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Abstract
In humans’ classroom learning, many effective
study techniques, e.g., the Feynman technique,
peer questioning, have been developed to improve
learning outcomes. We are interested in investi-
gating whether these techniques can inspire the
development of ML training strategies to improve
bi-level optimization (BLO) based methods. To-
wards this goal, we develop a general framework,
Skillearn, which consists of basic elements such
as learners, interaction functions, learning stages,
etc. These elements can be flexibly configured
to create various training strategies, each emulat-
ing a study technique of humans. In case studies,
we apply Skillearn to create new training strate-
gies, by emulating the Feynman technique and
peer questioning, which are two broadly adopted
techniques in humans’ classroom learning. These
training strategies are used for improving two
BLO based applications including neural architec-
ture search and data weighting. Experiments on
various datasets demonstrate the effectiveness of
our methods.

1. Introduction
In classroom learning (Van Lier, 1991; Blumenfeld, 1992;
Carpenter et al., 2018), humans have developed a lot of ef-
fective study techniques, such as the Feynman learning tech-
nique (Ambion et al., 2020), peer questioning (King, 1990),
interleaving learning (Birnbaum et al., 2013), learning via
self-explaining (Ainsworth & Th Loizou, 2003), etc. These
techniques enable humans to learn faster and better (Dun-
losky et al., 2013; Rovers et al., 2018; Biwer et al., 2020).
We are interested in investigating whether humans’ class-
room study techniques can provide insights for improving
bi-level optimization (BLO) based methods (Dempe, 2002;
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Feurer et al., 2015; Finn et al., 2017; Liu et al., 2019; Shu
et al., 2019). These methods consist of two nested levels of
optimization problems. At the lower level, model weights
are learned by minimizing a training loss. At the upper level,
meta parameters such as neural architectures (Liu et al.,
2019), importance weights of data examples (Shu et al.,
2019), hyperparameters (Feurer et al., 2015) are learned
by minimizing a validation loss. BLO-based methods have
been widely applied for differentiable neural architecture
search (Liu et al., 2019), data reweighting (Shu et al., 2019),
few-shot learning (Finn et al., 2017), etc. Existing BLO-
based methods suffer from problems such as performance
collapse (Zela et al., 2019; Chen & Hsieh, 2020a; Chu
et al., 2021; 2020): the learned meta parameters and model
weights perform well on validation and training data, but
generalize poorly on test data. We aim to address these
problems by developing novel training strategies drawing
inspiration from humans’ classroom study techniques.

Towards this goal, we propose a novel framework, Skillearn,
which can create various ML training strategies by emulat-
ing humans’ study techniques. In Skillearn, there are a set
of learner models, each with a collection of weight parame-
ters and meta parameters. Different learners interact with
each other through interaction functions. The learning of all
learners is organized into multiple stages, each involving a
subset of learners. These stages have an order, but they are
performed end-to-end in a multi-level optimization frame-
work (Dempe, 2002) where latter stages influence earlier
stages and vice versa.

The major contributions of this work are as follows.

• We propose a general framework, Skillearn, which can
create training strategies to improve BLO-based methods
by drawing inspirations from humans’ classroom study
techniques.

• We apply Skillearn to emulate two classroom learn-
ing techniques of humans including the Feynman tech-
nique (Ambion et al., 2020) and peer questioning (King,
1990) and create corresponding training strategies to im-
prove BLO-based applications including neural architec-
ture search and data reweighting.

• We demonstrate the effectiveness of our methods in vari-
ous experiments.
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Figure 1. Analogy between humans’ classroom studies and Skillearn.

2. Related Works
Bi-level optimization (BLO) and multi-level optimization.
BLO (Dempe, 2002; Liu et al., 2021) has been broadly ap-
plied for hyperparameter tuning (Feurer et al., 2015), neural
architecture search (NAS) (Liu et al., 2019), meta learn-
ing (Finn et al., 2017), data reweighting (Shu et al., 2019;
Ren et al., 2020; Wang et al., 2020b), learning rate adjust-
ment (Baydin et al., 2018), label denoising (Zheng et al.,
2021), data generation (Such et al., 2020), etc. Our frame-
work is orthogonal to existing BLO-based methods and can
be leveraged to improve them. Multi-level optimization
methods (Sato et al., 2021; Choe et al., 2022), which consist
of more than two levels of nested optimization problems,
have been developed for saliency-aware NAS (Hosseini
& Xie, 2022), end-to-end data augmentation (Somayajula
et al., 2022), performance-aware mutual knowledge dis-
tillation (Xie & Du, 2022), learning from mistakes (Garg
et al., 2022), improving NAS by encouraging transferabil-
ity (Sheth & Xie, 2023), etc.
Human-inspired learning. Developing ML methods by
drawing inspiration from humans has been studied broadly.
For example, curiosity-driven learning (Pathak et al.; Burda
et al., 2019) is inspired by humans’ psychology on curios-
ity. Few-shot learning (Lake et al., 2015; Sung et al., 2018)
draws inspirations from cognitive science on how humans
perform concept learning. In this paper, we focus on draw-
ing inspirations from humans’ study techniques in classroom
learning, which have not been well-explored before. Cur-
riculum learning (Bengio et al., 2009; Kumar et al., 2010;
Jiang et al., 2014; Matiisen et al., 2019) is inspired by how
human students learn a curriculum in classrooms. Knowl-
edge distillation (Hinton et al., 2015; Tarvainen & Valpola,
2017; Xie et al., 2020) emulates the process of transferring
knowledge from teachers to students. Our work aims to
provide a unified framework to systematically formalize var-

ious classroom study techniques into ML training strategies
and leverage them to train better BLO-based models.

3. The Skillearn Framework
We propose a general framework called Skillearn to for-
malize classroom study techniques of humans and leverage
them for improving bi-level optimization based methods.
Figure 1 shows an analogy between humans’ classroom
studies and Skillearn.

3.1. Elements of Skillearn
In Skillearn (Figure 2), we have the following elements.

• Learners. There could be one or multiple learners. Each
learner is an ML model, such as a deep convolutional net-
work (He et al., 2016), a deep generative model (Goodfel-
low et al., 2014), a nonparametric density estimator (Gra-
macki, 2018), etc. For example, in knowledge distilla-
tion (Hinton et al., 2015) from a teacher model to a student
model, there are two learners: teacher and student. This is
analogous to humans’ classroom learning which involves
one or multiple human learners (Blumenfeld, 1992), such
as students, teachers, teaching assistants, etc.

• Model weights and meta parameters. Each learner has
one or more sets of weight parameters and meta param-
eters. For example, in neural architecture search (Zoph
& Le, 2017), a neural network learns not only model
weights, but also architecture variables (which are meta
parameters). This is analogous to humans’ classroom
learning where each learner learns multiple aspects in a
learning task (Blumenfeld, 1992), such as comprehending,
summarizing, writing articles, etc.

• Interaction function, which describes how two or more
learners interact with each other. For example, in knowl-
edge distillation (Hinton et al., 2015), given an unlabeled
image dataset, a teacher model predicts pseudo labels of
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these images; then a student model is trained using pseudo-
labeled images. The interaction between the teacher and
student is on the pseudo labels. As another example,
given a set of texts, two text encoders A and B extract
embeddings of the texts; A and B are tied together via
distributional matching (Dziugaite et al., 2015): the dis-
tribution of embeddings extracted by A is encouraged to
have small total-variance with the distribution of embed-
dings extracted by B. The interaction between A and B is
on the distributions of embeddings. This is analogous to
humans’ classroom learning where multiple human learn-
ers interact with each other (Blumenfeld, 1992), such as
a teacher teaches a student, a group of students mutually
help each other to learn, etc.

• Learning stages. The learning of all learners is not con-
ducted at one shot. Instead, learning is performed at mul-
tiple stages with an order. Each stage involves a subset of
learners. For example, in knowledge distillation (Hinton
et al., 2015), there are two stages: 1) a teacher model is
trained; 2) the teacher predicts pseudo labels on an un-
labeled dataset and the pseudo-labeled dataset is used to
train a student model. The first stage involves a single
learner, which is the teacher. The second stage involves
two learners: teacher and student. This is analogous to
humans’ classroom learning where a learning process is
divided into multiple stages (Blumenfeld, 1992). For ex-
ample, studying a topic in classroom learning involves
three stages: 1) teacher learns this topic; 2) teacher teaches
this topic to students; 3) students take a quiz to evaluate
how well they have mastered this topic. Mathematically,
we formulate the learning at each stage as an optimization
problem. Outcomes of one learning stage are passed to
another learning stage via the interaction function.

3.2. Formulation
We assume there are K learning stages. The first K − 1
stages focus on learning model weights on training datasets
while the last stage focuses on learning meta parameters
on validation datasets. At each stage, a subset of learners
(referred to as active learners) are involved. For each ac-
tive learner at stage 1 to K − 1, some of its model weights
are trained at this stage, which are called active weights.
Meanwhile, its meta parameters are used to define a training
loss function and interaction function, but are not updated at
this stage. LetWk and Ak denote active weights and meta
parameters of all active learners at stage k. The learning
activity at stage k (1 ≤ k ≤ K − 1) is formulated as an op-
timization problem where optimization variables are active
weightsWk. The objective function involves a training loss
Lk defined on a collection of training datasets D(tr)

k and an
interaction function Ik that depicts the interaction between
active learners. The interaction function is defined on a
collection of auxiliary datasets Fk, e.g., unlabeled datasets
used for self-supervised pretraining (He et al., 2020b).

Learners
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Figure 2. Skillearn consists of key elements including learners,
weight and meta parameters, interaction functions, and learning
stages. Skillearn is formulated as a multi-level optimization prob-
lem, where each learning stage corresponds to one level of opti-
mization problem.

Table 1. Notations in the Skillearn framework.
Notation Meaning
K Number of learning stages
Wk Active weights of all active learners at stage k
Ak Active meta parameters of all active learners at

stage k
Lk Training loss at stage k

D(tr)
k Training datasets at stage k

Ik Interaction function at stage k
Fk Auxiliary datasets at stage k
Lval Validation loss
D(val) Validation datasets

The K stages are mutually dependent on each other. After
completing the learning at stage k, we obtain optimally-
trained active weights W∗

k , which are passed to the
next stage k + 1 for defining a new objective function.
At the last stage K, optimally-trained active weights
{W∗

k ({Aj}kj=1)}
K−1
k=1 and meta parameters {Ak}K−1

k=1 at
previous K − 1 stages are used to define validation losses
Lval on validation sets D(val). {Ak}K−1

k=1 are optimized by
minimizing validation losses. There is no interaction func-
tion at stage K.

We perform these K stages end-to-end in a multi-level opti-
mization (MLO) (Migdalas et al., 1998) based framework,
to enable them mutually influence each other for achiev-
ing the overall best performance. An MLO formulation
has multiple levels of nested optimization problems, where
the optimal parameters of lower-level problems are the in-
puts of objective functions in upper-level problems, and
the nonoptimal parameters of upper-level problems are the
inputs of objective functions in lower-level problems. For
the K mutually-dependent stages in Skillearn, we design an
MLO formulation with K levels of optimization problems
where each level corresponds to a stage. The order and
relationships between stages are characterized by the depen-
dency structure between levels. The K stages are conducted
end-to-end by solving the K levels of nested optimization
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problems jointly. As such, the formulation of Skillearn is
as follows:

max{Ak}
K−1
k=1

Lval

(
{W∗

k ({Aj}kj=1)}K−1
k=1 , {Ak}K−1

k=1 ,D(val)
)

s.t. · · ·
W∗

k

(
{Aj}kj=1

)
= argmin

Wk

Lk

(
Wk,Ak,W∗

k−1

(
{Aj}k−1

j=1

)
,D(tr)

k

)
+γkIk

(
Wk,Ak,W∗

k−1

(
{Aj}k−1

j=1

)
,Fk

)
· · ·
W∗

1 (A1) = argminW1
L1

(
W1,A1,D(tr)

1

)
+ γ1I1(W1,A1,F1)

(1)
where {γk}K−1

k=1 are tradeoff parameters between training
losses and interaction functions. From bottom to top, opti-
mization problems correspond to learning stages 1, · · · ,K.
The optimal model weights W∗

k ({Aj}kj=1) at stage k de-
pend on {Aj}kj=1 sinceW∗

k depends on the objective func-
tion and the objective is a function of {Aj}kj=1. The opti-
mal parametersW∗

k−1 at level k − 1 are the inputs of the
objective function at level k. The nonoptimal parameters
{Ak}K−1

k=1 at level K are the inputs of the losses at level 1
to K − 1. Table 1 summarizes the notations in Skillearn.
The optimization algorithm is provided in the appendix.

4. Case Study I: Feynman Architecture Search
We instantiate the Skillearn framework to solve a spe-
cific BLO-based problem - neural architecture search
(NAS) (Zoph & Le, 2017; Liu et al., 2019), motivated by the
Feynman technique (Ambion et al., 2020). The Feynman
learning technique is a broadly used effective study tech-
nique in humans’ classroom learning. It consists of three
steps: 1) a learner learns a topic; 2) the learner illustrates
his/her understanding of this topic to a listener who has little
prior knowledge about this topic; and 3) the learner iden-
tifies gaps in his/her understanding and re-learns the topic
to fill in these gaps. NAS aims to automatically search for
well-performing neural architectures. Most existing NAS
methods (Zoph & Le, 2017; Pham et al., 2018; Liu et al.,
2019) adopt a bi-level optimization based formulation where
architectures are learned by minimizing a validation loss.

4.1. Overview
Assume there is a machine learner which aims to search
for a neural architecture to perform a target task. Without
loss of generality, we assume the target task is learning
image representations that are good for classification. The

Table 2. Notations in Feynman architecture search.
Notation Meaning
A Architecture of learner’s encoder
E Weight parameters of learner’s encoder
H Learner’s classification head
F Listener’s encoder
G Listener’s classification head
D(tr) Training dataset
D(val) Validation dataset

learner has 1) an image encoder (He et al., 2016) which
takes an image as input and extracts a visual representation
of this image, and 2) a classification head which takes the
representation extracted by the encoder as input and predicts
the class label of this image. The encoder has a learnable
architecture A (Liu et al., 2019) (which are meta parameters)
and model weights E. The classification head has a fixed
architecture (designed by humans) and model weights H .
The learner has access to an image classification dataset D
where each image is annotated with a class label.

Emulating humans’ Feynman technique, the learner model
“illustrates” its understanding of images to a listener model
and the listener helps the learner to identify gaps in learner’s
understanding. The listener has an encoder F and a clas-
sification head G, whose architectures are fixed (manually
designed by humans). To “illustrate” its understanding of
an image x to the listener, the learner creates augmented im-
ages from x and uses its encoder to “tell” the listener which
augmented image is more similar to the original image. To
help the learner identify gaps in image understanding, the
listener leverages the illustrations presented by the learner
to train its encoder and evaluates its trained encoder on a
human-annotated validation set. If validation performance
is not good, it means that the illustrations are not accurate,
which indicates that the learner has large gaps in understand-
ing image contents. Then the learner tries to bridge these
gaps by improving its encoder architecture.

We leverage the proposed Skillearn framework to formalize
the Feynman technique of humans and obtain a Feynman
architecture search (FAS) method (Figure 3). Under the
Skillearn terminology, FAS has two learners: a learner and
a listener. The learner’s model weights include encoder
weights and classification head weights. The learner’s meta
parameters are encoder architecture. The listener has no
meta parameters. Its model weights include encoder weights
and classification head weights. In an interaction function,
the learner “illustrates” its understanding of image contents
to the listener. FAS has three learning stages: 1) the learner
learns image representations; 2) the learner “illustrates” its
understanding of images to the listener; and 3) the learner
bridges gaps in its understanding. FAS is formulated as a
three-level optimization framework where three learning
stages are performed end-to-end. Table 3 shows how to
instantiate Skillearn to FAS. Table 2 summarizes notations.
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Table 3. Instantiation of Skillearn to FAS.
Skillearn Feynman architecture search
Learners 1) Learner; 2) Listener
Model weights and meta
parameters

1) Architecture A of learner’s encoder; 2) Weight parameters E of learner’s encoder; 3) Learner’s classification head H; 4) Listener’s
encoder F ; 5) Listener’s classification head G

Interaction function The learner ranks augmented images and the listener trains its encoder by fitting the ranking.
N∑

i=1

∑
1≤k<j≤K

max
(
0,−

(
f(aik, xi;A,E∗(A)) − f(aij , xi;A,E∗(A))

)(
f(aik, xi;F ) − f(aij , xi;F )

))
.

Learning stages
• Learning stage I: The learner trains its encoder.

• Learning stage II: The learner ranks augmented images and the listener trains its encoder by fitting the ranking.

• Learning stage III: The learner and listener validate their classification models; the learner’s encoder architecture is updated by minimizing
validation losses.

4.2. Learning Stages
Next, we discuss the details of the three stages (Figure
5 in the appendix). At the first stage, the learner trains its
encoder weights E and classification head H by minimizing
a classification loss L (e.g., cross entropy) on the training
set D(tr) of D, with its encoder architecture A tentatively
fixed. Under the Skillearn terminology, at this stage, the
learner is active and the listener is inactive. Active weights
include E and H . Meta parameters include A. There is no
interaction function. The optimization problem is:

E∗(A), H∗(A) = argminE,H L
(
A,E,H,D(tr)

)
. (2)

At this stage, A cannot be updated by minimizing the train-
ing loss. Otherwise, a degenerate solution will be produced
where A has a very large capacity to overfit training exam-
ples but will yield poor prediction outcomes on test data.
We will discuss how to learn A at a later stage. E∗(A) de-
notes that E∗ depends on A since E∗ depends on the loss
L(A,E,H,D(tr)) which depends on A.

At the second stage, the learner illustrates its understand-
ing of image contents to the listener. The understanding is
about the similarity between augmented images and origi-
nal images. Specifically, the learner ranks augmented im-
ages in descending order of their similarities to original
images; the listener trains its encoder by fitting the rank-
ing. Given an original image xi from D(tr), K augmented
images {aik}Kk=1 are generated from xi, by applying differ-
ent augmentation operations (Perez & Wang, 2017) such
as rotation, flipping, cropping, etc. The learner uses its
trained encoder including A and E∗(A) to rank {aik}Kk=1

based on their similarity to xi. Let f(aik, xi;A,E∗(A))
denote the cosine similarity between aik and xi measured
on their representations extracted by the learner’s encoder.
If f(aik, xi;A,E

∗(A)) > f(aij , xi;A,E∗(A)), then aik
is ranked higher than aij . Let oi(1;A,E∗(A)) ≻ · · · ≻
oi(k;A,E

∗(A)) ≻ · · · ≻ oi(K;A,E∗(A)) be the ranking
of {aik}Kk=1, where oi(k;A,E∗(A)) denotes the augmented
image ranked at the k-th position. oi(1;A,E∗(A)) is the
augmented image that is the most similar to xi.

