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Abstract

The studies on adversarial attacks and defenses
have greatly improved the robustness of Deep
Neural Networks (DNNs). Most advanced ap-
proaches have been overwhelmingly designed for
continuous data such as images. However, these
achievements are still hard to be generalized to
categorical data. To bridge this gap, we propose
a novel framework, Probabilistic Categorical Ad-
versarial Attack (or PCAA). It transfers the dis-
crete optimization problem of finding categorical
adversarial examples to a continuous problem that
can be solved via gradient-based methods. We an-
alyze the optimality (attack success rate) and time
complexity of PCAA to demonstrate its signifi-
cant advantage over current search-based attacks.
More importantly, through extensive empirical
studies, we demonstrate that the well-established
defenses for continuous data, such as adversarial
training and TRADES, can be easily accommo-
dated to defend DNNs for categorical data.

1. Introduction
Adversarial examples (Goodfellow et al., 2015) have raised
great concerns for the applications of Deep Neural Networks
(DNNs) in many security-critical domains (Cui et al., 2019;
Stringhini et al., 2010; Cao & Tay, 2001). Recent years
have witnessed an increasing number of adversarial attack
and defense methods (Goodfellow et al., 2015; Madry et al.,
2018; Ilyas et al., 2019). These studies have not only greatly
deepened our understanding on the vulnerabilities of DNNs
but also tremendously advanced the robustness of DNNs.
Until now, the majority of existing accomplishments have
been achieved in continuous data such as images, where
gradient-based approaches can be leveraged.
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However, there are also many machine learning tasks where
the input data is categorical. For example, data in ML-based
intrusion detection systems (Khraisat et al., 2019) contains
records of the type of system operations; in financial trans-
action systems, data includes categorical features such as
the region and card information of transactions; and in NLP
tasks, the words in a sentence can only be chosen from a
given vocabulary, which is categorical. To generate cate-
gorical adversarial examples, there are recent search-based
approaches such as (Yang et al., 2020; Lei et al., 2019; Bao
et al., 2022). For example, the method (Yang et al., 2020)
first finds top-K features of a given sample that have the
maximal influence on the model output, and then a greedy
search is applied to obtain the optimal perturbation in these
K features. However, these search-based attack methods
usually suffer from a poor trade-off between efficiency and
optimality (attack success rate) to find strong adversarial
examples. Moreover, if these attack methods are applied in
defenses like adversarial training (Madry et al., 2018), they
can only search for adversarial examples for each training
sample at each time, instead of efficiently producing adver-
sarial examples in batches. In a nutshell, these drawbacks
of existing categorical attack methods dramatically prohibit
the possibility of applying recent advances of attack and
defense established in continuous data to categorical data.

Therefore, a natural question is can we generalize the well-
studied methods of continuous data to categorical data? We
face tremendous challenges to answer this question. First,
the input data space are categorical, thus the gradient meth-
ods of adversarial attacks and defenses (Goodfellow et al.,
2015; Madry et al., 2018) for continuous data are not di-
rectly applicable. Second, most attacks for categorical data
desire to constrain the number of perturbed features (Yang
et al., 2020; Bao et al., 2022), which is different from the
commonly considered l2, l∞ norm constraints in continu-
ous data. To address these challenges, we propose a novel
framework: Probabilistic Categorical Adversarial Attack
(PCAA). Overall, it transforms the discrete optimization
problem of finding categorical adversarial examples into a
continuous problem by estimating the probabilistic distri-
bution of categorical adversarial examples. In detail, given
a clean data sample, we assume that (each feature of) its
adversarial example follows a categorical distribution, and
satisfies: (1) the samples following this distribution have
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a high expected loss value and (2) the samples only have
a few features which are different from the original clean
sample (with high probability). Based on this property,
we are able to leverage existing gradient-based algorithms
from continuous data such as (Goodfellow et al., 2015;
Madry et al., 2018) to figure out the adversarial examples
for categorical data. In such a way, we can successfully
obtain the categorical adversarial examples by optimizing
the adversarial distribution and taking samples from this
distribution. Meanwhile, our attack can also be easily in-
corporated with existing powerful defenses for continuous
data such as adversarial training (Madry et al., 2018) and
TRADES (Tu et al., 2019). Empirically, we verify that our
attack can achieve a better optimality vs. efficiency trade-off
to find strong adversarial examples, and demonstrate the
advantages of our defense over other categorical defenses.
To summarize, the major contributions of this paper are:

• We propose an efficient and effective framework
PCAA to bridge the gap between categorical data and
continuous data, which allows us to generate adversar-
ial examples for categorical data by leveraging methods
from continuous data.

• Equipped with PCAA , existing defenses in continuous
data, such as adversarial training and TRADES, can
be easily adapted to categorical data. This contribution
enables us to generalize new advances in defenses from
continuous data to categorical data.

• We empirically validate the great benefit of
PCAA from perspectives of both attack and
defense.

2. Related Work
In this section, we provide a brief review of existing method-
ologies of adversarial attacks and defenses for continuous
and categorical data, which highlights the gap between the
major methodologies in these two types of data.

2.1. Attacks and Defenses on Continuous Data

The adversarial attacks and defenses in the image domain
have been extensively studied (Madry et al., 2018; Ilyas
et al., 2019; Xu et al., 2020). Most frequently studied at-
tack methods such as FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018) and C&W Attack (Carlini & Wag-
ner, 2017) can only be conducted in the continuous domain,
since they require calculating the gradients of model outputs
on the input data. As countermeasures to resist adversarial
examples in the image domain, most defense strategies are
also based on the assumption that the input data space is con-
tinuous. For example, adversarial training methods (Madry
et al., 2018; Zhang et al., 2019) train the DNNs on the ad-
versarial examples generated by PGD. A SOTA certified de-

fense method Randomized Smoothing (Cohen et al., 2019),
calculates the certifiable bounds by adding Gaussian noise
to the input samples. However, these methods are hard to
be directly applicable to categorical data as the input data
space is discrete.

