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Abstract

Ad hoc teamwork requires an agent to cooperate
with unknown teammates without prior coordina-
tion. Many works propose to abstract teammate
instances into high-level representation of types
and then pre-train the best response for each type.
However, most of them do not consider the distri-
bution of teammate instances within a type. This
could expose the agent to the hidden risk of type
confounding. In the worst case, the best response
for an abstract teammate type could be the worst
response for all specific instances of that type.
This work addresses the issue from the lens of
causal inference. We first theoretically demon-
strate that this phenomenon is due to the spuri-
ous correlation brought by uncontrolled teammate
distribution. Then, we propose our solution, CT-
CAT, which disentangles such correlation through
an instance-wise teammate feedback rectification.
This operation reweights the interaction of team-
mate instances within a shared type to reduce the
influence of type confounding. The effect of CT-
CAT is evaluated in multiple domains, including
classic ad hoc teamwork tasks and real-world sce-
narios. Results show that CTCAT is robust to the
influence of type confounding, a practical issue
that directly hazards the robustness of our trained
agents but was unnoticed in previous works.

1. Introduction

Developing agents that can cooperate with teammates with-
out prior coordination is a well-established problem in the
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community of multi-agent systems, usually known as ad
hoc teamwork (Bowling & McCracken, 2005; Stone et al.,
2010). Consider a scenario where an agent is required to
cooperate with some unknown teammates in an emergency
rescue operation. Due to the urgent situation, the agent has
no opportunity to negotiate with others about their division
of work before the task begins. However, in order to achieve
the common goal, the agent needs to cooperate with others
effectively on the fly, without knowing their abilities. This
forms a typical scenario of ad hoc teamwork. As agents pro-
liferate in the real world and their functions become more di-
versified, the application of ad hoc teamwork is prevalent in
many domains, such as online games (Canaan et al., 2019),
human-computer interactions (Suriadinata et al., 2021) and
visual navigation (Wang et al., 2021).

For practical ad hoc teamwork tasks where most teammates
only appear occasionally, learning the best response for each
individual becomes too costly (Rovatsos & Wolf, 2002).
Instead, many works address the problem through the frame-
work of type-based approach (Mirsky et al., 2022). These
works strive to abstract teammate behaviors into high-level
representation of types. During deployment, the agent rep-
resents the unknown teammate with a most likely type and
then employs the strategy pre-trained for that type. This
approach works well when the type suitably represents the
teammate, and the agent’s response for that type is properly
trained. However, we notice that most existing works do
not consider the distribution of teammate instances when
pre-training the agent’s best responses. Instead, they are
obtained upon the aggregated behaviors of instances within
a certain type. This could expose the agent to the hidden
risk of type confounding, a problem that was unnoticed in
previous works but would directly hazard the robustness
of our agent. In the worst case, the best response for an
abstract teammate type becomes the worst response for all
specific instances belonging to that type.

To demonstrate the risk of type confounding more intuitively,
we provide an example in Figure 1. Suppose Alice runs a
pet boarding shop where her business is to temporarily take
care of pets from busy owners. Most pets are new to Alice,
so it forms a kind of ad hoc teamwork between her and all
the pets. Alice assumes that in unfamiliar environments,
some pets need more company while others prefer to be
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Figure 1. An example of type confounding in ad hoc teamwork.
For the general cat-type pets, 71 is the best response. However, for
all instances of this type, 72 is more favorable than 7.
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alone. Therefore, she prepares two policies (7 and 72)
and starts to infer the best response for each type of pet.
Alice observes that for pets of type cat in her shop, 600
out of 1,000 customers give positive feedback when she
applies 71, while only 500 out of 1,000 customers give
positive feedback to 7. Thus, Alice believes 7 is the best
response for future customers with cats. One day, Alice
wants to examine the impact of cat age on her policies, so
she divides all cats into two groups: kittens and adult cats.
Surprisingly, for both groups, 72 is more favorable than 7.
This suggests the initial choice of Alice was problematic:
the best response for cat-type pets is the worst response for
all instances forming that type.! This example demonstrates
the risk of type confounding if the agent does not consider
the distribution of teammate instances.’

This work analyzes type confounding from the lens of causal
inference (Pearl, 2009). We first theoretically demonstrate
that this phenomenon is due to spurious correlation brought
by uncontrolled teammate distribution, which forms a con-
founder between the agent’s policy and the cooperation
outcome. Briefly speaking, a confounder is a factor that
simultaneously influences the cause and effect. In the con-
text of ad hoc teamwork, the agent’s policy (the cause) is
adjusted during its interaction with the teammate, and they
together determine the cooperation outcome (the effect).
Therefore, the teammate distribution forms a confounder
when the agent pre-trains the best response towards a cer-
tain type. If the confounder is not handled properly, it will
easily introduce spurious correlations between cause and
effect, making the learned best response unreliable. We
name this phenomenon type confounding due to its close

!'This phenomenon is known as Simpson’s paradox.

>The term teammate instance refers to teammate individuals
belonging to a certain type, featured by specific properties (cat
age in this example). It is named as such because it represents the
instantiation of teammates belonging to an abstract type.

relationship with the teammate type. This problem cannot
be directly solved by regular practices such as collecting
more data, since it is caused by the intrinsic structure of the
dependency graph which is invariant to data size.