Given this ranking, the listener trains its encoder by fitting
the ranking. Let f(aik, xi;F ) denote the cosine similarity

between aik and xi calculated on their representations ex-
tracted by the listener’s encoder F . To fit the ranking, the
listener trains F such that f(oi(k;A,E∗(A));F ) decreases
when k increases. In other words, if oi(k;A,E∗(A)) ≻
oi(j;A,E∗(A)) in the ranking, then the listeners makes
f(oi(k;A,E∗(A));F ) larger than f(oi(j;A,E∗(A));F ).
In addition to training its encoder F by fitting the ranking,
the listener trains F and classification head G by minimizing
a cross-entropy based classification loss L on the training
data D(tr). To this end, the second stage amounts to solving
the following problem:

F∗(A,E∗(A)), G∗ = argminF,G L
(
F,G,D(tr)

)
s.t. ∀i, f(oi(1;A,E∗(A)), xi;F ) > · · · > f(oi(K;A,E∗(A)), xi;F )

(3)

At this stage, the learner and listener are both active. Active
weights include F and G. The learner and listener interact
on the rankings in the constraints in Eq.(3).

At the third stage, the listener evaluates how its trained clas-
sification model including F ∗(A,E∗(A)) and G∗ performs
on the validation set D(val) of D. A high validation loss
L(F ∗(A,E∗(A)), G∗, D(val)) indicates the listener’s model
is not good. Since the model is trained using the rankings
generated by the learner, it implies that these rankings are
not accurate, i.e., there are gaps in the learner’s understand-
ing of image contents. To bridge these gaps, the learner
updates its encoder architecture to minimize the listener’s
validation loss. In addition, the learner minimizes its own
validation loss as well. This amounts to solving the follow-
ing optimization problem, where γ is a tradeoff parameter.

min
A

L
(
A,E∗(A), H∗(A), D(val)

)
+ γL

(
F∗(A,E∗(A)), G∗, D(val)

)
.

(4)
Putting these pieces together, we have the formulation of
FAS, which is a special case of Skillearn:

minA L
(
A,E∗(A), H∗(A), D(val)

)
+ γL

(
F∗(A,E∗(A)), G∗, D(val)

)
s.t. F∗(A,E∗(A)), G∗ = argminF,G L

(
F,G,D(tr)

)
s.t. ∀i, f(oi(1;A,E∗(A)), xi;F ) > · · · > f(oi(K;A,E∗(A)), xi;F )

s.t.E∗(A), H∗(A) = argminE,H L
(
A,E,H,D(tr)

)
(5)

The optimization algorithm is provided in the appendix.
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Figure 4. PQDR has K peer learners and three learning stages.

Table 4. Notations in peer-questioning based data reweighting.
Notation Meaning
K The number of peer learners
Ek Image encoder of learner k
Gk Question-answer generation head of learner k
Qk Question-answering head of learner k
Dqag Dataset for training question-answer generation

models
A Weights of data examples in Dqag

Iu Unlabeled images
D

(val)
qa Validation dataset for question answering

5. Case Study II: Data Reweighting by Peer
Questioning

In this section, we instantiate Skillearn to solve another
BLO based problem - data reweighting (Ren et al., 2018;
Shu et al., 2019), by emulating a peer questioning (King,
1990) study technique of humans. In peer questioning (King,
1990), a group of peer learners collaboratively study a topic
and ask each other questions about this topic. By raising
questions to peers and answering questions raised by peers,
learners can enhance their understanding of this topic thor-
oughly (King, 1990). Data reweighting aims to automat-
ically learn a weight for each training example where a
smaller weight indicates that this example is more noisy.
With data reweighting, noisy examples are removed from
the training process since their losses are down-weighted to
being close to zero. Many data reweighting methods (Ren
et al., 2018; Shu et al., 2019) utilize a BLO-based formu-
lation where data weights (which are meta parameters) are
learned by minimizing a validation loss in the upper-level
problem and model weights are learned by minimizing a
training loss in the lower-level problem.

5.1. Overview
Leveraging Skillearn, we propose a peer-questioning based
data reweighting (PQDR) method (Figure 4). Table 9 in
the appendix shows the instantiation of Skillearn to PQDR.
PQDR has K peer learner models, which learn to perform
the same task. We assume the task is visual question an-
swering (Fukui et al., 2016): given an image and a tex-
tual question asked about the content of this image, predict
an answer. Each learner learns to perform two sub-tasks:
question-answer generation (QAG) and question answering

(QA). In QAG, given an image, the learner generates a ques-
tion from this image, and then generates an answer for this
question. In QA, given an image and a question, the learner
predicts an answer. Each learner k has 1) an image encoder
Ek which extracts visual representations of images; 2) a
QAG head Gk which takes the visual representation of an
image as input, generates a question, and then generates an
answer for this question; and 3) a QA head (Fukui et al.,
2016) Qk which takes the visual representation of an image
and a question about this image as inputs and predicts an
answer. The image encoder is shared by the QAG head and
the QA head. Given a dataset containing (image, question,
answer) triples, we split it into two subsets. The first subset
Dqag is used for training question-answer generation mod-
els where images are inputs and (question, answer) pairs
are outputs. The second subset Dqa is used for training
question answering models where (image, question) pairs
are inputs and answers are outputs. Dqag contains noisy
examples. An (image, question, answer) triple is considered
a noisy example if any of the following conditions holds: 1)
the image is not about pathology; 2) the image has human
annotated artifacts such as arrows, texts, circles, etc.; and 3)
the question is not correct in syntax and semantics. Figure
11 shows some examples. For each example in Dqag, we
learn a weight for it, to identify and down-weight noisy
examples using the weights. Dqa is manually checked to
ensure there is no noisy data. It is split into a validation set
D

(val)
qa and a test set D(test)

qa . Table 4 shows notations.

5.2. Learning Stages
In PQDR, there are three learning stages. At the first stage,
each learner k independently learns to generate question-
answer pairs from images, by training its encoder weights
Ek and question-answer generation head Gk on Dqag . Each
example di in Dqag = {di}Ni=1 is associated with a weight
ai ∈ [0, 1], which is used to reweight the training loss on
di. A smaller ai indicates that di is more noisy. Let Lqag(·)
denote a question-answer generation loss (e.g., negative log-
likelihood of questions and answers) and A denote {ai}Ni=1.
The optimization problem is:

{E∗
k(A), G∗

k(A)}Kk=1 = argmin
{Ek,Gk}Kk=1

K∑
k=1

N∑
i=1

aiLqag(Ek, Gk, di).

(6)
Note that the data weights A cannot be learned at this stage;
otherwise a degenerate solution will be yielded where all
weights are zero. At this stage, all K learners are active.
Active weights include the image encoder and question-
answer generation head of each learner. Meta parameters
are A. There is no interaction function.

At the second stage, peer questioning is conducted, where
each learner k uses its trained question-answer generation
model consisting of E∗

k(A) and G∗
k(A) to generate ques-

tionsQ(Iu, E∗
k(A), G∗

k(A)) from unlabeled images Iu, and
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then generate answersA(Iu, E∗
k(A), G∗

k(A)) for these ques-
tions. Meanwhile, each learner k uses its QA model to
answer the questions {Q(Iu, E∗

j (A), G∗
j (A))}Kj ̸=k gener-

ated by other learners. Then learner k measures the dis-
crepancy between its predicted answers and the answers
{A(Iu, E∗

j (A), G∗
j (A))}Kj ̸=k generated by other learners

and trains its question-answering head Qk by minimizing
this discrepancy. Let Lqa(·) denote a question-answering
(QA) loss (e.g., negative log-likelihood of answers). The
optimization problem is:

{Q∗
k({E∗

j (A), G∗
j (A)}Kj ̸=k, E

∗
k(A))}Kk=1 =

argmin{Qk}Kk=1

∑K
k=1

∑K
j ̸=k Lqa(E

∗
k(A), Qk,

Q(Iu, E
∗
j (A), G∗

j (A)),A(Iu, E
∗
j (A), G∗

j (A))).

(7)

At this stage, all learners are active. Active weights include
all learners’ QA heads. The above objective is an interac-
tion function where each learner raises questions to other
learners and answers questions raised by other learners.

At the third stage, we use D
(val)
qa as a validation set to

evaluate the performance of QA models of all learners.
Data weights of Dqaq are updated by minimizing valida-
tion losses. The corresponding optimization problem is:

minA
K∑

k=1

Lqa

(
E∗

k(A), Q∗
k({E

∗
j (A), G∗

j (A)}K
j ̸=k, E

∗
k(A)), D(val)

qa

)
.

(8)

Putting these pieces together, we have the following overall
formulation for PQDR, which is a special case of the general
Skillearn framework:

minA
∑K

k=1 Lqa

(
E∗

k(A), Q∗
k({E

∗
j (A), G∗

j (A)}Kj ̸=k, E
∗
k(A)), D

(val)
qa

)
s.t. {Q∗

k({E
∗
j (A), G∗

j (A)}Kj ̸=k, E
∗
k(A))}Kk=1 = argmin{Qk}K

k=1

∑K
k=1

∑K
j ̸=k

Lqa(E
∗
k(A), Qk,Q(Iu, E∗

j (A), G∗
j (A)),A(Iu, E∗

j (A), G∗
j (A)))

s.t. {E∗
k(A), G∗

k(A)}Kk=1 = argmin
{Ek,Gk}K

k=1

∑K
k=1

∑N
i=1 aiLqag(Ek, Gk, di).

(9)

6. Experiments
In this section, we present experimental results for the two
case studies. Please refer to the appendix for detailed hyper-
parameter settings and additional results.

6.1. Experiments on Feynman Architecture Search
We applied FAS to search for architectures in image classifi-
cation tasks. We followed the experimental protocol in (Liu
et al., 2019), consisting of two phases: one for architec-
ture search and the other for architecture evaluation. In the
search phase, an optimal cell is searched by minimizing a
validation loss. In the evaluation phase, the searched cell
is replicated and composed into a large network, which is
trained from scratch on training and validation sets. Its per-
formance is reported on a test set. In Section I.1 in the
appendix, we applied FAS to six text classification datasets
where FAS achieves better text classification accuracy than
baselines.

6.1.1. DATASETS

We used three image classification datasets: CIFAR-10,
CIFAR-100, and ImageNet (Deng et al., 2009), with 10,
100, and 1000 classes respectively. For CIFAR-10 and
CIFAR-100, each of them is split into a 25K training set, a
25K validation set, and a 10K test set. ImageNet is split into
a training set of 1.2M images and a test set of 50K images.
For architecture search on ImageNet, following (Xu et al.,
2020), we randomly sample 10% of the 1.2M images as a
training set, and randomly sample 2.5% of the 1.2M images
as a validation set.

6.1.2. EXPERIMENTAL SETUP

For the learner’s encoder architecture, we experimented
with the search spaces in DARTS (Liu et al., 2019), P-
DARTS (Chen et al., 2019), PC-DARTS (Xu et al., 2020),
and PR-DARTS (Zhou et al., 2020). The learner’s head is a
linear classifier. The listener is set to ResNet-50 (He et al.,
2016), containing an encoder and a linear classification head.
Image encodings generated by the learner and listener have
different dimensions. The number K of augmented images
is set to 5. Augmentation operations (Perez & Wang, 2017)
include random rotation, flipping, cropping, and color jit-
ter. The tradeoff parameters γ and λ are set to 1 and 0.5
respectively.

We compared with the following baselines: 1) multi-task
learning (MTL) (Maninis et al., 2019) and 2) shared encoder
(SE) (Kokkinos, 2017). MTL solves a bi-level optimization
problem. At the lower level, we perform two tasks simul-
taneously by minimizing the weighted sum of their losses
(loss weights are set to 1). The first task is training the
weight parameters of the learner by minimizing a classifica-
tion loss defined on D(tr). The second task is training the
weight parameters of the listener by fitting the ranking of
augmented images where the ranking is generated by the
learner and by minimizing a classification loss defined on
D(tr). At the upper level, we update the architecture of the
learner by minimizing the validation losses of the learner
and listener. The SE baseline is similar to MTL, except
that the learner and listener in SE share the same encoder
architecture (but with different weight parameters). The
formulations of MTL and SE are provided in Section B.6
and B.7 in the appendix.

Each experiment was repeated ten times with random seeds.
Mean and standard deviation of the 10 runs are reported.
Experiments were conducted on Nvidia 1080Ti GPU.

6.1.3. RESULTS

Table 5 shows results on the test set of CIFAR-100 and
CIFAR-10, where we make the following observations.
First, applying our method to DARTS, P-DARTS, PC-
DARTS, and PR-DARTS reduce classification errors sig-
nificantly, which demonstrates that our method is effective

7



Improving Bi-level Optimization Based Methods with Inspiration from Humans’ Classroom Study Techniques

Table 5. Results on CIFAR-100 (C100) and CIFAR-10 (C10), in-
cluding classification error (%) on the test set, number of model
parameters (millions), and search cost (GPU days). In entries
with an X/Y format, X and Y denote results on CIFAR-100 and
CIFAR-10 respectively. In SE, MTL, and FAS, parameter number
is with respect to the searched architecture in the learner only, not
including the listener. FAS-darts2nd represents that FAS’ search
space is the same as that of DARTS-2nd. Similar meanings hold
for other notations in such a format. * denotes that the results are
taken from DARTS− (Chu et al., 2021). † denotes that we re-ran
this method for 10 times. Search cost is measured by GPU days
on a Nvidia 1080Ti.

Method Error-C100 Error-C10 Param. Cost

*ResNet (He et al., 2016) 22.10 6.43 1.7/1.7 -/-
*DenseNet (Huang et al., 2017) 17.18 3.46 25.6/25.6 -/-
*PNAS (Liu et al., 2018a) 19.53 3.41±0.09 3.2/3.2 150/150
*ENAS (Pham et al., 2018) 19.43 2.89 4.6/4.6 0.5/0.5
*AmoebaNet (Real et al., 2019) 18.93 2.55±0.05 3.1/3.1 3150/3150
*GDAS (Dong & Yang, 2019b) 18.38 2.93 3.4/3.4 0.2/0.2
*R-DARTS (Zela et al., 2019) 18.01±0.26 2.95±0.21 -/- 1.6/1.6
*DARTS+PT (Wang et al., 2021) - 2.61±0.08 -/3.0 -/0.8
*DARTS− (Chu et al., 2021) 17.51±0.25 2.59±0.08 3.3/3.3 0.4/0.4
*DropNAS (Hong et al., 2020) 16.95±0.41 2.58±0.14 4.4/4.1 0.7/0.6
*DrNAS (Chen et al., 2021a) - 2.54±0.03 -/4.0 -/0.4
*ISTA-NAS (Yang et al., 2020) - 2.54±0.05 -/3.3 -/0.1
*AGNAS (Sun et al., 2022) - 2.53±.003 -/3.6 -/0.4
*MiLeNAS (He et al., 2020a) - 2.51±0.11 -/3.9 -/0.3
*GAEA (Li et al., 2021) - 2.50±0.06 -/- -/0.1
*GAEA (Li et al., 2021) - 2.50±0.06 -/- -/0.1
*DOTS (Gu et al., 2021) 16.48±0.13 2.49±0.06 4.1/3.5 0.3/0.3
*β-DARTS (Ye et al., 2022) 16.24±0.22 2.53±0.08 3.8/3.8 0.4/0.4
*PDARTS-ADV (Chen & Hsieh, 2020a) - 2.48±0.02 -/3.4 -/1.1
*Darts2nd (Liu et al., 2019) 20.58±0.44 2.76±0.09 3.1/3.3 4.0/4.0
SE-darts2nd (Kokkinos, 2017) 19.30±0.38 2.74±0.08 3.4/3.4 5.3/5.3
MTL-darts2nd (Maninis et al., 2019) 18.42±0.27 2.79±0.14 3.2/3.4 5.2/5.2
FAS-darts2nd (ours) 17.12±0.18 2.60±0.05 3.5/3.4 5.3/5.3
*Pdarts (Chen et al., 2019) 17.42±0.14 2.54±0.04 3.6/3.5 0.3/0.3
SE-pdarts (Kokkinos, 2017) 17.36±0.16 2.62±0.11 3.7/3.7 0.7/0.7
MTL-pdarts (Maninis et al., 2019) 16.95±0.12 2.71±0.08 3.7/3.8 0.7/0.7
FAS-pdarts (ours) 16.01±0.09 2.49±0.06 3.6/3.5 0.7/0.7
†Pcdarts (Xu et al., 2020) 17.96±0.15 2.57±0.07 3.9/3.6 0.1/0.1
SE-pcdarts (Kokkinos, 2017) 17.81±0.09 2.79±0.08 3.9/3.7 0.3/0.3
MTL-pcdarts (Maninis et al., 2019) 17.73±0.15 2.64±0.05 3.8/3.7 0.3/0.3
FAS-pcdarts (ours) 16.41±0.12 2.51±0.02 3.8/3.8 0.3/0.3
†Prdarts (Zhou et al., 2020) 16.48±0.06 2.37±0.03 3.4/3.5 0.2/0.2
SE-prdarts (Kokkinos, 2017) 17.04±0.09 2.49±0.06 3.6/3.6 0.4/0.4
MTL-prdarts (Maninis et al., 2019) 16.85±0.15 2.55±0.07 3.4/3.4 0.4/0.4
FAS-prdarts (ours) 16.12±0.08 2.32±0.03 3.5/3.4 0.4/0.4

in searching for better neural architectures. The reason
is: by encouraging the learner to clearly illustrate what it
has learned to a listener, the learner can identify its perfor-
mance gaps and improve itself by bridging these gaps. The
learner’s architecture is updated by minimizing the listener’s
validation loss, which indirectly measures the learner’s per-
formance. If this loss is high, it indicates that the listener’s
model is unsatisfactory. Since the listener’s model is trained
by fitting the ranking generated by the learner, the listener’s
inferior performance indicates that the generated ranking is
not accurate, which implies that the learner’s encoder is not
accurate. Given this identified performance gap, the learner
adjusts its encoder architecture to bridge the gap.

