters of an arbitrary
layer of the neural ODE (including the output layer with
nonlinear activation functions). Theoretically, we can prop-
agate the invariance to arbitrary layers using the existing
HOCBF theory. However, the resulting invariance enforce-
ment would be nonlinear programs (i.e., the HOCBF con-
straint (7) will be nonlinear in u), which are computation-
ally hard and inefficient to solve. Moreover, the formulation
above does not allow us to incorporate the IP in the training
loop to address the conservativeness of the invariance as
discussed next. Our method works for both (1) and (2), so
we only consider (1) for simplicity.

An Auxiliary Linear System. Given a neural ODE (1), we
want to propagate the invariance to the partial parameter
(similar to (8)) at the k’th layer θPk,k+1 ∈ RnP

k+1×nk with
k ∈ {1, . . . ,K} and nPk+1 ≤ nk+1. Then, we flatten the
matrix parameter θPk,k+1 to a vector form θPk ∈ RdP

k row-
wise, where dPk = nPk+1nk is the dimension of the vector.
Instead of directly propagating the invariance to the parame-
ter θPk and resulting nonlinear constraints, we propagate the
invariance to an auxiliary linear system:

θ̇Pk = AP
k θ

P
k +BP

k u
P
k (11)

where AP
k ∈ RdP

k ×dP
k , BP

k ∈ RdP
k ×dP

k are chosen such

that the auxiliary system is controllable and uPk ∈ RdP
k is

the auxiliary control input. The exact choice of AP
k and

BP
k may slightly impact the performance, which is further

discussed in Appendix B. This specific formulation allows
performing IP on uPk linearly (which will become clearer
later on) as opposed to directly on θPk , which is susceptible
to nonlinearity. An overview is illustrated in Fig. 2.

Propagation to Auxiliary System. We first propagate the
invariance to parameter θPk by defining a function ψ1 similar
to (9), which is illustrated by the blue boxes in Fig. 2. Then,
we further propagate the invariance to the upk in system (11)
by defining another function ψ2 (the red box in Fig. 2):

ψ1(x, θ
P
k ) :=

dh(x)

dx
fθ(x) + α1(h(x)),

ψ2(x, u
P
k ) :=

∂ψ1

∂x
fθ(x) +

∂ψ1

∂θPk
θ̇Pk + α2(ψ1(x, θ

P
k )),

(12)
where α1(·), α2(·) are class K functions and ψ1, ψ2 are
defined in the similar spirit to (5). Remark that different
from (9), here, ψ1 is nonlinear regarding θPk yet the newly
introduced ψ2 is linear to the auxiliary variable uPk thanks
to θ̇Pk depicting a linear system w.r.t. uPk as shown in (11).
Combining (12) with (11), the following theorem shows the
invariance:

Theorem 3.4. Given a neural ODE defined by (1) and
an output specification h(x) ≥ 0, if there exist class K
functions α1, α2 and uPk such that with ψ1, ψ2 as in (12),

Ψ(uPk |x) = ψ2(x, u
P
k ) ≥ 0, (13)

for all x that satisfies h(x) ≥ 0 and ψ1(x) ≥ 0, where
Ψ(uPk |x) =

d2h(x)
dx2 f2θ (x)+

dh(x)
dx

∂fθ(x)

∂θP
k

(AP
k θ

P
k +BP

k u
P
k )+

(dh(x)dx
∂fθ(x)

∂x + dα1(h(x))
dx )fθ(x)+α2(ψ1(x)), then the neu-

ral ODE is forward invariant.

The proof and existence of α1, α2 are shown in Appendix
A.2. Intuitively, invariance is first propagated via ψ1 to θPk ,
then via ψ2 to uPk , rendering a linear constraint in (13). We
will further show how this enforces invariance in Sec. 4.2.

Brief Summary. Note that (13) is linear in uPk with the
assistance of system (11). Instead of directly changing the
parameters of the neural ODE for the invariance as Sec. 3.1,
we find auxiliary control uPk that satisfies the constraint (13)
to dynamically change the parameters. Also, since we take
the derivative of h(x) twice, as in (13), this is analogous to
a second-order HOCBF (i.e., m = 2 in Def. 2.5)

IP to the Proper Parameters. While Thm. 3.4 allows us to
propagate the invariance to arbitrary neural ODE parameters,
the choice of the parameters may affect the performance,
e.g., the model’s accuracy). The specific parameter choice
depends on the model structure and the task’s output specifi-
cation. In most cases, we may wish to choose the parameters

4



On the Forward Invariance of Neural ODEs

of the same layer to propagate the invariance to. However, it
is also possible to choose parameters of different layers, as
long as we define auxiliary dynamics for all the parameters
as in (11). The proposed method still works in such cases.
We may need to choose the parameters such that the output
of the neural ODE can all be changed, as in the linear case.

3.3. Invariance Propagation to External Input

We consider a neural ODE in the form of (2) with an external
input I .

Approach 1: As in Sec. 3.1, we may directly reformulate
(2) in the following affine form:

ẋ = fθ(x) + gθ(x)I, (14)

where fθ is defined as in (1), gθ : Rn → Rn×nI is another
neural network parameterized by θ. Then, we can use the
similar technique as in Sec. 3.1 to propagate the invariance
to the external input I as they are both in affine forms.

Approach 2: If we do wish to keep neural ODEs with
external input as in the form of (2), then we may define
auxiliary linear dynamics as in Sec. 3.2, and augment (2) by
the following form:

ẋ = f
′

θ(x,y), ẏ = Ay +BI, (15)

where y ∈ RnI is the auxiliary variable, A ∈ RnI×nI , B ∈
RnI×nI are defined such that the linear system is controllable
(similar to (11)). Then, we can use the similar technique
as in Sec. 3.2 to propagate the invariance to the external
input I via the auxiliary variable y. In fact, the above neural
ODE becomes a stacked neural ODE, which will be further
studied (as discussed in Appendix E).

4. Enforcing Invariance in Neural ODEs
Here, we show how we proceed from the theoretical frame-
work in Sec. 3 to efficient algorithms of IP on neural ODEs.

4.1. Algorithms for Linear layers

Enforcing invariance. Enforcing the invariance of a neural
ODE is equivalent to the satisfaction of the condition in
Thm. 3.3. Also by proof in Appendix A.1, we can always
find a class K function α1(·) such that there exists θPK−1,K

that makes (10) satisfied if h(x(t0)) ≥ 0. If h(x1(t0)) ≤ 0,
then the output of the neural ODE will be driven to satisfy
h(x) ≥ 0 when the constraint (10) in Thm. 3.3 is satis-
fied due to its Lyapunov property (Ames et al., 2012). The
enforcing of the invariance could vary in different applica-
tions and we do not restrict to exact methods. We provide a
minimum-deviation quadratic program (QP) approach.

Let θP†
K−1,K ∈ Rn×nP

K−1 denote the value of θPK−1,K dur-
ing training or after training. Then, we can formulate the

following optimization:

θP∗
K−1,K = arg min

θP
K−1,K

||θPK,K−1 − θP†
K−1,K ||2, s.t. (10),

(16)
where || · || denotes the Euclidean norm. The above opti-
mization becomes a QP with all other variables fixed except
θPK−1,K . This solving method has been shown to work in
(Ames et al., 2017) (Glotfelter et al., 2017) (Xiao & Belta,
2022). At each discretization step, we solve the above QP
and get θP∗

K−1,K . Then we set θPK−1,K = θP∗
K−1,K during

the inference of the neural ODE. This way, we can enforce
the invariance, i.e., guarantee that h(x(t)) ≥ 0,∀t ≥ t0.
The process is summarized in Algorithm 1.

Complexity of Enforcing Invariance. The computational
complexity of the QP (16) is O(q3), where q = nPK−1n.
When there is a set S of output specifications, we just add
the corresponding constraint (10) for each specification to
(16), and the number of constraints will not significantly
increase the complexity. It is also possible to get the closed-
form solution of the QP (Ames et al., 2017) when there are
only a few output specifications.

4.2. Algorithms for Nonlinear layers

Stability of Auxiliary Systems. In this case, we need to
make sure that the parameter θPk of the neural ODE is stabi-
lized as it is dynamically controlled by (11). To enforce this,
we use control Lyapunov functions (CLFs) (Ames et al.,
2012). Specifically, for each θPkj

, j ∈ {1 . . . , dPk }, where
θPkj

is a component of θPk , we define a CLF V (θPkj
) =

(θPkj
− θP†

kj
)2, where θP†

kj
is the value of θPkj

during or after
training. Then, any uPk that satisfies:

Φ(uPk |θPkj
) ≤ 0, j ∈ {1, . . . , dPk }, (17)

where Φ(uPk |θPkj
) =

dV (θP
kj

)

dθP
kj

(AP
kj
θPk +BP

kj
uPk )+ϵjV (θPkj

),

AP
kj

∈ R1×dP
k , BP

kj
∈ R1×dP

k are the j’th rows of AP
k , B

P
k

in (11), respectively and ϵj > 0, will render the auxiliary
systems (11) stable. The proof is in Appendix A.3.