Based on this finding, we propose our solution CTCAT
(Controlling Type Confounding in Ad hoc Teamwork) to
address the issue of type confounding. Specifically, CTCAT
disentangles the spurious correlation between the agent’s
policy and the cooperation outcome through an instance-
wise teammate feedback rectification, which is derived by
performing causal inference over the distribution of opti-
mal cooperation outcomes. This operation reweights the
interaction of teammate instances within a shared type to
make them align with an ideally unbiased distribution. With
this procedure, the spurious correlation between the agent’s
policy and the cooperation outcome is untangled, which
reduces the influence of type confounding. We evaluate
the effect of CTCAT in multiple domains, including classic
ad hoc teamwork tasks and real-world scenarios. Results
show that our solution is robust to type confounding, a prac-
tical issue that directly hazards the robustness of our trained
agents but was unnoticed in previous works. To our knowl-
edge, CTCAT is the first work to (1) unveil the existence of
type confounding in ad hoc teamwork, and (2) propose a
causality-based solution to reduce its influence.

2. Related Work

This section discusses related works of ad hoc teamwork.
‘We divide relevant research into solutions with handcrafted
teammate types and learning-based ones.

2.1. Handcrafted Teammate Types

Many works on ad hoc teamwork directly train the agent’s
best response towards a set of handcrafted teammate types.
For example, Albrecht and Ramamoorthy (2013) proposed
a solution called HBA, which modeled ad hoc teamwork
within the framework of Bayesian game (Harsanyi, 1967).
They applied the solution to tasks with real humans, and
the agent’s policy was trained on teammate types designed
by experts. The PLASTIC model, proposed by Barrett et
al. (2017), suggested inferring the teammate types through
a dynamic procedure of Bayesian posterior approximation.
They enabled the model to work in a synthetic soccer game,
where different policies were trained to cooperate with ded-
icated soccer teams (Hausknecht et al., 2016). Chen et al.
(2020) designed an attention network to perform teammate
type inference, which incorporated the temporal informa-
tion flexibly. Nevertheless, their solution was still based
on pre-training best responses over a static set of teammate
types, which they chose to inherit the setting of Barrett et
al. (2017). Ravula et al. (2019) proposed a changing point
detector to monitor the time point at which the teammate
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Figure 2. The dependency graph of ad hoc teamwork during pre-
training (solid arrows) and deployment (dash arrows).

changes its behavior patterns. The teammate types in their
work were obtained by a heuristic search algorithm to find
the optimal path (Hart et al., 1968). A common characteris-
tic of these works is that their teammate types are abstrac-
tions of manually specified behaviors, which corresponds
to a distribution of teammate instances. However, when the
agent pre-trains the best response for a certain type, most
works do not consider the distribution of instances within
that type. This opens the door of type confounding, which
hazards the robustness of learned strategies.

2.2. Learning-Based Teammate Types

To avoid the labor of manually designing teammate types,
many works propose to model ad hoc teamwork in a more
flexible approach. For example, Papoudakis et al. (2021)
proposed to reconstruct the teammate’s behaviors by the
agent’s local observation through an encoder-decoder net-
work, where similar behaviors were encoded into adjacent
embedding vectors. The agent’s response was then gener-
ated with a policy conditioned on the inferred teammate
embedding. Zintgraf et al. (2021) adopted a similar ap-
proach, where their teammate embeddings were obtained
by a sequential variational auto-encoder. Gu et al. (2021)
proposed to introduce an information-based regularizer to
derive proxy representations of the teammate. This proxy
representation was then used to generate hyper networks
which guide the agent’s best response. Melo & Sardinha
(2016) proposed to simultaneously identify the teammate’s
strategy and the task to be completed, which leads to poli-
cies that are more task-oriented. Some works expand the
teammate types into larger space. For instance, Xing et al.
(2021) proposed to generate the teammate with an entropy
regularizer. Rahman et al. (2021) proposed to solve ad
hoc teamwork in an open environment, and the teammate
type was captured with a graph neural network. Although
these works adopt more advanced approaches to represent
the teammate types, their best responses towards a given
teammate type are directly trained upon the set of behaviors
associated with that type. In this procedure, the distribution

of teammate instances is usually neglected. Therefore, the
problem of type confounding still exists, since it is rooted in
the structure of ad hoc teamwork’s dependency graph which
is invariant to either the format of type representation or the
capacity of type space. In consequence, a new solution is
required to address the issue of type confounding, and our
work is the first attempt to fill this blank.

3. Preliminaries

This section provides preliminaries of our work. We first re-
view the framework of stochastic Bayesian game (Harsanyi,
1967; Albrecht et al., 2016), which models the interaction
between our controlled agent with an unknown teammate.
Then, we introduce the dependency graph of ad hoc team-
work during pre-training and deployment (depicted in Figure
2), which contains the cause of type confounding.

3.1. Stochastic Bayesian Game

The framework of stochastic Bayesian game is suitable to
model ad hoc teamwork since it is dedicated to scenarios
where agents interact with some unknown players. Specif-
ically, a stochastic Bayesian game can be defined as a tu-
ple of (N, S,{A"},0, P, R,v), where \ is the set of all
agents n € N, and Ny denotes the set of agents with type
6. S is the set of all valid states s € S. A" is the set of
valid actions o € A" for agent n and A = Xpep A"
is the set of joint action a. © is the set of all possible
types for the teammate, where each type is represented as
0 €©. P:SxAxS — [0,1] is the transition function.
R : S x A — Ris the reward function, which is shared by
all agents since we focus on cooperative tasks. v € (0,1] is
the discount factor for future rewards.