Using the listener’s validation loss as a regularizer, the
learner’s architecture is more robust to performance col-
lapse, because this architecture is required to be effective
not only for the learner’s classification task, but also for
the listener’s classification task. To empirically verify this,
we evaluate our method on four search spaces (Zela et al.,

Table 6. Evaluation of robustness against performance collapse:
test errors on CIFAR-10 (C10) and C100. We compare with the
following baselines: Darts (Liu et al., 2019), RDartsL2 (Zela
et al., 2019), DartsES (Zela et al., 2019), Darts- (Chu et al., 2021),
SDarts (Chen & Hsieh, 2020a), and MTL (Maninis et al., 2019).

Data Space DARTS [1] RDartsL2 [2] DartsES [3] Darts- [4] SDarts [5] MTL [6] Ours

C10

S1 4.69 3.46 3.93 3.34 3.26 4.39 3.12
S2 5.54 3.31 4.07 4.03 3.11 4.11 2.94
S3 3.92 2.51 3.55 2.95 3.07 4.61 2.44
S4 8.33 3.56 4.69 4.14 3.49 6.05 3.32

C100

S1 29.46 24.25 28.37 22.41 22.33 27.85 21.63
S2 26.05 22.24 23.25 21.61 20.56 24.25 19.72
S3 28.90 23.99 23.73 21.13 21.08 21.40 20.35
S4 22.85 21.94 21.26 21.55 21.25 22.97 20.51

2019) designed for evaluating architectures’ robustness
against performance collapse. Following the protocol in
RobustDARTS-L2 (Zela et al., 2019), cell number and ini-
tial channel number is set to 8 and 16. For each method, the
search process runs 4 times with random initialization. For
each searched architecture, it is retrained from scratch for
several epochs. The architecture (after retraining) with the
highest validation accuracy is evaluated on test set. Table 6
shows test results. As can be seen, our method achieves
lower classification errors than baseline methods which are
specifically developed for alleviating performance collapse.
These results demonstrate our method’s resilience to perfor-
mance collapse.

Second, our method performs better than MTL. MTL per-
forms the two tasks of Stage I and Stage II of our method
simultaneously without considering their order, where the
learner and listener are trained by minimizing the weighted
sum of their losses. This incurs a competition between them:
more decrease of the learner’s loss leads to less decrease of
the listener’s loss; vice versa. In contrast, our framework
trains these two models sequentially in two stages (but still
within an end-to-end framework). The listener helps the
learner to improve instead of competing with it. Third,
our method outperforms SE. Similar to MTL, SE breaks
the inherent order between tasks. Fourth, while our FAS
method can help to search for better architectures, it does
not substantially increase model size or search cost.

Table 7 shows results on ImageNet, where we make similar
observations as in Table 5. Applying FAS to DARTS-2nd,
P-DARTS, and PC-DARTS reduces their errors. FAS out-
performs MTL and SE. These results further demonstrate
the effectiveness of FAS which emulates humans’ Feynman
technique for improving learning outcomes.

6.2. Peer-Questioning Data Reweighting Experiments
6.2.1. DATASETS

We used the PathVQA (He et al., 2021) dataset, which
consists of 32,795 question-answer pairs generated from
1,670 pathology images. We split this dataset into Dqag

and Dqa with a ratio of 1:1. The data in Dqa is manually
checked to ensure there is no noise. Dqa is further split into
a validation set D(val)

qa and a test set with a ratio of 3:1. We
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Table 7. Results on ImageNet, including top-1 and top-5 classifi-
cation errors on the test set, number of model weights (millions),
and search cost (GPU days). * denotes that the results are taken
from DARTS− (Chu et al., 2021) and DrNAS (Chen et al., 2021a).
The rest notations are the same as those in Table 5. FAS-darts2nd-
cifar10 means the architecture is searched using FAS on CIFAR-10,
where the search space is the same as that in DARTS-2nd. Similar
meanings hold for other notations like this.

Method Top-1 Top-5 Param. Cost

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 -
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6 7.4 -
*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150
*SDARTS-ADV-CIFAR10 (Chen & Hsieh, 2020a) 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3
*FairDARTS-ImageNet (Chu et al., 2020) 24.4 7.4 4.3 3.0
*DOTS (Gu et al., 2021) 24.3 7.4 5.2 0.2
*PR-DARTS-cifar10 (Zhou et al., 2020) 24.1 7.3 5.0 0.2
∗β-DARTS (Ye et al., 2022) 23.9 7.0 5.5 0.4
*DARTS+-CIFAR100 (Liang et al., 2019) 23.7 7.2 5.1 0.2
*AGNAS (Sun et al., 2022) 23.4 6.8 6.7 3.3
*Darts2nd-cifar10 (Liu et al., 2019) 26.7 8.7 4.7 4.0
SE-darts2nd-cifar10 (Kokkinos, 2017) 26.3 8.5 4.9 5.3
MTL-darts2nd-cifar10 (Maninis et al., 2019) 26.1 8.2 4.9 5.2
FAS-darts2nd-cifar10 (ours) 25.3 7.7 4.9 5.3
*Pdarts-cifar10 (Chen et al., 2019) 24.4 7.4 4.9 0.3
SE-pdarts-cifar10 (Kokkinos, 2017) 24.3 7.4 5.1 0.7
MTL-pdarts-cifar10 (Maninis et al., 2019) 24.3 7.3 5.1 0.7
FAS-pdarts-cifar10 (ours) 23.9 7.1 4.9 0.7
*Pdarts-cifar100 (Chen et al., 2019) 24.7 7.5 5.1 0.3
SE-pdarts-cifar100 (Kokkinos, 2017) 24.7 7.5 5.3 0.7
MTL-pdarts-cifar100 (Maninis et al., 2019) 24.6 7.5 5.2 0.7
FAS-pdarts-cifar100 (ours) 24.3 7.3 4.9 0.7
*Pcdarts-imagenet (Xu et al., 2020) 24.2 7.3 5.3 3.8
SE-pcdarts-imagenet (Kokkinos, 2017) 24.0 7.1 5.4 5.2
MTL-pcdarts-imagenet (Maninis et al., 2019) 23.7 7.0 5.5 5.2
FAS-pcdarts-imagenet (ours) 23.2 6.5 5.5 5.2

used input images in D
(val)
qa as the unlabeled set Iu.

6.2.2. EXPERIMENTAL SETTINGS

We set the number of models K to 3. For the QA model
(containing an image encoder and a QA head), we experi-
mented with two choices: LXMERT (Tan & Bansal, 2019)
and BAN (Kim et al., 2018). In the QAG model, the image
encoder is the same as that in the QA model; the question
and answer generation head is set to an LSTM (Hochre-
iter & Schmidhuber, 1997) with a hidden size of 128. We
used three evaluation metrics: 1) accuracy (Malinowski
& Fritz, 2014), 2) BLEU (Papineni et al., 2002), and 3)
macro-averaged F1 (Goutte & Gaussier, 2005). We com-
pared with the following baselines: 1) multi-task learning
(MTL) (Maninis et al., 2019): question-answer generation
and question answering are performed jointly by minimizing
the sum of their losses; 2) perform QAG and QA separately
(Separate): we first train a QAG model, fix it, and use it to
generate question-answer pairs; then we use the generated
QA pairs to train a QA model; 3) no reweighting of Dqag

(No-Weight): all examples in Dqag are used for training the
QAG model.

6.2.3. RESULTS

Table 8 shows the results, where we make the following ob-
servations. First, our method outperforms vanilla LXMERT

Table 8. Results on PathVQA. B-n denotes BLEU with n-grams.

Accuracy B-1 B-2 B-3 F1

Lxmert

Vanilla (Tan & Bansal, 2019) 57.6 57.4 3.1 1.3 9.9
Separate 57.8 57.9 3.2 1.5 10.2
No-Weight 57.9 58.1 3.7 1.6 10.4
MTL (Maninis et al., 2019) 58.3 58.7 4.0 1.6 10.5
Ours 60.4 60.1 4.5 2.8 11.7

BAN

Vanilla (Kim et al., 2018) 55.1 56.2 3.2 1.2 8.4
Separate 55.3 56.8 3.3 1.4 8.8
No-Weight 55.9 57.4 3.8 1.7 9.2
MTL (Maninis et al., 2019) 57.1 57.9 3.6 1.8 10.5
Ours 59.3 59.7 4.1 2.5 11.3

and BAN on all metrics, which demonstrates the effective-
ness of our proposed peer-questioning mechanism. Through
peer-questioning, each learner can effectively identify the
weakness of its model and improve itself accordingly. Each
learner boosts its QA performance by answering questions
raised by other learners and boosts its QAG performance
by raising questions to other learners. Second, our method
performs better than MTL. MTL performs question-answer
generation and question-answering simultaneously by min-
imizing the sum of their training losses, which may incur
a conflict between these two tasks. Third, our method
achieves better performance than Separate. In Separate, the
QAG and QA tasks are performed separately where QA
cannot guide QAG. In contrast, our method performs these
two tasks end-to-end which enables them to synergistically
help each other. Fourth, our method performs better than
No-Weight. Our method can identify noisy examples and
remove them from the training process (Figure 11 in the
appendix shows some randomly sampled examples identi-
fied by our method as noisy). In contrast, No-Weight uses
all examples including the noisy ones in Dqag for model
training, which leads to worse performance.

7. Conclusions and Discussions
In this paper, we develop a general framework called Skil-
learn to formalize humans’ classroom study techniques into
machine-executable training strategies and leverage them to
train better BLO-based models. Our framework can flexibly
formulate many study techniques of humans, by configur-
ing learners, learning stages, interaction functions, etc. In
case studies, we apply Skillearn to formalize two study tech-
niques of humans - the Feynman technique and peer ques-
tioning, with applications to neural architecture search and
data reweighting. Experiments on various datasets demon-
strate the effectiveness of our methods.

Our methods have two major limitations. First, compared
with bi-level optimization based methods such as DARTS,
our multi-level optimization based formulation incurs addi-
tional computational costs due to the increased number of
levels. Second, our methods incur additional memory cost
due to storing extra models such as the listener in the Feyn-
man architecture search method. Please refer to Section F
in the appendix regarding how to address these limitations.
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Figure 5. Flowchart of the three stages in FAS.

A. Additional Related Works
A.1. Neural Architecture Search (NAS)

NAS aims to automatically search for high-performance architectures. Existing NAS methods can be categorized into three
groups, based on reinforcement learning (Zoph & Le, 2017; Pham et al., 2018; Zoph et al., 2018), gradient methods (Cai
et al., 2019; Liu et al., 2019; Xie et al., 2019), and evolutionary algorithms (Liu et al., 2018b; Real et al., 2019). Recently,
differentiable NAS methods (Liu et al., 2019; Chen et al., 2019; Xu et al., 2020) have obtained broad attention due to their
computational efficiency. These approaches perform search in an overparameterized space composed of a large number
of basic building blocks such as convolutions, poolings, etc. A selection variable is learned for each block to represent
whether this block should be retained in the final architecture. In the end, architecture search amounts to learning these
selection variables, which can be performed using efficient algorithms such as gradient descent. Differentiable NAS methods
suffer from performance collapse (Zela et al., 2019; Chu et al., 2020; Chen & Hsieh, 2020a): the searched architectures are
degenerate with excessive skip connections and yield poor test performance. For example, Zela et al. (Zela et al., 2019)
identified 12 NAS benchmarks based on four search spaces where DARTS (Liu et al., 2019) (a differentiable NAS method)
results in degenerate architectures with poor performance on test data. Our framework is orthogonal to existing NAS
approaches and can be applied to improve them.

A.2. Data Reweighting

A variety of methods (Jiang & Zhai, 2007; Foster et al., 2010; Moore & Lewis, 2010; Axelrod et al., 2011; Sivasankaran et al.,
2017; Ngiam et al., 2018) have been developed for data reweighting. Some of them are based on bi-level optimization (Ren
et al., 2018; Shu et al., 2019; Ren et al., 2020; Wang et al., 2020b;a), where a model is trained on reweighted data and
data weights are learned by optimizing validation performance of the trained model. Our framework is orthogonal to these
methods and can be applied to improve them.

A.3. Multi-task Learning (MTL)

MTL (Ruder, 2017; Zhang & Yang, 2021; Gao et al., 2020; Liang et al., 2018; Bruggemann et al., 2020) learns multiple
tasks jointly by minimizing the weighted sum of their losses and transfers knowledge across tasks. In many applications,
tasks have an inherent order. For example, distilling knowledge (Hinton et al., 2015) from model A to model B involves
three tasks: 1) train model A, 2) use model A to generate pseudo labels, and 3) train model B on pseudo labels. These tasks
have a natural order: before generating pseudo labels using model A, we need to train model A first; before training model
B on pseudo labels, we need to generate pseudo labels first. MTL performs these tasks simultaneously by minimizing a
single objective function, which breaks their inherent order and therefore may lead to worse performance. In contrast, our
framework preserves this order using multi-level optimization.
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Table 9. Instantiation of Skillearn to PQDR.
Skillearn Peer-questioning based data reweighting
Learners K peer learners
Model
weights
and meta
parameters

1) Image encoder Ek of learner k; 2) Question-answer generation head Gk of learner k;
3) Question-answering head Qk of learner k; 4) Weights A of data examples in Dqag .

Interaction
function

Each learner k trains its question-answering head Qk

on questions and answers generated by other learners.∑K
k=1

∑K
j ̸=k Lqa(E

∗
k(A), Qk,Q(Iu, E∗

j (A), G∗
j (A)),A(Iu, E∗

j (A), G∗
j (A))).

Learning
stages • Learning stage I: Each learner k trains its encoder weights Ek and question-answer

generation head Gk on Dqag .

• Learning stage II: Each learner k generates questions and answers (QAs) from
unlabeled images and trains its question-answering head Qk on QAs generated by
other learners.

• Learning stage III: Learners evaluate their QA models on D
(val)
qa and update data

weights of Dqaq by minimizing validation losses.

B. Additional Details of Methods
B.1. Additional Figures

Figure 5 shows the flowchart of the three stages in FAS.

B.2. Additional Tables

Table 9 shows how to instantiate the Skillearn framework to PQDR.

B.3. A More Detailed Formulation of Skillearn

Below is a more detailed formulation of Skillearn:

max{Ak}K−1
k=1

Lval({W∗
k ({Aj}kj=1)}

K−1
k=1 , {Ak}K−1

k=1 ,D(val))

s.t.W∗
K−1({Aj}K−1

j=1 ) = argmin
WK−1

LK−1(WK−1,AK−1,W∗
K−2({Aj}K−2

j=1 ),D(tr)
K−1)+

γK−1IK−1(WK−1,AK−1,W∗
K−2({Aj}K−2

j=1 ),FK−1)

· · ·
s.tW∗

k ({Aj}kj=1) = argmin
Wk

Lk(Wk,Ak,W∗
k−1({Aj}k−1

j=1 ),D
(tr)
k )+

γkIk(Wk,Ak,W∗
k−1({Aj}k−1

j=1 ),Fk)

s.tW∗
k−1({Aj}k−1

j=1 ) = argmin
Wk−1

Lk−1(Wk−1,Ak−1,W∗
k−2({Aj}k−2

j=1 ),D
(tr)
k−1)+

γk−1Ik−1(Wk−1,Ak−1,W∗
k−2({Aj}k−2

j=1 ),Fk−1)

· · ·
s.t.W∗

1 (A1) = argminW1
L1(W1,A1,D(tr)

1 ) + γ1I1(W1,A1,F1)

(10)

B.4. Additional Discussion of Skillearn

The multi-level optimization problem of Skillearn with K levels can be considered as a composition of K − 1 bi-level
optimization problems which are nested. Specifically, each pair of optimization problems at level k and k+1 form a bi-level
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optimization problem, for 1 ≤ k ≤ K − 1, as follows:

W∗
k ({Aj}kj=1) = argmin

Wk

Lk(Wk,Ak,W∗
k−1({Aj}k−1

j=1 ),D
(tr)
k ) + γkIk(Wk,Ak,W∗

k−1({Aj}k−1
j=1 ),Fk)

s.t. W∗
k−1({Aj}k−1

j=1 ) = argmin
Wk−1

Lk−1(Wk−1,Ak−1,W∗
k−2({Aj}k−2

j=1 ),

D(tr)
k−1) + γk−1Ik−1(Wk−1,Ak−1,W∗

k−2({Aj}k−2
j=1 ),Fk−1)

(11)

The upper-level problem of each bi-level optimization problem is at the same time the lower-level problem of another
bi-level optimization problem.

B.5. Continuous Relaxation in FAS

The constraints in Eq.(3) in FAS are not amenable for optimization. To address this problem, we perform a relaxation
of these constraints and transform them into loss terms. If an augmented image ai,k ranks higher than ai,j , it implies
that f(ai,k, x;A,E∗(A)) > f(ai,j , x;A,E∗(A)). According to the constraint, we need to make sure f(ai,k, x;F ) >
f(ai,j , x;F ). In other words, we would like f(ai,k, x;A,E∗(A))− f(ai,j , x;A,E∗(A)) and f(ai,k, x;F )− f(ai,j , x;F )
to be both positive or negative, which is equivalent to encouraging their product to be positive. This can be achieved by
minimizing the following hinge loss:

max(0,−(f(ai,k, x;A,E∗(A))− f(ai,j , x;A,E∗(A)))(f(ai,k, x;F )− f(ai,j , x;F )). (12)

If the product is positive, there is no penalty. The optimization for the discontinuous operator max in the hinge loss is based
on the sub-gradient method. Accordingly, the second stage in FAS becomes:

F ∗(A,E∗(A)), G∗ = argminF,G L(F,G,D(tr))+

λ
∑N

i=1

∑
1≤k<j≤K max(0,−(f(ai,k, xi;A,E∗(A))− f(ai,j , xi;A,E∗(A)))(f(ai,k, xi;F )− f(ai,j , xi;F ))),

(13)

where N is the number of training examples and λ is a tradeoff parameter.