Enforcing invariance. Enforcing the invariance of a neu-
ral ODE is equivalent to the satisfaction of the condition
in Thm. 3.4. By proof in Appendix A.2, we can always
find class K functions α1, α2 such that there exists uPk that
makes (13) satisfied if h(x(t0)) > 0. Again, we provide a
minimum-deviation quadratic program (QP) approach:

(uP∗
k ,δ∗1:dP

k
) = arg min

uP
k ,δ

1:dP
k

||uPk ||2 +
dP
k∑

j=1

wjδ
2
j ,

s.t. (13) and Φ(uPk |θPkj
) ≤ δj , j ∈ {1, . . . , dPk },

(18)

5



On the Forward Invariance of Neural ODEs

Algorithm 1 Invariance Propagation to Parameters
Input: Output specification set S, trained or in-training
neural ODE (1).
(a) Choose the model parameters θPk that we wish to
propagate the invariances (from the set S) to.
(b) Make the chosen parameters θPk as symbolic variables.
(c) Make fθ(x) in the neural ODE (1) as a symbolic
function in terms of θPk and x.
if Propagate to nonlinear layers then

(d) Define controllable linear dynamics (11) for θPk .
(e) Propagate invariances to uPk of system (11) by (13).
(f) Define CLFs to stabilize θPk by (17).
(g) Formulate the QP (18).

else
(d) Formulate the QP (16).

end if
repeat

Get the trained or in-training value θP†
k of θPk .

if Propagate to nonlinear layers then
Solve the QP (18) and get uP∗

k .
Get θP∗

k by integrating (11) with uPk = uP∗
k (uPk is

piecewise constant).
else

Get θP∗
k by solving the QP (16).

end if
Set θPk = θP∗

k for the neural ODE (1).
until Training or Inference is done

where δj ∈ R is a slack variable that makes the CLF
constraint soft (not conflict with (13)), and wj > 0, j ∈
{1, . . . , dPk } are pre-defined coefficients of penalties on the
relaxations. The above optimization becomes a QP with
all other variables fixed except uPk , δj , as discussed at the
end of the last subsection. At each discretization step, we
solve the above QP and get uP∗

k . Then, the optimal pa-
rameter θP

∗

k is determined by the integration of (11) with
uPk = uP∗

k , and set θPk = θP
∗

k during the inference. This
way, we can enforce the invariance, i.e., guarantee that
h(x(t)) ≥ 0,∀t ≥ t0. We summarize the process in Algo-
rithm 1.

Complexity of enforcing invariance The computational
complexity of the QP (18) is O(q3), where q = 2dPk . When
there is a set S of output specifications, we just add the
corresponding constraint (13) for each specification to (18).
The complexity is a little higher than the one in the case
of invariance enforcement in a linear layer. This is due to
the fact that the dimension of decision variables is doubled.
Nonetheless, this is still efficient to solve.

4.3. Training Neural ODEs with Invariance.

The invariance of neural ODEs can be enforced even after
the training of neural ODEs. However, we need to hand-

tune the parameters of class K functions in the QP (16) or
(18) to address the conservativeness of this approach, which
is non-trivial when we have many output specifications.

We leverage the power of differentiable QP (Amos & Kolter,
2017). For neural ODEs whose invariance are enforced
on the external input I, the differentiable QP that enforces
the invariance is stacked to the neural ODE, and thus, the
training is performed via the standard stochastic gradient
descent. For neural ODEs whose invariance are enforced
on the model parameter θ (θ is either θPK−1,K as in Sec.
4.1 or θPk as in Sec. 4.2), it is challenging to train both the
neural ODE and differentiable QP simultaneously in the
same pipeline. Thus, we propose the following two-stage
training method: In the first stage, we train the neural ODE
as usual and thus optimize the weight θ† of the network. In
the second stage, we train via the differentiable QP (more
precisely, the parameter of class K functions in QP (16),
(18)) such that θ minimally deviates from θ†. The training
of the network and the QP can be performed alternatively.
We summarize the training process in Fig. 5 in Appendix C.

5. Experiments
We set up experiments to answer the following questions:
• Does our algorithm match the theoretical potential in vari-

ous learning tasks both quantitatively and qualitatively?

• How does our invariance propagation compare with state-
of-the-art approaches for enforcing output specifications?

• How does our proposed method scale with the number of
parameters of the neural ODE and handle complex specifi-
cations of dynamical systems?

5.1. Spiral Curve Regression with Specifications

In this experiment, we aim to impose trajectory constraints
on the spiral dynamics task proposed in (Chen et al.,
2018). The training data comes from solving an ODE
[ẋ, ẏ]T = A[x3, y3]T , where A = [−0.1,−2.0; 2.0,−0.1].
We use a neural ODE to fit the data. We additionally require
the trajectory x = (x, y) to avoid some areas defined by
hj(x) ≥ 0, j ∈ S, where S denotes a set of constraints.

Comparison between invariance enforcing on different
layers. We first compare the performance of neural ODEs
when propagating invariances to different layers and dif-
ferent numbers of model parameters. As shown in Table
1, The output specifications are all guaranteed (Sat. ≥ 0)
with invariance propagation, which shows the flexibility of
the method. While the output specifications are violated in
pure neural ODEs. The computation time is higher when we
propagate the invariances to the hidden layer than one of the
output layers, and the computation time slightly increases
when we significantly increase the number of chosen pa-
rameters, although the inference errors do not actually vary

6



On the Forward Invariance of Neural ODEs

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(a) neural ODE + shielding
ground truth
prediction

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(b) neural ODE + invariance
ground truth
prediction

Figure 3. Invariance in training for spiral curve regression with
output specifications. The shielding method can only guarantee
point-wise satisfaction, and thus the specification can still be vio-
lated between samplings.

too much. An illustrative example is shown in Figs. 7-8 in
Appendix F.1.

Table 1. Spiral curve comparisons between neural ODE and in-
variance propagated to different layers. The numbers in brackets
denote the number of parameters chosen in the invariance. Sat.
(Satisfaction) ≥ 0 denotes the satisfaction of output specifications.

METHOD SAT. (≥ 0) MSE (↓) TIME (↓)

NEURAL ODE -0.031 0.510 0.003
HIDDEN INV. (6) 0.003 0.393 0.025
HIDDEN INV. (20) 0.001 0.391 0.030
HIDDEN INV. (60) 4e−4 0.387 0.044
HIDDEN INV. (100) 9e−4 0.391 0.057
OUTPUT INV. (6) 2e−4 0.441 0.007
OUTPUT INV. (20) 2e−4 0.442 0.010
OUTPUT INV. (60) 2e−4 0.442 0.017
OUTPUT INV. (100) 2e−4 0.442 0.025

Comparison with benchmarks. The proposed invariance
allows us to enforce arbitrary specifications after training
with a different number of parameters. An illustrative exam-
ple is shown in Fig. 9 in Appendix F.1. With invariance in
the training loop, the model outputs can strictly satisfy the
output specifications while staying close to the ground truth
(see Figure 3b). The comparisons between our proposed
(output) invariance with other benchmarks are shown in Ta-
ble 2 in which the results are evaluated using 100 trained
models for each method. Compared to the shielding method
(Ferlez et al., 2020), our invariance model can achieve better
performance. Most importantly, the proposed invariance can
guarantee more complex specifications including address-
ing the inter-sampling effect, i.e., specification satisfaction
between sampling time, as shown in Fig. 3. Both the filter
approach (Pereira et al., 2020) and BarrierNet (Xiao et al.,
2023) perform badly when they are placed outside the neural
ODE (less computationally expensive than the case when
they are placed inside the neural ODE). Moreover, the filter

approach is not trainable, which may introduce the worse
performance. In contrast, the performance of our proposed
invariance is similar when the QP is placed inside and out-
side the neural ODE (we only show the result when the QP
is placed inside the neural ODE in Table 2), which shows
its flexibility.

Table 2. Spiral curve comparisons with benchmarks. [I]/[O] de-
notes the Filter (Pereira et al., 2020) or BarrierNet (BNet) (Xiao
et al., 2023) is inside/outside the neural ODE (Chen et al., 2018).
Items are short for In-loop training test mean-squared error (IN-
LOOP MSE), Post-training test mean-squared error (POST MSE),
Complex specifications and Inter-sampling effect (COMP. & IS),
Pointwise guarantee (PW GUAR.), respectively. Shielding is
(Ferlez et al., 2020). The method items are short for Neural
ODE (NEUR. ODE), Neural ODE with low conservative training
(NODE-L), Neural ODE with high conservative training (NODE-
H), respectively.

METHOD IN-LOOP
MSE(↓)

POST
MSE(↓)

COMP.
& IS

PW
GUAR.