Without loss of generality, we use the superscript ¢ to denote
our controlled agent, which needs to cooperate with the
unknown teammate j without prior coordination. The team-
mate’s type representation 6 € © is abstracted from similar
teammate behaviors, and all instances with a common team-
mate type share an identical best response 7. This enables
the learned policy to generalize to teammates unseen but
with similar type representations. The goal of our agent is
to design conditional policy 7 which maximizes the cumu-
lative reward y(6) = ]E[ZtTZO yire | 6] given the inferred
teammate type 6, where ¢ is the time step and 7 is the time
horizon. We use y* to denote the optimal value of y.

3.2. The Dependency Graph

The following analysis is based on the dependency graph
of ad hoc teamwork presented in Figure 2. In this figure,
directed arrows represent dependency relationships among
the teammate’s type 0, its instance nj, the agent’s policy
mg and the cooperation outcome y. During pre-training,
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the agent’s policy 7} is adjusted with respect to its inter-
action with the teammate né, and they together determine
the cooperation outcome y. Meanwhile, the agent abstracts
teammate instances into a high-level type representation 6,
which aggregates similar teammate behaviors with a shared
best response. This procedure can be performed manually
(Barrett et al., 2017; Ravula et al., 2019) or learned auto-
matically in a data-driven fashion (Papoudakis et al., 2021;
Gu et al., 2021). Although the implementation varies in
different works, they are all based on a common assump-
tion: teammates with the same type representation 6 share a
common best response 7. This assumption is fundamental
in ad hoc teamwork, which ensures that the learned pol-
icy can be generalized to future unknown teammates with
similar type representations (Bowling & McCracken, 2005).
During deployment, the agent first represents the unknown
teammate with a most likely type and then employs the best
response conditioned on that type. The inferred teammate
type and the agent’s policy based on that type determine the
quality of cooperation outcome. This procedure exempts
the agent from training independent responses for all team-
mates, which is too costly to be implemented (Rovatsos &
Wolf, 2002; Xing et al., 2022). The causal relationships pre-
sented in this graph are in accordance with many previous
works on ad hoc teamwork (Mirsky et al., 2022).

From the dependency graph, we can observe that the dis-
tribution of teammate 7}, is a common cause for both the
agent’s policy 7} and the cooperation outcome y when the
agent pre-trains its best responses. This indicates that the
teammate distribution forms a confounder between them.?
If the confounder is not handled properly, it will induce bias
into the learned best response, distorting the causal relation-
ship between 7Té and y. In the worst case, the unfavorable
action becomes spuriously more favorable, which makes
the agent’s policy ) no longer reliable, even though the
inferred teammate type 6 is correct. This problem cannot be
directly solved with richer data, since it is caused by the in-
trinsic structure of the dependency graph which is invariant
to the data size.*

4. CTCAT

This section provides our proposed solution. We first present
the ideal distribution of optimal outcome y* in Section 4.1,
which is unbiased but is unfortunately inaccessible. Mean-

3This work assumes that teammate instance (n) is the only
confounder and it is fully accessible. This assumption is often
referred as unconfoundedness in the literature of causal inference
(Rubin, 1978).

“This problem is different from covariate shift. Covariate shift
is caused by different distributions between training and test sets,
leading to sample selection bias. Meanwhile, type confounding
is caused by an uncontrolled confounder which affects both the
cause and effect, leading to confounding bias.

while, we present the practical distribution of y* in Section
4.2, which is accessible but could be possibly biased due to
type confounding. Our proposed instance-wise teammate
feedback rectification is covered in Section 4.3, which con-
trols the influence of type confounding by approximating a
distribution that is both unbiased and accessible.

4.1. The Ideal Distribution of y*

We use the do-operator to proceed with our analysis, which
is a standard tool provided by the literature of causal in-
ference (Pearl, 2009). Briefly speaking, the do-operator
corresponds to the intervention of our interested variable in
order to verify its causal correlation on the outcome variable.
Specifically, we use p (y* | do (7)) , 6) to denote the proba-
bility of reaching the optimal outcome y* when the agent is
interfered to adopt policy 7} for a given inferred teammate
type 6. For a pair of policies 7j, ; and 7} ,, the do-operator
allows us to conclude with causality guarantee that for the
given inferred teammate type 6, 7 , is better than j , if
p(y* | do(mp ,),0) > p(y* | do(mf 5),0). With the law of
total probability, p(y* | do(w}), 0) can be transformed into
the following form:

p(y*|do (77@) ,0) =
Zp(y* | do (w(i),&ng) -p(nd | do (m5),0) (D
——— ——

ng Ist do-op 2nd do-op

The do-operator is a conceptual operation and should be
replaced with observable estimands to identify its real value.
In the following, we perform identification on the two do-
operators in the right-hand side of Eq. (1) sequentially.

Identification of the first do-operator. The first do-
operator requires us to identify the causal correlation from
7 to y*. The correlations from 7} to y* are conveyed by
paths that either flow out of 7 (front-door paths) or flow
into 7} (back-door paths). In our dependency graph, the
unique back-door path from 7 to y* is 7 + n} — y*,
which is blocked when the variable né is given. There-
fore, the remaining correlation between 7 and y* is the
front-door path 7}, — y*, which is exactly the causal corre-
lation between them. Thus, the do-operator can be directly
removed from the first term of Eq. (1), which gives us:

p (y* | do (mp) 79,71@5) =p (y* | Wéﬂ,né) )