The formulation of FAS with continuous relaxation is:

minA L(A,E∗(A), H∗(A), D(val)) + γL(F ∗(E∗(A), A), G∗, D(val))

s.t F ∗(E∗(A), A), G∗ = argminF,G L(F,G,D(tr))+

λ
N∑
i=1

∑
1≤k<j≤K

max(0,−(f(ai,k, xi;A,E∗(A))− f(ai,j , xi;A,E∗(A)))(f(ai,k, xi;F )− f(ai,j , xi;F )))

s.t. E∗(A), H∗(A) = argminE,H L(A,E,H,D(tr))

(14)

B.6. Formulation for the Multi-task Learning Baseline

For multi-task learning (MTL), the formulation is:

minA L(A,E∗(A), H∗(A), D(val)) + γL(F ∗, G∗, D(val))

s.t E∗(A), H∗(A), F ∗, G∗ = argminE,H,F,G L(A,E,H,D(tr)) + L(F,G,D(tr)) + λ
N∑
i=1

∑
1≤k<j≤K

max(0,−(f(ai,k, xi;A,E)− f(ai,j , xi;A,E))(f(ai,k, xi;F )− f(ai,j , xi;F )))

(15)

B.7. Formulation for the Shared Encoder Baseline

The formulation of Shared Encoder (SE) is similar to MTL, except that in SE, the listener’s encoder architecture is the same
as that of the learner. But they have different weight parameters. Let A denote the shared encoder architecture. Let F denote
the listener’s encoder weights.

minA L(A,E∗(A), H∗(A), D(val)) + γL(A,F ∗(A), G∗(A), D(val))

s.t E∗(A), H∗(A), F ∗(A), G∗(A) = argminE,H,F,G L(A,E,H,D(tr)) + L(A,F,G,D(tr)) + λ
N∑
i=1

∑
1≤k<j≤K

max(0,−(f(ai,k, xi;A,E)− f(ai,j , xi;A,E))(f(ai,k, xi;A,F )− f(ai,j , xi;A,F )))

(16)
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C. Optimization Algorithms
C.1. A General Optimization Algorithm for the Skillearn Framework

We develop an algorithm to solve the Skillearn problem, inspired by the algorithm in (Liu et al., 2019). For each learning
stage k, we approximate the optimal solutionW∗

k ({Aj}kj=1) by one-step gradient descent update of the variableWk:

W∗
k ({Aj}kj=1) ≈ W ′

k({Aj}kj=1) =Wk − η∇Wk
(Lk(Wk,Ak,W∗

k−1

({Aj}k−1
j=1 ),D

(tr)
k ) + γkIk(Wk,Ak,W∗

k−1({Aj}k−1
j=1 ),Fk)).

(17)

At learning stage k + 1,W∗
k ({Aj}kj=1) is used to define the objective function. In the objective at stage k + 1, we replace

W∗
k ({Aj}kj=1) withW ′

k({Aj}kj=1) and get an approximated objective. When approximatingW∗
k+1({Aj}k+1

j=1 ), we use the
gradient of the approximated objective:

W∗
k+1({Aj}k+1

j=1 ) ≈ W ′
k+1({Aj}k+1

j=1 ) =

Wk+1 − η∇Wk+1
(Lk+1(Wk+1,Ak+1,W ′

k({Aj}kj=1),D
(tr)
k+1) + γk+1Ik+1(Wk+1,Ak+1,W ′

k({Aj}kj=1),Fk+1)).
(18)

The objective at the K-th stage can be approximated as:

Lval({W ′
k({Aj}kj=1)}

K−1
k=1 , {Ak}K−1

k=1 ,D(val)). (19)

We update {Ak}K−1
k=1 by minimizing this approximated objective. These steps iterate until convergence.

C.2. Algorithm for FAS

In this section, we develop a gradient-based algorithm to solve the FAS problem. Let d·
d· and ∂·

∂· denote ordinary and partial
derivative respectively. Let ∇Xf(X) denote a gradient and ∇2

Y,Xf(X,Y ) denote ∂f(X,Y )
∂X∂Y . Drawing insights from (Liu

et al., 2019), we approximate E∗(A) and H∗(A) using a one-step gradient descent update of E and H:

E∗(A) ≈ E′ = E − ξ∇EL(A,E,H,D(tr)), H∗(A) ≈ H ′ = H − ξ∇HL(A,E,H,D(tr)), (20)

where ξ is a learning rate. We plug E∗(A) ≈ E′ into the loss function at Stage 2 and get an approximated loss O:

O = L(F,G,D(tr)) + λ

N∑
i=1

∑
1≤k<j≤K

max(0,−(f(ai,k, xi;A,E′)− f(ai,j , xi;A,E′))(f(ai,k, xi;F )− f(ai,j , xi;F ))).

(21)
Then we approximate F ∗(A,E∗(A)) and G∗ by one-step gradient-descent update of F and G w.r.t the approximated loss
O:

F ∗(A,E∗(A)) ≈ F ′ = F − ξ∇FO, G∗ ≈ G′ = G− ξ∇GO. (22)

Finally, we plug these approximations into the validation losses at the third stage and update the architecture A using
gradient descent (with a learning rate η), by minimizing the approximated validation losses:

A← A− η∇A(L(A,E′, H ′, D(val)) + γL(F ′, G′, D(val))) (23)

where
∇AL(A,E′, H ′, D(val)) = ∂L(A,E′,H′,D(val))

∂A + dE′

dA
∂L(A,E′,H′,D(val))

∂E′ + dH′

dA
∂L(A,E′,H′,D(val))

∂H′ (24)

∇AL(F
′, G′, D(val)) =

dF ′

dA

∂L(F ′, G′, D(val))

∂F ′ . (25)

In Eq.(24), dE′

dA = −ξ∇2
A,EL(A,E,H,D(tr)) and dH′

dA = −ξ∇2
A,HL(A,E,H,D(tr)). In Eq.(25), we have dF ′

dA = −ξ d∇FO
dA ,

in which

d∇FO

dA
=

dE′

dA
∇2

E′,FO+λ

N∑
i=1

∑
1≤k<j≤K

∂∇F max(0,−(f(ai,k, xi;A,E′)− f(ai,j , xi;A,E′))(f(ai,k, xi;F )− f(ai,j , xi;F )))

∂A
.

(26)
These steps iterate until convergence. Similar to (Liu et al., 2019), we approximate matrix-vector multiplications in Eq.(24)
and Eq.(25) using finite-difference, which can reduce the quadratic computational complexity (in terms of matrix dimensions)
down to linear. The algorithm for solving FAS is in Algorithm 1. Figure 6 shows the dependency between variables and
gradients in FAS.
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Algorithm 1 Optimization algorithm for FAS
While not converged
1. Update learner’s encoder weights E using Eq.(20)
2. Update learner’s head H using Eq.(20)
3. Update listener’s encoder weights F using Eq.(22)
4. Update listener’s head G using Eq.(22)
5. Update learner’s encoder architecture A using Eq.(23)

Figure 6. Dependency between variables and gradients in FAS.

C.3. Algorithm for PQDR

We approximate E∗
k(A) and G∗

k(A) using one-step gradient descent update of Ek and Gk w.r.t∑K
k=1

∑N
i=1 aiLqag(Ek, Gk, di):

E∗
k(A) ≈ E′

k = Ek − ξ∇Ek

N∑
i=1

aiLqag(Ek, Gk, di), (27)

G∗
k(A) ≈ G′

k = Gk − ξ∇Gk

N∑
i=1

aiLqag(Ek, Gk, di). (28)

We plug E∗
k(A) ≈ E′

k and G∗
k(A) ≈ G′

k into the loss function at the second stage and get an approximated objective:

O =

K∑
k=1

K∑
j ̸=k

Lqa(E
′
k, Qk,Q(Iu, E′

j , G
′
j),A(Iu, E′

j , G
′
j)). (29)

We approximate Q∗
k({E∗

j (A), G∗
j (A)}Kj ̸=k, E

∗
k(A)) using one-step gradient descent update of Qk w.r.t the approximated

objective:
Q∗

k({E∗
j (A), G∗

j (A)}Kj ̸=k, E
∗
k(A)) ≈ Q′

k = Qk − ξ∇Qk
O. (30)

Finally, we plug Q∗
k({E∗

j (A), G∗
j (A)}Kj ̸=k, E

∗
k(A)) ≈ Q′

k and E∗
k(A) ≈ E′

k into the loss function at the third stage and get
an approximated loss function. Then we update A by minimizing the approximated loss using gradient descent:

A← A− η

K∑
k=1

∇ALqa(Q
′
k, E

′
k, Dqa), where (31)

∇ALqa(Q
′
k, E

′
k, Dqa) =

dQ′
k

dA
∂Lqa(Q

′
k,E

′
k,Dqa)

∂Q′
k

+
dE′

k

dA
∂Lqa(Q

′
k,E

′
k,Dqa)

∂E′
k

, (32)
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Algorithm 2 Optimization algorithm for PQDR
While not converged
1. Update Ek using Eq.(15) in the main paper for k = 1, · · · ,K
2. Update Gk using Eq.(16) in the main paper for k = 1, · · · ,K
3. Update Qk using Eq.(18) in the main paper for k = 1, · · · ,K
4. Update A using Eq.(19) in the main paper

where dE′
k

dA = −ξ∇2
A,Ek

∑N
i=1 aiLqag(Ek, Gk, di) and

dQ′
k

dA = −ξ(dE
′
k

dA ∇
2
E′

k,Qk
O +

∑
j ̸=k

(
dE′

j

dA ∇
2
E′

j ,Qk
O +

dG′
j

dA ∇
2
G′

j ,Qk
O)). (33)

These steps iterate until convergence. The optimization algorithm for PQDR is summarized in Algorithm 2.

D. Additional Experimental Settings
D.1. Additional Experimental Settings of FAS

For the rest of hyperparameters, our method simply uses their default values provided in baselines (including DARTS,
P-DARTS, PC-DARTS, and PR-DARTS) where our method is applied to, without tuning them. For example, when FAS
is applied to DARTS, the optimizer, learning rate, learning rate scheduler, batch size, epochs, momentum, weight decay
of the weight parameters and architecture variables in FAS’ learner are the same as those in DARTS. The values of these
hyperparameters for the listener’s weight parameters are the same as those in the learner. Similarly, for other experimental
setup (e.g., protocols for architecture search and evaluation; network architectures including search spaces and the numbers
of cells, nodes, initial channels; parameter initialization methods, etc.), our method follows those in DARTS, P-DARTS,
PC-DARTS, and PR-DARTS.

During architecture search on CIFAR-10 and CIFAR-100, the learner’s network is a stack of 8 cells, each consisting of
7 nodes, with the initial channel number set to 16. The search algorithm runs for 50 epochs with a batch size of 64.
Model weights are optimized using SGD, with an initial learning rate of 0.025 (adjusted using a cosine decay scheduler), a
momentum of 0.9, and a weight decay of 3e-4. The architecture variables A are optimized using Adam (Kingma & Ba, 2015)
with a learning rate of 0.001, a momentum of (0.5, 0.999), and a weight decay of 0.001. The learning rate is scheduled with
cosine scheduling. The architecture variables are initialized with zero initialization.

During architecture evaluation, for CIFAR-10 and CIFAR-100, a larger network of the learner is formed by stacking 20
copies of the searched cell, and is trained on the combination of D(tr)

t and D
(val)
t . The number of initial channels is set to 36.

The network is trained with a batch size of 96, an epoch number of 600. An SGD optimizer is used for weights training,
with an initial learning rate of 0.025, a cosine decay scheduler, a batch size of 96, a momentum of 0.9, and a weight decay
of 3e-4. On ImageNet, we evaluate architectures searched on a subset of ImageNet and those searched on CIFAR-10 or
CIFAR-100. 14 copies of searched cells are stacked into a large network, which is trained on the 1.2M training images, with
a batch size of 1024, an epoch number of 250, an initial learning rate of 0.5, and a weight decay of 3e-5. The number of
initial channels is set to 48. Cutout, path dropout with probability 0.2 and auxiliary towers with weight 0.4 are applied.

We use PyTorch to implement all models. The version of Torch is 1.4.0 (or above). We build our method upon official
python packages for different differentiable search approaches, such as “DARTS1”, “P-DARTS2” and “PC-DARTS3”.

D.1.1. HYPERPARAMETER TUNING STRATEGY FOR λ AND γ

To tune the hyperparameters γ and λ, we randomly sample 2.5K data from the 25K training set and sample 2.5K data
from the 25K validation set. Then we use the 5K sampled data as a hyperparameter tuning set. γ and λ are tuned in
{0.01, 0.1, 0.5, 1, 2}. For each configuration of γ and λ, we use the remaining 22.5K training data and 22.5K validation
data to perform architecture search and use their combination to perform architecture evaluation (retraining a larger stacked

1https://github.com/quark0/darts
2https://github.com/chenxin061/pdarts
3https://github.com/yuhuixu1993/PC-DARTS/
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Q1: What are dilated and congested? 
Q2: Are the sinuses dilated and congested? 
Q3: Is there increased fibrosis in the  
red pulp, capsule and the trabeculae? 
Q4: Where is increased fibrosis?  
Q5: Is gamna-gandy body also seen? 
 

Q1: What is slightly depressed on 
 the surface? 
Q2: Where is the wedge-shaped  
infarct slightly depressed? 
Q3: Is the wedge-shaped infarct  
slightly depressed on the surface? 
Q4: What is on the surface? 
Q5: What is pale while the margin  
is haemorrhagic? 
 

Figure 7. An exemplar image with generated questions from three types: “what”, “where”, and “yes/no”.

Table 10. Frequency of questions in different categories

Question type Total number
and percentage

Yes/No 16,329 (49.8%)
What 13,401 (40.9%)
Where 2,157 (6.6%)
How 595 (1.8%)
How much/many 139 (0.4%)
Why 114 (0.3%)
When 51 (0.2%)
Whose 9 (0.1%)

network from scratch). Then we measure the performance of the stacked network on the 5K sampled data. γ and λ
yielding the best performance on the 5K sampled data are selected. For other hyperparameters, they mostly follow those in
DARTS (Liu et al., 2019), P-DARTS (Chen et al., 2019), PC-DARTS (Xu et al., 2020), and PR-DARTS (Zhou et al., 2020).

D.2. Additional Details of the PathVQA Dataset

The PathVQA dataset consists of 32,795 question-answer pairs generated from 1,670 pathology images collected from two
pathology textbooks: “Textbook of Pathology” (Muir et al., 1941) and “Basic Pathology” (Robbins et al., 1981), and 3,328
pathology images collected from the PEIR4 digital library. Figure 7 shows an example.

On average, each image has 6.6 questions. The maximum and minimum number of questions for a single image is 14 and 1
respectively. The average number of words per question and per answer is 9.5 and 2.5 respectively. There are eight different
categories of questions: what, where, when, whose, how, why, how much/how many, and yes/no. Table 10 shows the number
of questions and percentage in each category. The questions in the first 7 categories are open-ended: 16,466 in total and
accounting for 50.2% of all questions. The rest are close-ended “yes/no” questions. The questions cover various aspects of
visual contents, including color, location, appearance, shape, etc.

D.3. Additional Experimental Settings of PQDR

Data augmentation is applied to images, including shifting, scaling, and shearing. From questions and answers in the
PathVQA dataset, we create a vocabulary of 4,631 words that have the highest frequencies.

For the QA model (containing an image encoder and a QA head), we experimented with two choices:

• LXMERT (Tan & Bansal, 2019): a Transformer (Vaswani et al., 2017) based model consisting of three encoders: an
object relationship encoder, a language encoder, and a cross-modal encoder. The former two are single-modality encoders.
The third one learns the relationships between vision and language.

• BAN (Kim et al., 2018): using a Gated Recurrent Unit (GRU) (Cho et al., 2014) network and a Faster R-CNN (Ren et al.,

4http://peir.path.uab.edu/library/index.php?/category/2
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Figure 8. (Left) Comparison of three ways for illustration. (Right) How test error varies as γ increases.

2015) network to embed questions and images. It calculates bilinear attention scores on every pair of multimodal channels.

Adam (Kingma & Ba, 2014) is used to train QAG model weights for 200 epochs, with an initial learning rate of 1e-4 and a
batch size of 256. To train the LXMERT QA model, we use the default hyperparameter settings in (Tan & Bansal, 2019).
For the text encoder, the hidden size is set to 768. Image features are extracted using Faster-RCNN which is pretrained on
BCCD5 - a medical dataset containing blood cell photos, as well as on Visual Genome (Krishna et al., 2017). LXMERT QA
model weights are trained using Adam (Kingma & Ba, 2014) for 200 epochs, with an initial learning rate of 1e-4 and a
batch size of 256. In the BAN QA model, words in questions and answers are represented using GloVe (Pennington et al.,
2014) vectors pretrained on general-domain corpora such as Wikipedia, Twitter, etc. Image features are extracted using
Faster-RCNN pretrained on BCCD and Visual Genome. Dropout (Krizhevsky et al., 2012) rate for linear mapping is set to
0.2. BAN QA model weights are trained using the Adamax optimizer (Kingma & Ba, 2015) for 200 epochs, with an initial
learning rate of 0.005 and a batch size of 512. For the data weights A, we optimize them using the Adam optimizer, with an
initial learning rate of 0.01. The Gumbel softmax trick (Jang et al., 2017) is used to cope with the non-differentiability of
texts.

We use three evaluation metrics: 1) accuracy (Malinowski & Fritz, 2014), measuring the percentage of inferred answers that
match exactly with the groundtruth using string matching; 2) BLEU (Papineni et al., 2002), measuring the similarity of
predicted answers and groundtruth by matching n-grams; and 3) macro-averaged F1 (Goutte & Gaussier, 2005), measuring
the average overlap between predicted answers and groundtruth, where answers are treated as bag of tokens.

We compare with the following baselines: 1) Multi-task learning (MTL) (Maninis et al., 2019): question-answer generation
and question answering are performed jointly by minimizing the sum of their losses; 2) Perform QAG and QA separately
(Separate): we first train a QAG model, fix it, and use it to generate question-answer pairs; then we use the generated QA
pairs to train a QA model; 3) No reweighting of Dqag (No-Weight): all examples in Dqag are used for training the QAG
model.

We implement the methods using PyTorch and perform training on four GTX 1080Ti GPUs.

E. Additional Experimental Results
E.1. Additional Experimental Results for FAS

Ablation study of the ranking-based illustration approach. We compare our proposed ranking-based illustration
approach with two baselines: 1) L2 regularization on weights: encouraging the encoder weights of the learner and listener to
have small L2 distance; 2) L2 regularization on embeddings: encouraging embeddings generated by the learner and listener
to have small L2 distance. Figure 8(left) shows that our method works better than the two baselines. This is because our
method does not require learner and listener to have the same encoder architecture or the same embedding dimensions,
which is more flexible. In contrast, the two baselines have such a requirement, which is more restrictive. Furthermore, our
method is based on ranking K augmented examples, requiring the identification of the global relationship between the K
examples. As a result, our method can capture high-order (specifically, Kth-order) relationships among data examples,

5https://public.roboflow.ai/object-detection/bccd
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Table 11. Analysis of sensitivity to the number of listeners.
Number of listeners Test error
1 16.41±0.12
2 16.39±0.17
3 16.42±0.14

Table 12. Analysis of sensitivity to the number of learners.
Number of learners Test error (%) Search costs (GPU days)
1 16.41±0.12 0.3
2 16.33±0.15 0.5
3 16.28±0.07 0.8

enhancing the effectiveness of “illustration”. In contrast, L2 regularization on embeddings is conducted on individual
examples, which cannot capture relationships among data examples.

