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Abstract

We study semiparametrically efficient estimation
in off-policy evaluation (OPE) where the under-
lying Markov decision process (MDP) is linear
with a known feature map. We characterize the
variance lower bound for regular estimators in
the linear MDP setting and propose an efficient
estimator whose variance achieves that lower
bound. Consistency and asymptotic normality
of our estimator are established under mild con-
ditions, which merely requires the only infinite-
dimensional nuisance parameter to be estimated
at a n−1/4 convergence rate. We also construct an
asymptotically valid confidence interval for sta-
tistical inference and conduct simulation studies
to validate our results. To our knowledge, this is
the first work that concerns efficient estimation in
the presence of a known structure of MDPs in the
OPE literature.

1. Introduction
Off-policy evaluation (OPE) is one of the major tasks in
offline reinforcement learning (Precup, 2000; Mahmood
et al., 2014; Jiang & Li, 2016; Munos et al., 2016; Thomas
& Brunskill, 2016; Xie et al., 2019; Uehara et al., 2022). In
contrast to traditional online reinforcement learning prob-
lems, OPE focuses on estimating the expected long-term
rewards of a policy using logged data that is generated in
advance by a potentially different policy. OPE enjoys a
wide range of applications especially when online long-
term experimentation may be costly or unethical, such as in
healthcare (Murphy, 2003; Chakraborty & Moodie, 2013;
Luckett et al., 2019), education (Mandel et al., 2014), and
recommendation systems (Chen et al., 2019).
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The OPE task in reality is challenging, mainly because
of two reasons: 1). the behavior policy, which is used
to generate logged data, is usually different from the target
policy that is of our interest, and the gap between them tends
to increase instability of estimation; 2). the OPE target is an
accumulated long-term reward, while naive OPE approaches
suffer from heavy computation as the time horizon increases.
The latter is also called the “curse of horizon” (Liu et al.,
2018).

In face of these challenges, there is a major line of works
that aim to improve the sample efficiency of OPE estima-
tors (Jiang & Li, 2016; Liu et al., 2018; Xie et al., 2019;
Kallus & Uehara, 2020; 2022). Probably one of the most
remarkable works is (Kallus & Uehara, 2022), which lever-
ages the semiparametric theory to propose a double re-
inforcement learning (DRL) value estimator that is both
doubly-robust against model misspecification of nuisance
parameters and efficient (i.e., having the minimal variance)
among a wide class of estimators. The proposed DRL es-
timator is a successful application of statistical theories to
OPE problems due to its statistical nature. Recently, simi-
lar approaches have been applied to cases with more com-
plex data generating mechanisms, such as OPE problems in
Partially Observable MDPs (POMDPs) (Bennett & Kallus,
2021) and Confounded MDPs (CMDPs) (Shi et al., 2022).

Other than specific data generating mechanisms, all men-
tioned works implicitly assume no information on the struc-
ture of MDPs. This is not always the case, because in certain
problems we may possess information that the underlying
MDP, for example, is linear with a known feature map (Sut-
ton & Barto, 2018). Therefore, a natural question arises:

Is there any efficiency gain from such linear struc-
ture of MDPs? If so, how to construct a “best”
value estimator in the OPE problem with linear
MDPs?

In this paper we conduct a comprehensive analysis on this
question, and finally give a positive answer to it. As far as
we know, our work is for the first time to study efficient OPE
estimation in the presence of a known structure of MDPs.

The main contributions of this paper are as follows.
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• Efficiency theory. We use semiparametric efficiency
theory to obtain the variance lower bound for regular
estimators in the linear MDP setting (Theorem 3.4),
which is shown to be smaller than that in the general
MDP setting (Corollary 3.6). In other words, there
does exist some efficiency gain brought by the linear
structure, and it is possible to construct an OPE estima-
tor with a smaller variance for linear MDPs.

• Efficient estimation and inference. Based on the de-
rived theory, we construct an OPE estimator that has
the minimal variance among all regular estimators in
our setting. We further characterize sufficient condi-
tions for the proposed estimator to be valid, which
merely requires the only infinite-dimensional nuisance
parameter to be estimated at a n−1/4 convergence rate
(Theorem 4.1 and Corollary 4.3). We also provide an
asymptotically valid confidence interval for statistical
inference on the target value, based on an asymptotic
normality argument for our proposed estimator.

• Numerical illustration. In simulation studies, we
demonstrate that our estimator outperforms the DRL
estimator (proposed in (Kallus & Uehara, 2022)) in the
linear MDP setting and that our proposed confidence
interval achieves its nominal coverage rate asymptoti-
cally.

1.1. Additional Related Work

Semiparametric statistics. Semiparametric theory enjoys
a long history in statistics. It considers estimation in situ-
ations when we only have partial knowledge of data, and
tend to assume nothing on other data features that we do
not know (Bickel et al., 1993; Tsiatis, 2006). The theory is
widely applied in causal inference and missing data, e.g.,
(Robins et al., 1995; Robins & Rotnitzky, 1995; Bang &
Robins, 2005; Schwartz et al., 2011; Ray & van der Vaart,
2020; Cui et al., 2020). Concise reviews concerning its basic
concepts, techniques and applications in causal inference
are given in (Kennedy, 2016; 2022).

Efficient OPE. In the OPE literature, estimation meth-
ods can be roughly categorized into three types: 1). the
direct method (DM), which requires directly estimating a
Q-function and then averaging to obtain a value estimate
(Bertsekas, 2012); 2). importance sampling (IS), which
estimates a density ratio and computes the weighted av-
erage of the reward as a value estimate (Liu, 2001; Liu
et al., 2018; Xie et al., 2019); and 3). the doubly-robust
method (DR), which combines DM and IS by adding an es-
timated Q-function as a control variate to improve stability
and efficiency of the estimator (Jiang & Li, 2016; Kallus &
Uehara, 2020; 2022). There is yet another line of works on
estimation of the mentioned Q-function and density ratio,

including FQI (Ernst et al., 2005; Le et al., 2019), RBM
(Antos et al., 2008), DICE (Nachum et al., 2019; Zhang
et al., 2020), MWL/MQL (Uehara et al., 2020) and so on.

2. Preliminaries
Infinite-horizon MDPs. We consider an infinite-horizon
MDP, represented by a tuple M = (S,A, γ, P,R, r). Here,
S is the state space, A is the action space, and γ is a dis-
count factor. P : S × A → ∆(S) represents the transition
probability kernel, i.e., P (s′ | s, a) is the probability of
transiting to state s′ from a given state-action pair (s, a).
R : S × A → R+ represents the expected reward, i.e.,
R(s, a) is the expectation of the immediate reward when
action a is taken in state s, and r(s, a) ∈ [0, Rmax] repre-
sents the corresponding random reward. For an MDP M,
a policy π : S → ∆(A) gives a distribution over the action
space A for any state s ∈ S. Given a policy π, the value
function and the Q-function are defined as follows:

Vπ(s) = Eπ

[ ∞∑
t=0

γtr(t) | s(0) = s

]
,

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(t) | s(0) = s, a(0) = a

]
,

where r(t) = r(s(t), a(t)) is the immediate reward at time
t, and the expectation Eπ(·) is taken over all randomness
of a trajectory τ = (s(0), a(0), r(0), s(1), a(1), r(1), . . . ) gen-
erated from the MDP by iteratively applying the policy π.
The value function and the Q-function measure the expected
cumulative reward of a policy.

Off-policy evaluation (OPE). We assume access to an
offline dataset D = {(si, ai, ri, s′i)}ni=1, consisting of n
independent and identically distributed draws of state-action-
reward-state quadruplets, with each si following some state
distribution p(0)

πb (s) and each ai following a behavior policy
πb(a | s)1. Based on the offline dataset D, the goal of
off-policy evaluation is to estimate the value function of a
known target/evaluation policy πe(a | s)2 (which may be
different from the behavior policy πb(a | s)), averaged over
a user-specified initial state distribution p(0)πe (s), i.e.,

vπe = E
p
(0)
πe
[Vπe(s)] = Eπe

[ ∞∑
t=0

γtr(t)

]
. (1)

Here, the subscripts πb, πe in p(0)
πb , p

(0)
πe are merely to distin-

guish the two initial distributions, which do not necessarily
depend on the corresponding policies.

1The superscript b is an abbreviation of behavior.
2The superscript e is an abbreviation of evaluation.
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Semiparametric theory. Here we introduce a little bit
of semiparametric theory, while a detailed background is
deferred to Appendix A.1. Consider an estimation problem,
where we hope to estimate a one-dimensional functional
β(F ) of the data distribution F . Suppose it is known that the
data distribution F belongs to a model F = {Fθ : θ ∈ Θ}
(θ is not necessarily parametric). Now, given observed data
and under some regularity conditions, an estimator β̂n for
β(F ) is called efficient if

√
n(β̂n−β(F )) is asymptotically

normal with the minimal asymptotic variance among all
regular estimators. The corresponding minimal asymptotic
variance (denoted VF (β, F )) is called the semiparametric
efficiency bound. The efficiency bound can be regarded as a
semiparametric extension of the Cramer-Rao lower bound
(Shao, 2003) for unbiased estimators in parametric models.
In addition, if the estimator β̂n is efficient, then it must be
asymptotically linear in the sense that

√
n(β̂n − β) =

1√
n

n∑
i=1

ψeff(Oi) + op(1),

for some function ψeff(O) satisfying E[ψeff(O)2] < ∞
and E[ψeff(O)] = 0, where {Oi}ni=1 is the observed data
(Van der Vaart, 2000). The function ψeff(O) is then called
the efficient influence function. Note that the efficiency
bound and the efficient influence function are related by
VF (β, F ) = E[ψeff(O)2].

Double Reinforcement Learning (DRL). Kallus & Ue-
hara (2022) proposed an estimator under the infinite-horizon
setting based on double reinforcement learning (Kallus &
Uehara, 2020), which is known to achieve the efficiency
bound with respect to a fully nonparametric model that will
be defined later. To state their results, we now define some
additional notation. Given a policy π, we further define the
γ-discounted average visitation frequency as

p(∞)
π,γ (s) = (1− γ)

∞∑
t=0

γtp(t)π (s),

p(∞)
π,γ (s, a) = p(∞)

π,γ (s)π(a | s),

where p(t)π (s) is the marginal distribution of s(t) under pol-
icy π, starting from some initial state distribution s(0) ∼
p
(0)
π . We also define the instantaneous, state, and state-action

density ratios as

η(s, a) =
πe(a | s)
πb(a | s)

, w(s) =
p
(∞)
πe,γ(s)

p
(0)

πb (s)
,

w(s, a) = w(s)η(s, a) =
p
(∞)
πe,γ(s, a)

pπb(s, a)
,

where we denote pπb(s, a) = p
(0)

πb (s)π
b(a | s) for nota-

tional simplicity. Now we are ready to state the previous
results on DRL.

Theorem 2.1 ((Kallus & Uehara, 2022)3). Consider the
fully nonparametric model for the data distribution Fnp =
{p(s, a, r, s′) : p(s, a, r, s′) = ps(s)pa|s(a | s)pr|s,a(r |
s, a)ps′|s,a(s

′ | s, a)}. The efficient influence function and
the efficiency bound with respect to the model Fnp for esti-
mating vπe are given by

ψeff,np(s, a, r, s
′) =

1

1− γ
w(s, a)br(s, a, r, s′),

Vnp(vπe) =
1

(1− γ)2
E
[
w(s, a)2br(s, a, r, s′)2

]
,

where br(s, a, r, s′) = r + γVπe(s′) − Qπe(s, a) is the
Bellman residual. In addition, the following estimator is
efficient with respect to Fnp:

v̂DR = E
p
(0)
πe
[V̂πe(s)] +

1

n(1− γ)

n∑
i=1

ŵ(si, ai)b̂ri,

where b̂ri = ri + γV̂πe(s′i) − Q̂πe(si, ai) is a Bellman
residual estimate, ŵ(s, a) and Q̂πe(s, a) are some estimates
of w(s, a) and Qπe(s, a) satisfying certain conditions, and
V̂πe(s) is defined in terms of Q̂πe(s, a) by taking expectation
over a ∼ πe(· | s).

A rigorous statement of Theorem 2.1 including specific
conditions for ŵ(s, a) and Q̂πe(s, a) is displayed in Ap-
pendix D.1. Note that the model Fnp encodes no restriction
on the data distribution other than the Markov property of
MDPs. Theorem 2.1 gives a lower bound on the variance of
any regular estimator and proposes the DRL estimator v̂DR
that achieves this lower bound.

3. Semiparametric Efficiency in Linear MDPs
We first analyze the efficiency bound in the case of linear
MDPs. Assume the transition probability P and the ex-
pected reward R possess linear structures, i.e.,

P (s′ | s, a) = ϕ(s, a)⊤ν0(s
′), R(s, a) = ϕ(s, a)⊤ω0,

(2)

where ϕ = (ϕ1, . . . , ϕd)
⊤ : S × A → Rd is a known fea-

ture map, ν0 : S → Rd is a vector-valued function, and
ω0 ∈ Rd is a vector. Although the transition probability
and the expected reward are set to be linear, which seems
like a parametric assumption, there are still nonparametric
components in the model such as ν0(s′) and the distribution
of random rewards. Therefore, the class of linear MDPs is
indeed a semiparametric model as discussed before.

In the MDP literature, linear structures are often assumed to
lower the complexity of the model class, especially when the

3Note that our parameter of interest vπe defined in (1) differs
from that of (Kallus & Uehara, 2022) by a 1/(1 − γ) scale, so
relevant quantities in this theorem are also properly scaled.
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state and action spaces are too large for analysis and compu-
tation (Sutton & Barto, 2018). We assume the feature map
and the true parameters satisfy the following assumptions.