2.2. Attacks and Defenses on Categorical Data

To generate adversarial examples for categorical data, most
existing methods apply a search-based approach. For ex-
ample, the works (Yang et al., 2020; Bao et al., 2022; Lei
et al., 2019) first find top-K features of a given sample that
have the maximal influence on the model output, and then
a greedy search or brutal search is applied to obtain the
optimal combination of perturbation in these K features. In
NLP tasks, there are also many attack methods proposed
to find adversarial “sentences” or “articles”, which follow
a similar approach as general search-based categorical at-
tacks. For example, Ebrahimi et al. (2017) proposes to
search important characters in the text based on the gradient,
and then apply greedy search to find the optimal character
flipping. Samanta & Mehta (2017) generate the adversarial
embedding in the word embedding space, then search for
the closest meaningful adversarial example that is legitimate
in the text domain. These attack methods are very different
from those in continuous domain.

To defend against categorical attacks, most defenses have
been proposed for NLP tasks and exclusively rely on the
property of word embedding: similar words have a close
distance in the embedding space. Miyato et al. (2016);
Barham & Feizi (2019) conduct adversarial training on em-
bedding space, where the adversarial examples are within
l2-ball around the embedding of clean samples. Dong et al.
(2021) also proposes an adversarial training method - ASCC,
which conducts adversarial training in the space which is
composed of convex hulls of adversarial word vectors. How-
ever, these methods can hardly be applied to defend DNNs
for general categorical data beyond NLP tasks. Different
from existing defense methods in NLP tasks, in this paper,
our proposed defense does not rely on the property of word
embedding and achieves a similar defense performance to
these NLP defenses. Moreover, our defense can be applied
in general categorical ML tasks beyond NLP.

3. Probabilistic Categorical Adversarial Attack
In this section, we first introduce the necessary notations
and definitions of our studied problem. Then, we provide
the details of our proposed attack framework PCAA.

3.1. Problem Setup

In this work, we consider a classifier f that predicts la-
bels y ∈ Y based on categorical inputs x ∈ X . Each
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input sample x contains n categorical features, and each
feature xi can be perturbed to take a value from d allowed
categories. Namely, we define the space of all allowed per-
turbed samples of x to be S(x). Meanwhile, to keep the
perturbation “un-noticeable”, we follow the setups of exist-
ing works (Yang et al., 2020; Bao et al., 2022; Wang et al.,
2020), to limit the number of perturbed features, which is
the l0 distance of clean sample x and the adversarial exam-
ple x′. It is because constraining l0 distance is most intuitive
and has a broad interest in categorical data, e.g. only a few
nucleotides are mutated in genetics data. Therefore, we
formally define the objective of our considered attack to
be: given the budget size ϵ, we aim to find an adversarial
example x′, which maximizes the model’s loss value, while
has a small l0 distance to x:

max
x′∈S(x)

L(f(x′), y) s.t. ∥x′ − x∥0 ≤ ϵ. (1)

Notably, the objective in Eq.(1) is general and it can be
applied to find adversarial examples in various applications
by accommodating the space S(x). For example, in NLP
tasks such as sentiment analysis, we can define the space
S(x) to be the set of sentences where some words in x are
changed to their synonyms. In this way, we can keep the
semantic meaning of x during attacking. More details about
how to get S(x) in NLP tasks are given in Section 5.2.

3.2. The Objective of PCAA

To solve the problem in Eq.(1), there are existing search-
based methods (Lei et al., 2019; Yang et al., 2020) to search
the adversarial examples, via either a greedy search method
or brutal search method. However, both of these two search
methods can suffer from poor optimality vs. efficiency trade-
off during attacking. For example, if one conducts a brutal
search (Lei et al., 2019) to traverse the whole discrete space,
it must cause an extremely high computational cost. Mean-
while, greedy search narrows down the search space so that
it usually finds weak adversarial examples (which cannot
maximize the loss in Eq.(1)). Moreover, the poor optimality
vs. efficiency trade-off will make these attacks impossible
to be incorporated to the most studied defense methods (in
the continuous domain), such as adversarial training.

To address these problems, we are motivated to leverage
gradient-based methods to conduct adversarial attacks in the
categorical domain. In general, we first define a continu-
ous probabilistic space where the adversarial examples are
sampled from, and we devise a new objective in Eq.(2) to
approximately solve Eq.(1). In specific, following the illus-
tration in Figure 1, we assume that each feature of (adver-
sarial) categorical data x′

i follows a categorical distribution:
Categorical(πi), where πi ∈ Πi = (0, 1)d. Each element
πi,j represents the probability that the feature i takes the
category value j. In the remaining of the paper, we will
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Figure 1. An illustration of PCAA when n = 3 and d = 4. Each
feature x′

i of the adversarial example x′ is sampled from proba-
bilistic distribution πi before feed into the model.

use πi to denote the categorical distribution Categorical(πi)
without the loss of generality. Then, the input sample x’s dis-
tribution is the joint distribution of all πi, which is denoted
as π = [π0;π1; ...;πn] ∈ Π ⊂ Rn×d.

Then, we define a new continuous optimization problem to
find a probability distribution π in the space of Π:

max
π∈Π

Ex′∼πL(f(x′), y) s.t. Pr
x′∼π

(∥x′−x∥0 ≥ ϵ) ≤ δ (2)

where ϵ denotes the perturbation budget size and δ is the tail
probability constraint. By solving the problem in Eq.(2), we
aim to find a distribution with parameter π such that: (1) on
average, the generated samples x′ from distribution π have
a high loss value; and (2) with low probability, the sampled
x′ has a l0 distance to the clean sample x larger than ϵ. Thus,
the generated samples x′ are likely to mislead the model
prediction while preserving most features of x. As shown
in Figure 1, the probabilistic distribution π to Eq.(2) is first
used to sample adversarial examples x′, and then, the model
makes predictions on the x′.