NEUR. ODE 0.49±0.17 0.49±0.17 × ×
NODE-L 0.59±0.18 0.59±0.18 × ×
NODE-H 0.73±0.18 0.73±0.18 × ×

SHIELDING 0.61±0.12 0.61±0.10 ×
√

FILTER [I] N/A 0.55±0.21
√ √

FILTER [O] N/A 1.27±0.14
√ √

BNET [I] 0.64±0.09 0.44±0.08
√ √

BNET [O] N/A 1.04±0.11
√ √

INV. (OURS) 0.55±0.12 0.44±0.08
√ √

5.2. Convexity Portrait of a Function

In this experiment, we assess whether our method can
enforce that the neural ODE outputs satisfy Jensen’s in-
equality. Jensen’s inequality can be used to characterize
whether a function is convex or not. In other words, a
function g is convex if the Jensen’s inequality is satisfied:
µ1g(x)+µ2g(y) ≥ g(µ1x+µ2y), where µ1 ∈ [0, 1], µ2 ∈
[0, 1] such that µ1+µ2 = 1. A neural ODE is not guaranteed
to satisfy Jensen’s inequality as illustrated by the red-dashed
curve in Figure 10b (in appendix). However, with the pro-
posed (hidden and output) invariances, the model outputs
are guaranteed to satisfy Jensen’s inequality, as shown by
the blue-dashed and cyan dashed curves in Figure 10b (in
appendix).

5.3. HalfCheetah-v2 and Walker2d-v2

In this section, we evaluate our invariance framework on two
publicly available datasets for modeling physical dynami-
cal systems (Lechner & Hasani, 2022; Hasani et al., 2021).
The two datasets consist of trajectories of the HalfCheetah-
v2 and Walker2d-v2 3D robot systems (Brockman et al.,
2016) generated by the Mujoco physics engine (Todorov
et al., 2012). Each trajectory represents a sequence of a

7



On the Forward Invariance of Neural ODEs

Figure 4. Planning for Walker2d-v2 in obstacle avoidance using
neural ODE (left) and invariance (right). Collisions happen when
using neural ODE only, while they can be avoided with guarantees
using the proposed invariance method.

17-dimensional vector describing the system’s state, such
as the robot’s joint angles and poses. For each of the two
tasks, we define 34 safety constraints that restrict the sys-
tem’s evolution to the value ranges observed in the dataset.
We compare our invariance approach with a hard trunca-
tion of the system state, i.e., projecting points violating the
constraints to the nearest points that satisfy them. Our in-
variance framework can achieve competitive performance
compared to other approaches, as shown in Table 3, while
guaranteeing the satisfaction of complex safety specifica-
tions. We enforced our invariance on 17, 34, and 170 model
parameters, respectively. We also present a case study (Fig.
4) in planning for obstacle avoidance for the Walker2d-v2
in which the truncation method fails to work.

Table 3. Walker2d-v2 and halfcheetah-v2 comparisons between
Neural ODE (Chen et al., 2018), Truncation (Brockman et al.,
2016), and Invariance (ours). Items are short for Walker2d-
v2 test mean-squared error (W2D MSE), halfcheetah-v2 test
mean-squared error (HC MSE), Complex specifications and Inter-
sampling effect (COMP. & IS), Joint limit satisfaction (SAFETY),
respectively.

METHOD W2D
MSE (↓)

HC
MSE (↓)

COMP.
& IS

SAFETY
(≥ 0)

NEUR. ODE 1.06±0.07 2.17±0.03 × -1.78

TRUNCATION 1.15±0.08 2.17±0.03 × -8.13
INV. (OURS) 1.06±0.07 2.13±0.02

√
0.0

5.4. Lidar-based End-to-End Autonomous Driving

In this section, we consider Lidar-based end-to-end au-
tonomous driving that has complex specifications from dy-
namics. The approach of finding neural ODE specifications
from dynamics can be found in Appendix D. The neural
ODE takes a Lidar point cloud as input I, and outputs con-
trols for the autonomous vehicle to follow the lane. The
problem and training setup is shown in Appendix F.4.

With noisy Lidar, the neural ODE controller may cause

the ego vehicle to collide with the other moving vehicle
during the overtaking process (the red trajectory shown in
Figure 13 in Appendix F.4). Although with safety guaran-
tees, the resulting trajectory from a safe filter (Pereira et al.,
2020) may make the ego vehicle conservative (as the blue
trajectory shown in Figure 13), and thus stay unnecessarily
far away from the optimal trajectory (ground truth). The
BarrierNet (Xiao et al., 2023) is also a filter, but it addresses
conservativeness by including the CBF (filter) in the train-
ing loop. However, the training of a BarrierNet is harder
compared with the invariance as reference controls and the
relative weight among them should also be trained in addi-
tion to the CBF parameters. We summarize this comparison
in Table 4 that includes testing results of 100 case studies
under noisy lidar perception. The invariance has the least
conservativeness while guaranteeing safety.

Table 4. Self-driving comparisons between safe filter (Pereira et al.,
2020), BarrierNet (Xiao et al., 2023), neural ODE (Chen et al.,
2018) and invariance (ours). Items are short for Trajectory test
mean-squared error (TRAJ. MSE), Conservativeness measurement
(CONSER.), Safety measurement (SAFETY), Model complexity
(MOD. CMP.), respectively. L, H are shorts for Low and High.

METHOD TRAJ.
MSE (↓)

CONSER.
(≥ 0 & ↓)

SAFETY
(≥ 0)

DY.
FREE

MOD.
CMP.

NEUR. ODE 0.46±0.04 −13.1±1.49 −17.26
√

L
SAFE FILTER 0.96±0.04 27.69±1.08 24.60 × H
BARRIERNET 0.34±0.01 8.51±0.33 7.69 × H
INV. (OURS) 0.36±0.01 1.97±0.06 1.83

√
L

6. Related Works
Neural ODEs for imitation learning. Neural ODEs (Chen
et al., 2018) (Chen et al., 2020) are powerful dynamical sys-
tems modeling tools, widely used in applications to learning
system kinetics (Kim et al., 2021) (Alvarez et al., 2020)
(Baker et al., 2022), in graphics (Asikis et al., 2022), in
discovering novel materials (Chen et al., 2022), and in robot
controls (Hasani et al., 2017; Amini et al., 2020; Lechner
& Hasani, 2022; Lechner et al., 2020; Vorbach et al., 2021).
Neural ODEs are continuous-time universal approximators
(Kidger et al., 2020) that perform competitive to their static
and discretized neural network counterparts, once their com-
plexity issues (Massaroli et al., 2020) are resolved by better
numerical solvers (Poli et al., 2020), or by their closed-
form variants (Hasani et al., 2022). Recent methods provide
safety guarantees for inference in a neural ODE system, e.g.
stochastic reachability analysis (Gruenbacher et al., 2020).
However, there are no methods to simultaneously train the
model while guaranteeing safety. Here, we address this
issue by forward-invariance of neural ODEs.

Set invariance and CBFs. An invariant set has been widely
used to characterize the safe behavior of dynamical systems
(Preindl, 2016) (Rakovic et al., 2005) (Ames et al., 2017)

8



On the Forward Invariance of Neural ODEs

(Glotfelter et al., 2017) (Xiao et al., 2023). In the state of the
art, Control Barrier Functions (CBFs) are also widely used
to prove set invariance (Aubin, 2009), (Prajna et al., 2007),
(Wisniewski & Sloth, 2013). They can be traced back to
optimization problems (Boyd & Vandenberghe, 2004), and
are Lyapunov-like functions (Tee et al., 2009), (Wieland
& Allgöwer, 2007). Existing CBF approaches have sig-
nificant limitations: They fail on systems with unknown
dynamics, provide rather conservative guarantees, and work
efficiently only for affine systems. Our work addresses all
these limitations.

Existing approaches for guarantees in neural networks.
Recent advances in differentiable optimization methods
show promise for safety-guaranteed neural network con-
trollers (Pereira et al., 2020; Amos et al., 2018; Xiao et al.,
2023; Wang et al., 2023). The differentiable optimizations
are usually served as a layer (filter) in the neural networks.
In (Amos & Kolter, 2017), a differentiable quadratic pro-
gram (QP) layer, called OptNet, was introduced. OptNet
with CBFs has been used in neural networks as a filter for
safe controls (Pereira et al., 2020), in which CBFs are not
trainable, thus, potentially limiting the system’s learning per-
formance. In (Deshmukh et al., 2019; Jin et al., 2020; Zhao
et al., 2021; Ferlez et al., 2020), safety guaranteed neural
network controllers have been learned through verification-
in-the-loop training. The verification approaches cannot
ensure coverage of the entire state space. While the pro-
posed invariance can avoid such issues, and generalize to a
wide class of guarantees.

7. Conclusions, Discussions and Future Work
We have demonstrated the effectiveness of our invariance
propagation method in ensuring the safe operation of neural
ODE instances in a series of dynamical system learning
tasks. Nonetheless, our method faces a few shortcomings
which provide directions for future work to focus on.