Assumption 3.1. For any s ∈ S and a ∈ A, the ϕi(s, a) ≥
0 and

∑d
i=1 ϕi(s, a) = 1. In addition, {ϕ(s, a)}s∈S,a∈A

spans the whole space Rd.

Assumption 3.2. The true parameters ω0 and ν0 satisfy

∥ω0∥2 ≤ 1,

∫
ν0(s)ds = 1d,

sup
a∈A

∥∥∥∥∫ ν0(s)ϕ(s, a)
⊤ds

∥∥∥∥
2

≤ 1.

Assumption 3.3. The matrices E[ϕ(s, a)ϕ(s, a)⊤]
and E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤] are invertible, where
Ω(s, a) = var(r | s, a) is the conditional variance of the
reward.

We denote Flin as the class of linear MDPs satisfying As-
sumptions 3.1-3.3. Note that Flin ⊂ Fnp, and the true
data distribution is obtained by taking ps(s) = p

(0)

πb (s),
pa|s(a | s) = πb(a | s), and setting ω = ω0, ν(s′) = ν0(s

′)
as in (2). For notational simplicity, we denote Φπe,γ =
1

1−γEp
(∞)
πe,γ

[ϕ(s, a)] and pπb(s, a) = p
(0)

πb (s)π
b(a | s). The

following theorem gives the efficient influence function and
the efficiency bound for estimating vπe , as defined in (1),
with respect to the model Flin.

Theorem 3.4. Define

ψeff,1(s, a, ε) = Φ⊤
πe,γ

{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1

· ϕ(s, a)Ω(s, a)−1ε, (3)

ψeff,2(s, a, s
′) = γΦ⊤

πe,γ

{
Vπe(s′)I − P∆(Vπe)P∆(1)

−1
}

· ∆(s′)−1ϕ(s, a)

ϕ(s, a)⊤ν0(s′)
, (4)

where ε = r − ϕ(s, a)⊤ω0, Ω(s, a) = var(ε | s, a),

∆(s′) =

∫
pπb(s, a)

ϕ(s, a)ϕ(s, a)⊤

ϕ(s, a)⊤ν0(s′)
dsda, (5)

P∆(f) =

∫
∆(s′)−1f(s′)ds′ ∀f : S → R. (6)

Then, the efficient influence function for estimating vπe w.r.t.
the model Flin is given by ψeff(s, a, ε, s

′) = ψeff,1(s, a, ε) +
ψeff,2(s, a, s

′), and the efficiency bound is given by
V(vπe) = var{ψeff,1(s, a, ε)}+ var{ψeff,2(s, a, s

′)} where

var{ψeff,1(s, a, ε)} (7)

= Φ⊤
πe,γ

{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
Φπe,γ ,

var{ψeff,2(s, a, s
′)} (8)

= γ2Φ⊤
πe,γ

{
P∆(V

2
πe)−P∆(Vπe)P∆(1)

−1P∆(Vπe)
}
Φπe,γ .

The proof of Theorem 3.4 is deferred to Appendix A.2. Ba-
sically, the efficient influence function can be decomposed
into two separated parts. The first part, ψeff,1(s, a, ε), re-
sults from the linear structure of the expected reward, and
its form highly resembles that of restricted moment models
(see e.g., Tsiatis, 2006), which also take into account the
variance of noise in estimation. The weighting with the
inverse variance Ω(s, a)−1 on the noise ε in (3) also shares
the same spirit with the variance-aware idea in other OPE
works (Min et al., 2021). The second part ψeff,2(s, a, s

′)
results from the linear structure of the transition probabil-
ity. The matrix ∆(s′)−1 can be regarded as representing a
“subspace” formed by distorting the transition probability
P (s′ | s, a) = ϕ(s, a)⊤ν0(s, a) with the feature map, and
the term in the brace in (4) can be regarded as a “projec-
tion” of Vπe(s′) onto such “subspace”. Since the mech-
anisms of generating r and s′ are independent given the
current state-action pair (s, a), the two parts ψeff,1(s, a, ε)
and ψeff,2(s, a, s

′) are uncorrelated conditional on (s, a).
Remark 3.5. In the tabular case where S and A are both
finite sets and d = |S||A|, two models Fnp and Flin become
equivalent. In Appendix A.3, we show that the efficient
influence function ψeff(s, a, ε, s

′) given in Theorem 3.4 de-
generates into ψeff,np(s, a, r, s

′) in Theorem 2.1 and so as
the efficiency bounds. In this sense, our result is consistent
with the previous work.

Since the nonparametric model Fnp is larger than our linear
model Flin, the efficiency bound of the former is larger than
that of the latter for linear MDPs.

Corollary 3.6. For linear MDPs, V(vπe) ≤ Vnp(vπe),
where V(vπe) is defined in Theorem 3.4 and Vnp(vπe) is
defined in Theorem 2.1.

In Appendix A.4, we provide a finer analysis on the gap be-
tween the two efficiency bounds. Specifically, the efficiency
bound Vnp(vπe) can also be decomposed into reward and
transition parts just like (7)-(8), and each part is larger than
its correspondence in the decomposition of V(vπe). For the
reward part, the difference between the efficiency bounds is
characterized by the minimum eigenvalue of a p.s.d. matrix;
and for the transition part, our simulation suggests that un-
balancedness of feature maps ϕ(s, a) distributed in Rd may
increase the corresponding difference.

To better characterize the scale of the efficiency bound,
below we provide an upper bound for V(vπe).

Proposition 3.7. Let σ = λmin

(
E[ϕ(s, a)ϕ(s, a)⊤]

)
. Then

V(vπe) ≤ O

(
1

σ(1− γ)2
+

1

σ2(1− γ)4

)
.

When the offline dataset is of good coverage, the minimum
eigenvalue σ defined in Proposition 3.7 is roughly of order
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1/d, so the upper bound is roughly O
(

d
(1−γ)2 + d2

(1−γ)4

)
for V(vπe). For Vnp(vπe), Gheshlaghi Azar et al. (2013)

provides evidence that its upper bound is O
(

|S||A|
(1−γ)3

)
(see

Appendix A.5 for details). Therefore, in the tabular case,
knowledge of a specific linear structure of the MDP re-
duces the minimum possible variance of an estimator from
O(|S||A|) to O(d2).

4. Efficient Estimation in Linear MDPs
In this section we construct an estimator that attains the
efficiency bound in Theorem 3.4. For notation simplicity,
define ϕπe(s) = Eπe [ϕ(s, a) | s], Φπe = E

p
(0)
πe
[ϕπe(s)] and

A =
∫
ν0(s)ϕπe(s)⊤ds. Without much calculation, we can

show that

vπe = E
p
(0)
πe
[Vπe(s)] = Φ⊤

πe(I − γA)−1ω0,

Vπe(s′) = ϕπe(s′)⊤(I − γA)−1ω0,

E
p
(∞)
πe

[ϕ(s, a)⊤] = (1− γ)Φ⊤
πe(I − γA)−1.

Detailed derivation is deferred to Appendix B.1.

Our estimator is based on the following three estimating
functions:

ψ0(η̂) = Φ⊤
πe(I − γAν̂)

−1ω̂, (9)

ψ1(s, a, r; η̂, D̃) = Φ⊤
πe(I − γAν̂)

−1×{
ED̃[ϕ(s, a)Ω̂(s, a)

−1ϕ(s, a)⊤]
}−1

×

ϕ(s, a)Ω̂(s, a)−1(r − ϕ(s, a)⊤ω̂),
(10)

ψ2(s, a, s
′; η̂) = γΦ⊤

πe(I − γAν̂)
−1

×
[
Vπe;η̂(s

′)I − P∆̂(Vπe;η̂)P∆̂(1)
−1
]

× ∆̂(s′)−1ϕ(s, a)

ϕ(s, a)⊤ν̂(s′)
, (11)

where ED̃ means the sample average over some dataset
D̃ ⊆ D, η̂ = (ω̂, ν̂, Ω̂, ∆̂) is some estimate of the true
parameter η = (ω0, ν0,Ω,∆), and

Aν̂ =

∫
ν̂(s)ϕπe(s)⊤ds, (12)

Vπe;η̂(s
′) = ϕπe(s′)⊤(I − γAν̂)

−1ω̂, (13)

P∆̂(f) =

∫
∆̂(s′)−1f(s′)ds′ ∀f : S → R. (14)

We assume for now the nuisance estimate η̂ is given; in
Appendix B.2 we discuss some proper ways to construct it.

We use the well-known sample splitting technique to con-
struct our estimator. Specifically, we first divide the data in

to K folds D1,D2, . . . ,DK , each fold consisting of n/K
samples. For k = 1, 2, . . . ,K, we construct an estimate
η̂(k) = (ω̂(k), ν̂(k), Ω̂(k), ∆̂(k)) based on the data except for
those in k-th fold, i.e., D\Dk. Our final estimator is

v̂LMDP =
1

n

K∑
k=1

∑
(si,ai,ri,s′i)∈Dk

[
ψ̂
(k)
0︸︷︷︸

plug-in

+ ψ̂
(k)
1,i + ψ̂

(k)
2,i︸ ︷︷ ︸

augmentation

]
,

(15)

where ψ̂(k)
0 = ψ0(η̂

(k)), ψ̂(k)
1,i = ψ1(si, ai, ri; η̂

(k),D\Dk)

and ψ̂(k)
2,i = ψ2(si, ai, s

′
i; η̂

(k)). The whole estimating pro-
cedure is shown in Algorithm 1.

Algorithm 1 One-Step Estimator
Input: dataset D, feature map ϕ(·, ·), initial distribution
p
(0)
πe (·), target policy πe(· | ·), discount factor γ

Output: one-step estimator v̂LMDP
Divide the dataset into K folds D1,D2, . . . ,DK , each
consisting of n/K samples;
for k = 1, 2, . . . ,K do

Construct estimates η̂(k) = (ω̂(k), ν̂(k), Ω̂(k), ∆̂(k))
based on D\Dk;
ConstructAν̂(k) , Vπe;η̂(k)(s′), P∆̂(k)(1), P∆̂(k)(Vπe;η̂(k))
according to (12)-(14);

end for
Construct the final estimator v̂LMDP according to (15):

There are several points to mention. First, the sample split-
ting technique is widely used in statistics and econometrics,
particularly when the nuisance parameters to be estimated
are infinite-dimensional. In such cases, many modern ma-
chine learning estimators suffer from high-complexity phe-
nomena and fail to satisfy a strict Donsker-type condition,
so traditional estimators based on full data fail to attain a
parametric

√
n convergence rate. Sample splitting, on the

other hand, only requires a much weaker condition and thus
overcomes such a problem. See (Chernozhukov et al., 2018)
and Chapter 19 of (Van der Vaart, 2000) for details.

Second, our estimator v̂LMDP consists of two components:
the plug-in part (ψ0) and the augmentation part (ψ1 and ψ2).
The plug-in part itself is a direct estimator of vπe , while the
augmentation part is a sample analogue of the efficient in-
fluence functions (3)-(4), which serves as a stabilizing term
and lowers the variance of the estimator. Such an estimator
is often called the one-step estimator and is frequently used
to attain efficiency in the field of semiparametric statistics.

Third, we discuss the relationship between our estimator
and the generalized least squares (GLS) estimator. Recall
that ψ0 is the plug-in estimator for the value function, ψ1 is
an augmentation term for the reward mechanism, and ψ2 is
an augmentation term for the transition mechanism. If we
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focus on the reward mechanism, adding up ψ0 and ψ1 over
samples will result in

ψ0(η̂) +
1

n

n∑
i=1

ψ1(si, ai, ri; η̂,D)

= Φ⊤
πe(I − γAν̂)

−1
{
ED[ϕ(s, a)Ω̂(s, a)

−1ϕ(s, a)⊤]
}−1

· ED[ϕ(s, a)Ω̂(s, a)
−1r] .

Combining the shaded two terms gives rise to the GLS
estimator for the immediate reward. This is natural because
for linear MDPs we impose a linear moment condition on
the reward only, and the GLS estimator is known to be
efficient when there is no extra information aside from this
moment condition.

The following theorem establishes the efficiency of our
estimator v̂LMDP in (15) under mild conditions. For any
η̃ = (ω̃, ν̃, Ω̃, ∆̃), define ψeff(s, a, r, s

′; η̃) as the effi-
cient influence function under the distribution parameter-
ized by η̃ (i.e., replacing ω0, ν0,Ω,∆ with ω̃, ν̃, Ω̃, ∆̃ in
ψeff(s, a, r, s

′) defined in Theorem 3.4), and ∆ν̃(s
′) =∫

pπb(s, a)ϕ(s,a)ϕ(s,a)
⊤

ϕ(s,a)⊤ν̃(s′)
dsda (i.e., replacing ν0 with ν̃ in

∆(s′)).

Theorem 4.1. Suppose the true model is in Flin, and the
following conditions hold for any 1 ≤ k ≤ K:

1. η̂(k) converges to its true value η in the sense that
E
[
{ψeff(s, a, r, s

′; η̂(k))− ψeff(s, a, r, s
′; η)}2 | η̂(k)

]
p−→ 0;

2. the nuisance estimates satisfy ∥ω̂(k)−ω0∥2 = op(α
ω
n),

∥Aν̂(k) − A∥2 = op(α
ν
n), ∥∆̂(k)(s′)−1∆ν̂(k)(s′) −

I∥2 = op(α
∆
n ) and ∥P∆̂(k)(Vπe;η̂(k))P∆̂(k)(1)

−1 −
P∆

ν̂(k)
(Vπe;η̂(k))P∆

ν̂(k)
(1)−1∥2 = op(α̃

∆
n ), with

αν
n = O(n−1/4), αω

nα
ν
n = O(n−1/2), αν

nα
∆
n =

O(n−1/2) and α̃∆
n = O(n−1/2);

3. Ω̂(k) ∈ GΩ such that {ϕ(s, a)Ω̃(s, a)−1ϕ(s, a)⊤ : Ω̃ ∈
GΩ} is a Glivenko-Cantelli class.