It worth mentioning that, in our attack, each feature x′
i of the

adversarial example x′ is sampled independently. However,
it does not mean that the features themselves in the data
distribution are independent to each other. Therefore, our
framework is general and applicable to various data types
and model architectures, including sequential data such as
sentences in NLP areas, or DNA sequences.

3.3. An Efficient Algorithm of PCAA

Solving the problem in Eq.(2) is not trivial because the
probability and the l0 term are not differentiable. Thus, we
provide a feasible algorithm to solve Eq.(2), by substituting
the constraint in Eq.(2) to a differentiable term. In detail,
we substitute the l0 distance between x′ and x by calcu-
lating the sum of Cross Entropy Loss between πi and xi,
which is LCE(πi, xi), for all features i ∈ |x|. It is because
LCE(πi, xi) measures the probability that the categorical
variables x′

i following the distribution πi is different from xi.
Thus, we use the sum of Cross Entropy

∑
i∈|n| LCE(πi, xi)

to approximate the total number of changed features in x′,
which is the l0 difference ∥x′ − x∥0. In our algorithm, we
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penalize the searched π when the term
∑

i∈|n| LCE(πi, xi)
exceeds a positive value ζ as:

max
π∈Π

Ex′∼πL(f(x′), y) s.t.
∑
i∈|n|

LCE(xi, πi)− ζ ≤ 0

As a result, we equivalently limit the probability that the
generated samples x′ have the number of perturbed features
larger than ϵ. Moreover, since the Cross-Entropy Loss is dif-
ferentiable in terms of π, we further transform the problem
to its Lagrangian form as:

max
π∈Π

(
Ex′∼πL(f(x′), y)

)
− λ

∑
i∈|n|

LCE(xi, πi)− ζ

+

(3)
where λ is the penalty coefficient, and [·]+ is max(·, 0).
Next, we will show how to solve the maximization problem
above by applying gradient methods.

Back propagation through Gumbel-Softmax. Note that
the gradient of the expected loss function with respect to
π cannot be directly calculated in Eq.(3), so we apply the
Gumbel-Softmax estimator (Jang et al., 2017). In prac-
tice, we consider an unnormalized categorical distribution
πi ∈ (0, C]d, where C > 0 is a large constant so that
the searching space is sufficiently large. The distribution
generates sample vectors x′

i as follows:

x′
ij =

exp((log πij + gj)/τ)∑d
j=1 exp((log πij + gj)/τ)

, for j = 1, ..., d (4)

where gj denotes i.i.d samples from the Gumbel(0, 1) dis-
tribution, and τ is the softmax temperature. This re-
parameterization process facilitates us to calculate the gra-
dient of the expected loss in terms of π. Therefore, we can
derive the estimation of gradients for the expected loss:

∂Ex′∼πL(f(x′), y)

∂π
≈ ∂

∂π
EgL(f(x′(π, g)), y)

= Eg

[
∂L
∂x′

∂x′

∂π

]
≈ 1

ng

ng∑
i=1

[
∂L
∂x′

∂x′(π, gi)

∂π

] (5)

where ng is the number of i.i.d samples from g. In Eq.(5),
the first approximation is from the reparameterization of
a sample x′; the second equality comes from exchanging
the order of expectation and derivative, and the third ap-
proximation is to approximate the expectation of gradients
by calculating the average of gradients. Finally, we derive
the practical solution to solve Eq.(3), by leveraging the gra-
dient ascent algorithm, such as (Madry et al., 2018). In
Algorithm 1, we provide the details of our proposed attack
method. Specifically, during each iteration, we first esti-
mate the gradient of expected loss (line 3), and then update
the unnormalized distribution π by gradient ascent (line 4).
Finally, we clip π back to its domain (0, C]d (line 5).

Algorithm 1 Probabilistic Categorical Adversarial Attack
input Data D, budget ϵ, number of samples ng, penalty

coefficient λ, max iteration I , learning rate γ

output Adversarial Distribution π

1: Initialize distribution π0

2: for t ≤ I do
3: Estimate expected gradient using Eq.5:

∇πEπL ≈ 1
ng

∑ng

i=1

[
∂L
∂x′

∂x′(πt,gi)
∂π

]
4: Gradient ascent:

π̃t+1 = πt+γ (∇πEπL − λ∇π[LCE(πt, x)− ζ]+)

5: Clip to (0, C]d: πt+1 = max(π̃t+1, C)

6: end for

3.4. Time Complexity Analysis

In this subsection, we compare the time complexity of
PCAA with four representative attack methods (Lei et al.,
2019; Yang et al., 2020). Notably, they are existing search-
based methods to find adversarial examples for categorical
data. Each of them consists of 2 stages: (1) the first stage is
to search the top-K features that are most influential to the
model output, which is determined by either manipulating
the features and checking the loss change (loss-guided) or
the gradient scale (gradient-guided); (2) the second stage
applies either a brutal search or a greedy search to find the
optimal perturbation on the selected features. In Table 1,
we summarize the main stages for different attack methods,
and we name them as Search Attack (SA), Greedy Attack
(GA), Gradient-guided Search Attack (GSA) and Gradient-
guided Greedy Attack (GGA). More details can be found
in Appendix A.1. In Table 1, we assume that the whole
dataset has N data points, each data point has n features,
each feature has d categories and the budget of the allowed
perturbation is ϵ. In the following time complexity analy-
sis, one feedforward / backpropagate step is considered as
one computational unit. Results are summarized in Table
1 where C1 is a constant related to the number of samples
ng and max iteration I shown in Algorithm 1, and detailed
time complexity analysis can be found in Appendix A.1