Analysis of sensitivity to tradeoff parameter γ. Figure 8(right) shows how the test error of FAS-darts2nd on CIFAR-100
varies with γ. When γ increases from 0 to 1, the test error decreases. This is because a larger γ enables the listener to give
more feedback to the learner regarding whether the learner can accurately understand image contents. As γ continues to
increase, the test error starts to increase. This is because the learner relies too much on the listener’s feedback while paying
insufficient attention to its own validation performance.

Analysis of sensitivity to the number of learners and listeners. We explored how the number of listeners and learners in
FAS affects performance. The experiments were conducted on CIFAR-100, with FAS applied to PC-DARTS. In the first
experiment, we tested configurations with two listeners (ResNet-50, DenseNet) and three listeners (ResNet-50, DenseNet,
EfficientNet-B0), while maintaining a single learner. Table 11 shows the results. Utilizing multiple listeners does not yield
significantly better outcomes compared to using a single listener, which indicates that a single listener is sufficient to emulate
the Feynman learning mechanism and provide ample feedback to the learner.

In the second experiment, we set the number of learners to 2 and 3, with each learner having a different architecture. In each
configuration, after the search is completed, we evaluate the architecture of each learner on a held-out validation set. The
best architecture is then selected to report performance on test data. The number of listeners is set to 1. Table 12 presents the
results. As the number of learners increases, the test errors decrease slightly; however, the search costs increase considerably.
Overall, employing multiple learners does not prove to be advantageous.

Automatically search for the architecture of the listener’s encoder. In addition, we perform experiments which
automatically search for the architecture of the listener’s encoder and perform parameter tying between the weight parameters
of the encoders in learner and listener. By doing this, the total number of parameters, computational cost, and memory costs
of our method are greatly reduced, without significantly sacrificing classification performance. And we can avoid the burden
of manually setting the listener’s architecture. Please see Section H for details. We also conduct an ablation study which
removes the listener and trains the learner using its own data and using the listener’s augmented data. Our FAS method
which trains the listener and learner in lower layers works better than this ablation setting. This further demonstrates the
effectiveness of our method and the necessity of using a listener. Please see Section J for details.

E.2. Additional Experimental Results for PQDR

In Table 8 of the main paper, the multi-task learning (MTL) baseline is a bi-level optimization (BLO) based data reweighting
method. This method is derived by combining the loss functions of the first and second stages in our PQDR framework into
a single one, reducing the number of stages from three to two. The MTL baseline is an extension of two strong BLO-based
data reweighting methods (Ren et al., 2018; Shu et al., 2019), and our approach significantly outperforms it. The reason is
that these methods lack the peer-questioning mechanism featured in our method.

We compared PQDR with two more data reweighting methods (Wang et al., 2022; Liu et al., 2022) which are not based on
BLO. The experiments were conducted using the LXMERT model. Table 13 shows the results. Our method outperforms
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Table 13. Compare PQDR with two more baselines
Method Accuracy B1 B2 B3 F1
(Wang et al., 2022) 58.1 58.5 3.8 1.5 10.1
(Liu et al., 2022) 58.3 58.2 3.7 1.2 9.6
Ours 60.4 60.1 4.5 2.8 11.7

Table 14. Data reweighting on ANIMAL-10.
Method Accuracy
(Chen et al., 2021b) 84.1
(Song et al., 2019) 81.8
(Zhang et al.) 83.4
Ours 87.9

these two baselines. The reason is that without using BLO, the two baselines are unable to utilize performance on held-out
validation data to guide the data reweighting process.

We applied PQDR for another task – image classification with label noise, to reweight images in a classification task (with
C classes) where some training images have incorrect class labels and should be down-weighted during training. The
class labels of all validation and test images are correct. For each image-label pair (x, c) in the training set, we associate a
learnable weight a ∈ [0, 1] with it. A smaller a indicates that the label c is incorrect. We multiply a to the classification loss
defined on this pair. Our PQDR framework has three learners. Each learner has two classifiers. Our framework consists of
three end-to-end stages. In the first stage, each learner trains its first classifier by minimizing classification losses reweighted
by weights {ai}. These data weights are tentatively fixed at this stage and will be updated later on. It the second stage, each
learner randomly selects image pairs (excluding labels) from the validation set and “asks” a question for each image pair
(x, y): “What is the KL divergence between the probability distribution on the C classes for x and that for y?” The learner
generates an answer using its first classifier trained in the first stage. Meanwhile, each learner trains its second classifier
by “answering” questions posed by other learners. Additionally, the second classifier is trained by minimizing reweighted
losses defined in the first stage. In the third stage, each learner validates its second classifier on the noise-free validation
set. The weights {ai} of the training data are updated by minimizing validation losses. We conducted experiments on the
ANIMAL-10 dataset. Table 14 shows the results. Our method significantly outperforms state-of-the-art baselines, further
demonstrating the effectiveness of the peer-questioning mechanism.

F. Additional Discussion
Our methods have three limitations. First, compared with bi-level optimization based methods such as DARTS, our multi-
level optimization based formulation incurs additional computational costs due to the increased number of levels. Second,
our methods incur additional memory cost due to storing extra models such as the listener in the Feynman architecture
search (FAS) method. Third, in the FAS method, it is needed to decide which convolutional network should be used as the
listener model, which incurs additional tuning efforts.

To address these limitations, we improved our methods from the following aspects. To address the third limitation, we
automatically search the architecture of the listener model to avoid the overhead of deciding which convolutional network to
use as the listener. To address the first and second limitation, we perform parameter tying. For example, in FAS, we let
the feature extraction layers of the learner and the listener share the same weight parameters. In Section H, we conducted
experiments which automatically search for the architecture of the listener and perform parameter tying between the listener
and learner. Experimental results show that with parameter tying (PT), the computational and memory costs of our method
(denoted as FAS-PT) is greatly reduced without significantly sacrificing classification performance. With parameter tying,
the costs of our FAS-PT method are very close to those of baselines including Darts2nd, Pdarts, Pcdarts, and Prdarts, while
the classification errors of our method are much lower than these baselines.

While our method is mainly developed for improving BLO-based methods, it can be extended to improve non-BLO-based
methods as well. In Section I.2, we apply our framework to improve graph neural networks (GNNs) for graph classification,
where the GNNs do not learn their meta parameters via BLO. Experiments on five datasets demonstrate the effectiveness of
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our method.

To further increase the scalability of Skillearn to many levels of nested optimization problems, we will develop a distributed
version of the framework which leverages the GPU resources of multiple machines to speed up computation. Section G.4
provides details.

There are two major differences between our FAS method and knowledge distillation (KD). First, our approach concentrates
on enhancing the learner by letting it create effective illustrations for the listener. In contrast, KD focuses on improving the
student model by training it with pseudo-labels generated by the teacher. Second, we propose a novel ranking-based method
for model interaction, where the learner generates rankings that the listener then fits. In KD, knowledge transfer is carried
out through pseudo-labeling. Our ranking-based method, which ranks K examples, requires the identification of the global
relationship among the K examples. As a result, our method can capture high-order (specifically, K-th order) relationships
among data examples, which contributes to improving model performance. In contrast, pseudo-labeling is conducted on
individual examples, which cannot capture relationships among data examples.

One instance of performance collapse in BLO is observed in differentiable architecture search methods, such as DARTS,
which produce degenerate architectures with notably poor test performance despite successfully minimizing validation and
training losses. Figure 3 in (Chen & Hsieh, 2020b) demonstrates this phenomenon. In this figure, at the end of the search
process, the test error of the discovered architectures explodes, while their errors on training and validation data consistently
decrease.

G. Scalability to many levels of optimization problems
In this section, we discuss the scalability of our method to many levels of nested optimization problems. The key takeaways
are:

• First, via finite difference approximation, we reduce the quadratic costs down to linear, making it possible to scale our
method to many levels of nested optimization problems.

• Second, in a case study with 10 levels of nested optimization problems, we conducted experiments to show that our
method can scale to many levels of nested optimization problems.

• We conducted experiments to show that the accumulation of approximation errors in our method does not hurt final
accuracy.

• To further increase the scalability of our framework, we will develop a distributed version of the framework which
leverages the GPU resources of multiple machines to speed up computation.

G.1. Computation cost

Following DARTS (Liu et al., 2019), we use finite difference approximation to calculate matrix-vector multiplication, which
reduces the quadratic computational complexity (in terms of matrix dimensions) down to linear. Consider a multi-level
optimization problem with K levels, where the optimization variables at level 1 to K are α1, · · · , αK respectively. For
α1, · · · , αK−1, their optimal solutions are approximated using one-step gradient descent updates. Their gradients are
straightforward to calculate using back propagation, the same as regular deep neural networks. For αK , we need to calculate
a hypergradient, which involves a term like this:

M1 ×M2 · · ·Mk × v, (34)

where M1 to Mk denote Hessian matrices and v is a gradient vector. Calculating this term via ordinary matrix-vector
multiplication incurs a quadratic cost in terms of matrix dimensions. To reduce the cost, we leverage finite difference (Liu
et al., 2019) to recursively approximate matrix-vector multiplication, from right to left. This can reduce the cost down to
linear. The procedure is as follows. First, we approximate Mk × v using finite difference, resulting in a vector uk. Then we
approximate Mk−1× uk again using finite difference, resulting in another vector uk−1. This procedure repeats from right to
left until all matrix-vector multiplications are approximated. Finite difference approximation is conducted in the following
way. Suppose the Hessian matrix is ∇2

α,wl(w,α) where l(·) is a loss function. Let ϵ be a small scalar and w+ = w + ϵv,
w− = w − ϵv. ∇2

α,wl(w,α)× v can be approximated as follows:

∇2
α,wl(w,α)× v ≈ ∇αl(w

+, α)−∇αl(w
−, α)

2ϵ
. (35)
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Table 15. Candidate angles (degrees) in different SSL tasks

Task ID Angle 1 Angle 2 Angle 3 Angle 4
1 40 80 120 160
2 35 70 105 140
3 30 60 90 120
4 25 50 75 100
5 20 40 60 80
6 15 30 45 60
7 10 20 30 40
8 5 10 15 20

Table 16. Notations in curriculum SSL
Notation Meaning
Wk Weight parameters of the k-th cell
Ak Architecture of the k-th cell
Hk Head of the k-th SSL task
D

(ssl)
k Dataset of the k-th SSL task

L
(ssl)
k Loss function of the k-th SSL task

V Head of the CIFAR-100 classification task
D

(cls)
tr Training set of CIFAR-100

D
(cls)
val Validation set of CIFAR-100

L(cls) Classification loss on CIFAR-100

G.2. Experiments on ten levels of nested optimization problems

To test the scalability of our framework, we applied it to a case study which has 10 levels of optimization problems. The
application is progressive self-supervised learning (SSL) (He et al., 2019; Chen et al., 2020b) for image classification. SSL
learns useful representations by solving pretext tasks without relying on human-provided labels. We design a sequence of
self-supervised learning tasks which have increasing levels of difficulty. Then we use these tasks to train different layers of a
convolutional network with a searchable architecture. The experiment was conducted on CIFAR-100.

G.2.1. METHOD

The SSL task is rotation prediction (Gidaris et al., 2018). Given an image, it is rotated clockwise with one of a predefined
set of angles. A neural layer is trained by predicting which angle the image is rotated with. For the first SSL task (the easiest
one), we set the candidate angles to be 40, 80, 120, 160 degrees. For the second SSL task, to make it harder, we set the
candidate angles to be 30, 60, 90, 120 which are closer to each other and are hence more difficult to distinguish. For the
third to eighth SSL task, we set the angles to those in Table 15. From task 1 to 8, their candidate angles are increasingly
closer and therefore are more difficult to distinguish, which makes these tasks increasingly difficult to solve.

For the k-th SSL task, the SSL training dataset D(ssl)
k is constructed as follows. Let Ck denote the set of four candidate

angles of task k, as shown in Table 15. For each image i in CIFAR-100, we randomly sample an angle c from Ck and rotate
i with c degrees, resulting in a rotated image ic. We set the class label of ic to be c. (ic, c) is added into D(ssl)

k as a training
example. The task is to predict the rotation-angle class c of the rotated image ic. The training loss L(ssl)

k for the k-th SSL
task is a four-class classification loss. The four classes are the four angles in Ck.

We use these SSL tasks to train feature learning layers of a convolutional network with a searchable architecture. The
network is used for image classification on CIFAR-100. Architecture search space and configuration of the network are the
same as those in PCDARTS (Xu et al., 2020). The network consists of 1) a stack of 8 searchable cells (layers), and 2) a
feedforward layer used as classification head. For layer k where 1 ≤ k ≤ 8, we use the k-th SSL task to train it. Given an
example (ic, c) in the dataset D(ssl)

k of SSL task k, where ic is a rotated image and c is the corresponding rotation-angle class
label, ic is fed into the sub-network consisting of layer 1 to layer k for extracting a feature representation. The representation
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Figure 9. Illustration of the curriculum SSL method.

is then fed into an SSL task head Hk to predict the rotation-angle class label for ic. A cross-entropy loss is measured on the
predicted label and the groundtruth label c. Let Wk and Ak denote the model weights and architecture of layer k. Wk is
trained by minimizing the cross-entropy loss.

Next, we describe the corresponding optimization problems. For the first layer, we train its model weights W1 and the
head H1 of SSL task 1 by minimizing the rotation-angle classification loss L(ssl)

1 of SSL task 1 on its dataset D(ssl)
1 . L(ssl)

1

is defined on predicted rotation-angle class labels and groundtruth labels. The prediction is made using 1) W1 and A1

(architecture of layer 1) which extract feature representations of rotated images, and 2) H1 which classifies the extracted
representations into rotation-angle classes. The same as PCDARTS, we tentatively fix the architecture A1 in this optimization
problem and will update it later on. The optimization problem is:

W ∗
1 (A1), H

∗
1 (A1) = argminW1,H1

L
(ssl)
1 (W1, A1, H1, D

(ssl)
1 ). (36)

For the second layer, we train its model weights W2 and the head H2 of SSL task 2 by minimizing the rotation-angle
classification loss L(ssl)

2 of SSL task 2 on its dataset D(ssl)
2 . Given a rotated image in D

(ssl)
2 , it is fed into the sub-network

consisting of layer 1 and layer 2 to extract a feature representation. Since the model weights W ∗
1 (A1) of layer 1 are already

trained in the first optimization problem described above, we can directly use them without further training. The variables
used for feature extraction include 1) W ∗

1 (A1) and A1 in layer 1, and 2) W2 and A2 in layer 2. Similarly, we tentatively fix
the architecture A2 in this optimization problem and will update it later on. The optimization problem is:

W ∗
2 (A1, A2), H

∗
2 (A1, A2) = argminW2,H2

L
(ssl)
2 (W ∗

1 (A1), A1,W2, A2, H2, D
(ssl)
2 ). (37)

For layer k where 3 ≤ k ≤ 8, we train its model weights Wk and the head Hk of SSL task k by minimizing the rotation-angle
classification loss L(ssl)

k of SSL task k on its dataset D(ssl)
k . Given a rotated image in D

(ssl)
k , it is fed into the sub-network

consisting of layer 1 to layer k to extract a feature representation. Since the model weights {W ∗
i ({Aj}ij=1)}

k−1
i=1 of layer

1 to k − 1 are already trained in previous optimization problems, we can directly use them without further training. The
variables used for feature extraction include 1) {W ∗

i ({Aj}ij=1)}
k−1
i=1 and {Ai}k−1

i=1 in layer 1 to k − 1, and 2) Wk and Ak in
layer k. The optimization problem is:

W ∗
k ({Aj}kj=1), H

∗
k({Aj}kj=1) = argminWk,Hk

L
(ssl)
k ({W ∗

i ({Aj}ij=1), Ai}k−1
i=1 ,Wk, Ak, Hk, D

(ssl)
k ). (38)
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Table 17. Results on CIFAR-100, including classification error (%) on the test set, number of model weights (millions), and search cost
(GPU days). * denotes that the results are taken from DARTS− (Chu et al., 2021). Search cost is measured by GPU days on a Nvidia
1080Ti.

Method Error on CIFAR-100 Param. Cost

*ResNet (He et al., 2016) 22.10 1.7 -
*DenseNet (Huang et al., 2017) 17.18 25.6 -
*PNAS (Liu et al., 2018a) 19.53 3.2 150
*ENAS (Pham et al., 2018) 19.43 4.6 0.5
*AmoebaNet (Real et al., 2019) 18.93 3.1 3150
*GDAS (Dong & Yang, 2019a) 18.38 3.4 0.2
*R-DARTS (Zela et al., 2020) 18.01±0.26 - 1.6
*DARTS− (Chu et al., 2021) 17.51±0.25 3.3 0.4
*DropNAS (Hong et al., 2020) 16.95±0.41 4.4 0.7
*Pcdarts (Xu et al., 2020) 17.96±0.15 3.9 0.14
Curriculum SSL (ours) 16.27±0.09 3.8 0.26

After training the eight layers using SSL, we train the CIFAR-100 classification head V by minimizing the classification loss
L(cls) on the CIFAR-100 training set D(cls)

tr . Given an image in D
(cls)
tr , we feed it into the eight layers {W ∗

i ({Aj}ij=1), Ai}8i=1

to extract a feature representation, which is then fed into V to predict a class label (one of the 100 classes in CIFAR-100).
The classification loss is cross-entropy. The optimization problem is:

V ∗({Aj}8j=1) = argminV L(cls)({W ∗
i ({Aj}ij=1), Ai}8i=1, V,D

(cls)
tr ). (39)

Finally, given the feature extraction layers {W ∗
i ({Aj}ij=1), Ai}8i=1 and head V ∗({Aj}8j=1), we evaluate them on the

validation set D(cls)
val of CIFAR-100 and optimize the architecture variables {Ai}8i=1 by minimizing the validation loss. The

optimization problem is:

max
{Ai}8

i=1

L(cls)({W ∗
i ({Aj}ij=1)}8i=1, {Ai}8i=1, V

∗({Aj}8j=1), D
(cls)
val ). (40)

Putting these pieces together, we have the overall formulation as follows. The notations are summarized in Table 16.

max{Ai}8
i=1

L(cls)({W ∗
i ({Aj}ij=1)}8i=1, {Ai}8i=1, V

∗({Aj}8j=1), D
(cls)
val )

s.t. V ∗({Aj}8j=1) = argminV L(cls)({W ∗
i ({Aj}ij=1), Ai}8i=1, V,D

(cls)
tr )

s.t. W ∗
8 ({Aj}8j=1), H

∗
8 ({Aj}8j=1) = argminW8,H8

L
(ssl)
8 ({W ∗

i ({Aj}ij=1), Ai}7i=1,W8, A8, H8, D
(ssl)
8 )

· · ·
s.t. W ∗

2 (A1, A2), H
∗
2 (A1, A2) = argminW2,H2

L
(ssl)
2 (W ∗

1 (A1), A1,W2, A2, H2, D
(ssl)
2 )

s.t. W ∗
1 (A1), H

∗
1 (A1) = argminW1,H1

L
(ssl)
1 (W1, A1, H1, D

(ssl)
1 )

(41)

This problem is solved using the Algorithm 1 in the main paper. Figure 9 illustrates the curriculum SSL method.