In particular, our method requires neural ODEs to have con-
tinuously differentiable activation functions. Moreover, our
method requires prior knowledge of output specifications.
Future work may investigate how to learn specifications
from observational data for unknown specifications. Finally,
we observed the propagation of invariance is subjected to
the vanishing gradient for deeper networks. We can alleviate
this shortcoming by gradient preservation methods such as
mixed-memory ODE-based networks (Lechner & Hasani,
2022) which we will investigate in future work.

Acknowledgements
The research was supported in part by Capgemini Engineer-
ing. It was also partially sponsored by the United States Air
Force Research Laboratory and the United States Air Force

Artificial Intelligence Accelerator and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the United States Air Force or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein. This research was also supported in
part by the AI2050 program at Schmidt Futures (Grant G-
965 22-63172),

References
Alvarez, V. M. M., Roşca, R., and Fălcuţescu, C. G. Dyn-

ode: Neural ordinary differential equations for dynam-
ics modeling in continuous control. arXiv preprint
arXiv:2009.04278, 2020.

Ames, A. D., Galloway, K., and Grizzle, J. W. Control
lyapunov functions and hybrid zero dynamics. In Proc.
of 51rd IEEE Conference on Decision and Control, pp.
6837–6842, 2012.

Ames, A. D., Xu, X., Grizzle, J. W., and Tabuada, P. Control
barrier function based quadratic programs for safety crit-
ical systems. IEEE Transactions on Automatic Control,
62(8):3861–3876, 2017.

Amini, A., Gilitschenski, I., Phillips, J., Moseyko, J., Baner-
jee, R., Karaman, S., and Rus, D. Learning robust control
policies for end-to-end autonomous driving from data-
driven simulation. IEEE Robotics and Automation Letters,
5(2):1143–1150, 2020.

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimiza-
tion as a layer in neural networks. In Proceedings of
the 34th International Conference on Machine Learning -
Volume 70, pp. 136–145, 2017.

Amos, B., Rodriguez, I. D. J., Sacks, J., Boots, B., and
Kolter, J. Z. Differentiable mpc for end-to-end planning
and control. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp. 8299–8310. Curran Associates Inc., 2018.

Asikis, T., Böttcher, L., and Antulov-Fantulin, N. Neural
ordinary differential equation control of dynamics on
graphs. Phys. Rev. Research, 4:013221, Mar 2022. doi:
10.1103/PhysRevResearch.4.013221.

Aubin, J.-P. Viability theory. Springer, 2009.

Baker, J., Cherkaev, E., Narayan, A., and Wang, B. Learning
pod of complex dynamics using heavy-ball neural odes.
arXiv preprint arXiv:2202.12373, 2022.

9



On the Forward Invariance of Neural ODEs

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, New York, 2004.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D.
Neural ordinary differential equations. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, pp. 6572–6583, 2018.

Chen, R. T., Amos, B., and Nickel, M. Learning neural
event functions for ordinary differential equations. arXiv
preprint arXiv:2011.03902, 2020.

Chen, X., Araujo, F. A., Riou, M., Torrejon, J., Ravelosona,
D., Kang, W., Zhao, W., Grollier, J., and Querlioz, D.
Forecasting the outcome of spintronic experiments with
neural ordinary differential equations. Nature communi-
cations, 13(1):1–12, 2022.

Deshmukh, J. V., Kapinski, J. P., Yamaguchi, T., and
Prokhorov, D. Learning deep neural network controllers
for dynamical systems with safety guarantees: Invited
paper. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–7, 2019.

Ferlez, J., Elnaggar, M., Shoukry, Y., and Fleming, C.
Shieldnn: A provably safe nn filter for unsafe nn con-
trollers. preprint arXiv:2006.09564, 2020.

Glotfelter, P., Cortes, J., and Egerstedt, M. Nonsmooth
barrier functions with applications to multi-robot systems.
IEEE control systems letters, 1(2):310–315, 2017.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I.,
and Duvenaud, D. Ffjord: Free-form continuous dy-
namics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

Gruenbacher, S., Hasani, R., Lechner, M., Cyranka, J.,
Smolka, S. A., and Grosu, R. On the verification of
neural odes with stochastic guarantees. arXiv preprint
arXiv:2012.08863, 2020.

Gu, A., Goel, K., and Re, C. Efficiently modeling long
sequences with structured state spaces. In International
Conference on Learning Representations, 2021.

Haber, E. and Ruthotto, L. Stable architectures for deep
neural networks. Inverse problems, 34(1):014004, 2017.

Hasani, R., Lechner, M., Amini, A., Rus, D., and Grosu,
R. Liquid time-constant networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 7657–7666, 2021.

Hasani, R., Lechner, M., Amini, A., Liebenwein, L., Ray,
A., Tschaikowski, M., Teschl, G., and Rus, D. Closed-
form continuous-time neural networks. Nature Machine
Intelligence, pp. 1–12, 2022.

Hasani, R. M., Haerle, D., Baumgartner, C. F., Lomuscio,
A. R., and Grosu, R. Compositional neural-network mod-
eling of complex analog circuits. In 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 2235–
2242. IEEE, 2017.

Jin, W., Wang, Z., Yang, Z., and Mou, S. Neural certifi-
cates for safe control policies. preprint arXiv:2006.08465,
2020.

Khalil, H. K. Nonlinear Systems. Prentice Hall, third edition,
2002.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural
controlled differential equations for irregular time series.
Advances in Neural Information Processing Systems, 33:
6696–6707, 2020.

Kim, S., Ji, W., Deng, S., Ma, Y., and Rackauckas, C. Stiff
neural ordinary differential equations. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 31(9):093122,
2021.

Lechner, M. and Hasani, R. Mixed-memory rnns for learn-
ing long-term dependencies in irregularly sampled time
series. In NeurIPS 2022 Memory in Artificial and Real
Intelligence workshop, 2022.

Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus,
D., and Grosu, R. Neural circuit policies enabling au-
ditable autonomy. Nature Machine Intelligence, 2(10):
642–652, 2020.

Liebenwein, L., Hasani, R., Amini, A., and Rus, D. Sparse
flows: Pruning continuous-depth models. Advances in
Neural Information Processing Systems, 34, 2021.

Massaroli, S., Poli, M., Park, J., Yamashita, A., and Asama,
H. Dissecting neural odes. Advances in Neural Informa-
tion Processing Systems, 33:3952–3963, 2020.

Nagumo, M. Über die lage der integralkurven gewöhnlicher
differentialgleichungen. In Proceedings of the Physico-
Mathematical Society of Japan. 3rd Series. 24:551-559,
1942.

Pereira, M. A., Wang, Z., Exarchos, I., and Theodorou, E. A.
Safe optimal control using stochastic barrier functions
and deep forward-backward sdes. In Conference on Robot
Learning, 2020.

Poli, M., Massaroli, S., Yamashita, A., Asama, H., and Park,
J. Hypersolvers: Toward fast continuous-depth models.

10



On the Forward Invariance of Neural ODEs

Advances in Neural Information Processing Systems, 33:
21105–21117, 2020.

Pontryagin, L. S. Mathematical theory of optimal processes.
Routledge, 2018.

Prajna, S., Jadbabaie, A., and Pappas, G. J. A framework for
worst-case and stochastic safety verification using barrier
certificates. IEEE Transactions on Automatic Control, 52
(8):1415–1428, 2007.

Preindl, M. Robust control invariant sets and lyapunov-
based mpc for ipm synchronous motor drives. IEEE
Transactions on Industrial Electronics, 63(6):3925–3933,
2016.

Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I., and Mayne,
D. Q. Invariant approximations of the minimal robust
positively invariant set. IEEE Transactions on automatic
control, 50(3):406–410, 2005.

Rubanova, Y., Chen, R. T., and Duvenaud, D. K. Latent
ordinary differential equations for irregularly-sampled
time series. Advances in neural information processing
systems, 32, 2019.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Tee, K. P., Ge, S. S., and Tay, E. H. Barrier lyapunov
functions for the control of output-constrained nonlinear
systems. Automatica, 45(4):918–927, 2009.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109.

Vorbach, C., Hasani, R., Amini, A., Lechner, M., and Rus,
D. Causal navigation by continuous-time neural networks.
Advances in Neural Information Processing Systems, 34,
2021.

Wang, T.-H., Xiao, W., Chahine, M., Amini, A., Hasani,
R., and Rus, D. Learning stability attention in vision-
based end-to-end driving policies. arXiv preprint
arXiv:2304.02733, 2023.

Wieland, P. and Allgöwer, F. Constructive safety using
control barrier functions. In Proc. of 7th IFAC Symposium
on Nonlinear Control System, 2007.

Wisniewski, R. and Sloth, C. Converse barrier certificate
theorem. In Proc. of 52nd IEEE Conference on Decision
and Control, pp. 4713–4718, Florence, Italy, 2013.

Xiao, W. and Belta, C. Control barrier functions for sys-
tems with high relative degree. In Proc. of 58th IEEE
Conference on Decision and Control, pp. 474–479, Nice,
France, 2019.