Table 1. Time complexity analysis.
Method Stage 1 Stage 2 Time complexity

SA loss-guided brutal N · O(nd+ dϵ)
GA loss-guided greedy N · O(nd+ ϵd)

GSA gradient-guided brutal N · O(1 + dϵ)
GGA gradient-guided greedy N · O(1 + ϵd)

PCAA - - C1N · O(1)

From the analysis above, SA and GSA suffer from the ex-
ponential increase of time complexity when the number of
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feature categories d and budget size ϵ is increasing. GA and
GGA accelerate the algorithm and achieve better time effi-
ciency. However, they can sacrifice the performance as they
greatly narrow down the search space (see Table 2 in Sec-
tion 5.1). In Section 5.1, we further empirically show that
PCAA can achieve significantly better optimality than GA
and GGA, as well as significantly lower computational cost
than SA and GSA. Thanks to the advantage in efficiency and
optimality, PCAA can fast generate strong adversarial exam-
ples. Moreover, because PCAA is a gradient-based method,
the adversarial examples can be generated by batches. As a
result, it can be easily incorporated into powerful defenses
which are originally designed for continuous data. In the fol-
lowing section, we will present PADVT , as an example to
show PCAA ’s potential to be applied in popular adversarial
defenses such as adversarial training and TRADES.

4. Probabilistic Adversarial Training
In this section, we provide an exemplar case to transfer one
representative defense, PGD adversarial training (Madry
et al., 2018) to categorical defense. Note that we also extend
another effective defense TRADES (Zhang et al., 2019)
and the detail is shown in Appendix A.3. It is also worth
mentioning that other types of defenses such as certified
defenses (Cohen et al., 2019) also have the potential to be
transferred to the categorical data via PCAA and we leave
this exploration as future investigations.

Based on PGD adversarial training for continuous data, we
propose Probabilistic Adversarial Training (PADVT ) based
on PCAA to train robust models for categorical data. Re-
calling the formulation of PCAA in Eq.(3), and denoting
the parameters for classifier f as θ, the training objective
for PADVT is formulated as:

min
θ

max
π

Ex′∼π

L(f(x′; θ), y)− λ

∑
i∈|n|

LCE(xi, πi)− ζ

+

Since our objective involves a penalty coefficient, we adopt
the strategy in (Yurochkin et al., 2020) to update λ during
training. Specifically, we adaptively choose λ according to
LCE(x, π) − ζ from the last iteration: when the value is
large, we increase λ to strengthen the constraints and vice
versa. The implementation of PADVT is illustrated in Al-
gorithm 2. Specifically, it first initializes model parameters
(line 1); then during each iteration (from line 2 to line 9), it
samples a mini-batch of data (line 3) and obtains an adver-
sarial distribution for each data point through Algorithm 1
(line 4 to 5), afterward nadv adversarial examples are sam-
pled (line 6) and used to update θ through Adam (Kingma
& Ba, 2015) (line 8) and penalty coefficient λ (line 9). The
process will continue until the training process converges.

Algorithm 2 Probabilistic Adversarial Training (PADVT )
input data D, parameters of clean model θ, budget ϵ, param-

eters of Algorithm 1, nadv, initial penalty coefficient
λ0, penalty coefficient step size α, parameters of Adam
optimizer, number of iterations I

output parameters θ of the robust model
1: Initialize the network with a pre-trained robust model
2: repeat
3: Sample mini-batch B = {x1, ..., xm}
4: for i = 1, ...,m (in parallel) do
5: Apply Algorithm (1) to xi to obtain adversarial

distribution πi

6: Sample nadv examples {x′i
1 , ..., X

′i
nadv

} from πi

using Gumbel Softmax
7: end for
8: Update θ to minimize the average adversarial loss
9: λ = (λ− α(ζ − 1

m

∑
i∈[m]

∑
j∈[n] LCE(x

i
j , π

i
j)))

+

10: until Training converged

5. Experiment
In this section, we conduct experiments to validate the ef-
fectiveness and efficiency of PCAA and PADVT . In Sec-
tion 5.1, we demonstrate that PCAA achieves a better bal-
ance between attack success rate and time efficiency. In Sec-
tion 5.2, we empirically validate that PADVT achieves good
robustness against categorical attacks. Our code is avail-
able at https://anonymous.4open.science/r/
categorical-attack-0B9B.

5.1. Categorical Adversarial Attacks

Experimental Setup. In this evaluation, we focus on three
categorical datasets for various applications.(1) Intrusion
Prevention System (IPS) (Wang et al., 2020). IPS dataset
has 242,467 instances, with each input consisting of 20 fea-
tures and each feature has 1,103 categorical values. The
output space has three labels. A standard LSTM based clas-
sifier(Bao et al., 2022) is trained for IPS dataset. (2) AG’s
News corpus. This dataset consists of titles and description
fields of news articles. The tokens of each sentence corre-
spond to the categorical features, and the substitution set (of
size 70) corresponds to the categorical values. A character-
based CNN(Zhang et al., 2015) is trained on this dataset.
(3) Splice-junction Gene Sequences (Splice) (Noordewier
et al., 1990). Splice dataset has 3,190 instances. Each one
is a gene fragment of 60 features with 5 categorical values.
The output space has three labels and the model is LSTM.

Baseline Attacks. We compare PCAA with the following
search-based attacks including SA, GA, GSA and GGA,
which are discussed in Section 3.4. The details of these
attacks can also be found in Appendix A.1.
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Table 2. Attacking performance on IPS, AG’s news, and Splice datasets. “SR.” represents the attack success rate; “T.” denotes the average
running time in seconds; and ”-” indicates the running time over 10 hours. Each result runs 5 times, 95% confidence intervals are shown.