G.2.2. EXPERIMENTAL SETTINGS

For the architectures {Ai}8i=1, some of them are normal cells while others are reduction cells. The settings of these cells
are the same as those in PCDARTS. Please see Section L.2 for details. Architecture tying is performed among these cells.
Specifically, all normal cells have the same architecture and all reduction cells have the same architecture.

Next, we describe the experimental settings for architecture search. In vanilla PCDARTS, the number of epochs is 50. Our
curriculum SSL method converges faster than PCDARTS. Therefore, we used 30 epochs instead of 50. In each iteration, to
train model weights, we randomly sample a mini-batch of input images (batch size is the same as that in PCDARTS) from the
CIFAR-100 training set. These images have different output labels in SSL Task 1-8 and in the CIFAR-100 classification task.
We use the minibatch of images and their different labels in different tasks to perform gradient-descent updates of model
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Table 18. Compare Algorithm 1 and the algorithm in (Sato et al., 2021). They were used to solve the curriculum SSL problem.

Method Error on CIFAR-100 Param. Cost

Algorithm 1 (ours) 16.27±0.09 3.8 0.26
Algorithm in (Sato et al., 2021) 16.31±0.05 3.9 0.49

parameters at different layers. To update architectures, we randomly sample a mini-batch of validation examples (batch size
is the same as that in PCDARTS) from the CIFAR-100 validation set to calculate hypergradients. Hyerparameter settings in
curriculum SSL mostly follow those in PCDARTS. Model weights are optimized using SGD, with an initial learning rate of
0.1 (adjusted using a cosine decay scheduler), a momentum of 0.9, and a weight decay of 3e-4. The architecture variables A
are optimized using Adam (Kingma & Ba, 2015) with a fixed learning rate of 6e− 4, a momentum of (0.5, 0.999), and a
weight decay of 0.001. The experimental settings for architecture evaluation are the same as those in Section 6.1.2 in the
main paper.

G.2.3. RESULTS

Table 17 shows the results. As can be seen, our curriculum SSL method achieves lower test error than baselines while the
computational cost of our method is not substantially higher than baselines. Our method finishes training within 0.26 GPU
days on a Nvidia 1080Ti. The time cost is not high. This demonstrates that our method can scale to many levels of nested
optimization problems.

G.3. Accumulation of errors

The curriculum SSL problem was solved using Algorithm 1 in the main paper, which approximates optimal solutions in
lower-level problems using one-step gradient-descent updates and approximates matrix-vector multiplication using finite
difference. To investigate how the accumulation of errors incurred by these approximations influences the final accuracy, we
solve the curriculum SSL problem using another optimization algorithm proposed by (Sato et al., 2021). The algorithm
in (Sato et al., 2021) has smaller approximation errors since the authors use multiple (for example, 10 in their experiments)
iterative updates to approximate lower-level problems and prove that the algorithm converges to the exact solution as the
number of iterative updates goes to infinity. Table 18 compares the classification error on the CIFAR-100 test set. As can be
seen, Algorithm 1 in our method achieves performance similar to the algorithm in (Sato et al., 2021), which demonstrates
that the solution found by Algorithm 1 is as good as that found by the more exact algorithm in (Sato et al., 2021). This
implies that the accumulation of errors in Algorithm 1 does not significantly sacrifice the final performance.

G.4. Future work for further increasing the scalability of our framework

To further increase the scalability of our framework, we will develop a distributed version of the framework which leverages
the GPU resources of multiple machines to speed up computation. Given a multi-level optimization (MLO) problem with
many levels of nested optimization problems, we use a dataflow graph to represent the MLO problem. The distributed
framework partitions the MLO dataflow graph onto different machines and performs distributed and parallel calculation of
hypergradients. Each machine stores one partition and performs computation related to this partition. Machines transfer
intermediate results to each other based on the dependency relationships of partitions in the MLO dataflow graph. Pipelining
will be used to maximize the throughputs of computations in all machines. Efficient communication mechanisms will be
developed to reduce inter-machine communication overhead.

H. Experiments on parameter tying in FAS
To 1) make a fair comparison with baselines in terms of model size, 2) reduce computation and memory costs, and 3) avoid
manually setting the listener’s architecture, we perform parameter tying between the listener and learner. For the listener, we
let its feature extraction layers share the same architecture and weight parameters with the learner. To perform parameter
tying, the listener cannot be ResNet-50 anymore and needs to have a learnable architecture similar to the learner. For both
the learner and listener, we set them to be a stack of 7 cells, sharing the same architecture A as the first 7 cells in DARTS.
Parameter tying is performed by making the weight parameters (denoted as Es) of the first six cells in the learner and
listener be the same. For the seventh cell, the learner and listener have different weight parameters, denoted as Ele and Eli
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Table 19. Notations in parameter-tying FAS
Notation Meaning
A Shared architecture of the learner and listener
Es Weight parameters of the feature learning layers shared by the learner and listener
Ele Weight parameters of the learner-specific feature learning layer
Hle Classification head of the learner
Eli Weight parameters of the listener-specific feature learning layer
Hli Classification head of the listener

Figure 10. Illustration of FAS with parameter tying.

respectively. Let Hle and Hli denote the classification head of the learner and listener respectively. Via parameter tying,
the number of all parameters (i.e., model size) in our method (including those of the listener) is roughly the same as that
in baselines including DARTS, PDARTS, and PCDARTS where the number of cells is 8. After reducing the number of
parameters in our method via parameter tying, its computational and memory costs are reduced as well accordingly. Besides,
since the listener’s architecture is searched automatically, we do not need to manually select its architecture any more.

The formulation is:

minA L(A,E∗
s (A), E∗

le(A), H∗
le(A), D(val)) + γL(A,E∗

s (A), E∗
li(A), H∗

li(A), D(val))

s.t. E∗
li(A), H∗

li(A) = argminEli,Hli
L(A,E∗

s (A), Eli, Hli, D
(tr))

s.t. ∀i, f(oi(1;A,E∗
s (A), E∗

le(A)), xi;A,E∗
s (A), Eli) > · · ·

> f(oi(K;A,E∗
s (A), E∗

le(A)), xi;A,E∗
s (A), Eli)

s.t. E∗
s (A), E∗

le(A), H∗
le(A) = argminEs,Ele,Hle

L(A,Es, Ele, Hle, D
(tr))

(42)

Table 19 summarizes the notations. Figure 10 illustrates FAS with parameter tying. The hyperparameter settings of parameter
tying FAS are the same as those in Section 6.1.2 in the main paper. For the SE and MTL baselines, we perform parameter
tying in the same way.

Table 20 shows the results on CIFAR-100 and CIFAR-10. Table 21 shows the results on ImageNet. As can be seen,
our method still achieves lower classification errors than baselines while the number of parameters in our method is
approximately the same as that in baselines. In Table 1 and 3 in the main paper, the parameter number is for the searched
architecture of the learner model only, which does not include the parameter number of the listener model. In Table 20 and
Table 21, the reported parameter number is the total number of parameters in the learner and listener.

Table 22 shows the computational and memory costs of FAS with parameter tying (FAS-PT) on CIFAR-100 and CIFAR-10.
Table 23 shows the computational and memory costs of FAS-PT on ImageNet. FAS without PT is denoted as FAS-NoPT.
As can be seen, with parameter tying, the computational and memory costs of FAS-PT are much lower those of FAS-NoPT,
especially on Darts2nd and Pdarts, with slight increase of classification errors. The costs of FAS-PT are very close to those
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Table 20. Results of FAS with parameter tying (PT), on CIFAR-100 and CIFAR-10. PT is performed for SE and MTL as well. The
number of parameters in listener models of SE-PT, MTL-PT, and FAS-PT are counted into the total number of parameters. In entries with
an X/Y format, X and Y denote results for CIFAR-100 and CIFAR-10 respectively.

Method Error-C100 Error-C10 # Total Parameters Cost

*ResNet (He et al., 2016) 22.10 6.43 1.7/1.7 -/-
*DenseNet (Huang et al., 2017) 17.18 3.46 25.6/25.6 -/-
*PNAS (Liu et al., 2018a) 19.53 3.41±0.09 3.2/3.2 150/150
*ENAS (Pham et al., 2018) 19.43 2.89 4.6/4.6 0.5/0.5
*AmoebaNet (Real et al., 2019) 18.93 2.55±0.05 3.1/3.1 3150/3150
*GDAS (Dong & Yang, 2019a) 18.38 2.93 3.4/3.4 0.2/0.2
*R-DARTS (Zela et al., 2020) 18.01±0.26 2.95±0.21 -/- 1.6/1.6
*DARTS− (Chu et al., 2021) 17.51±0.25 2.59±0.08 3.3/3.3 0.4/0.4
*DropNAS (Hong et al., 2020) 16.95±0.41 2.58±0.14 4.4/4.1 0.7/0.6
*DrNAS (Chen et al., 2021a) - 2.54±0.03 -/4.0 -/0.4
*ISTA-NAS (Yang et al., 2020) - 2.54±0.05 -/3.3 -/0.1
*MiLeNAS (He et al., 2020a) - 2.51±0.11 -/3.9 -/0.3
*GAEA (Li et al., 2021) - 2.50±0.06 -/- -/0.1
*PDARTS-ADV (Chen & Hsieh, 2020a) - 2.48±0.02 -/3.4 -/1.1
*Darts2nd (Liu et al., 2019) 20.58±0.44 2.76±0.09 3.1/3.3 4.0/4.0
SE-PT-darts2nd (Kokkinos, 2017) 19.86±0.32 2.76±0.06 3.2/3.3 4.1/4.1
MTL-PT-darts2nd (Maninis et al., 2019) 18.93±0.23 2.82±0.11 3.1/3.2 4.0/4.0
FAS-PT-darts2nd (ours) 17.47±0.14 2.62±0.04 3.3/3.3 4.0/4.0
*Pdarts (Chen et al., 2019) 17.42±0.14 2.54±0.04 3.6/3.5 0.3/0.3
SE-PT-pdarts (Kokkinos, 2017) 17.85±0.11 2.66±0.13 3.6/3.6 0.3/0.3
MTL-PT-pdarts (Maninis et al., 2019) 17.38±0.10 2.74±0.06 3.7/3.6 0.4/0.4
FAS-PT-pdarts (ours) 16.37±0.06 2.51±0.03 3.6/3.6 0.4/0.4
†Pcdarts (Xu et al., 2020) 17.96±0.15 2.57±0.07 3.9/3.6 0.1/0.1
SE-PT-pcdarts (Kokkinos, 2017) 18.39±0.07 2.84±0.12 3.9/3.8 0.2/0.2
MTL-PT-pcdarts (Maninis et al., 2019) 18.21±0.11 2.68±0.07 3.9/3.6 0.2/0.2
FAS-PT-pcdarts (ours) 16.69±0.08 2.53±0.01 3.9/3.7 0.2/0.2
†Prdarts (Zhou et al., 2020) 16.48±0.06 2.37±0.03 3.4/3.5 0.2/0.2
SE-PT-prdarts (Kokkinos, 2017) 17.67±0.10 2.56±0.09 3.5/3.5 0.2/0.2
MTL-PT-prdarts (Maninis et al., 2019) 17.41±0.12 2.59±0.10 3.4/3.5 0.3/0.3
FAS-PT-prdarts (ours) 16.20±0.06 2.33±0.02 3.4/3.5 0.3/0.3

of baselines including Darts2nd, Pdarts, Pcdarts, and Prdarts, while the classification errors of FAS-PT are much lower than
these baselines.

I. Experiments on other datasets and non-BLO problem
In this section, we apply our FAS method to six text classification datasets and apply our general framework for a graph
classification problem which is not based on bi-level optimization.

I.1. Apply FAS to GLUE text datasets

In this section, we apply the proposed FAS method for text classification.

Dataset We applied FAS on six text classification datasets in the GLUE collection (Wang et al., 2018). They are SST-2,
MRPC, QQP, MNLI, QNLI and RTE. SST-2 contains (movie review, sentiment label) pairs for sentiment classification. The
sentiment label is binary: either positive or negative. On MRPC and QQP, the task is to predict whether two sentences have
equivalent semantics. On MNLI, QNLI, and RTE, the task is to predict textual entailment.

Baselines Our method is compared with the following baselines: 1) BERT (Devlin et al., 2018), 2) BERT-PKD (Sun
et al., 2019), 3) Distil-BERT (Sanh et al., 2019), 4) TinyBERT (Jiao et al., 2019), 5) BiLSTMSOFT (Tang et al., 2019), 6)
AdaBERT (Chen et al., 2020a), 7) SE-AdaBERT (Kokkinos, 2017), and 8) MTL-AdaBERT (Maninis et al., 2019).

Experimental Setup For the learner’s encoder architecture, its search space contains candidate operations including
dilated convolution, 1D convolution, pooling, identity, and zero. Convolution operations have a sequence of sub-operations
including ReLU activation, convolution, batch normalization. The candidate kernel sizes in dilated convolutions are 3, 5,
and 7. Candidate pooling operations include max pooling and average pooling. The kernel size of pooling operations is set
to 3. For convolution and pooling operations, the “SAME” padding mechanism is used. The learner’s classification head is a
feedforward layer. We use the text classification model in EDA (Wei & Zou, 2019) as the listener, which has the following
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Table 21. Results of parameter-tying (PT) FAS on ImageNet. The number of parameters in listener models of SE-PT, MTL-PT, and
FAS-PT are counted into the total number of parameters. FAS-PT-darts2nd-cifar10 means the architecture is searched using FAS-PT on
CIFAR-10, where the search space is the same as that in DARTS-2nd. The search cost of FAS-PT-darts2nd-cifar10 is the same as that of
FAS-PT-darts2nd on Cifar10. Similar meanings hold for other notations like this.

Method Top-1 Top-5 # Total Parameters Cost

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 -
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6 7.4 -
*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150
*SDARTS-ADV-CIFAR10 (Chen & Hsieh, 2020a) 25.2 7.8 5.4 1.3
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3
*FairDARTS-ImageNet (Chu et al., 2020) 24.4 7.4 4.3 3.0
*PR-DARTS-cifar10 (Zhou et al., 2020) 24.1 7.3 5.0 0.2
*DARTS+-CIFAR100 (Liang et al., 2019) 23.7 7.2 5.1 0.2
*Darts2nd-cifar10 (Liu et al., 2019) 26.7 8.7 4.7 4.0
SE-PT-darts2nd-cifar10 (Kokkinos, 2017) 26.3 8.5 4.7 4.1
MTL-PT-darts2nd-cifar10 (Maninis et al., 2019) 26.1 8.2 4.9 4.0
FAS-PT-darts2nd-cifar10 (ours) 25.5 7.8 4.7 4.0
*Pdarts-cifar10 (Chen et al., 2019) 24.4 7.4 4.9 0.3
SE-PT-pdarts-cifar10 (Kokkinos, 2017) 24.3 7.4 4.9 0.3
MTL-PT-pdarts-cifar10 (Maninis et al., 2019) 24.3 7.3 5.1 0.4
FAS-PT-pdarts-cifar10 (ours) 24.0 7.1 4.9 0.4
*Pdarts-cifar100 (Chen et al., 2019) 24.7 7.5 5.1 0.3
SE-PT-pdarts-cifar100 (Kokkinos, 2017) 24.7 7.5 5.2 0.3
MTL-PT-pdarts-cifar100 (Maninis et al., 2019) 24.6 7.5 5.1 0.4
FAS-PT-pdarts-cifar100 (ours) 24.4 7.3 5.2 0.4
*Pcdarts-imagenet (Xu et al., 2020) 24.2 7.3 5.3 3.8
SE-PT-pcdarts-imagenet (Kokkinos, 2017) 24.0 7.1 5.3 3.8
MTL-PT-pcdarts-imagenet (Maninis et al., 2019) 23.7 7.0 5.3 3.9
FAS-PT-pcdarts-imagenet (ours) 23.4 6.6 5.3 3.9

layers: an input layer, a bi-directional LSTM (Hochreiter & Schmidhuber, 1997) layer with 64 hidden units, dropout where
the dropout probability is 0.5, a bi-directional LSTM layer with 32 hidden units, dropout where the dropout probability
is 0.5, ReLU activation, a dense layer with 20 hidden units, and a softmax output layer. The layers up to (including) the
dense layer are used as the listener’s encoder. The softmax output layer is used as a classification head. Text augmentation
is performed using EDA (Wei & Zou, 2019). The tradeoff parameter γ is set to 1. The tradeoff parameter λ is set to 2.
The number K of augmented images is set to 5. Loss function is cross-entropy. The maximum text length is set to 150.
The search algorithm runs for 80 epochs. Batch size is 128. We use Adam (Kingma & Ba, 2014) to optimize architecture
variables. Learning rate is set to 3e− 4 and weight decay is set to 1e− 3. We use SGD to optimize weight parameters, with
an initial learning rate of 2e− 2, a cosine learning rate scheduler, and a momentum of 0.9.

Main results Table 24 shows the results. Our method works better than AdaBERT, SE, and MTL, which further
demonstrates the effectiveness of our method in searching for better-performing neural architectures. Our method has much
fewer parameters and much faster inference speed than BERT12 and BERT12-T while the classification performance of our
method is on par with BERT12 and BERT12-T.

I.2. Apply our framework to graph neural network based graph classification

In this section, we apply our framework to an ML problem which is not based on bi-level optimization. The ML problem is
graph classification based on graph neural networks. In this problem, there are no meta parameters to learn. Only weight
parameters are learned. Therefore, it is not based on bi-level optimization.