Xiao, W. and Belta, C. High-order control barrier functions.
IEEE Transactions on Automatic Control, 67(7):3655–
3662, 2022.

Xiao, W., Wang, T.-H., Hasani, R., Chahine, M., Amini,
A., Li, X., and Rus, D. Barriernet: Differentiable control
barrier functions for learning of safe robot control. IEEE
Transactions on Robotics, 2023.

Zhao, H., Zeng, X., Chen, T., Liu, Z., and Woodcock, J.
Learning safe neural network controllers with barrier cer-
tificates. Form Asp Comp, 33:437–455, 2021.

11



On the Forward Invariance of Neural ODEs

A. Proof
A.1. Proof of Theorem 3.3 (Invariance Propagation to Linear Layers)

Given a continuously differentiable constraint h(x) ≥ 0 (h(x(t0)) ≥ 0), by Nagumo’s theorem (Nagumo, 1942), the
necessary and sufficient condition for the satisfaction of h(x(t)) ≥ 0,∀t ≥ t0 is

ḣ(x) ≥ 0, when h(x) = 0

The neural ODE is reformulated as

ẋ =

n2∑
i=1

θiK−1,Kzi
K−1 = θPK−1,KzP

K−1 + θNK−1,KzN
K−1

and the condition in the theorem is given by

Ψ(θPK−1,K |x) = dh(x)

dx
θPK−1,KzP

K−1 +
dh(x)

dx
(θNK−1,KzN

K−1)︸ ︷︷ ︸
Lfθ

h(x)

+α1(h(x)) ≥ 0.

Where fθ(x) = θPK−1,KzP
K−1 + θNK−1,KzN

K−1. Combining the last two equations, we have

Ψ(θPK−1,K |x) = dh(x)

dx
ẋ+ α1(h(x)) ≥ 0.

which is equivalent to
ψ1(x, θ

P
K−1,K) = ḣ(x) + α1(h(x)) ≥ 0,

Since α1 is a class K function,
α1(h(x)) → 0 as h(x) → 0.

In other words, we have ḣ(x) ≥ 0 when h(x) = 0. Then, by Nagumo’s theorem, we have that h(x) ≥ 0 is satisfied if
h(x(t0)) ≥ 0 since the derivative of h(x) is non-decreasing on the hyperplane h(x) = 0. In other words, we have that

h(x(t)) ≥ 0,∀t ≥ 0,

and the neural ODE is invariant. ■

Existence of class K function α1 in Theorem 3.3:

Given a continuously differentiable h(x) ≥ 0. If h(x(t0)) ≥ 0, there always exists such a class K function α1 in (10) that
allows us to freely choose θPK−1,K to make (10) satisfied as θPK−1,K is usually unconstrained. ■

A.2. Proof of Theorem 3.4 (Invariance Propagation to Nonlienar Layers)

The auxiliary dynamics are defined as
θ̇Pk = AP

k θ
P
k +BP

k u
P
k

The condition in the theorem is given as

Ψ(uPk |x) =
d2h(x)

dx2
f2θ (x) + (

dh(x)

dx

∂fθ(x)

∂x
+
dα1(h(x))

dx
)fθ(x)︸ ︷︷ ︸

L2
fθ

h(x)+Lfθ
(α1◦h)(x)

+
dh(x)

dx

∂fθ(x)

∂θPk
(AP

k θ
P
k +BP

k u
P
k )︸ ︷︷ ︸

LguLfθ
h(x)

+α2(ψ1(x)) ≥ 0,

Where gu = AP
k θ

P
k +BP

k u
P
k . Combining the last two equations, we have

Ψ(uPk |x) =
d2h(x)

dx2
f2θ (x) +

dh(x)

dx
ḟθ(x) +

dα1(h(x))

dt
+ α2(ψ1(x)) ≥ 0,

12



On the Forward Invariance of Neural ODEs

Since ψ1(x) = ḣ(x) + α1(h(x)), the above equation is equivalent to

ψ2(x) := ψ̇1(x) + α2(ψ1(x)) ≥ 0,

where ψ̇1 is involved with the derivative of θpk that is defined by the auxiliary dynamics. Since x(t0) is such that
ψ1(x(t0)) ≥ 0, then by Theorem. 3.3, we have that

ψ1(x(t)) ≥ 0,∀t ≥ t0.

Further,
ψ1(x) = ḣ(x) + α1(h(x)) ≥ 0,

following (9). Again by Theorem. 3.3, since h(x(t0)) ≥ 0, we have that

h(x(t)) ≥ 0,∀t ≥ t0,

and thus the neural ODE (1) is invariant. ■

Using a similar technique as in the proof of Theorem 3.4, the proposed invariance is provably correct for stacked neural
ODEs that may introduce higher relative degree h(x).

Existence of class K functions α1, α2 in Theorem 3.3:

Given a continuously differentiable h(x) ≥ 0. If h(x(t0)) > 0, there always exists such a class K function α1 such that
ψ1(x(t0)) > 0 as ψ1(x) = ḣ(x) + α1(h(x)). Then, we can always find a class K function α2 in (13) that allows us to
freely choose upk to make (13) satisfied as upk is usually unconstrained.

On the other hand, if h(x(t0)) = 0 and ḣ(x(t0)) ≥ 0, we can also find such class K functions α1, α2 in (13) following
similar analysis.

Finally, if h(x(t0)) = 0 and ḣ(x(t0)) < 0, then the specification will be immediately violated following Nagumo’s theorem,
and there is no way to enforce invariance. ■

A.3. Proof of Stability of Auxiliary Systems

The auxiliary dynamics are defined as
θ̇Pk = AP

k θ
P
k +BP

k u
P
k

The CLF constraint in the invariance enforcing algorithm in the nonlinear case (the relaxation variable δj = 0 when the CLF
constraint does not conflict with the invariance enforcing constraint, i.e., when the output (state) of the neural ODE is far
from undesired set boundaries) is

Φ(uPk |θPkj
) =

dV (θPkj
)

dθPkj

(AP
kj
θPk +BP

kj
uPk ) + ϵjV (θPkj

) ≤ 0, j ∈ {1, . . . , dPk },

Combining the last two equations, we have

Φ(uPk |θPkj
) = V̇ (θPkj

) + ϵjV (θPkj
) ≤ 0, j ∈ {1, . . . , dPk }, (19)

Suppose we have
V̇ (θPkj

) + ϵjV (θPkj
) = 0,

the solution to the above equation is
V (θPkj

(t)) = V (θPkj
(t0))e

−ϵj(t−t0),

Using the comparison lemma (Khalil, 2002), equation (19) implies that

V (θPkj
(t)) ≤ V (θPkj

(t0))e
−ϵj(t−t0), j ∈ {1, . . . , dPk },

Therefore,
V (θPkj

(t)) → 0, as t→ ∞,∀j ∈ {1, . . . , dPk },

and θPkj
is exponentially stabilized to θP†

kj
as V (θPkj

) = (θPkj
− θP†

kj
)2. ■

13



On the Forward Invariance of Neural ODEs

B. Discussion on Auxiliary Dynamics
The auxiliary dynamics are defined as

θ̇Pk = AP
k θ

P
k +BP

k u
P
k (20)

where the above system is controllable if AP
k and BP

k are chosen such that[
BP

k , A
P
k B

P
k , . . . , (A

P
k )

m−1BP
k

]
is in full rank, where m ∈ N is a finite time step that drives the system from an initial state to a final state.

The exact choice of AP
k and BP

k may affect the performance. In other words, they will determine how close the output
trajectory of the neural ODE can stay from the boundaries of undesired sets, and they will also determine how the parameters
vary. From our experience, the effect on performance is pretty small since both the auxiliary control uPk and the parameter
θPk are unbounded in the neural ODE, and thus, we can always quickly change the parameter θPk under any AP

k and BP
k

that make the auxiliary system controllable. For simplicity, we can choose AP
k and BP

k to be zero and identity matrices,
respectively.

On the other hand, we can make AP
k and BP

k be trainable parameters in our QP implementation via differentiable QP (Amos
& Kolter, 2017).

14



On the Forward Invariance of Neural ODEs

C. Training neural ODEs with Invariance
The main objective is to make sure neural ODEs satisfy specifications during training, which also allows us to train class K
functions in Theorems 3.3 and 3.4.

For neural ODEs that enforce the invariance on the input I, the training is performed via the standard stochastic gradient
descent. While training neural ODEs for enforcing the invariance on the model parameter θ, it is challenging to train both
the neural ODE and differentiable QP simultaneously in the same pipeline. Thus, we propose the following two-stage
training method: In the first stage, we train the neural ODE as usual and thus optimize the weight θ† of the network. In
the second stage, we train the differentiable QP (specifically, the parameter in class K functions in QP (16)) such that θ
minimally deviates from θ†. The training of the network and the QP can be performed alternatively. We summarize the
training process in Fig. 5.