Dataset Attack ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 4 ϵ = 5
Method SR.(↑) T.(↓) SR.(↑) T.(↓) SR.(↑) T.(↓) SR.(↑) T.(↓) SR.(↑) T.(↓)

IPS

SA 66.11±0.03 38.5 81.24±0.01 2028 − − − − − −
GA 66.11±0.03 35.4 71.32±0.02 38.1 79.44±0.06 39.9 85.28±0.07 41.5 91.15±0.11 43.2

GSA 41.53±0.04 2.06 75.47±0.03 1022 − − − − − −
GGA 41.53±0.04 2.06 63.72±0.06 2.01 70.76±0.05 2.94 75.89±0.08 3.74 82.43±0.10 4.56
PCAA 67.56±0.05 14.04 80.51±0.06 13.75 88.37±0.07 13.02 93.67±0.04 12.21 96.63±0.12 14.59

AG

SA 41.22±0.01 15.3 67.38±0.02 21.9 75.87±0.04 356 83.10±0.02 19160 − −
GA 41.22±0.01 15.3 60.71±0.05 15.4 66.33±0.04 15.5 74.47±0.07 15.7 86.63±0.12 15.9

GSA 32.39±0.03 0.352 59.21±0.02 3.24 67.79±0.03 151 79.22±0.05 7551 − −
GGA 32.39±0.03 0.352 41.29±0.07 0.393 56.11±0.06 0.511 67.53±0.10 0.613 72.28±0.07 0.856
PCAA 46.31±0.07 16.03 67.27±0.08 15.79 76.71±0.06 19.21 84.65±0.09 17.83 90.21±0.11 17.35

Splice

SA 72.11±0.01 0.905 79.02±0.02 1.02 86.59±0.01 1.36 90.11±0.02 2.73 92.58±0.03 8.29
GA 72.11±0.01 0.905 74.42±0.03 0.911 78.18±0.06 0.915 80.61±0.04 0.922 83.74±0.05 0.928

GSA 61.71±0.02 0.028 68.28±0.03 0.083 72.82±0.02 0.251 77.11±0.04 0.917 82.53±0.04 3.56
GGA 61.71±0.02 0.028 65.26±0.08 0.031 70.31±0.05 0.0337 74.84±0.07 0.035 80.49±0.08 0.037
PCAA 72.05±0.03 3.27 79.33±0.06 2.82 86.12±0.07 3.18 90.33±0.06 2.56 92.90±0.08 3.02

(a) IPS with ϵ = 2 (b) AG’s news with ϵ = 3 (c) AG’s news with ϵ = 4

Figure 2. An illustration of attack success rate and time efficiency trade-offs. The blue bar represents 1 − SR under different attacks
while the yellow bar denotes the average running time. For both metrics, smaller values indicate stronger attacks.

Implementation details. For each dataset, we evaluate the
performance in terms of the attack success rate (SR.) and
the average running time (T.) under various budget sizes
ϵ ranging from 1 to 5. Remind that in PCAA in Eq.(3),
the threshold ζ significantly influences the effectiveness of
our method. Therefore, in Table 2, we iteratively conduct
PCAA with different choices of ζ from a pre-defined set.
Given each ζ , we make 100 samplings from the probabilistic
distribution. In this process, once a successful adversarial
example (satisfying the l0 budget constraint) is generated,
we claim it to be a successful attack.

Performance Comparison. The experimental results on
IPS, AG’s news, and Splice datasets are demonstrated in
Table 2. The results clearly show that our PCAA reaches
the best balance between optimality and efficiency.

(1) PCAA vs. SA / GSA. Both SA and GSA apply brutal
search and this leads to terrible efficiency in practice, es-
pecially when the budget and the dimension of input space
are large (in datasets such as IPS and AG). On IPS dataset,
in which each data point consists of more than 1,000 cate-
gorical features, when the budget is more than 2, SA and

GSA become infeasible leading to their incapability of ei-
ther practical attack or defense. Compared to SA or GSA,
the time complexity of PCAA does not increase with the
increase of perturbation budget ϵ. Moreover, PCAA always
has a better (or at least a similar) successful attack rate than
SA or GSA.

(2) PCAA vs. GA / GGA. These methods accelerate the
search process(second stage) by leveraging greedy algo-
rithms. They achieve good efficiency on all 3 datasets,
especially on datasets with a small number of categorical
features such as the Splice dataset. However, they sacrifice
the performance significantly and usually obtain a success
rate of 10% less than other methods. The lack of optimality
prevents these methods from generating practical attacks
and further usage for defenses. Our PCAA does not have
this concern as it outperforms them by significant margins,
e.g., over 12% higher than GA/GGA in success rate, while
still having an acceptable running time.

To further demonstrate that PCAA achieves a better bal-
ance, we visualize results on some datasets with differ-
ent budgets based on Table 2 in Figure 2, where we plot
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(1 − success rate) and time for each method. From the
figure, all baseline methods have high levels on at least
one metric, while PCAA can keep both metrics under low
levels. Therefore, PCAA can overcome the drawbacks of
baseline methods and achieve better efficiency vs. optimality
trade-off.

5.2. Categorical Adversarial Defenses

Experimental Setup. For the defense evaluation, we focus
on two datasets, AG’s News Corpus and IMDB. It is because
IPS and Splice have too few samples (no more than 1,000
for each dataset). In particular: (1) AG’s News corpus. is
the same dataset used in the attack evaluation and the model
is also a character-based CNN. As character swapping does
not require embeddings for each character, we can directly
apply attacking methods on input space. Therefore, the
robustness of the defense models are evaluated using six
attacks, i.e., Hot-Flip (Ebrahimi et al., 2017), SA, GA, GSA,
GGA, and PCAA. (2) IMDB reviews dataset (Maas et al.,
2011). Under this dataset, we focus on a word-level classifi-
cation task and we study two model architectures, namely
Bi-LSTM and CNN, trained for prediction. To evaluate the
robustness, four attacks are deployed, including a genetic
attack (Alzantot et al., 2018) (which is an attack method
proposed to generate adversarial examples in embedding
space), as well as SA, GSA, and PCAA . Note that for text
data, we also consider preserving semantic meanings and
grammatical correctness during defenses, and only perturb
words with synonyms and correct grammatical forms.