Then v̂LMDP is efficient w.r.t. Flin; that is,
√
n(v̂LMDP −

vπe)
d−→ N (0,V(vπe)) where V(vπe) is the efficiency bound

defined in Theorem 3.4.

The proof of Theorem 4.1 is deferred to Appendix B.3. We
discuss the meaning of each condition in Theorem 4.1. Con-
dition 1 is a mild consistency requirement that ω̂(k), ν̂(k),
Ω̂(k) and ∆̂(k) converge to their true values in a proper sense.
Condition 2 specifies the convergence rate of each param-
eter. These convergence rate requirements are also easy
to satisfy: the convergence rate of ν̂(k), characterized by

∥Aν̂(k) −A∥2, is enough at a n−1/4 rate; since ω0 ∈ Rd is a
finite-dimensional parameter, ω̂(k) often achieves a paramet-
ric n−1/2 rate so that αω

nα
ν
n = O(n−1/2) is automatically

satisfied; α∆
n and α̃∆

n measure the difference between ∆̂(k)

and ∆ν̂(k) . When the data distribution pπb(s, a) is known
and numerical integration in the form of ∆ in (5) is feasible,
we can directly use ∆ν̂(k) as an estimate of ∆. In this case,
∆̂(k) = ∆ν̂(k) and α∆

n = α̃∆
n = 0. Otherwise, α∆

n and
α̃∆
n characterize the bias induced by estimation of pπb(s, a)

and/or numerical approximation of the integral in the form
of ∆. Condition 3 is an artificial but mild assumption for
ease of proof. It restricts the complexity of the estima-
tion class GΩ for Ω, and thus ensures the sample mean of
ϕ(s, a)Ω̂(k)(s, a)−1ϕ(s, a)⊤ to converge to its population
analogue. The definition of Glivenko-Cantelli classes along
with a sufficient condition is discussed in Appendix D.3.
Remark 4.2. Condition 2 of Theorem 4.1 also indicates
that for v̂LMDP to be consistent (i.e., v̂LMDP

p−→ vπe), it is
necessary for the nuisance estimator ν̂(k)’s to be consistent.
Therefore, our estimator does not enjoy the doubly-robust
property, which often occurs in causal inference literature
and only requires one out of all nuisance parameters to be
consistent. Technically, the requirement that ν̂(k)’s should
be consistent arises from an error term in the proof which
solely depends on the error of ν̂(k)’s. Intuitively, absence of
the doubly-robust property is reasonable since this nonpara-
metric term enters the efficient influence functions (10)-(11)
in a complex and nonlinear way, while for most doubly-
robust estimators, efficient influence functions should be
linear in each nuisance parameter (see e.g., Section 3.1 of
(Robins et al., 2008)).

As mentioned earlier, in the ∆̂(k) = ∆ν̂(k) case we have the
following corollary.

Corollary 4.3. Suppose the true model is in Flin, ∆̂(k) =
∆ν̂(k) , ∥ω̂(k) − ω0∥2 = Op(n

−1/2) and ∥Aν̂(k) − A∥2 =
op(n

−1/4) for any 1 ≤ k ≤ K, and Conditions 1 and 3 of
Theorem 4.1 hold. Then v̂LMDP is efficient w.r.t. Flin.

5. Asymptotically Valid Confidence Intervals
In addition to an efficient point estimation, we are often
interested in carrying out statistical inference for vπe . The
asymptotic result

√
n(v̂LMDP − vπe)

d−→ N (0,V(vπe)) in
Theorem 4.1 gives us a direct way of constructing an asymp-
totically valid confidence interval for vπe . Given a con-
sistent variance estimator V̂ p−→ V(vπe), we will always

have P
(
|v̂LMDP − vπe | ≤ z1−α/2

√
V̂/n

)
→ 1−α, where

z1−α/2 is the (1 − α/2)-th quantile of a standard normal
distribution. This means the confidence interval[
v̂LMDP − z1−α/2

√
V̂/n, v̂LMDP + z1−α/2

√
V̂/n

]
(16)
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has an asymptotic 1− α coverage rate.

It suffices to construct a consistent variance estimator V̂ . We
propose the following estimator V̂ = V̂1 + V̂2, where

V̂1 = Φ⊤
πe(I − γAν̂)

−1

·
{
ED[ϕ(s, a)Ω̂(s, a)

−1ϕ(s, a)⊤]
}−1

· (I − γAν̂)
−⊤Φπe , (17)

V̂2 = γ2Φ⊤
πe(I − γAν̂)

−1

·
{
P∆̂(V

2
πe;η̂)− P∆̂(Vπe;η̂)P∆̂(1)

−1P∆̂(Vπe;η̂)
}

· (I − γAν̂)
−⊤Φπe . (18)

Note that (17)-(18) are sample analogues of (7)-(8), so V̂
is the plug-in estimator for V(πe). The following theorem
shows its consistency and thus the asymptotic validity of
the confidence interval (16).

Theorem 5.1. Suppose the following conditions hold:

1. ∥ω̂ − ω0∥2
p−→ 0, ∥Aν̂ −A∥2

p−→ 0, and

E
[∣∣∣Ω̂(s, a)−1 − Ω(s, a)−1

∣∣∣ | Ω̂] p−→ 0,∫ ∥∥∥∆̂(s′)−1 −∆(s′)−1
∥∥∥
2

ds′
p−→ 0;

2. Ω̂ ∈ GΩ such that {ϕ(s, a)Ω̃(s, a)−1ϕ(s, a)⊤ : Ω̃ ∈
GΩ} is a Glivenko-Cantelli class.

Then V̂ p−→ V(vπe), and (16) is an asymptotically valid
confidence interval for vπe with a 1− α coverage rate.

The proof of Theorem 5.1 is deferred to Appendix B.4. The
validity of our variance estimator V̂ along with the corre-
sponding inference procedure is illustrated in simulation
studies.

6. Simulation Studies
In this section we implement simulation experiments to
demonstrate the efficiency of our estimator and the valid-
ity of our proposed inference procedure. We consider a
linear MDP with discrete state and action spaces, where
|S| = 30, |A| = 10, d = 5 and γ = 0.8. The fea-
ture map {ϕ(s, a)}s∈S,a∈A is constructed by drawing i.i.d.
Exp(1) random variables for each component of ϕ(s, a)
and then normalizing it to satisfy

∑d
i=1 ϕi(s, a) = 1. The

reward parameter ω0 has its components generated from
i.i.d. Unif([0, 1]), and for each s ∈ S , the transition param-
eter ν0(s) has its components generated from i.i.d. Exp(1)
followed by normalization to satisfy

∑
s∈S ν0(s) = 1d.

The feature map and true parameters are kept fixed once
they are generated. Denoting S = {0, 1, . . . , 29} and

A = {0, 1, . . . , 9}, we set the variance of the reward as
Ω(s, a) = 1/100 + (10s + a)/600, and the behavior and
target policies are defined as

πb(a | s) =


0.2, if a ≡ s− 1,

0.2, if a ≡ s,

0.6, if a ≡ s+ 1,

0, otherwise,

∀s ∈ S,

πe(a | s) = 0.1, ∀s ∈ S, a ∈ A,

where ≡ means equivalence in the sense of modulo 10. The
initial state distribution is set as p(0)

πb (s) = 1/30, ∀s ∈ S.
Our aim is to evaluate the value function at s0 = 0, i.e.,
vπe = Vπe(0). In the following, all simulation experiments
are repeated by 1,000 times, and the number of samples
used ranges from 5,000 to 100,000.

Efficiency of our estimator. We first compare the perfor-
mance of our estimator with two other estimators: the direct
method (DM) estimator and the double reinforcement learn-
ing (DRL) estimator. The DM estimator is constructed as
v̂DM = Φ⊤

πe(I − γAν̂)
−1ω̂, which is often used in the case

of linear MDPs and is also a consistent estimator for vπe .
The DRL estimator is constructed according to v̂DR in The-
orem 2.1. Note that constructing v̂DR needs two nuisance
estimates for the density ratio w(s, a) and the Q-function
Qπe(s, a). We describe our approach to such nuisance esti-
mation in Appendix C.1.

Figure 1 illustrates the performance of the three estimators,
all without sample splitting. The left plot shows the average,
75-th quantile and 25-th quantile of the 1,000 estimated
biases under different numbers of samples, while the right
plot shows the mean square error (MSE) of the correspond-
ing 1,000 estimates. It is shown that the three estimators
all converge to the true value vπe , while our estimator has
the minimal fluctuation in bias as well as the minimal MSE.
This demonstrates the efficiency of our estimator, and in
turn, implies that both the DM and DRL estimators are not
capable of capturing information in the linear structure of
MDPs. Results of the same three estimators using 2-fold
and 5-fold sample splitting are deferred to Appendix C.2,
which exhibit similar patterns.

Necessity of sample splitting. We next explore whether
the sample splitting (or cross-fitting) technique leads to any
improvement in our estimator. We construct an estimator
without sample splitting (i.e., all samples are used to con-
struct nuisance estimates), a 2-fold sample splitting estima-
tor and a 5-fold sample splitting estimator. Under different
numbers of samples, the average, 75-th quantile and 25-th
quantile of the 1,000 estimated biases, along with the mean
square error (MSE) of the corresponding 1,000 estimates,
are shown in Figure 2. We find that all three estimators share
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Figure 1. Up: the average, 75-th quantile and 25-th quantile of
biases of three estimators. Down: the mean square errors (MSEs)
of three estimators.

a similar scale of biases and MSEs. For two estimators us-
ing sample splitting, the 5-fold one slightly outperforms
the 2-fold one when the sample size is not too large. This
phenomenon may come from the fact that the former uses
more data in constructing nuisance estimators than the latter,
which may potentially increase stability in estimation. We
also compare the performance of DRL estimators with and
without sample splitting in Appendix C.2.

Validity of the inference procedure. We finally validate
the confidence interval constructed in Section 5. Choosing
α = 0.05, we plot the coverage rates of the interval (16) for
the estimator without sample splitting, the 2-fold sample
splitting estimator and the 5-fold sample splitting estimator
in Figure 3, and report the CI lengths in Table 1. It is shown
that all three coverage rates achieves the nominal rate 0.95
when the number of samples is larger than 30,000, thus
proving the validity of our inference procedure.

7. Concluding Remarks
In this paper we have established the semiparametric theory
for linear MDPs as well as a complete approach to efficient
estimation and inference, including an efficient estimator
v̂LMDP for the value vπe and a corresponding asymptotically

Figure 2. Up: the average, 75-th quantile and 25-th quantile of
biases of estimators with/without sample splitting. Down: the
mean square errors (MSEs) of estimators with/without sample
splitting.

Table 1. CI lengths under different sample sizes.

NUM OF SAMPLES (×104) 2 4 6

CI LENGTH 0.0504 0.0359 0.0293

NUM OF SAMPLES (×104) 8 10

CI LENGTH 0.0254 0.0228

valid confidence interval for its inference. Simulation stud-
ies have confirmed the correctness of our theoretical results
and proposed methods.

There are at least two further research directions. The first is
to extend our estimator to the setting where the state and ac-
tion spaces (S and A) are continuous. In that case, integrals
in the form of nuisance parameters ∆ and P∆ are usually
intractable, so proper approximation techniques such as
Monte Carlo and/or numerical integration should be consid-
ered. Another direction is to analyze semiparametric theory
and propose efficient estimation for MDPs with different
structures. The methodology we adopt enables one to make
the best of the known structural information contained in
the model.

8
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Figure 3. Coverage rates for estimators with/without sample split-
ting. The red line is the nominal coverage rate 0.95.
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A. Semiparametric Theory in Linear MDPs
A.1. Background of Semiparametric Theory

In this section, we review some precise definitions and results of semiparametric theory (Bickel et al., 1993; Van der Vaart,
2000; Tsiatis, 2006) that will be frequently used throughout the paper. We consider a semiparametric model F and denote
the true data distribution by F ∈ F . Our purpose is to estimate a functional of the data distribution, β(F ), which is also
known as the parameter of interest, based on a set of i.i.d. observables {Oi}ni=1.

In the sequel, we denote L2 as the Hilbert space of all square-integrable functions, and L0
2 as the Hilbert space of all

mean-zero functions in L2.

Definition A.1 (One-dimensional submodel and score function). A parametric model Fsub = {Fθ : θ ∈ R} is called a
one-dimensional submodel of F passing through F , if (a) F = F0 ∈ Fsub, (b) Fsub ⊂ F , (c) the score function

s(O; θ) =
d
dθ

log(dFθ/dµ)(O)

exists and satisfies E[s(O; 0)2] <∞, and (d) E supθ∈R |(dFθ/dµ)(O)| <∞.

Definition A.2 (Tangent space). The tangent space ΛF (F ) at F with respect to the model F is the linear closure of the
score functions at F over all one-dimensional submodels with respect to the L2 space.

Definition A.3 (Pathwise differentiability, gradient, and efficient influence function). A functional β(F ) is pathwise
differentiable at F with respect to the model F , if there exists a function ψF (O) ∈ L2 such that for any one-dimensional
submodel Fsub = {Fθ : θ ∈ R} of F passing through F at θ = 0 with score function s(O; θ), it holds that

dβ(Fθ)

dθ

∣∣∣∣
θ=0

= E[ψF (O)s(O; 0)].

The function ψF (O) is called a gradient of β(F ) at F with respect to the model F . The efficient influence function (EIF)
ψF,eff(O) is defined as the unique mean-zero gradient that belongs to the tangent space ΛF (F ).