We can further remove 6 from the conditional variables in
Eq. (2). This is made possible by the fact that the correlation
between 6 and y* is formed by paths of 6 + n} — y*

and 0 n{, — 7r(§ — y*, which are both blocked if the
variable n;, is given. Therefore, § and y* are conditionally
independent when n}, is provided, which gives us:

p (y* ‘ Wé,@,ﬂ%) =P (y* ‘ Wévng) 3)
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Identification of the second do-operator. The second
do-operator requires us to identify the causal correlation
from 7)) to nj). If a variable is intervened by the do-operator,
all its upstream dependencies are removed from the graph
since this variable is fully controlled by the do operation.
Under this condition, the unique path from ), to 6 is
Wé — y* < 0, where y* forms a collider between ﬂé and 6
and blocks the dependency flow within this path. Therefore,
the second do-operator can be removed directly, which gives
us:

p () | do (xh) ,0) = p () 1 0) @)

We summarize the conclusions of Eq. (1) - (4) formally into
the following theorem:

Theorem 4.1. With the dependency graph of ad hoc team-
work, the value of p (y* | do (77};) , 9) can be identified as:

Zp( *|7r9,n9) (néw) 5)

p(*|d0 71'9

The intuition behind Theorem 4.1 is that the unbiased value
of y* should be obtained by integrating the value of p(y* |
h, ne) weighted by the probability of having n7, when the
teammate type is fixed to 6. The first term p(y* | 75, n})
represents the likelihood of being optimal when the agent
employs policy 7 to cooperate with teammate nj. The
second term p(ng | 6) denotes the distribution of teammate
instances with the given type ), which is invariant to the
choice of 7j. Unfortunately, n, and 7}, are not completely
independent in the dependency graph. This makes the value
of p(nj | 0) (and therefore p(y* | do(m}),6)) not directly
accessible, even though it forms an unbiased estimation of
the optimal outcome from the lens of causal inference.

4.2. The Practical Distribution of y*

In practice, the agent’s best response towards a given team-
mate type is usually constructed by training the optimal
policy toward aggregated behaviors of teammate instances
belonging to this type. This procedure corresponds to the
following distribution of y*:

p *‘W()v Zp< *|7T679n9) (né|77(1970>
7L9
:Zp<y* | Wéﬂ’%) 'p(nfé | WZ},(?)
»

(6)
where the first line is derived by the law of total probability,
and the second line is derived by the fact that § and y* are
conditionally independent when the variable of nj, is given
(mentioned in Eq. (3)). This gives us the following theorem:

Theorem 4.2. With the dependency graph of ad hoc team-
work, the value of p (y* | 77(3, 9) can be represented as:

p(y* | m).6) ZP<*|W6»”9) p(nh I mh6)

The value of Eq. (7) is accessible, since it can be directly
obtained by learning from past experiences. The intuition
behind Theorem 4.2 is similar to Theorem 4.1. The only dif-
ference is that the value of p(y* | 7}, nj) is now weighted
by p(ng | 7}, 0), the distribution of teammate instances
when the agent adopts policy 7§ with the given type 6. This
is a more practical estimand of the teammate distribution,
since in reality there are many factors that can lead to team-
mate instances being unevenly distributed under different
agent policies, such as curiosity-based exploration (Ecoffet
et al., 2021), sampling complexity (Yang et al., 2022) or
offline replay buffers (Agarwal et al., 2020; Gu et al., 2022).
It makes the agent’s estimated distribution y* biased, which
distorts the causal relationship between 7)) and y*. In the
worst case, the best response for a teammate type 6 becomes
the worst response for all instances of this type.

4.3. Instance-wise Teammate Feedback Rectification

Comparing Theorem 4.1 with 4.2, we can conclude that
the deviation between the ideal and practical distribution of
y* is caused by the discrepancy between weighting terms
p(nj | 6) and p(nj | ), 0). The former term denotes the
marginalized distribution of teammate instances which is
shared by all agent policies. The latter term denotes the
conditional distribution of teammate instances when the
agent adopts a specific policy 7. With this observation, we
can rectify the bias by re-weighting the importance of each
teammate feedback in an instance-wise manner. Specifically,
we insert into Eq. (6) a weighting factor w:

p(y* | 5. 0) =
S o (v" I whond) o (v | 75,0) - w (i, mh.0)
n

(®)

where:
w(wé,né,@) :p<n§ |0)/p (ng |7r(§,0) 9)

The original form of Eq. (9) is still hard to estimate due to
the existence of inaccessible term p(nj, | #). Fortunately,
this term can be eliminated with some transformations on
the denominator of Eq. (9) based on the Bayesian rule:

TRCT R,

Combining Eq. (8) - (10), we have the following theorem:
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Table 1. The distribution of selected policies on different teammate distributions. For all tteammate instances, 7 is the best response.
However, 72, 73 and 74 become spuriously more favored respectively if the teammate distributions are distorted in different ways.

[ m m [l

(1) The data are evenly distributed.

(2) 7o is spuriously more favored.

FIAM (Papoudakis et al., 2021)

LIAM (Papoudakis et al., 2021)

MELIBA (Zintgraf et al., 2021)
ODITS (Gu et al., 2021)

CTCAT (ablation)
CTCAT

(3) w3 is spuriously more favored.

(4) m4 is spuriously more favored.