Method We make small changes to our FAS method to solve a graph neural network (GNN) based graph classification
problem, leveraging the idea of Feynman learning. We refer to our method as Feynman-GNN, which consists of a learner
model and a listener model. The learner is a GNN which has a graph encoder E with a manually-designed architecture and
a classification head H . The listener is another GNN which has a graph encoder F and a classification head G. There are
three stages in Feynman-GNN. At the first stage, we train the graph encoder E of the learner by minimizing a cross-entropy
based classification loss L defined on the training set D(tr) of a graph classification dataset, with the learner’s classification
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Table 22. Computational and memory costs of FAS with parameter tying (FAS-PT) on CIFAR-100 and CIFAR-10. FAS without PT is
denoted as FAS-NoPT. Search (computation) cost is measured using GPU days. Memory cost is measured using MiB. In entries with an
X/Y format, X and Y denote results for CIFAR-100 and CIFAR-10 respectively.

Method Error on Error on Search Memory
CIFAR-100 CIFAR-10 cost cost

*Darts2nd (Liu et al., 2019) 20.58±0.44 2.76±0.09 4.0/4.0 11053/11008
SE-PT-Darts2nd (Kokkinos, 2017) 19.86±0.32 2.76±0.06 4.1/4.1 11105/11173
MTL-PT-Darts2nd (Maninis et al., 2019) 18.93±0.23 2.82±0.11 4.0/4.0 11098/11062
FAS-NoPT-Darts2nd (ours) 17.12±0.18 2.60±0.05 5.3/5.3 20159/20037
FAS-PT-Darts2nd (ours) 17.47±0.14 2.62±0.04 4.0/4.0 11117/11085
*Pdarts (Chen et al., 2019) 17.42±0.14 2.54±0.04 0.3/0.3 9659/9721
SE-PT-Pdarts (Kokkinos, 2017) 17.85±0.11 2.66±0.13 0.3/0.3 9714/9766
MTL-PT-Pdarts (Maninis et al., 2019) 17.38±0.10 2.74±0.06 0.4/0.4 9732/9701
FAS-NoPT-Pdarts (ours) 16.01±0.09 2.49±0.06 0.7/0.7 19261/19210
FAS-PT-Pdarts (ours) 16.37±0.06 2.51±0.03 0.4/0.4 9744/9806
†Pcdarts (Xu et al., 2020) 17.96±0.15 2.57±0.07 0.1/0.1 10058/10024
SE-PT-Pcdarts (Kokkinos, 2017) 18.39±0.07 2.84±0.12 0.2/0.2 10092/10136
MTL-PT-Pcdarts (Maninis et al., 2019) 18.21±0.11 2.68±0.07 0.2/0.2 10105/10083
FAS-NoPT-Pcdarts (ours) 16.41±0.12 2.51±0.02 0.3/0.3 19784/19725
FAS-PT-Pcdarts (ours) 16.69±0.08 2.53±0.01 0.2/0.2 10114/10072
†Prdarts (Zhou et al., 2020) 16.48±0.06 2.37±0.03 0.2/0.2 10159/10119
SE-PT-Prdarts (Kokkinos, 2017) 17.67±0.10 2.56±0.09 0.2/0.2 10196/10152
MTL-PT-Prdarts (Maninis et al., 2019) 17.41±0.12 2.59±0.10 0.3/0.3 10217/10195
FAS-NoPT-Prdarts (ours) 16.12±0.08 2.32±0.03 0.4/0.4 19510/19591
FAS-PT-Prdarts (ours) 16.20±0.06 2.33±0.02 0.3/0.3 10235/10207

head H tentatively fixed. This stage amounts to solving the following optimization problem.

E∗(H) = argminE L(E,H,D(tr)). (43)

At the second stage, similarly to FAS, the learner illustrates its understanding of graphs to the listener by ranking augmented
graphs. Graph augmentation is performed using the method in (Zeng & Xie, 2021). This stage amounts to solving the
following optimization problem.

F ∗(E∗(H)), G∗ = argminF,G L(F,G,D(tr))
s.t. ∀i, f(oi(1;E∗(H)), xi;F ) > · · · > f(oi(K;E∗(H)), xi;F )

(44)

At the third stage, we validate the learner and listener and update H by minimizing validation losses on a validation set
D(val), which amounts to solving the following problem:

minH L(E∗(H), H,D(val)) + γL(F ∗(E∗(H)), G∗, D(val)). (45)

Putting these pieces together, we have the following multi-level optimization based formulation.

minH L(E∗(H), H,D(val)) + γL(F ∗(E∗(H)), G∗, D(val))

s.t. F ∗(E∗(H)), G∗ = argminF,G L(F,G,D(tr))
s.t. ∀i, f(oi(1;E∗(H)), xi;F ) > · · · > f(oi(K;E∗(H)), xi;F )

s.t. E∗(H) = argminE L(E,H,D(tr))

(46)

We solve this problem using Algorithm 1 in the main paper.

Datasets We performed the experiments on five graph classification datasets6, including PROTEINS, D&D, NCI1,
NCI109, and Mutagenicity. Data examples are (graph, class label) pairs. Graphs in PROTEINS and D&D are protein graphs.

6Datasets can be downloaded from https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 23. Computational and memory costs of FAS with parameter tying (FAS-PT) on ImageNet. FAS without PT is denoted as FAS-NoPT.
Search (computation) cost is measured using GPU days. Memory cost is measured using MiB. FAS-PT-darts2nd-cifar10 means the
architecture is searched using FAS-PT on CIFAR-10, where the search space is the same as that in DARTS-2nd. The search (computation)
and memory costs of FAS-PT-darts2nd-cifar10 is the same as that of FAS-PT-darts2nd on Cifar10. Similar meanings hold for other
notations like this. Pcdarts-imagenet experiments were performed on 8 GPUs.

Method Top-1 Top-2 Search Memory
error error cost cost

*Darts2nd-cifar10 (Liu et al., 2019) 26.7 8.7 4.0 11008
SE-PT-darts2nd-cifar10 (Kokkinos, 2017) 26.3 8.5 4.1 11173
MTL-PT-darts2nd-cifar10 (Maninis et al., 2019) 26.1 8.2 4.0 11062
FAS-darts2nd-cifar10 (ours) 25.3 7.7 5.3 20037
FAS-PT-darts2nd-cifar10 (ours) 25.5 7.8 4.0 11085
*Pdarts-cifar10 (Chen et al., 2019) 24.4 7.4 0.3 9721
SE-PT-pdarts-cifar10 (Kokkinos, 2017) 24.3 7.4 0.4 9766
MTL-PT-pdarts-cifar10 (Maninis et al., 2019) 24.3 7.3 0.4 9701
FAS-pdarts-cifar10 (ours) 23.9 7.1 0.7 19210
FAS-PT-pdarts-cifar10 (ours) 24.0 7.1 0.4 9806
*Pdarts-cifar100 (Chen et al., 2019) 24.7 7.5 0.3 9659
SE-PT-pdarts-cifar100 (Kokkinos, 2017) 24.7 7.5 0.4 9714
MTL-PT-pdarts-cifar100 (Maninis et al., 2019) 24.6 7.5 0.4 9732
FAS-pdarts-cifar100 (ours) 24.3 7.3 0.7 19261
FAS-PT-pdarts-cifar100 (ours) 24.4 7.3 0.4 9744
*Pcdarts-imagenet (Xu et al., 2020) 24.2 7.3 0.1 154017
SE-PT-pcdarts-imagenet (Kokkinos, 2017) 24.0 7.1 0.1 154358
MTL-PT-pcdarts-imagenet (Maninis et al., 2019) 23.7 7.0 0.1 154511
FAS-pcdarts-imagenet (ours) 23.2 6.5 5.2 307366
FAS-PT-pcdarts-imagenet (ours) 23.4 6.6 0.1 154425

Their binary class labels are about whether the proteins are non-enzyme. Graphs in NCI1, NCI109, and Mutagenicity are
chemical compound graphs. Class labels in NCI1 and NCI109 are about whether the graphs can prevent cancer cells from
growing. Class labels in Mutagenicity are about whether the graphs are mutagens. Each dataset is randomly split into a
train, validation, and test set with a ratio of 8:1:1. We repeat the random split for 10 times, and report the average accuracy
together with standard deviations.

Experimental Setup The graph encoder and classification head in the learner GNN are the same as those in HGPSL (Zhang
et al., 2019). We set the node representation dimension to 128, the number of HGPSL layers to 3, the dropout ratio to
0.2, and the pooling ratio to 0.4. The listener’s classification head is the same as that in HGPSL. The listener’s graph
encoder is similar to that in HGPSL, with the only difference being that the listener uses 1 HGPSL layer instead of 3. Graph
augmentation is performed by performing three consecutive random alteration operations, the same as (Zeng & Xie, 2021).
The tradeoff parameter γ is set to 1. The tradeoff parameter λ is set to 2. The number K of augmented images is set to
5. Model weights are optimized using Adam (Kingma & Ba, 2015). Learning rate is set to 0.001. Batch size is set to 16.
Weight decay is set to 0.001.

Baselines We compare our method with the following baselines: GRAPHLET (Shervashidze et al., 2009), Shortest-Path
(SP) Kernel (Borgwardt & Kriegel, 2005), Weisfeiler-Lehman (WL) Kernel (Shervashidze et al., 2011), GCN (Kipf &
Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), Set2Set (Vinyals et al., 2015), DGCNN
(Zhang et al., 2018), DiffPool (Ying et al., 2018), EigenPool (Ma et al., 2019), gPool (Gao & Ji, 2019), SAGPool (Lee et al.,
2019), EdgePool (Diehl, 2019), and HGPSL (Zhang et al., 2019).

Results Table 25 shows graph classification accuracy. Our method outperforms HGPSL and other baselines. This
demonstrates that our framework can be applied to improve ML methods that are not based on bi-level optimization.

J. Ablation experiments on using the data of the learner and listener to train the learner
To further evaluate the effectiveness of the proposed Feynman Architecture Search method which trains the listener and
learner in lower layers, we conducted an ablation experiment which removes the listener and trains the learner using the data
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Table 24. Results on the six text datasets. “Param.” denotes model parameter number. “Inference” denotes the speedup of inference time
compared with BERT12.

Method Param. Inference SST-2 MRPC QQP MNLI QNLI RTE Average
BERT12 109M 1x 93.5 88.9 71.2 84.6 90.5 66.4 82.5
BERT12-T 109M 1x 93.3 88.7 71.1 84.8 90.4 66.1 82.4
BERT6-PKD 67.0M 1.9x 92.0 85.0 70.7 81.5 89.0 65.5 80.6
BERT3-PKD 45.7M 3.7x 87.5 80.7 68.1 76.7 84.7 58.2 76.0
DistilBERT4 52.2M 3.0x 91.4 82.4 68.5 78.9 85.2 54.1 76.8
TinyBert4 14.5M 9.4x 92.6 86.4 71.3 82.5 87.7 62.9 80.6
BiLSTMSOFT 10.1M 7.6x 90.7 - 68.2 73.0 - - -
AdaBERT 8.3M 16.1x 91.9 85.3 70.2 81.9 86.9 64.8 80.2
SE-AdaBERT 8.5M 15.4x 91.5 85.3 70.5 81.2 86.4 65.2 80.0
MTL-AdaBERT 8.3M 16.2x 92.1 85.5 70.3 82.0 87.1 64.8 80.3
Ours-AdaBERT 8.2M 16.4x 93.5 87.4 71.9 83.6 88.9 66.8 82.0

Table 25. Graph Classification Accuracy (%).
Method PROTEINS D&D NCI1 NCI109 Mutagenicity
GRAPHLET 72.23±4.49 72.54±3.83 62.48±2.11 60.96±2.37 56.65±1.74
SP 75.71±2.73 78.72±3.89 67.44±2.76 67.72±2.28 71.63±2.19
WL 76.16±3.99 76.44±2.35 76.65±1.99 76.19±2.45 80.32±1.71
GCN 75.17±3.63 73.26±4.46 76.29±1.79 75.91±1.84 79.81±1.58
GraphSAGE 74.01±4.27 75.78±3.91 74.73±1.34 74.17±2.89 78.75±1.18
GAT 74.72±4.01 77.30±3.68 74.90±1.72 75.81±2.68 78.89±2.05
Set2Set 79.33±0.84 70.83±0.84 69.62±1.32 73.66±1.69 80.84±0.67
DGCNN 79.99±0.44 70.06±1.21 74.08±2.19 78.23±1.31 80.41±1.02
DiffPool 79.90±2.95 78.61±1.32 77.73±0.83 77.13±1.49 80.78±1.12
EigenPool 78.84±1.06 78.63±1.36 77.24±0.96 75.99±1.42 80.11±0.73
gPool 80.71±1.75 77.02±1.32 76.25±1.39 76.61±1.39 80.30±1.54
SAGPool 81.72±2.19 78.70±2.29 77.88±1.59 75.74±1.47 79.72±0.79
EdgePool 82.38±0.82 79.20±2.61 76.56±1.01 79.02±1.89 81.41±0.88
HGPSL 84.91±1.62 80.96±1.26 78.45±0.77 80.67±1.16 82.15±0.58
Ours+HGPSL 85.68±0.91 82.01±1.15 79.85±0.92 81.04±1.17 82.47±0.60

of both the learner and the listener. We denote this ablation setting as Learner-Only. The experiments were conducted on
CIFAR-100 and CIFAR-10. The methods were applied to DARTS and PDARTS. The learner’s training data is D(tr), which
is the training set of CIFAR-100 or CIFAR-10. The listener’s training data includes augmented examples and D(tr). For
each original example in D(tr), five augmented images are generated via random rotation, flipping, cropping, and color jitter.
The class label of an augmented image is set to that of the corresponding original image where the augmented image is
generated from. Let D(aug) denote the augmented data, which consists of (augmented image, class label) pairs. We train the
learner by minimizing cross-entropy based classification losses on D(aug) and D(tr). The formulation of Learner-Only is:

minA L(A,E∗(A), H∗(A), D(val))
s.t E∗(A), H∗(A) = argminE,H L(A,E,H,D(tr)) + λL(A,E,H,D(aug))

(47)

where the tradeoff parameter λ is set to 1. The hyperparameter settings of Learner-Only are the same as those in Section
6.1.2 in the main paper.

Table 26 shows the results, where we make two observations. As can be seen, our FAS method which trains the listener and
learner in lower layers works better than Learner-Only. This further demonstrates the effectiveness of our method and the
necessity of using a listener. Our method leverages a listener model to provide feedback on the learner’s architecture and
improves the architecture based on the feedback. Such a mechanism is lacking in Learner-Only.

K. Some noisy examples identified by our PQDR method
Figure 11 shows some randomly-sampled noisy examples identified by our method.
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Table 26. Ablation study results on Learner-Only.

Method Error-C100 Error-C10

Learner-Only-Darts 20.19±0.37 2.74±0.06
FAS-Darts (ours) 17.12±0.18 2.60±0.05
Learner-Only-Pdarts 17.15±0.10 2.53±0.02
FAS-Pdarts (ours) 16.01±0.09 2.49±0.06

Figure 11. Some randomly-sampled noisy examples identified by our method. In (a) and (b), the images are not about pathology. In (c)
and (d), the images contain human-annotated arrows. In (e) and (f), the questions are not correct in syntax and semantics.

L. Experimental details of neural architecture search
L.1. DARTS2nd based experiments

For methods based on DARTS2nd, including FAS-darts2nd (ours), MTL-darts2nd, SE-darts2nd, the experimental settings
are similar. λ in Eq.(47) is set to 0.1. In search spaces of DARTS, the candidate operations include: 3×3 and 5×5 separable
convolutions, 3× 3 and 5× 5 dilated separable convolutions, 3× 3 max pooling, 3× 3 average pooling, identity, and zero.
The network is a stack of multiple cells, each consisting of 7 nodes. The stride of all operations is set to 1. The convolved
feature maps are padded to preserve their spatial resolution. The order for convolutional operations is ReLU-Conv-BN. Each
separable convolution is applied twice. The convolutional cell has 7 nodes. The output node is the depthwise concatenation
of all intermediate nodes, excluding the input nodes. We create a network by stacking 8 cells. The first and second nodes
of cell k are equal to the outputs of cell k − 2 and cell k − 1, respectively. 1×1 convolutions are inserted when necessary.
Reduction cells are located at the 1/3 and 2/3 of the total depth of the network. In reduction cells, operations adjacent to the
input nodes have a stride of 2.

For CIFAR-10 and CIFAR-100, during architecture search, the learner’s network is a stack of 8 cells, each consisting
of 7 nodes, with the initial channel number set to 16. The search algorithm ran for 50 epochs with a batch size of 64.
Network weights are optimized using SGD, with an initial learning rate of 0.025 (adjusted using a cosine decay scheduler),
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a momentum of 0.9, and a weight decay of 3e-4. The architecture variables A were optimized using Adam (Kingma &
Ba, 2015) with a learning rate of 0.001, a momentum of (0.5, 0.999), and a weight decay of 0.001. The learning rate was
scheduled with cosine scheduling. The architecture variables were initialized with zero initialization.

During architecture evaluation, for CIFAR-10 and CIFAR-100, a larger network of the learner is formed by stacking 20
copies of the searched cell. The composed large network is trained on the combination of D(tr)

t and D
(val)
t . The initial

channel number was set to 36. We trained the network with a batch size of 96, an epoch number of 600. The SGD optimizer
is used for weights training, with an initial learning rate of 0.025, a cosine decay scheduler, a batch size of 96, a momentum
of 0.9, and a weight decay of 3e-4. On ImageNet, we evaluate two types of architectures: 1) those searched on a subset of
ImageNet; 2) those searched on CIFAR-10 or CIFAR-100. In either type, 14 copies of optimally searched cells are stacked
into a large network, which was trained on the 1.2M training images, with a batch size of 1024, an epoch number of 250,
an initial learning rate of 0.5, and a weight decay of 3e-5. Initial channel number was set to 48. Cutout, path dropout of
probability 0.2 and auxiliary towers with weight 0.4 were applied.

L.2. PC-DARTS based experiments

For methods based on PC-DARTS, including FAS-pcdarts (ours), MTL-pcdarts, SE-pcdarts, the experimental settings are
similar. λ in Eq.(47) is set to 0.1. The search space of PC-DARTS follows that of DARTS. For architecture search on
CIFAR-100 and CIFAR-10, the hyperparameter K was set to 4. The network is a stack of 8 cells. Each cell contains 6 nodes.
Initial channel number is set to 16. The architecture variables are trained using the Adam optimizer for 50 epochs. The
learning rate is set to 6e− 4, without decay. The weight decay is set to 1e− 3. The momentum is set to (0.5, 0.999). The
network weight parameters are trained using SGD for 50 epochs. The initial learning rate is set to 0.1. Cosine scheduling is
used to decay the learning rate, down to 0 without restart. The momentum is set to 0.9. The weight decay is set to 3e− 4.
The batch size is set to 256. Warm-up is utilized: in the first 15 epochs, architecture variables are frozen and only network
weights are optimized.