����������	��
�������	��	
��	��������

������	���

��

���������	
��

���� ����

����	�����	�������	�
	
������	���

������	�����	�������	�
	
��

�����	���� �� ���

����������	��
�������	��	
��	����	�

������	���

��

���������	
��

����

����

����

Figure 5. Training neural ODEs with invariance. The training of a neural ODE with I is regular when we enforce the invariance on I.

15



On the Forward Invariance of Neural ODEs

D. Complex Specifications
Although the invariance of neural ODEs can be applied to a wide class of problems, one of the important applications is in
the safe control of dynamical systems, as this involves complex output specifications. Consider the case where the output of
the neural ODE controller is directly taken as the control of the dynamical system. The dynamical system is usually required
to satisfy some safety constraints that are defined over its state instead of over its control. In other words, the specification of
the neural ODE is not directly on its output. To map a state constraint onto the control of a dynamics system (i.e., the output
of the neural ODE), we can use the CBF method.

More specifically, consider a control system whose dynamics are defined in the form:

ẏ = f(y,u), (21)

where y ∈ Rq is the state of the system, u = x is its control (i.e., the output of the neural ODE). f : Rq×n1 → Rq, where
n1 is the dimension of x1 (or the control).

We wish the state of the system (21) to satisfy the following (safety) constraint:

b(y) ≥ 0, (22)

where b : Rq → R is continuously differentiable, and its relative degree with respect to u is d ∈ N.

As shown in (Xiao & Belta, 2022), we can use a HOCBF to enforce the safety constraint (22) for system (21). In other
words, we map the safety constraint (22) onto the following HOCBF constraint:

dϕd−1

dy
f(y,u) + αd(ϕd−1(y)) ≥ 0, (23)

where ϕk(y) = ϕ̇k−1(y)+αk(ϕk−1(y)), k = {1, . . . , d− 1} and ϕ0(y) = b(y), αk, k ∈ {1, . . . , d} are class K functions.
It is worth noting that the construction of the HOCBF is similar to the construction (9) of the invariance of a neural ODE.
The satisfaction of the above HOCBF constraint (23) implies the satisfaction of the safety constraint (22).

Since the output of the neural ODE is used to control the dynamical system, i.e., u = x, we can find the output constraint of
the neural ODE from (23) in the form:

h(x,y) =
dϕd−1

dy
f(y,x) + αd(ϕd−1(y)) ≥ 0, (24)

Then, we can back-propagate the invariance of the neural ODE (i.e., h(x(t),y(t)) ≥ 0,∀t ≥ 0) to the input I or its
parameter, as shown before. In fact, in this scenario, the neural ODE serves as an integral controller for dynamical systems.
In the original CBF method, we need to assume that the dynamics (21) are in affine control form in order to use the
CBF-based QP to efficiently find a safe controller. With the proposed method, such restriction (assumption) is removed.
This shows the advantage of the invariance of neural ODEs in safety-critical control problems.

16



On the Forward Invariance of Neural ODEs

E. Stacked Neural ODEs
When we have stacked neural ODEs, the IP is similar. Suppose we wish to enforce the invariance on the kth stacked neural
ODE, then we may choose the kth stacked neural ODE to have linear layers, and we can get a similar equation as (8). The
difference is that we may need to define higher-order CBFs. The performance of stacked neural ODEs needs to be further
studied before applying the proposed invariance. Note that the index of stacked neural ODEs is in the reverse order as the
layer index in non-stacked neural ODEs to make a difference between them.

Neural ODE

ℎ 𝑥1 ≥ 0

Output invariance 

(spec.)𝜓1 𝑥1, 𝑥2 , 𝜃2,1 ≔
ሶℎ 𝑥1 + 𝛼1(ℎ 𝑥1 ) ≥ 0

Hidden invariance

𝜓2 𝒙, 𝜃 ≔
ሶ𝜓1 𝒙, 𝜃 + 𝛼2(𝜓1 𝒙, 𝜃 ) ≥ 0

Input invariance 

(constraint)

𝑥3
𝑥2

𝑥1
𝜃3,2 𝜃2,1

Invariance Back Propagation

ሶ𝑥1 = 𝑓1 𝑥2, 𝜃2,1ሶ𝑥2 = 𝑓2 𝑥3, 𝜃3,2

OutputsInputs

Figure 6. Relative degree and invariance example of three stacked neural ODEs. Recurrence is allowed, i.e., f1, f2 (neural networks)
could be a function of x1, x2, respectively. x3 is the input of the stacked neural ODE. There is an odeint after each layer.

For example, in Figure 6, the outputs of the neurons in x3 are the inputs of the neurons in x2. The neurons in x3 are with
one relative degree higher than the ones in x2. The same applies to the neurons of x2 and x1. The highest relative degree
of the three-layer neural ODE is two since the output neurons x1 are defined to be with a relative degree of 0. The output
specification h(x) ≥ 0 of a neural ODE can then be rewritten as h(x1) ≥ 0, as x1 is the vector of output neurons. In order
to show the relationships between the invariances of different layers of a neural ODE, we define the first-from-the-last
hidden layer invariance ψ1 ≥ 0 (defined similarly as in Definition 3.1) as a function of h(x1) and its derivative, where ψ1 is
defined as:

ψ1(x1, x2, θ2,1) := ḣ(x1) + α1(h(x1)), (25)

where θ2,1 is the connection weight between layers 2 and 1, x2, θ2,1 shows up in ḣ(x1), and α1(·) is a class K function (a
class K is a strictly increasing function that passes through the origin). This way, the hidden invariance is related to the
neurons x1, x2 and their connection weight θ2,1. We can define the invariance of any hidden (or input) layer k by functions
ψk−1(x1, . . . , xk, θ2,1, . . . , θk,k−1) ≥ 0, k ∈ {2, . . . ,m+ 1}, recursively:

ψk−1(x1, . . . , xk, θ2,1, . . . , θk,k−1) := ψ̇k−2(x1, . . . , xk−1, θ2,1, . . . , θk−1,k−2)

+ αk−1(ψk−2(x1, . . . , xk−1, θ2,1, . . . , θk−1,k−2)), k ∈ {1, . . . ,m+ 1},
(26)

where αk−1, k ∈ {2, . . . ,m+ 1} are class K functions, and ψ0(x1, θ1,0) = h(x1). θk,k−1 denotes the connection weight
between layers k and k − 1. For the input layer m+ 1, we have ψm(x, θ) = ψm(x1, . . . , xm+1, θ2,1, . . . , θm+1,m), where
θ = (θ2,1, . . . , θm+1,m), and the invariance of the input layer is illustrated by the input constraint ψm(x, θ) ≥ 0. For
example, the highest relative degree of the three stacked neural ODEs in Figure 6 is 2, and the input constraint (invariance)
is ψ2(x1, x2, x3, θ2,1, θ3,2) ≥ 0. Again, the performance of stacked neural ODEs should be studied first compared to
non-stacked neural ODEs, we leave this for future work.

Order of HOCBFs. The order of HOCBFs in IP equals the relative degree of the specification (if it is from a dynamic
system) plus the number of stacked neural ODEs, and plus one (if enforced on a nonlinear layer).

17



On the Forward Invariance of Neural ODEs

F. Experiment Details
In this section, we provide detailed settings for all the experiments, including some additional figures and results.

F.1. Spiral Curve Regression with Specifications

In this case, we enforce invariance on parameters in both the hidden nonlinear layer and the output linear layer.

Training data generation. The initial condition for the ODE we sample the data from is [2, 0], and we sampled 1000
data points within the time interval [0,25] as the training data set. In order to make sure that the sampled data avoids the
two critical regions in the case of invariance-in-training, we use CBFs to minimally modify the ODE. In other words, the
components A[0, 1], A[1, 0] of the A matrix in the considered ODE are minimally changed by the following quadratic
program:

min
a1,a2

(a1 −A[0, 1])2 + (a2 −A[1, 0])2 (27)

s.t. CBF constraints:

2(A[0, 1]−Ox,1)A[1, 0]
3a1 + 2(A[1, 0]−Oy,1)A[0, 1]

3a2 + h1(x) ≥ 0,

2(A[0, 1]−Ox,2)A[1, 0]
3a1 + 2(A[1, 0]−Oy,2)A[0, 1]

3a2 + h2(x) ≥ 0,
(28)

where hi(x) = (A[0, 1]−Ox,i)
2 +(A[1, 0]−Oy,i)

2 −R2
i , i ∈ {1, 2}, and (ox,i, oy,i) denotes the location of the undesired

set i, Ri denotes its size (R1 = R2 = 0.2 in the experiments).

After solving the above QP at each time and obtaining a∗1, a
∗
2, we replace A[0, 1], A[1, 0] by a∗1, a

∗
2, respectively, in the ODE

(please find details in the attached code).

Model structure. The training implementation and the enforcing QP for the invariance of the neural ODE are also given in
the attached code. The fθ in the neural ODE (1) is a three-layer fully connected network with sizes 2, 50, and 2, respectively.
The activation functions used in the hidden layers are tanhshrink, while the output layers are without activation functions
(linear layers).