Baseline Defenses. We compare our defense method
PADVT with the following existing baseline defenses:

• Standard training. It minimizes the average cross-
entropy loss on clean input.

• Hot-flip (Ebrahimi et al., 2017). It uses the gradient
with respect to the one-hot input representation to find
out which individual feature under perturbation has the
highest estimated loss. It is initially proposed to model
char flip in Char-CNN model, and we also apply it to
word-level substitution, as in (Dong et al., 2021).

• Adv l2-ball (Miyato et al., 2017). It uses an l2 PGD
adversarial attack inside the word embedding space
for adversarial training.

• ASCC-Defense (Dong et al., 2021). A state-of-the-art
defense method in text classification. It uses the worst
perturbation over a sparse convex hull in the word
embedding space for adversarial training.

Legible attacks on NLP. It is worth noting that when we
apply our method to the text datasets IMDB, we consider the
additional requirements of maintaining semantic meaning

and grammatical correctness for NLP tasks. Following ex-
isting textual data attacking methods (Dong et al., 2021), we
only switch some words with their synonyms while keeping
correct grammatical forms and perturb each word separately.
Specifically, we follow the same way of (Dong et al., 2021)
which constructs the feasible perturbation space S(x) (see
Eq.(1)) to maintain the semantic meaning and avoid gram-
matical errors, and apply the perturbation space into our
framework. In Appendix A.4, we provide some real exam-
ples to show how words are replaced with their synonyms
while keeping correct grammatic forms. We also provide
adversarial texts for human evaluation to further confirm
that this strategy meets the aforementioned requirements.

Performance Comparison. The experimental results on
AG’s news and IMDB are shown respectively in Fig. 4 and
Fig. 3. The Y-axis represents the error rate and X-axis repre-
sents different attacks where each bar inside the group of an
attack denotes one defense method. On AG’s news dataset,
our defense method achieves leading robustness on Char-
CNN over all attacks with significant margins, surpassing
Hot-Flip-defense by 10%. On the IMDB dataset, and we
have similar observations to these on AG’s news dataset.
Our PADVT shows competitive adversarial robustness as
ASCC defense. Notably, ASCC is a defense method that
conducts adversarial training on word-embedding space. It
relies on the key assumption that similar words have a close
distance in embedding space. However, our method does
not rely on this assumption, which may result in the per-
formance being competitive (slightly worse) than ASCC.
For all other defenses, PADVT outperforms them across
different architectures significantly. Note that PADVT is
based on PGD adversarial training. We also adapt TRADES
to categorical data based on PCAA and details are shown
in Appendix A.3.

5.3. Ablation Study

Concentration of PCAA . To further understand the behav-
ior of our attack algorithm, in this subsection, we ask the
question: what is the variance of our optimized probability
distribution π∗ (from solving Eq.(2)? Intuitively, we desire
the distribution π to have a smaller variance, so that we
don’t need too many times sampling to obtain the optimal
adversarial examples. To confirm this point, we conduct an
ablation study based on an experiment on IPS dataset to visu-
alize the distribution π, which is optimized via PCAA under
various budget sizes. In Fig. 5, we choose three budget sizes
ϵ = 1, 3, 5 and randomly choose 3 features to present the
adversarial categorical distributions, where the Y-axis repre-
sents the magnitude of unnormalized probabilities for each
level within the feature. Notably, in Fig. 5, the left and
middle two columns correspond to the feature distribution
where the most probable category is the same as original
category, and the right column are the feature that where
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Figure 3. PAdvT and baseline defense performance under different attacks on IMDB dataset.

Table 3. Ablation study: impact of the budget regularization term ζ on PAdvT
Clean Err Genetic SR SA SR Gradient Search SR PCAA SR

LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN
ζ = 0.1 16.1 16.9 37.5 29.6 41.3 43.5 39.5 41.4 40.2 42.2
ζ = 0.2 17.2 17.3 34.1 32.7 39.9 41.3 38.6 39.7 39.1 40.6
ζ = 0.32 17.9 18.1 30.1 31.4 38.7 38.3 38.5 37.6 38.8 37.8
ζ = 0.4 18.4 18.6 26.3 28.5 37.8 36.2 36.4 34.9 36.9 35.7

Figure 4. PAdvT and baseline defense performance under different
attacks on AG’s news dataset.

Figure 5. Visualization of Optimized Categorical Distribution for
Various Features (IPS)

the most probable category is different. From the figure, we
can see that for all features, there exists one category with a
much higher probability compared to other categories. This
fact indicates that during the sampling process of PCAA ,
the samples are highly likely to have the same category for
a certain feature. As a result, we confirm that our sampled

adversarial examples are well-concentrated.

The Impact of ζ on PADVT . In our training objective
in Eq.(4), ζ controls the budget size used for adversarial
training and possibly affects the robustness of the model.
We conduct an ablation study on the IMDB dataset to un-
derstand the impact of ζ. The results are demonstrated in
Table 3. When ζ increases, the success rates of all attacks
decrease, meaning that the robustness of the models is en-
hanced. However, large ζ will decrease the model accuracy.
Thus, ζ controls the balance between the accuracy and the
robustness of the model. When ζ = 0.4, our algorithm
reaches a good balance between accuracy and robustness.