Definition A.4 (Regular estimators). An estimator β̂n is regular for estimating β(F ) with respect to the model F , if there
exists a law G such that for any one-dimensional submodel Fsub = {Fθ : θ ∈ R} of F passing through F , it holds that

√
n{β̂n − β(F1/

√
n)}

D(F1/
√

n)−−−−−−→ G,

where D(F1/
√
n) means convergence in distribution under F1/

√
n.

Definition A.5 (Asymptotically linear estimators). An estimator β̂n is asymptotically linear with influence function
ψ(O) ∈ L0

2 if

√
n{β̂n − β(F )} =

1√
n

n∑
i=1

ψ(Oi) + op(1).

Pathwise differentiability ensures the parameter of interest β(F ) to be estimable at a
√
n convergence rate, excluding

unfavorable ones such as the density at a point. Regularity and asymptotic linearity ensure us to focus on those locally
well-behaved estimators, excluding super-efficient estimators such as the Hodge estimator. If an estimator β̂n is both regular
and asymptotically linear, then it is called a RAL estimator.

For a pathwise differentiable β(F ), the efficiency bound is defined as the variance of its efficient influence function, i.e.,
VF (β, F ) = var{ψF,eff(O)}. It is the minimal asymptotic variance that can be achieved by any regular estimator β̂n. We
then say β̂n is efficient if it is regular and the limiting distribution of

√
n{β̂n − β(F )} is N (0,VF (β, F )). The next theorem

states a necessary and sufficient condition for an estimator β̂n to be efficient.

Lemma A.6 ((Van der Vaart, 2000), Lemma 25.23). Let β(F ) be pathwise differentiable at F with respect to the model F
with efficient influence function ψF,eff(O). Then an estimator β̂n is efficient, if and only if it is asymptotically linear with
influence function ψF,eff(O).

11
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A.2. Proof of Theorem 3.4

Proof of Theorem 3.4. We denote F = Flin for notational simplicity. To derive the efficient influence function of vπe with
respect to the model F , we proceed with the following three steps: (a) calculate a mean-zero gradient ψ(O) of vπe ; (b)
calculate the tangent space ΛF of F ; (c) project ψ(O) onto the tangent space ΛF to obtain the efficient influence function
ψeff(O).

Calculating a mean-zero gradient ψ(O). In (Kallus & Uehara, 2022), the authors consider the nonparametric model,
containing all distributions induced by arbitrary initial state distributions, behavior policy distributions, reward distributions
and transition probability kernels, i.e.,

Fnp = {p(s, a, r, s′) : p(s, a, r, s′) = ps(s)pa|s(a | s)pr|s,a(r | s, a)ps′|s,a(s′ | s, a)}.

A mean-zero gradient of vπe with respect to the model Fnp is given by

ψ(s, a, r, s′) =
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
(r + γVπe(s′)−Qπe(s, a)) .

Since F ⊂ Fnp and reducing the semiparametric model size will only expand the set of gradients, ψ(s, a, r, s′) is still a
mean-zero gradient of vπe with respect to the model F . Recall that ε = r − ϕ(s, a)⊤ω0 = r − E[r | s, a]. By the Bellman
equation

Qπe(s, a) = E[r | s, a] + γE[Vπe(s′) | s, a],

the gradient can also be written as

ψ(s, a, ε, s′) =
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
{ε+ γVπe(s′)− γE[Vπe(s′) | s, a]} .

Calculating the tangent space ΛF . Next, we derive the tangent space ΛF .

Lemma A.7. The tangent space ΛF of F is given by

ΛF =

{
g(s, a, ε) +

ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
:

∫
ν̇(s′)ds′ = 0d, E[g(s, a, ε)] = 0,

E[εg(s, a, ε) | s, a] = c⊤ϕ(s, a) for some c ∈ Rd

}
∩ L0

2.

Proof of Lemma A.7. For any regular parametric submodel

Fsub = {p(s, a, r, s′; θ, ω) = pθ(s)pθ(a | s)pθ(ε(ω) | s, a)pθ(s′ | s, a) :
ε(ω) = r − ϕ(s, a)⊤ω, Eθ[ε(ω)] = 0, pθ(s

′ | s, a) = ϕ(s, a)⊤νθ(s
′)},

the score function at (θ, ω) = (0, ω0) is

gθ(s, a, ε, s
′) = gs(s) + ga|s(s, a) + gε|s,a(s, a, ε) +

ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
,

gω(s, a, ε, s
′) = −κ(ε | s, a)ϕ(s, a),

where ε = r − ϕ(s, a)⊤ω0, gs(s) = d
dθ log pθ(s)

∣∣
θ=0

, ga|s(s, a) = d
dθ log pθ(a | s)

∣∣
θ=0

, gε|s,a(s, a, ε) = d
dθ log pθ(ε |

s, a)
∣∣
θ=0

, ν̇(s′) = d
dθνθ(s

′)
∣∣
θ=0

and κ(ε | s, a) = d log p0(ε|s,a)
dε . Since ε ∈ L0

2 ⊂ L1, we have εp(ε | s, a) ε→±∞−−−−−→ 0.
Integration by parts yields E[κ(ε | s, a) | s, a] = 0 and E[εκ(ε | s, a) | s, a] = −1, so E[εgω(s, a, ε, s′) | s, a] = ϕ(s, a).
Thus, for any score function

gθ,ω(s, a, ε, s
′) = c1gθ(s, a, ε, s

′) + c⊤2 gω(s, a, ε, s
′) ∈ ΛFsub ,

12
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we can let

g(s, a, ε) = c1{gs(s) + ga|s(s, a) + gε|s,a(s, a, ε)} − κ(ε | s, a)c⊤2 ϕ(s, a),

ν̇(s′) =
d
dθ
νθ(s

′)

∣∣∣∣
θ=0

,

so the conditions
∫
ν̇(s′)ds′ = 0d, E[g(s, a, ε)] = 0 and E[εg(s, a, ε) | s, a] = c⊤2 ϕ(s, a) are satisfied. Since ΛF is the

closed linear span of all regular ΛFsub ’s, this implies

ΛF ⊆
{
g(s, a, ε) +

ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
:

∫
ν̇(s′)ds′ = 0d, E[g(s, a, ε)] = 0,

E[εg(s, a, ε) | s, a] = c⊤ϕ(s, a) for some c ∈ Rd

}
∩ L0

2. (19)

On the other hand, for any g(s, a, ε) and ν̇(s′) satisfying these conditions, we let

g̃(s, a, ε) = g(s, a, ε) + κ(ε | s, a)c⊤ϕ(s, a),
gs(s) = E[g̃(s, a, ε) | s],

ga|s(s, a) = E[g̃(s, a, ε) | s, a]− E[g̃(s, a, ε) | s],
gε|s,a(s, a, ε) = g̃(s, a, ε)− E[g̃(s, a, ε) | s, a],

so they satisfy E[gs(s)] = 0, E[ga|s(s, a) | s] = 0, E[gε|s,a(s, a, ε) | s, a] = 0 and E[εgε|s,a(s, a, ε) | s, a] = 0. If g̃ is
bounded, then gs, ga|s and gε|s,a are bounded, and we can construct a regular parametric submodel Fsub with

pθ(s) = p0(s)(1 + θgs(s))cs(θ),

pθ(a | s) = p0(a | s)(1 + θga|s(s, a))ca|s(θ),

pθ(ε | s, a) = p0(ε | s, a)(1 + θgε|s,a(s, a, ε))cε|s,a(θ),

νθ(s
′) = ν0(s

′) + θν̇(s′),

where cs(θ), ca|s(θ) and cε|s,a(θ) are normalizing constants. Since gs, ga|s and gε|s,a are bounded, we can restrict
θ ∈ (−δ, δ) with sufficiently small δ > 0 such that the densities are positive and well-defined. Thus, the tangent space ΛFsub

contains

gs(s) + ga|s(s, a) + gε|s,a(s, a, ε)− κ(ε | s, a)c⊤ϕ(s, a) + ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)

= g(s, a, ε) +
ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
.

If g̃ is unbounded, then we can construct a sequence of bounded score functions {g̃(n)}∞n=1 converging to g̃ in the L2 space,
and then construct {g(n)s }∞n=1, {g(n)a|s }

∞
n=1 and {g(n)ε|s,a}

∞
n=1 with the same procedure as before:

g(n)s (s) = E[g̃(n)(s, a, ε) | s],

g
(n)
a|s (s, a) = E[g̃(n)(s, a, ε) | s, a]− E[g̃(n)(s, a, ε) | s],

g
(n)
ε|s,a(s, a, ε) = g̃(n)(s, a, ε)− E[g̃(n)(s, a, ε) | s, a].

By the same construction of Fsub as above, we can construct a sequence of regular parametric submodels {F (n)
sub }∞n=1, with

the tangent space of each F (n)
sub containing

g̃(n)(s, a, ε)− κ(ε | s, a)c⊤ϕ(s, a) + ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
,

13
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which converges to g(s, a, ε) + ϕ(s,a)⊤ν̇(s′)
ϕ(s,a)⊤ν0(s′)

in the L2 space. Since ΛF is a closed linear span, we obtain

ΛF ⊇
{
g(s, a, ε) +

ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
:

∫
ν̇(s′)ds′ = 0d, E[g(s, a, ε)] = 0,

E[εg(s, a, ε) | s, a] = c⊤ϕ(s, a) for some c ∈ Rd

}
∩ L0

2. (20)

Combining (19) and (20) concludes the proof.

Projecting ψ(O) onto ΛF . Note that the tangent space ΛF can be decomposed into two orthogonal parts, ΛF =
ΛF,1 ⊕ ΛF,2, where

ΛF,1 =
{
g(s, a, ε) : E[g(s, a, ε)] = 0, E[εg(s, a, ε) | s, a] = c⊤ϕ(s, a) for some c ∈ Rd

}
∩ L0

2,

ΛF,2 =

{
ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)
:

∫
ν̇(s′)ds′ = 0d

}
∩ L0

2.

Therefore, to calculate the efficient influence function ψeff(s, a, ε, s
′) = Π[ψ(s, a, ε, s′) | ΛF ], it suffices to calculate

Π[ψ(s, a, ε, s′) | ΛF,1] and Π[ψ(s, a, ε, s′) | ΛF,2] respectively, and then add them up.

To calculate Π[ψ(s, a, ε, s′) | ΛF,1], we first note that

Π[ψ(s, a, ε, s′) | ΛF,1] = Π[E[ψ(s, a, ε, s′) | s, a, ε] | ΛF,1] = Π

[
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
ε | ΛF,1

]
.

Also note that ΛF,1 = ΛF,1,1 ⊕ ΛF,1,2, where

ΛF,1,1 = {g(s, a) : E[g(s, a)] = 0} ∩ L0
2,

ΛF,1,2 =
{
g(s, a, ε) : E[g(s, a, ε) | s, a] = 0, E[εg(s, a, ε) | s, a] = c⊤ϕ(s, a) for some c ∈ Rd

}
∩ L0

2.

The term 1
1−γ

p
(∞)
πe,γ

(s,a)

p
πb (s,a)

ε is orthogonal to ΛF,1,1. Next, we directly apply Lemma D.3 with Z = (s, a, r), X = (s, a),

θ0 = ω0, g(Z; θ0) = r − ϕ(s, a)⊤ω0 = ε and Λ = ΛF,1,2 to obtain

Π[ψ(s, a, ε, s′) | ΛF,1] = Π

[
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
ε | ΛF,1

]

= Π

[
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
ε | ΛF,1,2

]

=
1

1− γ
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]
{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
ϕ(s, a)Ω(s, a)−1ε. (21)

To calculate Π[ψ(s, a, ε, s′) | ΛF,2], we first suppose the desired projection is

Π[ψ(s, a, ε, s′) | ΛF,2] =
ϕ(s, a)⊤ν̇0(s

′)

ϕ(s, a)⊤ν0(s′)
,

∫
ν̇0(s

′)ds′ = 0d.

For any ν̇(s′) satisfying
∫
ν̇(s′)ds′ = 0d, it must hold that

E

{[
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
{r + γVπe(s′)−Qπe(s, a)} − ϕ(s, a)⊤ν̇0(s

′)

ϕ(s, a)⊤ν0(s′)

]
ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)

}
= 0

⇐⇒ E

{[
γ

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
Vπe(s′)− ϕ(s, a)⊤ν̇0(s

′)

ϕ(s, a)⊤ν0(s′)

]
ϕ(s, a)⊤ν̇(s′)

ϕ(s, a)⊤ν0(s′)

}
= 0

⇐⇒
∫ [

γ

1− γ
p
(∞)
πe,γ(s, a)Vπe(s′)− pπb(s, a)

ϕ(s, a)⊤ν̇0(s
′)

ϕ(s, a)⊤ν0(s′)

]
ϕ(s, a)⊤ν̇(s′)dsdads′ = 0.
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Since this holds for arbitrary ν̇(s′) satisfying
∫
ν̇(s′)ds′ = 0d, we have that∫ [

γ

1− γ
p
(∞)
πe,γ(s, a)Vπe(s′)− pπb(s, a)

ϕ(s, a)⊤ν̇0(s
′)

ϕ(s, a)⊤ν0(s′)

]
ϕ(s, a)dsda = c, (22)

for some c ∈ Rd. Now, we define

∆(s′) =

∫
pπb(s, a)

ϕ(s, a)ϕ(s, a)⊤

ϕ(s, a)⊤ν0(s′)
dsda ∈ Rd×d.

Multiplying both sides of (22) by ∆(s′)−1 from the left and integrate over s′, we obtain

γ

1− γ

[∫
∆(s′)−1Vπe(s′)ds′

] [∫
p
(∞)
πe,γ(s, a)ϕ(s, a)dsda

]
=

[∫
∆(s′)−1ds′

]
c,

where we have used the fact that
∫
ν̇0(s

′)ds′ = 0d. Therefore we have solved

c =
γ

1− γ

[∫
∆(s′)−1ds′

]−1 [∫
∆(s′)−1Vπe(s′)ds′

] [∫
p
(∞)
πe,γ(s, a)ϕ(s, a)dsda

]
.