Training. The training epoch is 500, and the training batch size is 20 with a batch sequence time of 10. We use RMSprop
optimizer with learning rate 1e−3. The training time is about 2 hours on an RTX3090 GPU.

Invariance enforcing on the output linear layer. In this case, the neural ODE can be rewritten in linear form as in (8) in
terms of the output layer parameters. Therefore, the invariance implementation can be achieved by directly changing the
output layer parameters.

The specifications are defined as hi(x) = (x−Ox,i)
2 + (y −Oy,i)

2 −R2
i , i ∈ {1, 2}. Therefore, in (10), we have

dhi(x)

dx
= [2(x−Ox,i), 2(y −Oy,i)],

and we choose the class K function α1 as a linear function.

The QP (16) in this case is
θP∗
K−1,K = arg min

θP
K−1,K

||θPK−1,K − θP†
K−1,K ||2, (29)

s.t.
dh1
dx

θPK−1,KzP
K−1 +

dh1
dx

θNK−1,KzN
K−1 + k1h1(x) ≥ 0, (30)

dh2
dx

θPK−1,KzP
K−1 +

dh2
dx

θNK−1,KzN
K−1 + k2h2(x) ≥ 0, (31)

where k1 = k2 = 10 when the invariance is enforced after the training of the neural ODE.

Invariance enforcing on the hidden nonlinear layer. The neural ODE (1) can be explicitly written as

ẋ = fθ(x) = θ2,3(tanhshrink(θ1,2x
3 + b1,2)) + b2,3, (32)

The auxiliary dynamics (11) is defined as
θ̇P1 = uP1 , (33)

18



On the Forward Invariance of Neural ODEs

where θP1 is the vector form of θP1,2, and θP1,2 is the partial parameter of θ1,2 in (32) that we wish to propagate the invariances
to.

Therefore, in (13), we have
dhi(x)

dx
= [2(x−Ox,i), 2(y −Oy,i)], i ∈ {1, 2}

∂fθ(x)

∂θP1
= θ2,3tanh

2(θ1,2x
3 + b1,2)θ̇1,2x

3(part of θ̇1,2 i.e., θ̇P1 , is defined as uP1 following (33)),

∂fθ(x)

∂x
= 3θ2,3tanh

2(θ1,2x
3 + b1,2)θ1,2x

2fθ(x),

dh2i (x)

dx2
= [2, 2], i ∈ {1, 2},

and we choose class K functions α1, α2 as linear functions. The CLFs used to stabilize θP1 is defined as (17).

The QP (18) in this case is

(uP∗
1 , δ∗1:dP

1
) = arg min

uP
1 ,δ

1:dP1

||uP1 ||2 +
dP
1∑

j=1

wjδ
2
j , (34)

s.t.
d2h1(x)

dx2
f2θ (x) +

dh1(x)

dx

∂fθ(x)

∂θP1
uP1 + (

dh1(x)

dx

∂fθ(x)

∂x
+
dk1h1(x)

dx
)fθ(x) + k2ψ1,1(x) ≥ 0, (35)

d2h2(x)

dx2
f2θ (x) +

dh2(x)

dx

∂fθ(x)

∂θP1
uP1 + (

dh2(x)

dx

∂fθ(x)

∂x
+
dk1h2(x)

dx
)fθ(x) + k2ψ1,2(x) ≥ 0, (36)

dV (θP1j )

dθP1j
uP1 + ϵjV (θP1j ) ≤ δj , j ∈ {1, . . . , dP1 }, (37)

where k1 = 20, k2 = 100, ϵj = 10, wj = 1 in Table 1. ψ1,j(x) = ḣj(x) + k1hj(x), j ∈ {1, 2}.

Comparison between invariance enforcing on different layers. We present an illustrative example for the comparison
between neural ODE and invariances enforced on different layers in Fig. 7. The chosen number of parameters is 6 for both
the hidden invariance and output invariance. As expected, the output specifications are guaranteed to be satisfied in the
invariances, while they are violated in the (pure) neural ODE. We further illustrate the value of h(x) = min{h1(x), h2(x)}
in Fig. 8, in which h(x) ≥ 0 denotes the satisfaction of all the specifications.

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(a) neural ODE
ground truth
prediction

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(b) hidden-layer invariance
ground truth
prediction

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(c) output-layer invariance
ground truth
prediction

Figure 7. Spiral curve performance comparisons between neural ODE and invariance propagated to the hidden and output layers. The
prediction of the neural ODE violates the output specifications.

19



On the Forward Invariance of Neural ODEs

0 1 2 3 4 5
t/s

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

h
(x

)

Satisfaction portrait

neural ODE
hidden-layer invariance
output-layer invariance
satisfaction boundary

Figure 8. Spiral curve regression: specification satisfaction portraits. h(x) = min{h1(x), h2(x)} ≥ 0

denotes the satisfaction of all the specifications. hj(x) = (x− xoj )
2 + (y − yoj )

2 −R2, j ∈ {1, 2}.

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(a) rough CBF, np = 2

ground truth
prediction

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(b) fine-tuned CBF, np = 2

ground truth
prediction

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(c) fine-tuned CBF, np = 10

ground truth
prediction

2 1 0 1 2
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

(d) other spec.
ground truth
prediction

Figure 9. After-training invariance enforcing for spiral curve regression with output specifications. np denotes the number of parameters
randomly chosen in the QP (16). (a)-(c) are with two circular undesired sets defined by: hj(x) = (x − xoj )

2 + (y − yoj )
2 − R2,

(xoj , yoj ) denotes the location of undesired set j ∈ S,R > 0, and (d) is with two randomly-placed superellipse-type undesired sets
defined by: hj(x) = (x− xoj )

4 + (y − yoj )
4 −R4.

After training. In this case, since the neural ODE does not have the external input I, we minimally change the parameters
of the model to enforce the invariance using the proposed QP-based approach (16). As a result, the outputs of the neural
ODE can satisfy all the specifications (see Figures 9 (a)-(d)). The model is already trained, we need to carefully choose the
class K functions shown in (9). Otherwise, the resulting trajectory would be overly-conservative such that there is a large
deviation from the original one even when the state is far away from the constraint boundary hj(x) = 0, j ∈ S, as shown in
Fig. 9a. With slightly fined-tuned CBF parameters pi (i.e., its class K functions), the conservativeness can be addressed, as
shown in Figure 9b.

We can also minimally change a different number of parameters of the neural ODE. Comparing Fig. 9b with Figure 9c, the
outputs of the neural ODE are almost the same under 2 or 10 randomly chosen model parameters. This demonstrates the
effectiveness of the proposed invariance. Although the computation efficiency is better when we choose to modify fewer
weights using the proposed QP-based approach (16), the performance might actually be worse when the learning task is
complicated as we have to largely change the parameters. In order to show the robustness of the proposed invariance, we
also tested other types of specifications, as the two randomly-placed superellipse-type undesired sets shown in Figure 9d.
The outputs of the neural ODE can also guarantee the satisfaction of the corresponding output specifications. Tuning the
CBF parameters in the invariance may be non-trivial when there are many specifications. Thus, we show next how we can
enforce invariance in the training loop.

20



On the Forward Invariance of Neural ODEs

F.2. Convexity Portrait of a Function

In this case, we enforce invariance on parameters in both the hidden nonlinear layer and the output linear layer.

Training data generation. The convex function we consider for sampling the training data is g(x) = x2, and we set
µ1 = µ2 = 0.5 for the Jensen’s inequality. x = t, y = t+ 2− 1.9

10 t, where t ∈ [0, 10]. We sampled 100 data points as the
training data set. The CBF h(x, y) for Jensen’s inequality in the neural ODE is defined as:

h(x, y) = µ1z1 + µ2z2 − z3, (38)

where z1, z2, z3 denote the three outputs of the neural ODE. The implementation details and the enforcing QP for the
invariance are given in the attached code.

Model structure. The fθ in the neural ODE (1) is a three-layer fully connected network with sizes 3, 50, and 3, respectively.
The activation functions used in the model are tanh.

Training. The training epoch is 2000, and the training batch size is 20 with a batch sequence time of 10. We use RMSprop
optimizer with learning rate 1e−3. The training time is about 1 hour on an RTX3090 GPU.

0 2 4 6 8 10
t/s

0

20

40

60

80

100

g(
x
),
g(
y)
,g

(µ
1
x

+
µ

2
y)

solid-ground truth
dashed-prediction

(a) Hidden invariance prediction

0 2 4 6 8 10
t/s

0.0

0.2

0.4

0.6

0.8

1.0

µ
1
g(
x
)
+
µ

2
g(
y)
−
g(
µ

1
x

+
µ

2
y)

(b) convexity portrait
convexity boundary
neural ODE
ground truth
output invariance
hidden invariance

Figure 10. Convexity portrait of the neural ODE outputs. The non-negativity of the functions in (b) demonstrates the satisfaction of
Jensen’s inequality.