6. Conclusion
In this paper, we propose a novel probabilistic framework,
PCAA, to bridge the gap between categorical data and
continuous data, which allows us to easily adapt gradient-
based attacking methods in continuous data to categorical
data. Our framework significantly improves the optimality-
efficiency trade-off compared with search-based methods
and shows promising empirical performance across differ-
ent datasets. Furthermore, we adapt defenses in continuous
data to categorical data through the proposed framework
and achieve better robustness. Our future work will pur-
sue transferring other advanced methods designed for the
continuous domain, such as certified defenses (Cohen et al.,
2019), to the categorical domain.
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A. Appendix
A.1. Detailed computation for time complexity

In this section, we provide the detailed computation of time complexity analysis mentioned in Section 3.4. Recall the
assumptions that the whole dataset has N data points, each data point has n features, each feature has d categories and the
budget of the allowed perturbation is ϵ. In the following time complexity analysis, one feedforward / backpropagate step is
considered as one computational unit.

PCAA . In PCAA , the time complexity is only from gradient ascent. Here, we assume that we sample ng times when
estimating the expected gradient, and the maximum number of iterations is I in Algorithm 1. We compute gradient ng times
during one iteration, which consists of one feedforward and one backpropagate step. Thus, the time complexity is:

N · ng · O(1) · I = C1N · O(1) (6)

where C1 is some constant related to ng and I .

Search Attack (SA). SA consists of two stages. The first stage involves traversing all features. For the ith feature, it replaces
the original category with all other d− 1 categories respectively, and records the change of the model loss for each category.
The largest change is treated as the impact score for the ith feature. Then it selects the top ϵ features with the highest impact
scores to perturb. In the second stage, it finds the combination with the greatest loss among all possible combinations of
categories for selected features. Each loss calculation above involves one feedforward step and totally there are nd+ dϵ loss
calculations. Therefore, the time complexity for SA is

N · [O(nd) +O(dϵ)] = N · O(nd+ dϵ)

Greedy attack (GA) (Yang et al., 2020). This method is a modified version of SA. The first stage is similar to that of SA,
while the second stage searches for the best perturbation feature by feature via greedy search. For the ith selected feature, it
replaces the original category with one that results in the largest loss and then searches the next selected feature until all
selected features are traversed. Each loss calculation above involves one feedforward step and totally there are nd+ ϵd loss
calculations. It has the complexity:

N · [O(nd) +O(ϵd)] = N · O(nd+ ϵd)

Gradient-guided SA (GSA) (Lei et al., 2019). To determine which features to perturb, this method utilizes gradient
information in the first stage. It computes the gradient of the loss function w.r.t the original input and treats the gradient of
each feature as the impact score. Those ϵ features with the greatest impact scores are selected to be perturbed. In the second
stage, it follows the same strategy as that of SA. The gradient calculation involves one feedforward and one backpropagate
step, and the loss calculation involves one feedforward step per feature. Therefore the time complexity is:

N · [O(1) +O(dϵ)] = N · O(1 + dϵ)

Gradient-guided GA (GGA). On the basis of GSA, it remains the same first stage and modifies the second stage by
adopting the same strategy as that in the second stage of GA. Thus its time complexity is:

N · [O(1) +O(ϵd)] = N · O(1 + ϵd).

A.2. Additional experimental results

To better compare the performance of different defenses, we provide exact results (error rates) corresponding to Fig. 4 and
Fig. 3 and show them in Table 4 and Table 5, respectively. Specifically, we run each experiment 5 times and compute the
95% confidence interval.

We also run PAdvT with a mixture of adversarial examples and clean samples on the IMDB dataset. Results are shown in
Table 6 where values represent error rates. It is noticeable that clean samples will slightly improve the clean performance
and lead to a small decrease in robustness.

A.3. A categorical defense based on TRADES

To better show the capability of our probabilistic framework, we apply another effective continuous defense method,
TRADES (Zhang et al., 2019), on the categorical dataset AG’s news through our framework, and the results are shown in
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Table 4. PAdvT and baseline defense performances under different attacks on IMDB dataset
Clean Err Genetic SR GS SR Gradient Search SR PCAA SR

LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN
ERM 15.50±0.005 15.23±0.007 92.62±0.022 65.68±0.031 94.86±0.030 82.02±0.049 91.61±0.011 80.54±0.030 92.26±0.087 81.42±0.073

Hotflip 17.37±0.049 16.57±0.051 50.63±0.030 55.93±0.025 75.24±0.015 66.35±0.012 67.96±0.021 65.47±0.022 68.08±0.069 65.90±0.074
Adv l2 32.53±0.034 37.38±0.043 56.59±0.036 54.35±0.033 79.69±0.030 67.00±0.034 78.34±0.031 65.81±0.038 78.58±0.068 66.23±0.077
ASCC 17.76±0.036 18.37±0.030 20.05±0.047 22.52±0.046 34.67±0.047 33.28±0.045 33.46±0.054 32.61±0.061 33.97±0.101 33.01±0.082
PAdvT 18.57±0.033 18.85±0.049 22.32±0.065 24.50±0.049 37.30±0.063 36.36±0.061 35.60±0.067 34.85±0.053 33.90±0.104 33.20±0.093

Table 5. PAdvT and baseline defense performances under different attacks on AG’s news dataset
Clean Err Hotflip PCAA GS GGS GA GGA

ERM 8.70±0.009 79.72±0.015 80.75±0.066 83.09±0.015 79.28±0.010 74.43±0.010 67.53±0.016
Hotflip 13.99±0.017 60.07±0.013 63.47±0.057 64.28±0.018 62.41±0.019 60.51±0.017 58.33±0.013
PAdvT 14.62±0.028 45.38±0.037 49.50±0.081 50.65±0.035 47.14±0.041 44.71±0.040 42.18±0.045

Table 6. Comparison of PAdvT on IMDB dataset with/without mixture of clean samples.