Using (22) again, we obtain

ν̇0(s
′) =

γ

1− γ
∆(s′)−1Vπe(s′)

[∫
p
(∞)
πe,γ(s, a)ϕ(s, a)dsda

]
−∆(s′)−1c

=
γ

1− γ
∆(s′)−1

{
Vπe(s′)I −

[∫
∆(s′)−1ds′

]−1 [∫
∆(s′)−1Vπe(s′)ds′

]}

·
[∫

p
(∞)
πe,γ(s, a)ϕ(s, a)dsda

]
,

and consequently

Π[ψ(s, a, ε, s′) | ΛF,2] =
ϕ(s, a)⊤ν̇0(s

′)

ϕ(s, a)⊤ν0(s′)

=
γ

1− γ
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]

·

{
Vπe(s′)I −

[∫
Vπe(s′)∆(s′)−1ds′

] [∫
∆(s′)−1ds′

]−1
}

· ∆(s′)−1ϕ(s, a)

ϕ(s, a)⊤ν0(s′)
. (23)

Finally, combining (21), (23) and the definition of P∆(f) yields the efficient influence function result of Theorem 3.4. Since
ΛF,1 and ΛF,2 are orthogonal, the efficiency bound is given by

V(vπe) = var{ψeff,1(s, a, ε) + ψeff,2(s, a, s
′)}

= var{ψeff,1(s, a, ε)}+ var{ψeff,2(s, a, s
′)},

where

var{ψeff,1(s, a, ε)} =
1

(1− γ)2
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]
{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1 E
p
(∞)
πe,γ

[ϕ(s, a)],

var{ψeff,2(s, a, s
′)} =

γ2

(1− γ)2
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]
{
P∆(V

2
πe)− P∆(Vπe)P∆(1)

−1P∆(Vπe)
}
E
p
(∞)
πe,γ

[ϕ(s, a)].
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A.3. Theorem 3.4 in the Tabular Case

We assume that S and A are both finite sets, d = |S||A|, and the features {ϕ(s, a)}s∈S,a∈A form an orthonormal basis in
Rd. We will show that the efficient influence function ψeff(s, a, ε, s

′) given in Theorem 3.4 degenerates into

ψeff,np(s, a, r, s
′) =

1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
(r + γVπe(s′)−Qπe(s, a)) .

By assumption, there exists an orthonormal matrix U ∈ Rd×d such that ϕ0(s, a) = U−1ϕ(s, a) is a standard unit vector
with its (s, a)-th component being 1 and any other component being 0, for any state-action pair (s, a). Thus we have

∆(s′) =

∫
pπb(s, a)

ϕ(s, a)ϕ(s, a)⊤

ϕ(s, a)⊤ν0(s′)
dsda

=

∫
pπb(s, a)

Uϕ0(s, a)ϕ0(s, a)
⊤U⊤

ϕ0(s, a)⊤U⊤ν0(s′)
dsda

=: U∆0(s
′)U⊤,

and consequently,

ψeff,1(s, a, ε) =
1

1− γ
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]
{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
ϕ(s, a)Ω(s, a)−1ε

=
1

1− γ
E
p
(∞)
πe,γ

[ϕ0(s, a)
⊤U⊤]

{
E[Uϕ0(s, a)Ω(s, a)−1ϕ0(s, a)

⊤U⊤]
}−1

Uϕ0(s, a)Ω(s, a)
−1ε

=
1

1− γ
E
p
(∞)
πe,γ

[ϕ0(s, a)
⊤]
{
E[ϕ0(s, a)Ω(s, a)−1ϕ0(s, a)

⊤]
}−1

ϕ0(s, a)Ω(s, a)
−1ε,

ψeff,2(s, a, s
′) =

γ

1− γ
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]

·

{
Vπe(s′)I −

[∫
Vπe(s′)∆(s′)−1ds′

] [∫
∆(s′)−1ds′

]−1
}

∆(s′)−1ϕ(s, a)

ϕ(s, a)⊤ν0(s′)

=
γ

1− γ
E
p
(∞)
πe,γ

[ϕ0(s, a)
⊤U⊤]

·

{
Vπe(s′)I −

[∫
Vπe(s′)U−⊤∆0(s

′)−1U−1ds′
] [∫

U−⊤∆0(s
′)−1U−1ds′

]−1
}

· U
−⊤∆0(s

′)−1U−1Uϕ0(s, a)

ϕ0(s, a)⊤U⊤ν0(s′)

=
γ

1− γ
E
p
(∞)
πe,γ

[ϕ0(s, a)
⊤]

·

{
Vπe(s′)I −

[∫
Vπe(s′)∆0(s

′)−1ds′
] [∫

∆0(s
′)−1ds′

]−1
}

∆0(s
′)−1ϕ0(s, a)

P (s′ | s, a)
.

This means if we keep the expected reward and the transition probability unchanged (so the value function remains
unchanged), and only change the feature map ϕ(s, a) into ϕ0(s, a), then the efficient influence function ψeff(s, a, ε, s

′) =
ψeff,1(s, a, ε) + ψeff,2(s, a, s

′) remains unchanged. Therefore, without loss of generality, it suffices to consider the case
where ϕ(s, a)’s are standard unit vectors.

In this special case, E
p
(∞)
πe,γ

[ϕ(s, a)] is a d× 1 vector with its (s, a)-th component given by p(∞)
πe,γ(s, a), and ∆(s′) is a d× d

diagonal matrix with its (s, a)-th diagonal given by p
πb (s,a)

ϕ(s,a)⊤ν0(s′)
. Furthermore,

∫
∆(s′)−1ds′ and

∫
Vπe(s′)∆(s′)−1ds′ are

also d× d diagonal matrices, with their (s, a)-th diagonals given by 1
p
πb (s,a)

and E[Vπe (s′)|s,a]
p
πb (s,a)

, respectively. Consequently,
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the second part of the efficient influence function becomes

ψeff,2(s, a, s
′) =

γ

1− γ

[
· · · p

(∞)
πe,γ(s, a) · · ·

]
. . .

Vπe(s′)− E[Vπe(s′) | s, a]
. . .





0
...
0
1

p
πb (s,a)

0
...
0


=

γ

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
{Vπe(s′)− E[Vπe(s′) | s, a]} .

In addition, E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤] is a d× d diagonal matrix with its (s, a)-th diagonal given by pπb(s, a)Ω(s, a)−1,
so the first part of the efficient influence function is simply given by

ψeff,1(s, a, ε) =
1

1− γ
E
p
(∞)
πe,γ

[ϕ(s, a)⊤]
{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
ϕ(s, a)Ω(s, a)−1ε

=
1

1− γ

[
· · · p

(∞)
πe,γ(s, a) · · ·

]
. . .

Ω(s,a)
p
πb (s,a)

. . .





0
...
0

Ω(s, a)−1ε
0
...
0


=

1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
{r − E[r | s, a]} .

Summing them up and applying the Bellman equation

Qπe(s, a) = E[r | s, a] + γE[Vπe(s′) | s, a],

we obtain

ψeff(s, a, ε, s
′) = ψeff,1(s, a, ε) + ψeff,2(s, a, s

′)

=
1

1− γ

p
(∞)
πe,γ(s, a)

pπb(s, a)
{r + γVπe(s′)−Qπe(s, a)} ,

which concludes our claim.

A.4. Comparison between Efficiency Bounds in Corollary 3.6

Recall from Theorem 2.1 that

Vnp =
1

(1− γ)2
E
[
w(s, a)2 (r + γV (s′)−Q(s, a))

2
]
,

where w(s, a) is the density ratio, Q(s, a) and V (s′) are the Q-function and value function with respect to the target policy
πe, respectively. By independence of r and s′ given (s, a), this efficiency bound can also be decomposed into the reward
and transition parts just like (7)-(8): Vnp = Vnp,1 + Vnp,2, where

Vnp,1 =
1

(1− γ)2
E
[
w(s, a)2 (r − E[r | s, a])2

]
, Vnp,2 =

γ2

(1− γ)2
E
[
w(s, a)2 (V (s′)− E[V (s′) | s, a])2

]
.
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Below we show that in the linear MDP case, such two terms are respectively larger than their correspondences in the
decomposition of V = V1 + V2, as defined in (7)-(8).

Specifically, for the first term we have

Vnp,1 =
1

(1− γ)2
E
[
w(s, a)2ε2

]
=

1

(1− γ)2
E
[
E
[
w(s, a)2ε2 | s, a

]]
=

1

(1− γ)2
E
[
w(s, a)2Ω(s, a)

]
,

V1 = Φ⊤
πe,γ

{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
Φπe,γ

=
1

(1− γ)2
E[w(s, a)ϕ(s, a)⊤]

{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1 E[w(s, a)ϕ(s, a)].

Let a = Ω(s, a)−1/2ϕ(s, a) ∈ Rd,b = w(s, a)ϕ(s, a) ∈ Rd, c = w(s, a)Ω(s, a)1/2 ∈ R. For any x ∈ Rd,

x⊤(aa⊤)x+ 2b⊤x+ c2 = (a⊤x+ c)2 ≥ 0.

Taking expectation with respect to (s, a) yields x⊤E[aa⊤]x+2E[b⊤]x+E[c2] ≥ 0 for any x ∈ Rd, which further leads to[
E[aa⊤] E[b]
E[b⊤] E[c2]

]
⪰ 0 =⇒ E[c2]− E[b⊤]

(
E[aa⊤]

)−1 E[b] ≥ 0.

By definitions of a,b, c, the last inquality essentially states that Vnp,1 ≥ V1, and the difference is at least 1
(1−γ)2 times the

minimum eigenvalue of E
([

Ω(s, a)−1/2ϕ(s, a)
Ω(s, a)1/2w(s, a)

] [
Ω(s, a)−1/2ϕ(s, a)⊤ Ω(s, a)1/2w(s, a)

])
.

For the second term, we illustrate Vnp,2 ≥ V2 and the difference between efficiency bounds via a numerical experiment.
We set γ = 0.5, |S| = 100, |A| = 1 and p(0)

πb (s) = p
(0)
πe (s) = 1/100. The dimension of the feature map varies from 1 to

100. We consider three types of the feature map: 1). each component of ϕ(s, a) is generated randomly from Exp(1) and
then normalized to satisfy ϕ(s, a)⊤1d = 1 for any (s, a) ∈ S ×A; 2). ϕ(sj , a) = ej (the j-th unit vector) for 2 ≤ j ≤ d
and ϕ(s, a) = e1 otherwise; 3). the numbers of feature maps ϕ(s, a) equaling to ej are roughly the same (≈ 100/d). We
call the three cases “random”, “unbalanced”, “balanced”, respectively. Figure 4 plots the absolute and relative differences
between Vnp,2 and V2 when the dimension of the feature map d varied from 1 to 100.

Figure 4. absolute and relative differences between Vnp,2 and V2 when the feature map is random, unbalanced and balanced respectively.

It is shown that the absolute difference Vnp,2 − V2 is always above 0. As the dimension of the feature map d approaches
the size of the state-action space |S||A|, the difference generally becomes smaller. In addition, the absolute and relative
differences are similar in the “random” and “balanced” cases, while apparently larger in the “unbalanced” case. Therefore, it
is likely that the efficiency gain in the transition part of the efficiency bound is larger if ϕ(s, a) is unbalancedly distributed in
Rd.

A.5. Proof of Proposition 3.7

Let σ = λmin

(
E[ϕ(s, a)ϕ(s, a)⊤]

)
. We prove that V1 ≤ O

(
1

σ(1−γ2)

)
and V2 ≤ O

(
1

σ2(1−γ)4

)
.
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Due to Assumption 3.1 and r ∈ [0, Rmax], we have ∥ϕ(s, a)∥2 ≤ 1 and Ω(s, a) ≤ R2
max and therefore

V1 =
1

(1− γ)2
E
p
(∞)
πe

[ϕ(s, a)⊤]
{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1 E
p
(∞)
πe

[ϕ(s, a)]

≤ 1

(1− γ)2
λmax

({
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
)

≤ R2
max

(1− γ)2
λmax

({
E[ϕ(s, a)ϕ(s, a)⊤]

}−1
)

=
R2

max

σ(1− γ)2
.

For any vector α ∈ Rd and ∥α∥2 = 1, we have

α⊤∆(s′)α =
∑

a∈S,a∈A

pπb(s, a)

P (s′ | s, a)
[ϕ(s, a)⊤α]2

≥

(∑
s∈S,a∈A pπb(s, a)[ϕ(s, a)⊤α]2

)2
∑

s∈S,a∈A P (s
′ | s, a)pπb(s, a)[ϕ(s, a)⊤α]2

≥
(
α⊤E[ϕ(s, a)ϕ(s, a)⊤]α

)2∑
s∈S,a∈A P (s

′ | s, a)pπb(s, a)[ϕ(s, a)⊤α]2

≥ σ2∑
s∈S,a∈A P (s

′ | s, a)pπb(s, a)
,

where we have used Cauchy’s inequality and |ϕ(s, a)⊤α| ≤ 1. Thus, for any vector β ∈ Rd and ∥β∥2 = 1, we have

β⊤

(∑
s′∈S

∆(s′)−1

)
β ≤

∑
s′∈S

∑
s∈S,a∈A P (s

′ | s, a)pπb(s, a)

σ2
=

1

σ2
.

Thus by V (s′) ∈ [0, Rmax/(1− γ)], we can bound V2 by

V2 =
γ2

(1− γ)2
E
p
(∞)
πe

[ϕ(s, a)⊤]
{
P∆(V

2)−P∆(V )P∆(1)
−1P∆(V )

}
E
p
(∞)
πe

[ϕ(s, a)]

≤ γ2

(1− γ)2
E
p
(∞)
πe

[ϕ(s, a)⊤]P∆(V
2)E

p
(∞)
πe

[ϕ(s, a)]

≤ γ2

(1− γ)2
λmax

(
P∆(V

2)
)

≤ γ2

(1− γ)2
R2

max

σ2(1− γ)2

=
γ2R2

max

σ2(1− γ)4
,

which completes the proof.