0 2 4 6 8 10 12
t/s

0

25

50

75

100

125

150

175

g(
x
),
g(
y)
,g

(µ
1
x

+
µ

2
y)

solid-ground truth
dashed-prediction
dotted-out of distribution area

(a) neural ODE

0 2 4 6 8 10 12
t/s

0

25

50

75

100

125

150

175

g(
x
),
g(
y)
,g

(µ
1
x

+
µ

2
y)

solid-ground truth
dashed-prediction
dotted-out of distribution area

(b) neural ODE and invariance

0.0 2.5 5.0 7.5 10.0 12.5
t/s

0.0

0.2

0.4

0.6

0.8

1.0

µ
1
g(
x
)
+
µ

2
g(
y)
−
g(
µ

1
x

+
µ

2
y)

(c) convexity portrait
ground truth
neural ODE and invariance
neural ODE
convexity boundary
Out of distribution area

Figure 11. Convexity portrait of the neural ODE outputs. x, y are functions of t. The non-negativity of the functions in (c) demonstrates
the satisfaction of Jensen’s inequality.

In distribution. Within the range of the training data, the trained neural ODE is not guaranteed to satisfy Jensen’s inequality
as illustrated by the red-dashed curve in Figure 10b. However, with the proposed (hidden and output) invariances, the model
outputs are guaranteed to satisfy the Jensen’s inequality, as shown by the blue-dashed and cyan dashed curves in Figure 10b.

Out of distribution. Although the outputs of a trained neural ODE model may satisfy Jensen’s inequality within the range
of the training data set, they may still violate Jensen’s inequality when we conduct predictions for future time (out of the

21



On the Forward Invariance of Neural ODEs

training data range), as shown by the red-dashed curve in Figure 11c. However, with the proposed invariance, we can
guarantee that the future prediction of the model also satisfies Jensen’s inequality (see blue dashed line in Fig. 11c).

22



On the Forward Invariance of Neural ODEs

F.3. HalfCheetah-v2 and Walker2d-v2 kinematic modeling

In this case, we enforce invariance on parameters in the output linear layer.

We evaluate our invariance framework on two publicly available datasets for modeling physical dynamical systems (Lechner
& Hasani, 2022; Hasani et al., 2021). The two datasets consist of trajectories of the HalfCheetah-v2 and Walker2d-v2 3D
robot systems (Brockman et al., 2016) generated by the Mujoco physics engine (Todorov et al., 2012). Each trajectory
represents a sequence of a 17-dimensional vector describing the system’s state, such as the robot’s joint angles and poses.
For each of the two tasks, we define 34 safety constraints that restrict the system’s evolution to the value ranges observed in
the dataset, i.e., the joint limitations.

Model structure. The fθ in the neural ODE (1) is a three-layer fully connected network with sizes 17, 64, and 17,
respectively. The activation functions used in the model are Tanh.

Training. The training epoch is 200, and the training batch size is 64 with a batch sequence time of 20. We use RMSprop
optimizer with learning rate 1e−3. The training time is about 1 hour on an RTX3090 GPU.

23



On the Forward Invariance of Neural ODEs

F.4. Lidar-based End-to-End Autonomous Driving

In lidar-based driving, we assume the states of the ego and ado vehicles are obtained by other sensors (e.g. GPS or
communication). We use the proposed invariance to back-propagate the safety requirements of the ego vehicle all the way to
the input layer of the neural ODE, i.e., finding a constraint on the Lidar input I that can guarantee the safety of the ego
vehicle.

Problem setup. The ego vehicle state x = (x, y, θ, v) (along-lane location, off-center distance, heading, and speed,
respectively) follows the unicycle vehicle dynamics, and the other vehicle moves at a constant speed. The ego vehicle is
initially behind the other moving vehicle, and its objective is to overtake the other vehicle while avoiding collisions. The
collision avoidance is characterized by a safety constraint b(x,xp) = (x − xp)

2 + (y − (yp + yd))
2 − R2 ≥ 0, where

xp ∈ R4 denotes the state of the preceding vehicle, and (xp, yp) ∈ R2 denotes the location of the preceding vehicle. yd ∈ R
is the off-center distance of the covering disk with respect to the center of the other vehicle. The satisfaction of b(x,xp) ≥ 0
implies collision-free.

Training setup. In order to train a neural ODE controller that can be applied to the ego vehicle in closed-loop testing, we
randomly assign locations for the ego vehicle with random states around the other vehicle. Then, we use a safety-guaranteed
CBF-based QP controller to generate safe controls for the ego vehicle to overtake the other vehicle. We sampled 200
trajectories as the training data, and each trajectory has a time sequence of states and controls with a length of 100. In order
to effectively train the neural ODE model, we also take the states of the ego and other vehicles as input to the neural ODE in
addition to the Lidar information.

Training data generation. The training data comes from an integrated simulation environment (not released yet), and
it is given as a “pickle” file. There are 200 randomly sampled trajectories and the corresponding safe controls coming
from a CBF controller, and each trajectory is with 100 time-sequence of data with a discretization time of 0.1s. The Lidar
information is given as a sequence of data with size 1x100, and each data point denotes a distance metric with respect to an
obstacle from the angle 0 to 2π. The Lidar sensing range is 20m.

During training, we normalize the Lidar information by multiplying the data with a factor of 1/200. The ego vehicle speed is
also normalized by multiplying the speed with a factor of 1/180 when it is taken as an external input. The normalization of
the external input is to ensure that the neural ODE can converge during training.

Model structure. The neural ODE (1) is a five-layer fully connected network with sizes 2, 64, 256, 512, and 206,
respectively. The activation functions used in the model are GELU. Since we enforce the invariance on the external lidar
input, we reformulate the neural ODE (1) into:

ẋ = fθ(x) + gθ(x)I, (39)

When employing feature extractors for the invariance, we use a Convolutional Neural Network (CNN) whose shape is given
as [[1, 4, 5, 2, 1], [4, 8, 3, 2, 1], [8, 12, 3, 2, 0]], where there are three layers, and the parameters of each layer denote input
channels, output channels, kernel size, stride, and padding, respectively. After the CNN, we use a max pooling in each
output channel to reduce the feature size from 100 to 12.

Training. The training epoch is 200 (each epoch includes the sampling of each of the 200 trajectories), and the training
batch size is 20 with a batch sequence time of 10. We use RMSprop optimizer with learning rate 1e−3. The training time is
about 24 hours on an RTX3090 GPU.

Invariance v.s. safe filters v.s. pure neural ODE. The ego vehicle starts at a speed of 18m/s, while the other vehicle moves
at a constant speed of 13.5m/s. In the case of noise-free Lidar sensing, the ego may avoid collision when it overtakes the
other moving vehicle with the neural ODE controller. However, with noisy Lidar, the neural ODE controller may cause the
ego vehicle to collide with the other moving vehicle during the overtaking process, as the red trajectory shown in Figure 13.
The safety constraint b(x,xp) becomes negative (as the red curve shown in Fig. 12) when the ego approaches the other
moving vehicle, which implies collision.

Using the proposed invariance, We map the safety requirement of the ego vehicle onto a constraint on the noisy Lidar
input I. The dimension of the Lidar information is 1× 100, and thus, the dimension of the decision variable of the QP that
enforces the invariance is also 100. Even so, the QP can still be efficiently solved as it is just a convex optimization. With
the proposed invariance, we can slightly modify the noisy Lidar data such that the outputs (controls) can guarantee the
safety of the ego vehicle, as the green trajectory shown in Figure 13. The modified Lidar information (through invariance) is

24



On the Forward Invariance of Neural ODEs

0 2 4 6 8 10
t/s

0

50

100

150

200

250

300

350

b(
x
,x

p
)

safe filter
invariance
neural ODE
safe set boundary

Figure 12. Comparison between safe filters, neural ODE, and invariance under a noisy Lidar point cloud. b(x,xp) ≥ 0 implies collision-
free.

Snapshot t = 7.2sSnapshot t = 5.0s

Snapshot t = 3.7sSnapshot t = 1.4s

Ego vehicle

Lidar with invariance

Traj. with neural ODE 
Traj. with invariance

Raw lidaractive vehicle

Traj. with safe filter

Figure 13. Snapshots of simulations with trajectory comparison between safe filters, neural ODE, and invariance under a noisy Lidar point
cloud. b(x,xp) ≥ 0 implies collision-free. A safe filter may make the ego conservative, and thus the ego stays unnecessarily far away
from the ground truth, while the pure neural ODE controller may cause collision under noise.

illustrated by the green-dotted curve in the snapshot t = 3.7s of Figure 13.

Invariance with feature extractors. In cases where the inputs of the neural ODE have high dimensions, like Lidar-based
control, we may use some neural networks (such as CNN) to reduce the dimension of input features, thus reducing the
complexity of the QP that enforces the invariance. For the driving example, we used a CNN to reduce the 100-dimension
Lidar information to 12-dimension features, and the results are similar to the case of raw Lidar. In other words, a collision
may occur when with noisy Lidar input but can be guaranteed to avoid using the proposed invariance.

25