FIAM (Papoudakis et al., 2021) [ | T s
LIAM (Papoudakis etal, 2021) | | IS
MELIBA (Zintgraf et al., 2021) ] I .
ODITS (Gu et ., 2021) — 1 IS
CTCAT (ablation) — | I
CTCAT — O =

Theorem 4.3. With the dependency graph of ad hoc team-
work, the ideally unbiased distribution of y* in Eq. (5) can
be represented as:

P (y* | 7h,0) =Zp(y* | Wé,ni}) -p(ni} | Wé,G) :
np

p (i 10) /p (w5 | 0.m))

:w(ﬂg,né,e)

(1)

The weighting factor requires us to maintain two runtime
variables when pre-training the best response 7} for team-
mate type 6. The first term p(7 | 6) corresponds to a global
policy distribution which is averaged over all teammate in-
stances within the type 6. This can be viewed as a prior
aggregating the commonalities of all teammate instances.
The second term is p(7} | 6, n3), which represents an indi-
vidualized policy distribution that is dedicated to teammate
instance . This term measures the deviation induced by
each individual during training. Due to the task requirement
of ad hoc teamwork, the agent is expected to extract com-
monalities from similar teammate instances to form the best
response toward a common teammate type. Against this
background, the weighting factor rectifies the deviation of
each teammate instance to make them align with an unbi-
ased global policy distribution. This keeps the agent from
being influenced by the teammate distributions, which is the
root cause of type confounding.

5. Experiments

This section presents our experimental studies. We first
quantitatively analyze the influence of type confounding
in Section 5.1 with a goal-based version of predator-prey,
where we design experiments to demonstrate the following
two observations: (1) without rectification, the best response
for a teammate type can be arbitrarily distorted by the dis-
tribution of teammate instances; (2) collecting more data
cannot directly address the problem of type confounding,
since it does not influence the dependencies of ad hoc team-
work. Then, we evaluate the effect of CTCAT in several
real-world scenarios in Section 5.2.

5.1. Goal-based Predator-prey

To quantitatively analyze the influence of type confounding,
we propose an adapted version of the classic game predator-
prey. This game is widely adopted in previous studies of ad
hoc teamwork (Barrett et al., 2017; Gu et al., 2021). The
detailed implementation varies slightly in different works,
but they all require multiple predators to simultaneously cap-
ture a prey within limited timesteps. In our implementation,
there are four preys on the map and the range of movement
for each prey is limited to an isolated subarea. Meanwhile,
there are two predators and one of them is under our con-
trol. We first train a set of candidate agents with self-played
goal-conditioned RL (Ghosh et al., 2021), with the goals set
as all feasible combinations of 4 preys, such as {1}, {2, 4},
{1,2,4}. The agent with a large set of goals (e.g. {1,2,4})
is likely to cover behaviors of agents that have a subset of its
goals (e.g. {1}, {2,4}). This setting allows us to configure
agent behaviors by directly specifying its goals.
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To evaluate the impact of type confounding, we compose
a pseudo teammate type by specifying two instances (K
and K5) as the known teammates to describe this type and
one instance (U) as the unknown teammate for evaluation.
Meanwhile, we prepare four candidate policies (71, ma, T3
and 74) for the agent to choose from, among which K, Ko
and U share a common best response (here we let 7 be the
best response for all teammate instances). This is configured
by letting K7, K2 and U share a common target prey which
is only specified in the goal list of ;. Therefore, K1, Ko
and U have similar behaviors, and classifying them into a
same type is reasonable. This setting is common in many
works on ad hoc teamwork (Mirsky et al., 2022), where
an agent is trained with a set of prepared teammates and
then evaluated on some unknown instances. However, the
agent’s action is now restricted to choosing a suitable policy
from the set of candidates provided in advance. This setting
enables us to maintain a common best response among all
baselines, which makes quantitative analyzing the impact of
type confounding feasible.

We adopt four state-of-the-art baselines on ad hoc teamwork
for comparison, including FIAM (Papoudakis et al., 2021),
LIAM (Papoudakis et al., 2021), MELIBA (Zintgraf et al.,
2021) and ODITS (Gu et al., 2021). The implementation of
CTCAT is based on deep recurrent Q-network (Hausknecht
& Stone, 2015), with the reward being adjusted by our pro-
posed instance-wise teammate feedback rectification. The
final behaviors of all baselines (including CTCAT) are de-
termined by their most frequently picked choices from four
candidate policies, with a consecutive 7T-step observation as
input. By unifying the policy space of all baselines, the out-
come is now solely determined by the robustness of different
baselines against type confounding, whose level can be man-
ually manipulated. As type confounding has not been dis-
covered in previous works, no existing benchmarks can be
directly used to quantitatively analyze its effect. Our experi-
ment provides a unique platform that covers both necessary
elements of ad hoc teamwork and tools for quantitatively an-
alyzing type confounding. We now use experimental results
to demonstrate the following observations:

Observation 1. Without rectification, the best response for a
teammate type can be arbitrarily distorted by the distribution
of teammate instances.

This experiment adopts different teammate distributions to
pre-train the agent’s policy. Since the best response for all
teammate instances in our experiment has been fixed to 7y,
it is expected that modifying the distribution of teammate
instances should not affect the choice of our agent, which
is critical for its robustness against type confounding. The
results are demonstrated in Table 1. Apart from the evenly
distributed scenario, we modify the teammate distributions
to let instances performing well on policy 7s, 73 and 74 have
higher chances to be sampled, respectively. Theoretically,

Proportion of Optimal Policy (%)

0 —<4— FIAM —&— MELIBA CTCAT (abl.)
3 —&— LIAM —¥— ODITS —A— CTCAT
T T T
5 10 15

Length of Observations

Figure 3. The impact of observation lengths on type confounding.
The gaps among CTCAT and other baselines are significant.

the agent can still obtain an unbiased outcome by comparing
results of different policies for each instance. However, in
practice, the agent’s choice can be arbitrarily influenced by
the setting of teammate distributions. This phenomenon is
universal among our chosen baselines (including an abla-
tion version of CTCAT that does not rectify the feedback).
Instead, the performance of CTCAT is consistent among all
scenarios, showing that it is more robust to type confound-
ing. Therefore, the experimental result demonstrates our
observation 1, which supports the necessity of instance-wise
teammate feedback rectification.