Remark A.8. Now we give a corresponding upper bound for the efficiency bound Vnp in the tabular case. This case is
equivalent to the linear MDP case where ϕ(s, a) = e(s,a) ∈ R|S||A| is a unit vector, as illustrated in Appendix A.3. When
the offline dataset is of good coverage, σ = λmin

(
E[ϕ(s, a)ϕ(s, a)⊤]

)
= mins,a pπb(s, a) ∼ 1

|S||A| , so the bound on the
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reward term is roughly Vnp,1 = O
(

|S||A|
(1−γ)2

)
, and the bound on the transition term is roughly

Vnp,2 =
γ2

(1− γ)2
E
[
w(s, a)2var (V (s′) | s, a)

]
≤ γ2

(1− γ)2

∑
s,a

p
(∞)
πe,γ(s, a)

2

pπb(s, a)
var (V (s′) | s, a)

≤ γ2

(1− γ)2
max
s,a

var (V (s′) | s, a)
pπb(s, a)

≤ γ2

(1− γ)2
maxs,a var (V (s′) | s, a)

mins,a pπb(s, a)
.

The denominator is mins,a pπb(s, a) = σ. For the numerator, Lemma 8 of (Gheshlaghi Azar et al., 2013) indicates
that maxs,a var (V (s′) | s, a) (corresponding to ∥σV π∥∞ in the lemma) is roughly of order O(1/(1 − γ)), so we have

Vnp,2 = O
(

γ2|S||A|
(1−γ)3

)
. Putting these together we obtain Vnp = Vnp,1 + Vnp,2 = O

(
|S||A|
(1−γ)3

)
. Therefore, knowledge of a

specific linear MDP structure reduces the efficiency bound roughly from O(|S||A|) to O(d2).

B. Efficient Estimation and Inference in Linear MDPs
B.1. Derivation of the Matrix Form

We show that

vπe = E
p
(0)
πe
[Vπe(s)] = Φ⊤

πe(I − γA)−1ω0, Vπe(s) = ϕπe(s)⊤(I − γA)−1ω0,

Qπe(s, a) = ϕ(s, a)⊤(I − γA)−1ω0, E
p
(∞)
πe

[ϕ(s, a)⊤] = (1− γ)Φ⊤
πe(I − γA)−1,

where ϕπe(s) = Eπe [ϕ(s, a) | s], Φπe = E
p
(0)
πe
[ϕπe(s)] and A =

∫
ν0(s)ϕπe(s)⊤ds.

We first rewrite the value function using the Bellman equation, i.e.,

Vπe(s) = Eπe [r(0) | s(0) = s] + γEπe [Vπe(s(1)) | s(0) = s]

=

∫
πe(a | s)ϕ(s, a)⊤ω0da+ γ

∫
πe(a | s)ϕ(s, a)⊤ν0(s′)Vπe(s′)dads′

= ϕπe(s)⊤ω0 + γϕπe(s)⊤
∫
ν0(s

′)Vπe(s′)ds′. (24)

Multiplying both sides by ν0(s) from the left and integrate over s, we obtain∫
ν0(s)Vπe(s)ds = Aω0 + γA

∫
ν0(s

′)Vπe(s′)ds′

⇐⇒
∫
ν0(s)Vπe(s)ds = (I − γA)−1Aω0. (25)

where we have used the definition of A. Here, the invertibility of I − γA is guaranteed by Assumption 3.2. In fact, since
0 < γ < 1 and

∥A∥2 =

∥∥∥∥∫ ν0(s)ϕ(s, a)
⊤πe(a | s)dsda

∥∥∥∥
2

≤ sup
a∈A

∥∥∥∥∫ ν0(s)ϕ(s, a)
⊤ds

∥∥∥∥
2

≤ 1,

the matrix I − γA cannot have zero as its eigenvalue, so it is invertible.
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Plugging (25) back to the Bellman equation (24), we obtain

Vπe(s) = ϕπe(s)⊤ω0 + γϕπe(s)⊤(I − γA)−1Aω0 = ϕπe(s)⊤(I − γA)−1ω0.

Consequently, we also have vπe = E
p
(0)
πe
[Vπe(s)] = Φ⊤

πe(I − γA)−1ω0. The forms of Qπe(s, a) and E
p
(∞)
πe

[ϕ(s, a)⊤] can
be derived in a similar way.

B.2. Construction of Nuisance Estimates

Here we discuss some possible choices to construct the nuisance estimate η̂ = (ω̂, ν̂, Ω̂, ∆̂). Specifically, we focus on the
case where |S| and |A| are finite. Estimates below can be extended to the infinite case with nonparametric estimation and/or
supervised learning techniques.

Estimating ŵ. Note that r = ϕ(s, a)⊤w0 + ε, so we can simply use the OLS estimator as an initial estimate of w0:

ŵ =

{
n∑

i=1

ϕ(si, ai)ϕ(si, ai)
⊤

}−1 n∑
i=1

ϕ(si, ai)ri.

Estimating ν̂. Note that P (s′ | s, a) = ϕ(s, a)⊤ν0(s
′), so we can use the MLE as an initial estimate of ν0:

ν̂ = argmax
ν :

∑
s∈S ν(s)=1d

n∑
i=1

log
(
ϕ(si, ai)

⊤ν(s′i)
)
.

An alternative is to use the least squares estimator

ν̂ = argmin
ν :

∑
s∈S ν(s)=1d

∑
(s,a,s′)∈S×A×S

(
ϕ(s, a)⊤ν(s′)− P̂ (s′ | s, a)

)2
,

where P̂ (s′ | s, a) =
∑n

i=1 I(si=s,ai=a,s′i=s′)∑n
i=1 I(si=s,ai=a) is the empirical transition probability.

Estimating Â. In Section 4 we use Aν̂ =
∫
ν̂(s)ϕπe(s)⊤ds =

∑
s∈S ν̂(s)ϕπe(s)⊤ as an estimate of A. This requires

summing up |S| matrices, which may be infeasible particularly when the state space S is large. As an alternative, the
following estimate Â leverages the structure of A and lowers the computation complexity. Note that

ϕ(s, a)⊤A =

∫
ϕ(s, a)⊤ν0(s

′)ϕπe(s′)⊤ds′ = E[ϕπe(s′)⊤ | s, a]

=⇒ A =
{
E[ϕ(s, a)ϕ(s, a)⊤]

}−1 E[ϕ(s, a)ϕπe(s′)⊤].

Therefore we can construct a plug-in estimate for A:

Â =

{
n∑

i=1

ϕ(si, ai)ϕ(si, ai)
⊤

}−1 n∑
i=1

ϕ(si, ai)ϕπe(s′i)
⊤.

Estimating Ω̂. Ω(s, a) is the variance of the reward given the state-action pair is (s, a). We can use the conditional sample
average of residual squares as an estimate of Ω:

Ω̂(s, a) =

∑n
i=1 I(si = s, ai = a)

(
ri − ϕ(si, ai)

⊤ŵ
)2∑n

i=1 I(si = s, ai = a)
.

Estimating ∆̂. When the data distribution pπb(s, a) is known and summing over S ×A is feasible, we can use ∆ν̂(s
′) =∫

pπb(s, a)ϕ(s,a)ϕ(s,a)
⊤

ϕ(s,a)⊤ν̂(s′)
dsda =

∑
(s,a)∈S×A pπb(s, a)ϕ(s,a)ϕ(s,a)

⊤

ϕ(s,a)⊤ν̂(s′)
as an estimate of ∆(s′). Otherwise when pπb(s, a) is

unknown, it is reasonable to use the sample average to estimate ∆(s′):

∆̂(s′) =
1

n

n∑
i=1

ϕ(si, ai)ϕ(si, ai)
⊤

ϕ(si, ai)⊤ν̂(s′)
.
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B.3. Proof of Theorem 4.1

Proof of Theorem 4.1. We focus on the K = 2 case with two folds D1 = {O1, . . . , Om} and D2 = {Om+1, . . . , On},
where m = ⌊n/2⌋ and Oi = (si, ai, ri, s

′
i). Cases with a general K can be proved similarly. Define

v̂1 =
1

m

m∑
i=1

[
ψ0(η̂

(1)) + ψ1(si, ai, ri; η̂
(1),D2) + ψ2(si, ai, s

′
i; η̂

(1))
]
,

v̂2 =
1

n−m

n∑
i=m+1

[
ψ0(η̂

(2)) + ψ1(si, ai, ri; η̂
(2),D1) + ψ2(si, ai, s

′
i; η̂

(2))
]
.

We aim to show that

√
m{v̂1 − vπe} =

1√
m

m∑
i=1

ψeff(si, ai, ri, s
′
i) + op(1), (26)

√
n−m{v̂2 − vπe} =

1√
n−m

n∑
i=m+1

ψeff(si, ai, ri, s
′
i) + op(1), (27)

where ψeff(s, a, r, s
′) is defined in Theorem 3.4, so that v̂LMDP = mv̂1+(n−m)v̂2

n satisfies

√
n{v̂LMDP − vπe} =

1

n

n∑
i=1

ψeff(si, ai, ri, s
′
i) + op(1),

and the result follows by applying Lemma A.6. Without loss of generality we only prove (26).

For any η′ = (ω′, ν′,Ω′,∆′), define e(η′) = Eη[ψeff(s, a, r, s
′; η′)], where Eη is the expectation under the true distribution4

(parameterized by η = (ω0, ν0,Ω,∆)) and ψeff(s, a, r, s
′; η′) as the efficient influence function under the distribution

parameterized by η′ (i.e., replacing ω0, ν0,Ω,∆ with ω′, ν′,Ω′,∆′ in ψeff(s, a, r, s
′) defined in Theorem 3.4). It is clear

that e(η) = 0 by the mean-zero property of efficient influence functions.

Recall that η̂(1) = (ω̂(1), ν̂(1), Ω̂(1), ∆̂(1)) is the nuisance estimate based on D2. We now decompose
√
m{v̂1 − vπe} into

the following four terms:

√
m{v̂1 − vπe} =

1√
m

m∑
i=1

[ψeff(si, ai, ri, s
′
i; η̂

(1))− e(η̂(1))]− 1√
m

m∑
i=1

[ψeff(si, ai, ri, s
′
i; η)− e(η)]︸ ︷︷ ︸

Am

+
1√
m

m∑
i=1

[ψeff(si, ai, ri, s
′
i; η)− e(η)]︸ ︷︷ ︸

Bm

+
√
m{ψ0(η̂

(1))− vπe}+
√
me(η̂(1))︸ ︷︷ ︸

Cm

+
1√
m

m∑
i=1

[ψ1(si, ai, ri; η̂
(1),D2) + ψ2(si, ai, s

′
i; η̂

(1))− ψeff(si, ai, ri, s
′
i; η̂

(1))]︸ ︷︷ ︸
Dm

4Eη is equivalent to E; we add a subscript η only to emphasize its dependence on the true parameter η = (ω0, ν0,Ω,∆).
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Bounding Am. Since η̂(1) is independent of D1, we have

Eη[Am | D2] =
1√
m

m∑
i=1

{
Eη[ψeff(si, ai, ri, s

′
i; η̂

(1))− ψeff(si, ai, ri, s
′
i; η) | D2]− [e(η̂(1))− e(η)]

}
=

√
m
{
Eη[ψeff(s, a, r, s

′; η̂(1))− ψeff(s, a, r, s
′; η) | D2]− [e(η̂(1))− e(η)]

}
=

√
m
{
[e(η̂(1))− e(η)]− [e(η̂(1))− e(η)]

}
= 0.

Furthermore, by Condition 1 of the theorem,

varη[Am | D2] = varη[ψeff(s, a, r, s
′; η̂(1))− ψeff(s, a, r, s

′; η) | D2]

≤ Eη

[
{ψeff(s, a, r, s

′; η̂(1))− ψeff(s, a, r, s
′; η)}2 | D2

]
p−−−−→

m→∞
0.

Therefore, by Chebyshev’s inequality, we have

Qm := Pη[|Am| > δ | D2] ≤
Eη[A

2
m | D2]

δ2
p−−−−→

m→∞
0.

Since |Qm| ≤ 1, by the bounded convergence theorem we get

Pη[|Am| > δ] = Eη[Qm] −−−−→
m→∞

0,

which implies Am = op(1).

Bounding Bm. Since e(η) = 0 and ψeff(si, ai, ri, s
′
i; η) = ψeff(si, ai, ri, s

′
i), we have

Bm =
1√
m

m∑
i=1

ψeff(si, ai, ri, s
′
i).