The settings for architecture evaluation on CIFAR-100 and CIFAR-10 follow those of DARTS. 18 normal cells and 2
reduction cells are stacked into a large network. The initial channel number is set to 36. The stacked network is trained from
scratch using SGD for 600 epochs, with batch size 128, initial learning rate 0.025, momentum 0.9, weight decay 3e− 4,
norm gradient clipping 5, drop-path rate 0.3, and cutout. The learning rate is decayed to 0 using cosine scheduling without
restart.

We combine our method and PC-DARTS to directly search for architectures on ImageNet. The stacked network starts with
three convolution layers which reduce the input image resolution from 224×224 to 28×28, using stride 2. After the three
convolution layers, 6 normal cells and 2 reduction cells are stacked. Each cell consists of N = 6 nodes. The sub-sampling
rate was set to 0.5. The network was trained for 50 epochs. Architecture variables are trained using Adam. The learning
rate is fixed to 6e − 3. The weight decay is set to 1e − 3. The momentum is set to (0.5, 0.999). In the first 35 epochs,
architecture variables are frozen. Network weight parameters are trained using SGD. The initial learning rate is set to 0.5.
It is decayed to 0 using cosine scheduling without restart. Momentum is set to 0.9. Weight decay is set to 3e − 5. The
batch-size is set to 1024. Epoch number is set to 250. Eight Tesla V100 GPUs were used.

For architecture evaluation on ImageNet, the stacked network starts with three convolution layers which reduce the input
image resolution from 224×224 to 28×28, using stride 2. After the three convolution layers, 12 normal cells and 2 reduction
cells are stacked. Initial channel number is set to 48. The network is trained from scratch using SGD for 250 epochs, with
batch size 1024, initial learning rate 0.5, weight decay 3e − 5, and momentum 0.9. For the first 5 epochs, learning rate
warm-up is used. The learning rate is linearly decayed to 0. Label smoothing and auxiliary loss tower is used.

L.3. P-DARTS based experiments

λ in Eq.(47) is set to 0.1. The search process has three stages. At the first stage, the search space and stacked network in
P-DARTS are mostly the same as DARTS. The only difference is the number of cells in the stacked network in P-DARTS is
set to 5. At the second stage, the number of cells in the stacked network is 11. At the third stage, the cell number is 17.
At stage 1, 2, 3, the initial Dropout probability on skip-connect is 0, 0.4, and 0.7 for CIFAR-10, is 0.1, 0.2, and 0.3 for
CIFAR-100; the size of operation space is 8, 5, 3, respectively. The final searched cell is limited to have 2 skip-connect
operations at maximum. At each stage, the network is trained using the Adam optimizer for 25 epochs. The batch size is set
to 96. The learning rate is set to 6e-4. Weight decay is set to 1e-3. Momentum is set to (0.5, 0.999). In the first 10 epochs,
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architecture variables are frozen and only network weights are optimized.

For architecture evaluation on CIFAR-100 and CIFAR-10, the stacked network consists of 20 cells. The initial channel
number is set to 36. The network is trained from scratch using SGD. The epoch number is set to 600. The batch size is set to
128. The initial learning rate is set to 0.025. The learning rate is decayed to 0 using cosine scheduling. Weight decay is
set to 3e-4 for CIFAR-10 and 5e-4 for CIFAR-100. Momentum is set to 0.9. Drop-path probability is set to 0.3. Cutout
regularization length is set to 16. Auxiliary towers of weight 0.4 are used.

For architecture evaluation on ImageNet, the settings are similar to those of DARTS. The network consists of 14 cells. The
initial channel number is set to 48. The network is trained from scratch using SGD for 250 epochs. Batch size is set to 1024.
Initial learning rate is set to 0.5. The learning rate is linearly decayed after each epoch. In the first 5 epochs, learning rate
warmup is used. The momentum is set to 0.9. The weight decay is set to 3e− 5. Label smoothing and auxiliary loss tower
are used during training. The network was trained on 8 Nvidia Tesla V100 GPUs.

L.4. PR-DARTS based experiments

λ in Eq.(47) is set to 0.1. The operations include: 3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable
convolutions, 3×3 average pooling and 3×3 max pooling, zero, and skip connection. The stacked network consists of k
cells. The k/3- and 2k/3-th cells are reduction cells. In reduction cells, all operations have a stride of two. The rest cells are
normal cells. Operations in normal cells have a stride of one. Cells of the same type (either reduction or normal) have the
same architecture. The inputs of each cell are the outputs of two previous cells. Each cell contains four intermediate nodes
and one output node. The output node is a concatenation of all intermediate nodes.

For architecture search on CIFAR-100 and CIFAR-10, the stacked network consists of 8 cells. The initial channel number is
set to 16. In PR-DARTS, λ1, λ2, and λ3 are set to 0.01, 0.005, and 0.005 respectively. The network was trained for 200
epochs. The mini-batch size is set to 128. Architecture variables are trained using Adam. The learning rate is set to 3e− 4.
The weight decay is set to 1e− 3. Network weights are trained using SGD. The initial learning rate is set to 0.025. The
momentum is set to 0.9. The weight decay is set to 3e− 4. The learning rate is decayed to 0 using cosine scheduling. For
acceleration, per iteration, only two operations on each edge are randomly selected to update. The temperature τ is set to 10
and is linearly reduced to 0.1; a = −0.1 and b = 1.1. Pruning on each node is conducted by comparing the gate activation
probabilities of all non-zero operations collected from all previous nodes and retaining top two operations.

For architecture evaluation on CIFAR10 and CIFAR100, the stacked network consists of 18 normal cells and 2 reduction
cells. The initial channel number is set to 36. The network is trained from scratch using SGD. The mini-batch size is set to
128. The epoch number is set to 600. The initial learning rate is set to 0.025. The momentum is set to 0.9. The weight decay
is set to 3e− 4. The gradient norm clipping is set to 5. The drop-path probability is set to 0.2. The cutout length is set to 16.
The learning rate is decayed to 0 using cosine scheduling.

For architecture evaluation on ImageNet, the input images are resized to 224×224. The stacked network consists of 3
convolutional layers, 12 normal cells, and 2 reduction cells. The channel number is set to 48. The network is trained using
SGD for 250 epochs. The batch size is set to 128. The learning rate is set to 0.025. The momentum is set to 0.9. The weight
decay is set to 3e− 4. The gradient norm clipping is set to 5. The learning rate is decayed to 0 via cosine scheduling.

M. Experimental details of evaluating robustness against overfitting
The four search spaces S1− S4 are designed by (Zela et al., 2020).

• S1: In this search space, each edge has only two candidate operations. To identify these operations, operations that
have the least importance in the original search space of DARTS are iteratively removed.

• S2: For each edge, the candidate operations are 3×3 SepConv and SkipConnect.

• S3: For each edge, the candidate operations are: 3×3 SepConv, SkipConnect, and Zero.

• S4: For each edge, the candidate operations are: 3×3 SepConv and Noise. In the Noise operation, every value from the
input feature map is replaced with random variables sampled from univariate Gaussian distribution.
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N. Significance test results
To check whether the performance of our methods are significantly better than that of baselines, we perform statistical
significance tests between the result of our methods and the result of the corresponding baselines, using a double-sided
T-test. We use the function in the python package “scipy.stats.ttest 1samp” and report the average results over 10 different
runs. Table 27 and 28 show the results.

Our method Baseline p-value
FAS-darts2nd MTL-darts2nd 8.35e-7
FAS-darts2nd SE-darts2nd 1.05e-10
FAS-darts2nd Darts2nd 4.37e-12
FAS-pdarts MTL-pdarts 3.72e-6
FAS-pdarts SE-pdarts 5.39e-7
FAS-pdarts Pdarts 8.52e-8
FAS-pcdarts MTL-pcdarts 5.23e-8
FAS-pcdarts 7.14e-3 SE-pcdarts 8.58e-10
FAS-pcdarts Pcdarts 6.72e-13
FAS-prdarts MTL-prdarts 9.73e-4
FAS-prdarts SE-prdarts 3.06e-5
FAS-prdarts Prdarts 7.14e-3

Table 27. Significance test results on CIFAR-100

Our method Baseline p-value
FAS-darts2nd MTL-darts2nd 8.31e-6
FAS-darts2nd SE-darts2nd 1.27e-5
FAS-darts2nd Darts2nd 6.49e-6
FAS-pdarts MTL-pdarts 3.05e-7
FAS-pdarts SE-pdarts 7.35e-5
FAS-pdarts Pdarts 1.04e-3
FAS-pcdarts MTL-pcdarts 3.73e-4
FAS-pcdarts SE-pcdarts 8.62e-7
FAS-pcdarts Pcdarts 4.28e-3
FAS-prdarts MTL-prdarts 9.57e-4
FAS-prdarts SE-prdarts 3.30e-4
FAS-prdarts Prdarts 1.28e-3

Table 28. Significance test results on CIFAR-10

From these two tables, we can see that the p-values are small between baselines methods and our methods, which demonstrate
that the errors of our methods are significantly lower than those of baselines.

O. Model parameters, search costs, and FLOPs on ImageNet
Table 29 shows the number of model parameters, search costs, and FLOPs on ImageNet. The parameter numbers, search
costs, and FLOPs of our methods are close to those in differentiable baselines.

P. Full lists of hyperparameter settings in NAS experiments
The hyperparameter settings for the learner model such as the optimizer, momentum, weight decay, learning rate, number
of layers were the same as those of the original DARTS, P-DARTS, PC-DARTS, and PR-DARTS implementations. The
hyperparameter settings for the listener model were also set to the same values as those of the learner model. Tables 30 and
33 show the hyperparameter settings used in architecture search experiments. Tables 34 and 37 show the hyperparameter
settings used in architecture evaluation experiments.
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Table 29. Top-1 and top-5 classification errors on ImageNet test set, number of model weights (millions), and search cost (GPU days), and
FLOPs (M). * denotes that the results are taken from DARTS− (Chu et al., 2021) and DrNAS (Chen et al., 2021a). FAS-darts2nd-cifar10
means the architecture is searched using FAS on CIFAR-10, where the search space is the same as that in DARTS-2nd. Similar meanings
hold for other notations like this. The other notations are the same as those in Table 1 in the main paper.

Method Top-1 Top-5 Param Cost FLOPs
Error (%) Error (%) (M) (GPU days) (M)

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 - 1448
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6 7.4 - 299
*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800 564
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150 570
*SDARTS-ADV-CIFAR10 (Chen & Hsieh, 2020a) 25.2 7.8 5.4 1.3 -
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1 586
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3 465
*FairDARTS-ImageNet (Chu et al., 2020) 24.4 7.4 4.3 3.0 440
*DARTS+-CIFAR100 (Liang et al., 2019) 23.7 7.2 5.1 0.2 591
*Darts2nd-cifar10 (Liu et al., 2019) 26.7 8.7 4.7 1.5 574
FAS-darts2nd-cifar10 (ours) 25.3 7.7 4.9 2.0 535
*Pdarts-cifar10 (Chen et al., 2019) 24.4 7.4 4.9 0.3 557
FAS-pdarts-cifar10 (ours) 23.9 7.1 4.9 0.7 529
*Pdarts-cifar100 (Chen et al., 2019) 24.7 7.5 5.1 0.3 577
FAS-pdarts-cifar100 (ours) 24.3 7.3 4.9 0.7 561
*Pcdarts-imagenet (Xu et al., 2020) 24.2 7.3 5.3 0.1 597
FAS-pcdarts-imagenet (ours) 23.2 6.5 5.5 0.3 574

Name Value
Architecture optimizer Adam

Learning rate of architecture variables 3e-4
Epochs 50

Weight decay of architecture variables 1e-3
Batch size 64

Drop path probability 3e-1
Initial channels 16

Network weights optimizer SGD
Learning rate of network weights 2.5e-2

Number of layers 8
Momentum 9e-1

Weight decay for network weights 3e-4
Gradient clip 5

Lambda 0.1
Train portion 0.5

Unrolled True
Cutout False

Table 30. Hyperparameter settings of our FAS method when applied to DARTS, during architecture search on CIFAR-10 and CIFAR-100.
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Name Value
Architecture optimizer Adam

Learning rate of architecture variables 6e-4
Epochs 50

Weight decay of architecture variables 1e-3
Batch size 96

Drop path probability 3e-1
Initial channels 16

Network weights optimizer SGD
Learning rate of network weights 1e-1

Number of layers 8
Momentum 9e-1

Weight decay for network weights 3e-4
Grad clip 5
Lambda 0.5

Train portion 0.5
Unrolled True
Cutout False

Table 31. Hyperparameter settings of our FAS method when applied to PC-DARTS, during architecture search on CIFAR-10 and CIFAR-
100.

Name Value
Architecture optimizer Adam

Learning rate of architecture variables 3e-4
Epochs 30

Weight decay of architecture variables 1e-3
Batch size 32

Drop path probability 3e-1
Initial channels 16

Network weights optimizer SGD
Learning rate of network weights 2.5e-2

Number of layers 8
Momentum 9e-1

Weight decay for network weights 3e-4
Gradient clip 5

Lambda 0.1
Train portion 0.5

Unrolled True
Cutout False

Table 32. Hyperparameter settings of our FAS method when applied to PDARTS, during architecture search on CIFAR-10 and CIFAR-
100.
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Name Value
Architecture optimizer Adam

Learning rate of architecture variables 6e-4
Epochs 50

Weight decay of architecture variables 1e-3
Batch size 96

Drop path probability 3e-1
Initial channels 16

Network weights optimizer SGD
Learning rate of network weights 1e-1

Number of layers 8
Momentum 9e-1

Weight decay for network weights 3e-4
Grad clip 5
Lambda 0.5

Train portion 0.5
Unrolled True
Cutout False

Table 33. Hyperparameter settings of our FAS method when applied to PR-DARTS, during architecture search on CIFAR-10 and CIFAR-
100.

Name Value
Optimizer SGD

Learning rate 2.5e-2
Epochs 600

Weight decay 3e-4
Batch size 96

Momentum 9e-1
Initial channels 36

Number of layers 20
Auxiliary True

Auxiliary weight 0.4
Cutout True

Cutout length 16
Drop path probability 0.2

Gradient clip 5

Table 34. Hyperparameter settings of our FAS method when applied to DARTS, during architecture evaluation on CIFAR-10 and CIFAR-
100.
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Name Value
Optimizer SGD

Learning rate 2.5e-2
Epochs 600

Weight decay 3e-4
Batch size 96

Momentum 9e-1
Initial channels 36

Number of layers 20
Auxiliary True

Auxiliary weight 0.4
Cutout True

Cutout length 16
Drop path probability 0.3

Gradient clip 5

Table 35. Hyperparameter settings of our FAS method when applied to PC-DARTS, during architecture evaluation on CIFAR-10 and
CIFAR-100.

Name Value
Optimizer SGD

Learning rate 2.5e-2
Epochs 600

Weight decay 3e-4
Batch size 96

Momentum 9e-1
Initial channels 36

Number of layers 20
Auxiliary True

Auxiliary weight 0.4
Cutout True

Cutout length 16
Drop path probability 0.2

Gradient clip 5

Table 36. Hyperparameter settings of our FAS method when applied to PDARTS, during architecture evaluation on CIFAR-10 and
CIFAR-100.
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Name Value
Optimizer SGD

Learning rate 2.5e-2
Epochs 600

Weight decay 3e-4
Batch size 96

Momentum 9e-1
Initial channels 36

Number of layers 20
Auxiliary True

Auxiliary weight 0.4
Cutout True

Cutout length 16
Drop path probability 0.3

Gradient clip 5

Table 37. Hyperparameter settings of our FAS method when applied to PR-DARTS, during architecture evaluation on CIFAR-10 and
CIFAR-100.
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Q. Computing infrastructure, runtime, validation performance, number of weight parameters,
and implementation details

The computing infrastructure and runtime (seconds per iteration) are shown in Table 38 and 39. Validation errors are shown
in Table 40.

FAS(DARTS) FAS(PC-DARTS,unrolled) FAS(PCDARTS)
GTX 1080Ti GTX 1080Ti GTX 1080Ti

Num. of GPUs 1 1 1
Runtime 185 83 6

Table 38. Computing infrastructure and runtime (seconds per iteration) for architecture search

FAS(DARTS) FAS(PC-DARTS)
GTX 1080Ti GTX 1080Ti

Num. of GPUs 1 1
Runtime 167 194

Table 39. Computing infrastructure and runtime (seconds per iteration) for architecture evaluation

Num. of epochs Validation error (%)
FAS(DARTS,CIFAR-10) 30 2.69
FAS(DARTS,CIFAR100) 30 17.63

FAS(PC-DARTS,CIFAR-10) 50 2.66
FAS(PC-DARTS,CIFAR-100) 50 17.49

Table 40. Validation error in architecture search.

We use PyTorch to implement all models. All experiments were run on a single GTX 1080Ti GPU. We used the codes
provided in “DARTS7” and “PCDARTS8” as baselines.

7https://github.com/quark0/darts
8https://github.com/yuhuixu1993/PC-DART
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R. Visualization of searched architectures
Using the graphviz package, we plot the searched architecture cells in all the experiments. Each architecture consists of a
normal cell and reduction cell. Figure 12-19 show the cells searched on CIFAR-10 and CIFAR-100 by our FAS methods.

Figure 12. Normal cell searched by FAS(DARTS) on CIFAR-10 and CIFAR-100 respectively.
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Figure 13. Normal cell searched by FAS(PC-DARTS) on CIFAR-10 and CIFAR-100 respectively

Figure 14. Normal cell searched by FAS(P-DARTS) on CIFAR-10 and CIFAR-100 respectively

Figure 15. Normal cell searched by FAS(PR-DARTS) on CIFAR-10 and CIFAR-100 respectively
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Figure 16. Reduction cell searched by FAS(DARTS) on CIFAR-10 and CIFAR-100 respectively

Figure 17. Reduction cell searched by FAS(PC-DARTS) on CIFAR-10 and CIFAR-100 respectively
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Figure 18. Reduction cell searched by FAS(P-DARTS) on CIFAR-10 and CIFAR-100 respectively

Figure 19. Reduction cell searched by FAS(PR-DARTS) on CIFAR-10 and CIFAR-100 respectively
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