Observation 2. Collecting more data cannot directly address
the problem of type confounding, since it does not influence
the dependency relationships of ad hoc teamwork.

This experiment collects various lengths of observations
as input to evaluate the influence of data size on type con-
founding. The distribution of teammate instances is set
to spuriously favor the sub-optimal policy 7. For each
episode, we let the agent collect T steps of observation be-
fore making the choice. During the data collection, the agent
adopts a default no-op action to ensure the observation is
not biased toward any candidate policy. In practice, letting
the teammate operate without any feedback would affect
the user experience. Therefore, the agent should adjust its
policy as fast as possible. The experimental results under
this setting are presented in Figure 3. We modify the length
of observations to be 5, 10 and 15 steps, based on the fact
that a pair of well-trained agents can finish the task with
15.86 steps on average. Along with more teammate behav-
iors, the agent’s proportions of picking the optimal policy
have increased (about 10%) for most comparing baselines,
which is brought by more complete teammate information.
However, their deviation with CTCAT is still huge (about
40%). In this case, the impact of type confounding consti-
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Table 2. Kidney stone treatment (recovered / total patients).

Table 3. Magazine renewal rate (renewed / total customers).

Open surgery Closed surgery

Small Stones 81/87=0.93 234/270=0.87

Large Stones  192/263 =0.73 55/80=0.69

Total 273/350=0.78 289/350=10.83
UCB1 0.14j:0.01 0-83:‘:0.01
EXP3 0.4710.01 0.83.10.01
0.Q. 0.8210.01 0.84.0.01
T.S. 0.1419.01 0.83.10.01
Q-Learning 0.77+0.01 0.8310.01
CTCAT 0.84i0.02 0-7910402

tutes the major source of performance gap since very limited
teammate behaviors can be further provided. Therefore, col-
lecting more data cannot directly address the problem of
type confounding, which supports our observation 2.

5.2. Real-world Scenarios

Kidney stone treatment (Charig et al., 1986). This sce-
nario is derived from a real-life medical study, which com-
pares two strategies of treating kidney stones. The sum-
marized raw data are presented in Table 2. Patients with
large stones are more severe and have a slightly lower re-
covery rate than those with small stones. Nevertheless, for
both conditions, open surgery achieves higher recovery rate.
Therefore, classifying all patients into a same type of disease
is reasonable since they have similar symptoms and share a
common best response. However, when the data is aggre-
gated, closed surgery becomes spuriously more favorable.
Based on this background, if an ad hoc teamwork agent is
pre-trained with past treatment data and then successfully
identifies an unknown teammate as the type of patent with
kidney stones, which policy will the agent adopt?

To verify the necessity of instance-wise teammate feedback
rectification, we compare the result of CTCAT with stan-
dard Q-learning, UCB1 (Auer et al., 2002), EXP3 (Auer
et al., 1995), Optimistic Q (O. Q.) (Sutton & Barto, 2018)
and Thompson Sampling (T. S.) (Thompson, 1933). Q-
learning has been widely applied in many previous ad hoc
solutions (Barrett et al., 2017; Chen et al., 2020). The other
baselines are classic online learning solutions designed for
similar context. We can observe that without rectification,
standard Q-learning obtains a biased outcome, which is
unfavorable for patients of both stone sizes. Due to type
confounding, the causal relationship between the agent pol-
icy and the cooperation outcome is distorted, making the
learned best response no longer reliable. In contrast, by
rectifying the instance-wise teammate feedback, CTCAT
successfully learns an unbiased result that is consistent with

January February
Gift 2,918 /3,594 =0.81 704 /884 =0.80
P.R.} 14,488 /18,364 =0.79 3,907 /5,140 =0.76
Direct Mail 1,783/2,986=0.60 1,134/2,224=0.51
S.S.1 4,343 /20,862 = 0.21 122 /864 =0.14
C.AS§ 13/149 =0.09 2/45=0.04
Total 23,545/45,955=0.51 9,157/5,869 = 0.64
UCBl 0.11:‘:0.01 0.64i0,01
EXP3 0.27i()‘01 0.65i0_01
O. Q 0.63:‘:0.01 0.65i0,01
T. S. 0.07i0A01 0-65i0.01
Q-Learning 0.51+0.01 0.6540.01
CTCAT 0.54i0A02 0.50i0_o1

t: previous renewal; I: subscription service; §: catalog agent.

the conclusion of patients having any size of stones.

Magazine renewal rate (Wagner, 1982). In early 1979,
the publishers of American History Illustrated were pleased
to find that their content in February had an overall renewal
rate of 64%, which was better than 51% in January. Since
the renewal rate was aggregated from several established
subscription categories, the publishers examined each cate-
gory to identify the major source contributing most to the
rise of overall renewal rate. The results are shown in Table
3, which are counter-intuitive: of all five categories, the
renewal rates in January are higher than those in February,
which suggest readers prefer contents in January. Designing
separate content for each category of readers is too costly
to be implemented. Therefore, it is important to determine
which content is more favorable by aggregating the com-
monality of readers from different sources.

Compared with the former task, the teammate type in this
scenario is composed of more detailed sub-groups, making
the situation more complicated. However, this does not
prevent the emergence of type confounding, leading to a
phenomenon in which the aggregated conclusion disagrees
with all its instances. In consequence, the robustness of
standard Q-learning is affected, showing spuriously that the
content of February is more favorable. Nevertheless, the
conclusion of CTCAT is consistent with the result of every
sub-group. This indicates that our solution is robust to the
impact of type confounding, even though the teammate type
is formed with instances that are very diverse.