Bounding Cm. Recall that ψ0(η̂
(1)) = Φ⊤

πe(I − γAν̂(1))−1ω̂(1), vπe = Φ⊤
πe(I − γAν0)

−1ω0, where Aν0 = A =∫
ν0(s)ϕπe(s)⊤ds; and

e(η̂(1)) = Eη[ψeff(s, a, r, s
′; η̂(1))]

(1)
=

1

1− γ
(1− γ)Φ⊤

πe(I − γAν̂(1))−1
{
Eη[ϕ(s, a)Ω̂

(1)(s, a)−1ϕ(s, a)⊤]
}−1

· Eη[ϕ(s, a)Ω̂
(1)(s, a)−1(r − ϕ(s, a)⊤ω̂(1))]

+
γ

1− γ
(1− γ)Φ⊤

πe(I − γAν̂(1))−1

· Eη

{
{Vπe;η̂(1)(s′)I − P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)

−1}∆̂
(1)(s′)−1ϕ(s, a)

ϕ(s, a)⊤ν̂(1)(s′)

}
(2)
= Φ⊤

πe(I − γAν̂(1))−1
{
Eη[ϕ(s, a)Ω̂

(1)(s, a)−1ϕ(s, a)⊤]
}−1

· Eη[ϕ(s, a)Ω̂
(1)(s, a)−1ϕ(s, a)⊤](ω0 − ω̂(1))

+ γΦ⊤
πe(I − γAν̂(1))−1

·
∫

{Vπe;η̂(1)(s′)I − P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)
−1}∆̂

(1)(s′)−1ϕ(s, a)ϕ(s, a)⊤ν0(s
′)

ϕ(s, a)⊤ν̂(1)(s′)
pπb(s, a)dsdads′

(3)
= Φ⊤

πe(I − γAν̂(1))−1(ω0 − ω̂(1))

+ γΦ⊤
πe(I − γAν̂(1))−1

∫
{Vπe;η̂(1)(s′)− P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)

−1}∆̂(1)(s′)−1∆ν̂(1)(s′)ν0(s
′)ds′︸ ︷︷ ︸

Em

,
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where Eη is taken over the randomness of (s, a, r, s′) (not the randomness of η̂(1)), (1) uses E
p
(∞)

πe;η̂(1)

[ϕ(s, a)⊤] = (1 −

γ)Φ⊤
πe(I − γAν̂(1))−1, (2) uses Eη[r | s, a] = ϕ(s, a)⊤ω0, and (3) uses the definition of ∆ν̂(1) .

We next bound Em. We let Φπb = E[ϕ(s, a)]. Then, we have

Em
(1)
=

∫
{Vπe;η̂(1)(s′)− P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)

−1}ν0(s′)ds′ · (1 + op(α
∆
n ))

(2)
=

{(∫
ν0(s

′)ϕπe(s′)⊤ds′
)
(I − γAν̂(1))−1ω̂(1) − P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)

−11d

}
· (1 + op(α

∆
n ))

(3)
=
{
Aν0(I − γAν̂(1))−1ω̂(1) − P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)

−11d

}
· (1 + op(α

∆
n ))

(4)
=
{
Aν0(I − γAν̂(1))−1ω̂(1) − P∆

ν̂(1)
(Vπe;η̂(1))P∆

ν̂(1)
(1)−11d

}
· (1 + op(α

∆
n )) + op(α̃

∆
n )

(5)
=
{
Aν0(I − γAν̂(1))−1ω̂(1) − P∆

ν̂(1)
(Vπe;η̂(1))Φπb

}
· (1 + op(α

∆
n )) + op(α̃

∆
n )

(6)
=
{
(Aν0 −Aν̂(1))(I − γAν̂(1))−1ω̂(1)

}
· (1 + op(α

∆
n )) + op(α̃

∆
n ),

where (1) uses the convergence rate of ∥∆̂(1)(s′)−1∆ν̂(1)(s′) − I∥2, (2) uses Vπe;η̂(1)(s′) = ϕπe(s′)⊤(I − γAν̂(1))ω̂(1)

and
∫
ν0(s

′)ds′ = 1d, (3) uses the definition of Aν0 , (4) uses the convergence rate of ∥P∆̂(1)(Vπe;η̂(1))P∆̂(1)(1)
−1 −

P∆
ν̂(1)

(Vπe;η̂(1))P∆
ν̂(1)

(1)−1∥2, (5) and (6) use the results in Lemma B.1 below.

Combining together, we get

Cm =
√
m{ψ0(η̂

(1))− vπe + e(η̂(1))}

=
√
m
{
Φ⊤

πe(I − γAν̂(1))−1ω̂(1) − Φ⊤
πe(I − γAν0)

−1ω0 +Φ⊤
πe(I − γAν̂(1))−1(ω0 − ω̂(1))

}
+
√
m · γΦ⊤

πe(I − γAν̂(1))−1
{
(Aν0 −Aν̂(1))(I − γAν̂(1))−1ω̂(1)

}
· (1 + op(α

∆
n )) + op(

√
mα̃∆

n )

=
√
m · Φ⊤

πe

{
(I − γAν̂(1))−1 − (I − γAν0)

−1
}
ω0

+
√
m · γΦ⊤

πe(I − γAν̂(1))−1
{
(Aν0 −Aν̂(1))(I − γAν̂(1))−1ω̂(1)

}
· (1 + op(α

∆
n )) + op(

√
mα̃∆

n )

=
√
m · γΦ⊤

πe(I − γAν̂(1))−1(Aν̂(1) −Aν0
)(I − γAν0

)−1(ω0 − ω̂(1))

+
√
m · γΦ⊤

πe(I − γAν̂(1))−1(Aν0 −Aν̂(1))
{
(I − γAν̂(1))−1 − (I − γAν0)

−1
}
ω̂(1)

+
√
m · γΦ⊤

πe(I − γAν̂(1))−1
{
(Aν0 −Aν̂(1))(I − γAν̂(1))−1ω̂(1)

}
· op(α∆

n ) + op(
√
mα̃∆

n )

≲
√
m{∥Aν̂(1) −Aν0

∥2∥ω̂(1) − ω0∥2 + ∥Aν̂(1) −Aν0
∥22 + ∥Aν̂(1) −Aν0

∥2 · op(α∆
n )}+ op(

√
mα̃∆

n )

= op(
√
m{αν

nα
ω
n + (αν

n)
2 + αν

nα
∆
n + α̃∆

n }) = op(1).

Bounding Dm. Note that

Dm =
1√
m

m∑
i=1

[ψ1(si, ai, ri; η̂
(1),D2) + ψ2(si, ai, s

′
i; η̂

(1))− ψeff(si, ai, ri, s
′
i; η̂

(1))]

=
1√
m

m∑
i=1

Φ⊤
πe(I − γAν̂(1))−1

·
({

ED2 [ϕ(s, a)Ω̂
(1)(s, a)−1ϕ(s, a)⊤]

}−1

−
{
Eη[ϕ(s, a)Ω̂

(1)(s, a)−1ϕ(s, a)⊤]
}−1

)
· ϕ(si, ai)Ω̂(1)(si, ai)

−1(ri − ϕ(si, ai)
⊤ω̂(1)),

i.e., the only difference between ψ1(si, ai, ri; η̂
(1),D2) + ψ2(si, ai, s

′
i; η̂

(1)) and ψeff(si, ai, ri, s
′
i; η̂

(1)) is whether to use
empirical/population expectation of the quantity ϕ(s, a)Ω̂(1)(s, a)−1ϕ(s, a)⊤. Furthermore, by the central limit theorem,
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we have

1√
m

m∑
i=1

ϕ(si, ai)Ω̂
(1)(si, ai)

−1(ri − ϕ(si, ai)
⊤ω̂(1)) = Op(1).

If we additionally have∥∥∥∥{ED2
[ϕ(s, a)Ω̂(1)(s, a)−1ϕ(s, a)⊤]

}−1

−
{
Eη[ϕ(s, a)Ω̂

(1)(s, a)−1ϕ(s, a)⊤]
}−1

∥∥∥∥
2

= op(1),

then Dm = op(1). Define

Fm,emp = ED2 [ϕ(s, a)Ω̂
(1)(s, a)−1ϕ(s, a)⊤], Fm,pop = Eη[ϕ(s, a)Ω̂

(1)(s, a)−1ϕ(s, a)⊤].

Since ∥F−1
m,emp − F−1

m,pop∥2 ≤ ∥F−1
m,emp∥2∥Fm,emp − Fm,pop∥2∥F−1

m,pop∥2, ∥F−1
m,emp∥2 = Op(1) and ∥F−1

m,pop∥2 = Op(1),
it suffices to show ∥Fm,emp − Fm,pop∥2 = op(1). In fact, this can be ensured by Condition 4 of the theorem. Since
{ϕ(s, a)Ω̃(s, a)−1ϕ(s, a)⊤ : Ω̃ ∈ GΩ} is a Glivenko-Cantelli class,

∥Fm,emp − Fm,pop∥2

≤ sup
Ω̃∈GΩ

∥∥∥ED2
[ϕ(s, a)Ω̃(s, a)−1ϕ(s, a)⊤]− Eη[ϕ(s, a)Ω̃(s, a)

−1ϕ(s, a)⊤]
∥∥∥
2

p−−−−→
m→∞

0,

which yields the claim.

Finally, combining Am, Bm, Cm and Dm, we obtain

√
m{v̂1 − vπe} = Am +Bm + Cm +Dm =

1√
m

m∑
i=1

ψeff(si, ai, ri, s
′
i) + op(1),

so the proof is complete.

Lemma B.1. Suppose the conditions in Theorem 4.1 hold, and let Φπb = E[ϕ(s, a)]. Then

P∆
ν̂(1)

(1)Φπb = 1d, P∆
ν̂(1)

(Vπe;η̂(1))Φπb = Aν̂(1)(I − γAν̂(1))−1ω̂(1).

Proof of Lemma B.1. Noting that

∆ν̂(1)(s′)ν̂(1)(s′) =

∫
pπb(s, a)

ϕ(s, a)ϕ(s, a)⊤ν̂(1)(s′)

ϕ(s, a)⊤ν̂(1)(s′)
dsda =

∫
pπb(s, a)ϕ(s, a)dsda = Φπb ,

we have

P∆
ν̂(1)

(1)Φπb =

∫
∆ν̂(1)(s′)−1Φπbds′ =

∫
ν̂(1)(s′)ds′ = 1d,

and

P∆
ν̂(1)

(Vπe;η̂(1))Φπb =

∫
∆ν̂(1)(s′)−1ΦπbVπe;η̂(1)(s′)ds′

=

∫
ν̂(1)(s′)ϕπe(s′)⊤(I − γAν̂(1))ω̂(1)ds′

= Aν̂(1)(I − γAν̂(1))−1ω̂(1).
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B.4. Proof of Theorem 5.1

Proof of Theorem 5.1. Recall from (17)-(18) that V̂ = V̂1 + V̂2, where

V̂1 = Φ⊤
πe(I − γAν̂)

−1
{
ED[ϕ(s, a)Ω̂(s, a)

−1ϕ(s, a)⊤]
}−1

(I − γAν̂)
−⊤Φπe ,

V̂2 = γ2Φ⊤
πe(I − γAν̂)

−1
{
P∆̂(V

2
πe;η̂)− P∆̂(Vπe;η̂)P∆̂(1)

−1P∆̂(Vπe;η̂)
}
(I − γAν̂)

−⊤Φπe .

By Condition 1 of the theorem, we have∥∥(I − γAν̂)
−1 − (I − γA)−1

∥∥
2
=
∥∥γ(I − γAν̂)

−1(Aν̂ −A)(I − γA)−1
∥∥
2

≤ γ∥(I − γAν̂)
−1∥2∥Aν̂ −A∥2∥(I − γA)−1∥2

= op(1).

We aim to prove V̂1
p−→ var{ψeff,1(s, a, ε)} and V̂2

p−→ var{ψeff,2(s, a, s
′)}, so V̂ p−→ V(vπe) follows by adding them up. On

the one hand, by Condition 2 of the theorem,∥∥∥ED[ϕ(s, a)Ω̂(s, a)
−1ϕ(s, a)⊤]− E[ϕ(s, a)Ω̂(s, a)−1ϕ(s, a)⊤ | Ω̂]

∥∥∥
2

≤ sup
Ω̃∈GΩ

∥∥∥ED[ϕ(s, a)Ω̃(s, a)
−1ϕ(s, a)⊤]− E[ϕ(s, a)Ω̃(s, a)−1ϕ(s, a)⊤]

∥∥∥
2

= op(1).

In addition, by Jensen’s inequality and consistency of Ω̂ in Condition 1 of the theorem, we have∥∥∥E[ϕ(s, a)Ω̂(s, a)−1ϕ(s, a)⊤ | Ω̂]− E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]
∥∥∥
2

=
∥∥∥E [ϕ(s, a)(Ω̂(s, a)−1 − Ω(s, a)−1

)
ϕ(s, a)⊤ | Ω̂

]∥∥∥
2

≤ E
[∥∥∥ϕ(s, a)(Ω̂(s, a)−1 − Ω(s, a)−1

)
ϕ(s, a)⊤

∥∥∥
2
| Ω̂
]

= E
[∣∣∣Ω̂(s, a)−1 − Ω(s, a)−1

∣∣∣ ∥∥ϕ(s, a)ϕ(s, a)⊤∥∥
2
| Ω̂
]

= E
[∣∣∣Ω̂(s, a)−1 − Ω(s, a)−1

∣∣∣ ∥ϕ(s, a)∥22 | Ω̂
]

≤ d · E
[∣∣∣Ω̂(s, a)−1 − Ω(s, a)−1

∣∣∣ | Ω̂]
= op(1).

Combining the above two together, we obtain∥∥∥ED[ϕ(s, a)Ω̂(s, a)
−1ϕ(s, a)⊤]− E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

∥∥∥
2
= op(1).

This together with consistency of (I − γAν̂)
−1 yields

V̂1
p−→ Φ⊤

πe(I − γA)−1
{
E[ϕ(s, a)Ω(s, a)−1ϕ(s, a)⊤]

}−1
(I − γA)−⊤Φπe = var{ψeff,1(s, a, ε)}. (28)

On the other hand, to prove V̂2
p−→ var{ψeff,2(s, a, s

′)} it suffices to show

P∆̂(1)
p−→ P∆(1), P∆̂(Vπe;η̂)

p−→ P∆(Vπe), P∆̂(V
2
πe;η̂)

p−→ P∆(V
2
πe). (29)

This along with (I − γAν̂)
−1 p−→ (I − γA)−1 yields

V̂2
p−→ γ2Φ⊤

πe(I − γA)−1
{
P∆(V

2
πe)− P∆(Vπe)P∆(1)

−1P∆(Vπe)
}
(I − γA)−⊤Φπe = var{ψeff,2(s, a, s

′)}. (30)
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In fact, by Jensen’s inequality, Condition 1 of the theorem and Lemma B.2 below, we have

∥P∆̂(1)− P∆(1)∥2 =

∥∥∥∥∫ (∆̂(s′)−1 −∆(s′)−1
)

ds′
∥∥∥∥
2

≤
∫ ∥∥∥∆̂(s′)−1 −∆(s′)−1

∥∥∥
2

ds′

= op(1),

∥P∆̂(Vπe;η̂)− P∆(Vπe)∥2 =

∥∥∥∥∫ (∆̂(s′)−1Vπe;η̂(s
′)−∆(s′)−1Vπe(s′)

)
ds′
∥∥∥∥
2

≤
∥∥∥∥∫ (∆̂(s′)−1 −∆(s′)−1

)
Vπe;η̂(s

′)ds′
∥∥∥∥
2

+

∥∥∥∥∫ ∆(s′)−1 (Vπe;η̂(s
′)− Vπe(s′)) ds′

∥∥∥∥
2

≤
∫ ∥∥∥∆̂(s′)−1 −∆(s′)−1

∥∥∥
2
|Vπe;η̂(s

′)|ds′

+

∫ ∥∥∆(s′)−1
∥∥
2
|Vπe;η̂(s

′)− Vπe(s′)|ds′

=

∫ ∥∥∥∆̂(s′)−1 −∆(s′)−1
∥∥∥
2

ds′ · sup
s′∈S

|Vπe;η̂(s
′)|

+

∫ ∥∥∆(s′)−1
∥∥
2

ds′ · sup
s′∈S

|Vπe;η̂(s
′)− Vπe(s′)|

= sup
s′∈S

|Vπe;η̂(s
′)| · op(1) +

∫ ∥∥∆(s′)−1
∥∥
2

ds′ · op(1)

= op(1),

and

∥P∆̂(V
2
πe;η̂)− P∆(V

2
πe)∥2 =

∥∥∥∥∫ (∆̂(s′)−1Vπe;η̂(s
′)2 −∆(s′)−1Vπe(s′)2

)
ds′
∥∥∥∥
2

≤
∥∥∥∥∫ (∆̂(s′)−1 −∆(s′)−1

)
Vπe;η̂(s

′)2ds′
∥∥∥∥
2

+

∥∥∥∥∫ ∆(s′)−1
(
Vπe;η̂(s

′)2 − Vπe(s′)2
)

ds′
∥∥∥∥
2

≤
∫ ∥∥∥∆̂(s′)−1 −∆(s′)−1

∥∥∥
2
|Vπe;η̂(s

′)|2ds′

+

∫ ∥∥∆(s′)−1
∥∥
2
|Vπe;η̂(s

′)2 − Vπe(s′)2|ds′

=

∫ ∥∥∥∆̂(s′)−1 −∆(s′)−1
∥∥∥
2

ds′ · sup
s′∈S

|Vπe;η̂(s
′)|2

+

∫ ∥∥∆(s′)−1
∥∥
2

ds′ · sup
s′∈S

|Vπe;η̂(s
′)2 − Vπe(s′)2|

≤ sup
s′∈S

|Vπe;η̂(s
′)|2 · op(1)

+

∫ ∥∥∆(s′)−1
∥∥
2

ds′ ·
(
sup
s′∈S

|Vπe;η̂(s
′)|+ sup

s′∈S
|Vπe(s′)|

)
· op(1)

= op(1),
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which prove (29). Finally, combining (28) and (30) yields V̂ p−→ V(vπe), and by Slutsky’s theorem we obtain

P
(
|v̂LMDP − vπe | ≤ z1−α/2

√
V̂/n

)
→ 1− α,

where z1−α/2 is the (1− α/2)-th quantile of a standard normal distribution.

Lemma B.2. Suppose the conditions in Theorem 5.1 hold. Then

sup
s′∈S

|Vπe;η̂(s
′)− Vπe(s′)| = op(1), sup

s′∈S
|Vπe;η̂(s

′)| = Op(1), sup
s′∈S

|Vπe(s′)| = Op(1).

Proof of Lemma B.2. For the first we have

sup
s′∈S

|Vπe;η̂(s
′)− Vπe(s′)| = sup

s′∈S

∣∣ϕπe(s′)(I − γAν̂)
−1ω̂ − ϕπe(s′)(I − γA)−1ω0

∣∣
≤ sup

s′∈S

{ ∣∣ϕπe(s′)
[
(I − γAν̂)

−1 − (I − γA)−1
]
ω̂
∣∣

+
∣∣ϕπe(s′)(I − γA)−1(ω̂ − ω0)

∣∣ }
≤ sup

s′∈S

{
∥ϕπe(s′)∥2

∥∥(I − γAν̂)
−1 − (I − γA)−1

∥∥
2
∥ω̂∥2

+ ∥ϕπe(s′)∥2∥(I − γA)−1∥2∥ω̂ − ω0∥2
}

≤ d∥ω̂∥2 · op(1) + d∥(I − γA)−1∥2 · op(1)
= op(1),

where we use the fact that each component of ϕπe(s′) is no more than 1 by Assumption 3.1 and the definition of ϕπe .

Similarly, for the second and the third we have

sup
s′∈S

|Vπe;η̂(s
′)| = sup

s′∈S

∣∣ϕπe(s′)(I − γAν̂)
−1ω̂

∣∣
≤ sup

s′∈S
∥ϕπe(s′)∥2∥(I − γAν̂)

−1∥2∥ω̂∥2

≤ d∥(I − γAν̂)
−1∥2∥ω̂∥2

= op(1),

and

sup
s′∈S

|Vπe(s′)| = sup
s′∈S

∣∣ϕπe(s′)(I − γA)−1ω0

∣∣
≤ sup

s′∈S
∥ϕπe(s′)∥2∥(I − γA)−1∥2∥ω0∥2

≤ d∥(I − γA)−1∥2∥ω0∥2
= op(1).

C. Additional Details for Simulation Studies
C.1. Construction of Nuisance Estimators in DRL

Here we discuss how to produce nuisance estimates ŵ(s, a) and Q̂πe(s, a) so as to construct the DRL estimator. For the
Q-function, we know from Appendix B.1 that Qπe(s, a) = ϕ(s, a)⊤(I − γA)−1ω0, so we can use its plug-in estimate
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Q̂πe(s, a) = ϕ(s, a)⊤(I − γAν̂)
−1ω̂. For the density ratio, we use the fact that for any test function f : S × A → R, we

have

E[w(s, a){−f(s, a) + γf̃(s′)}] + (1− γ)E
p
(0)
πe
[f̃(s)] = 0, (31)

where f̃(s) = Eπe [f(s, a) | s]. This fact is widely used for estimating the density ratio in the OPE literature (see e.g.,
Section 3 in (Uehara et al., 2021)).

In our simulation studies, both |S| and |A| are finite, so it requires |S||A| moment conditions like (31) to ensure the unique
characterization of w(s, a). We can choose the test functions to be fs0,a0

(s, a) = I(s = s0, a = a0), with (s0, a0) ranging
over S ×A. In this case, we have f̃s0,a0

(s) = I(s = s0)π
e(a0 | s0). These lead to a natural GMM estimate for w(s, a) by

plugging the empirical mean and the test functions into (31):

ŵ = argmin
w : w(s,a)≥0,E[w(s,a)]=1

∑
s∈S,a∈A

[(ns,a,s
n

γπe(a | s)− ns,a
n

)
w(s, a) + (1− γ)p

(0)
πe (s)πe(a | s)

]2
,

where ns,a,s = #{1 ≤ i ≤ n : si = s, ai = a, s′i = s} and ns,a = #{1 ≤ i ≤ n : si = s, ai = a}. The resulting
minimizer ŵ(s, a) is chosen to be our nuisance estimate for w(s, a).

C.2. Additional Simulation Results

Here we present additional experiment results omitted in Section 6. We compare the performance of the DM, DRL and
our proposed estimator, all using 2-fold (resp. 5-fold) sample splitting, in Figure 5 (resp. Figure 6). Both cases exhibit the
superiority of our estimator in aspect of smaller variation in the estimator.

Figure 5. Left: the average, 75-th quantile and 25-th quantile of biases of three estimators. Right: the mean square errors (MSEs) of three
estimators.

In addition, we plot in Figure 7 the biases and MSEs of DRL estimators without sample splitting, as well as with 2-fold
and 5-fold sample splitting. All three estimators share similar performance. For sample splitting estimators, the 5-fold one
has a smaller MSE than the 2-fold one, implying that increasing the number of folds may increase the stability of the final
estimator.

D. Auxiliary Results
D.1. Double Reinforcement Learning

Here we provide a rigorous statement of Theorem 2.1 as proposed in (Kallus & Uehara, 2022). The result is composed of
two parts.

Theorem D.1 (Theorem 4 of (Kallus & Uehara, 2022)). Consider the fully nonparametric model for the data distribution
Fnp = {p : p(s, a, r, s′) = ps(s)pa|s(a | s)pr|s,a(r | s, a)ps′|s,a(s′ | s, a)}. The efficient influence function and the
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Figure 6. Left: the average, 75-th quantile and 25-th quantile of biases of three estimators. Right: the mean square errors (MSEs) of three
estimators.

Figure 7. Left: the average, 75-th quantile and 25-th quantile of biases of estimators with/without sample splitting. Right: the mean square
errors (MSEs) of estimators with/without sample splitting.

efficiency bound with respect to the model Fnp for estimating vπe are given by

ψeff,np(s, a, r, s
′) =

1

1− γ
w(s, a)(r + γVπe(s′)−Qπe(s, a)),

Vnp(vπe) =
1

(1− γ)2
E
[
w(s, a)2(r + γVπe(s′)−Qπe(s, a))2

]
.

Theorem D.2 (Theorem 8 of (Kallus & Uehara, 2022)). Suppose ŵ(s, a) and Q̂πe(s, a) are some estimates of w(s, a) and
Qπe(s, a). Define κwn , κ

q
n such that ∥ŵ − w∥2 ≤ κwn and ∥Q̂πe −Qπe∥2 ≤ κqn. Suppose that

1. w ≤ Cw and pb,s′(·)/pb,s(·) ≤ Cs′ , where pb,s′(·) and pb,s(·) are marginal densities of pπb(s, a, r, s′) with respect to
s′ and s;

2. 0 ≤ Q̂πe ≤ (1− γ)−1Rmax and 0 ≤ ŵ ≤ Cw;

3. κwn ∨ κqn = op(1) and κwnκ
q
n = op(n

−1/2);

4. ŵ ∈ Fw, Q̂πe ∈ Fq such that logN (τ,Fw,L∞) = O(1/τ2) and logN (τ,Fq,L∞) = O(1/τ2), where N (τ,F ,L∞)
is the τ -covering number of F with respect to L∞.

Then the following estimator is efficient:

v̂DR = E
p
(0)
πe
[V̂πe(s)] +

1

n(1− γ)

n∑
i=1

ŵ(si, ai)(ri + γV̂πe(s′i)− Q̂πe(si, ai)),
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where V̂πe(s) is defined in terms of Q̂πe(s, a) by taking expectation over a ∼ πe(· | s). In particular,
√
n(v̂DR − vπe)

d−→
N (0,Vnp(vπe)).

D.2. Projection Formula

Lemma D.3 characterizes the explicit formula of the projection of a function to a specific space in conditional moment
models.

Lemma D.3 ((Severini et al., 2013), Lemma G.1). Suppose the random vectors Z and X satisfy the conditional moment
restriction E[g(Z; θ0) | X] = 0, where θ0 ∈ Rp and g(Z; θ0) is a q × 1 vector of functions known up to θ0. Define

Ω(X) = E[g(Z; θ0)g(Z; θ0)⊤ | X], D(X) =
∂E[g(Z; θ0) | X]

∂θ⊤
, V = E[D(X)⊤Ω(X)−1D(X)].

Suppose in addition that E∥g(Z; θ0)∥2 ∨ E∥D(X)∥2 ∨ ∥Ω(X)−1∥∞ <∞ and V is invertible. Consider the space

Λ = {s(Z,X) : E[s(Z,X) | X] = 0, E[g(Z; θ0)s(Z,X) | X] ∈ R(D(X))} ∩ L0
2,

where R(D(X)) is the column space of D(X) ∈ Rq×p. Then, for any h(Z,X) ∈ L2, it holds that

Π[h | Λ] = h− E[h | X]− g⊤Ω(X)−1
{
E[gh | X]−D(X)V −1E[D(X)⊤Ω(X)−1E[gh | X]]

}
.

D.3. Glivenko-Cantelli Property

Definition D.4 defines P -Glivenko-Cantelli function classes. We omit “P -” when it refers to the true distribution and makes
no confusion. Lemma D.5 gives a sufficient condition for a function class to be P -Glivenko-Cantelli. Many commonly used
estimation classes such as pointwise compact classes, smooth function classes and Sobolev classes satisfy this condition (see
Chapter 19 of (Van der Vaart, 2000) for details).

Definition D.4 (P -Glivenko-Cantelli, (Van der Vaart, 2000)). A class F of measurable functions f : X → R is called
P -Glivenko-Cantelli if

∥Pnf − Pf∥F = sup
f∈F

|Pnf − Pf | a.s.−−→ 0,

where

Pnf =
1

n

n∑
i=1

f(Xi), Pf =

∫
fdP.

Lemma D.5 ((Van der Vaart, 2000), Theorem 19.4). Every class F of measurable functions such thatN[](ϵ,F ,L1(P )) <∞
for every ϵ > 0 is P -Glivenko-Cantelli, where N[](ϵ,F ,L1(P )) is the ϵ-bracketing number of F with respect to L1(P ).
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