6. Conclusion

This work presents CTCAT to control the influence of type
confounding in ad hoc teamwork. We first unveil the exis-
tence of type confounding and demonstrate the cause be-
hind this phenomenon, which is due to spurious correla-
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tions brought by arbitrary distribution of teammate instances.
Then, we propose to control type confounding by aligning
the distribution of optimal cooperation outcomes with an
unbiased one. In this way, the spurious correlation between
the agent’s policy and the cooperation outcome is untangled.
The performance of CTCAT is evaluated in several domains,
including classic ad hoc teamwork tasks and real-world sce-
narios. With detailed analysis, the effectiveness of CTCAT
on controlling type confounding is demonstrated.

Our work is the first attempt to study the problem of type
confounding in ad hoc teamwork and we would like to point
out several future directions. First, to simplify the problem
setting, the experiments are based on two-player ad hoc
teamwork environments. As agents in the real world often
interact in an open environment, it is worth investigating
the influence of type confounding in tasks with more agents,
and we believe the work of Rahman et al. (2021) provides a
good direction. Second, our work is based on the premise
of zero communication between players. However, it has
been demonstrated that communication is helpful to identify
the teammate’s real intention in ad hoc teamwork (Mirsky
et al., 2020), which we believe is also helpful to untangle
the confoundedness between them.
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A. The Derivation of CTCAT

Theorem 4.1 Unbiased Inaccessible Instance-wise Teammate Feedback Rectification
p(y*|do(mp),6) . :
o oy _Pmgle) _ p(melo)
P 3 w(ng,ng,e) = T1i = i ]
= > p('lmhnd) - p(njle) p(njle0) — p(mhlo.np)
)
Theorem 4.2 Biased Accessible Theorem 4.3 Unbiased Accessible
p(y*|m5.6) p(y*|m5.6)
= > o0 [mhn}) - p(njlnh,0) = o lhnd) - p(njlmh,0) - wiieh i 6)
) )

Figure 4. A diagram showing the relationships among Theorem 4.1, 4.2 and 4.3.

The core of CTCAT is an instance-wise teammate feedback rectification method. Its theoretical background is to rectify the
practical distribution of y* (Theorem 4.2, biased but accessible) to make it align with the ideal distribution of y* (Theorem
4.1, unbiased but inaccessible). This procedure is achieved by our proposed instance-wise teammate feedback rectification,
which is implemented by adopting p(7} | 6, n}) and p(7}, | 6) to rectify the feedback of each teammate instance (Theorem
4.3, unbiased and accessible). Figure 4 depicts an overall diagram to demonstrate the relationships among Theorem 4.1, 4.2
and 4.3 when deriving CTCAT. Algorithm 1 provides a pseudocode of CTCAT based on Q-learning.> This implementation
is adopted in Section 5.2 where CTCAT is applied in two real-world scenarios.

Algorithm 1 CTCAT

Input: A stream of (ng, b, y) which represents the agent’s collected interactions with teammates of type ¢
Initialize the counter of C'(r} | 8) and C(x} | 6,n}) for all 7j and )
while not converged do _ _
Update C(r}, | ) and C(n}, | 6, nj)) with respect to the sampled (1, 7, y)
Calculate the runtime estimations of p(7j | 6) and p(} | 6, 1))
Adjustr by 7 =7 - p(7h | 0)/p(7} | 0, nf,) where 7 is the reward of agent ¢ when interacting with teammate ng
Use 7 as the rectified reward to update the agent’s Q-values
end while

B. Experimental Setting
B.1. Goal-Based Predator-Prey

Environmental Setting In our implementation of the goal-based predator-prey, the world is a toroidal grid map of size
20 x 20. If an agent moves off one end of the map, it appears on the other end. There are four preys on the map, marked as
blue balls. The range of movement for each prey is limited to a 4 x 4 fenced area. Meanwhile, there are two predators,
marked as orange balls, and one of them is under our control. Each predator has a private list of goals, which is a non-empty
combination of the four preys. For each timestep, all agents (predators and preys) choose to either move into a neighboring
cell or stay at their current position. If two agents run into the same cell, the collision is solved randomly. The prey’s
movement is determined randomly, but it will stay still if the prey tries to move out of the boundary or a predator is at its
neighboring cells. To simulate the partial observation, each predator is limited to observing the coordinates of itself, its

SOur algorithm can be naturally extended to other settings, such as PG-based (Yang et al., 2021) or TD-based solutions (Yang et al.,
2018).
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Figure 5. A screenshot of goal-based predator-prey where both predators choose the third prey as their goals.

teammate, and the closest prey. The game terminates when both predators capture their preys or a maximal step of 300 has
been reached. The prey is identified as being successfully captured if it is surrounded by two predators simultaneously. The
predator receives a reward of 41 if it successfully captures a prey with its teammate and the prey is in its goal list. Otherwise,
it receives a penalty of —1 when the game terminates. Figure 5 presents a screenshot of the goal-based predator-prey, where
both predators choose the third prey as their common goal.

Evaluation Setting To quantitatively evaluate the impact of type confounding, the predator’s candidate strategies are
trained in advance with self-played goal-based reinforcement learning (Ghosh et al., 2021), and the goal of our controlled
agent is to pick the most suitable strategy from the prepared candidates. We let the agent collect interactions with 10,000
teammate instances using the previously prepared candidate strategies. All of these interactions are sampled from a fixed
distribution of teammate instances, which enables us to control the level of type confounding by adjusting the teammate
distribution. These interactions are stored in a replay buffer which is used for the agent’s own policy training. The controlled
agent’s policy is determined by a consecutive T-step observation. For each timestep, the agent records its choice of candidate
policy. Nevertheless, within the initial T-steps, the agent conducts a default no-op action so that the observation will not
be influenced by its current decision. This prevents the observation from being biased toward any candidate policies. The
agent’s strategy after T'-step is decided by the most frequently picked candidate policy. This setting ensures that the criteria
of optimal policy for current teammate is common for all baselines, which makes quantitatively evaluating the impact of
type confounding feasible since the major factor now affecting the agent’s choice is its robustness against confoundedness.

Teammate Instances and Candidate Policies The goal list of K7 is {1,4}, Ko is {1,2,3}, U is {1, 2,4}. The goal lists
for our four candidate policies (7 to m4) are {1, 2,3}, {2, 3}, {2} and {3}, respectively. In this setting, the first prey appears
on all K1, K5 and U, but is only selected in 7m; among our four candidate policies. Therefore, K7, K5 and U share similar
behaviors when they choose to pursue the first goal, and 7 is the best response for all teammate instances in this case. Table
4 presents the success rate of our selected teammate instances (K7, K> and U) and the candidate policies (71 to 74), which
are obtained with 10 independent runs.

Table 4. Success rates between the sampled instances and the candidate strategies.

1 YUwp) T3 Uy

K; 0401007 0051002 0.0010.01 0.01to.01

U 0731005 0391003 0.641005 0.0110.01

Distributions of Teammate Instances Figure 6 presents the probabilities of each teammate instance being sampled when
collecting replay buffers for the agent’s pre-training. The standard used to distort the distribution of teammate instances
is that interactions with sub-optimal outcomes have higher chance to be sampled. In many practical scenarios, the agent
cannot determine the distribution of teammate instances and needs to learn from existing data. This makes the risk of type
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confounding emerge unnoticeably.

Ky 4 0.12 0.12 0.12 0.12

K> 4 0.12 0.12 0.12 0.12

m m 3 My
(a) The data are evenly distributed. (b) w9 is spuriously more favored.
0.12 0.03 | 0.12 0.12 0.12 0.03
. 0.12 0.03 | 0.12 0.12
rtll nlz 3 nla m m 3 My
(c) 73 is spuriously more favored. (d) m4 is spuriously more favored.

Figure 6. The sampled distributions of teammate instances which lead to type confounding.

B.2. Kidney Stone Treatment & Magazine Renewal Rate

In these two tasks, the distributions of teammate instances are obtained from real-world scenarios where type confounding
distorts the causal correlations between the agent’s policy and the cooperation outcome. To obtain a statistically meaningful
outcome, a random noise is added to the probability of each teammate instance receiving positive feedback. This noise
is sampled from a normal distribution A/(0,0.1). The baseline used for comparison in each task is implemented with a
vanilla tabular Q-learning, and CTCAT is implemented by rectifying the reward of tabular Q-learning with our proposed
instance-wise teammate feedback rectification. All the experiments are conducted with 10 independent runs to obtain the
statistical outcomes.

C. Baselines
C.1. LIAM (Papoudakis et al., 2021)

LIAM adopts an encoder-decoder network to reconstruct the teammate’s observations and actions for each time step with
the agent’s local observation history. The implementation of LIAM includes three components, which are the teammate
encoder, the teammate decoder and the agent’s policy network. The teammate encoder is implemented with a deep recurrent
neural network. The teammate decoder and the agent’s policy network are both implemented with feed-forward networks.
For each timestep, the agent uses local observation as the encoder input to infer the teammate embedding. This embedding
denotes the teammate’s type from the agent’s perspective. Then, the agent’s policy network utilizes both the agent’s local
observation and the inferred teammate embedding as input to generate the corresponding action. During pre-training, the
teammate encoder and decoder are simultaneously optimized to recover the teammate’s local observation and chosen action.
This setting encourages the agent to reconstruct the teammate’s hidden representation with its local observation.

C.2. FIAM (Papoudakis et al., 2021)

FIAM is an extension of LIAM. The difference between them is that for FIAM, the agent’s observation also includes the
teammate’s private observation. This enables FIAM to access more complete information than LIAM, even though this
implementation is often considered unrealistic in many practical scenarios.

C.3. MELIBA (Zintgraf et al., 2021)

MELIBA includes three major components: teammate encoder, teammate decoder and the agent’s policy network. The
cascaded encoder-decoder network is used to infer the teammate’s hidden embedding, which is similar to LIAM. However,
the difference between them is that for MELIBA, the encoder-decoder is implemented with a variational auto-encoder
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(VAE) (Kingma & Welling, 2014). This enables the agent’s learned distribution of teammate embedding to approximate an
evidence lower bound of the optimal distribution which is defined in the context of VAE.

C.4. ODITS (Gu et al., 2021)

ODITS includes six major components: the agent’s proxy encoder/decoder, the policy network, the teamwork situation
encoder/decoder and an integrated network. The proxy encoder-decoder and teamwork situation encoder-decoder form a
pair of parallel pipelines to model the teammate type with either the agent’s local observation or the global observation,
respectively. The output of each encoder determines a Gaussian distribution, and the mutual information between these two
distributions is minimized to let the agent correctly infer the teammate type with its private observation. The decoder output
is used to determine the parameters of agent’s policy network and the integrated network. In our implementation, the agent’s
policy network adopts both its own local observation and the output of proxy decoder as input to generate the expected value
of each action. The parameters of integrated network are generated by the teamwork situation decoder.
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