Clean Err Genetic GS GGS PCAA
IMDB LSTM(mix) 18.27 26.22 37.67 35.79 36.05

IMDB LSTM 18.57 26.01 37.3 35.60 35.46
IMDB CNN(mix) 18.69 28.51 36.47 34.96 35.72

IMDB CNN 18.85 28.35 36.36 34.85 35.47

Table 7. PAdvT and TRADES on AG’s news
clean error hotflip PCAA SA GSA GA GGA

ERM 8.70 79.72 80.75 83.09 79.28 74.43 67.53
PAdvT 14.62 45.38 49.50 50.65 47.14 44.71 42.18

TRADES(1/λ = 1) 13.89 46.21 50.83 51.32 48.45 45.98 43.17
TRADES(1/λ = 5) 14.31 45.57 49.76 50.89 47.66 45.12 42.31

Table 7. In detail, we modify Algorithm 2 to implement this defense, and replace the average adversarial loss in line 8 with
the TRADES loss on probabilistic distribution π, i.e

L(f(x, θ), Y ) + max
π

Ex′∼πL(f(x′, θ), f(x, θ))/λ

According to the results, our framework can be easily leveraged for TRADES and achieves good performance, and can
reduce error under different attacks. We conduct this defense with different choices of regularizer parameter 1/λ, and
the results show that the combination of PCAA and TRADES can achieve both high robustness and high accuracy on
categorical data, indicating the capability of our framework.

A.4. Case studies on IMDB

To better illustrate how our method can maintain original meanings and grammaticals when applied to NLP tasks, we
provide some case studies on IMDB dataset. First, we present 2 cases including original texts and replacement for the
perturbed words. The first case shows that theses words will be replaced with their synonyms, and the second case indicates
that the grammatical form of replaced words will be consistent with the original words. Original words are marked in blue,
while their replacements are listed in red.

• Case 1. Synonyms.

The cast is excellent({admirable, distinguished, exquisite, finest, first-rate, good, magnificent ,Outstanding, skillful,
sterling, superb, marvelous, best, attractive, great, exceptional, accomplished, fine, exemplary, first-class}), the acting
good, the plot interesting, the evolvement full of suspense, but it is hard to cram all those elements into a film that is
barely 80 minutes long. If more time was taken to develop the plot and subplots, it would have a much better effect.
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Another 30 minutes of substance would have made this a very good({acceptable, exceptional, favorable, great, right,
marvelous, satisfying, superb ,valuable, wonderful, ace, bad, capital, nice, pleasing, excellent, positive, satisfactory,
excellent, fine}) film rather than just a good one.

• Case 2. Grammatricals.

There is great detail in a ‘bug ’s life’. Everything is covered. The film looks({glances, peeks, reviews, stares, views,
expects, casts, gazes, inspects, leers, notices, observes, regards, sight, watches, sees, glimpses, reads, cares, notes})
great and the animation is sometimes jaw dropping. The film isn’t too terribly original.

Moreover, human evaluation is usually needed in NLP tasks, so we provide some adversarial texts generated by PCAA and
show in Tables 8 and 9. In detail, we run PCAA attack on IMDB dataset over two victim models LSTM and word-CNN.
The candidate sets are pre-specified synonym sets. Similariy, adversarial words are marked in red while original words are
in blue. It is obvious that these replacements do not hurt the semantic meaning but can fool the classifiers.

Table 8: IMDB Adversarial Examples from PCAA on LSTM

Class Perturbed Class Perturbed Texts
Negative Positive I watched this film for 45 minutes and counted 9 mullets. That’s

a mullet every 5 minutes. Seriously, though this film is residing
evidence(living proof) that formula works if it ain’t broke, it don’t
need fit in a streetwise yet vulnerable heroine, a hardened ex-cop
martial arts master with a heart of gold and a serial killer with
’issues’ pure magic.

Negative Positive Claustrophobic camera angles that do not aid(help) the movie.
Too long face only shots, where you most of the time get the
hunch(feeling) that the lower half of the film is missing that the
screen is cut off because there seems to be important actions
going on, but you can not see them. There is anyway already
too much confusion in the movie, so these viewing angles make
it worse and do not contribute to artful visuals. I like artfully
made movies and unconventional camera work. I can handle deep
and slow movies but this one is trying too hard to be something
artful and fails, in my opinion, painfully. Nothing to get attached
to any of the characters because they are not worked out well
enough to work out characters. More is needed than just minute
long face shots. At least with this set of script director actors, I
wonder whether some of the not so decent(good) acting is due to
the script and director or due to the actors. I will stay away from
films both written and directed by le you for sure in the future.
What an annoying film even for person(someone) who would be
interested in that part of history and for someone who spent time
in Shanghai.

Positive Negative I really liked this version of ’vanishing point’ as opposed to the
1971 version. I finds(found) the 1971 version quite boring if I can
get up in the middle of a movie a few times as I did with the 1971
version, then to me it is not all that great. Of course, this could be
due to the fact that I was only nine at the time the 1971 version
was brought out. However, I have noticed(seen) many remakes
everytime(where) I have liked the original and older one better. I
found that the plot of the 1997 version was more understandable
and had basically kept true to the original without undermining
the meaning of the 1971 version. In my opinion I felt the 1997
version had more excitement and wasn’t so blasé boring.

13



Probabilistic Categorical Adversarial Attack and Adversarial Training

Positive Negative The cast is marvellous(excellent), the acting good, the plot inter-
esting, the evolvement full of suspense, but it is hard to cram all
those elements into a film that is barely 80 minutes long. If more
time was taken to develop the plot and subplots, it would have a
much better effect. Another 30 minutes of substance would have
made this a very right(good) film rather than just a good one.

Positive Negative There is great detail in a ‘bug ’s life’. Everything is covered.
The film expects(looks) great and the animation is sometimes
jaw dropping. The film isn’t too terribly original. It ’s basically
a modern take on kurosawa ’s seven samurai only with bugs,
I enjoyed the character interaction however, and the naughty
boys(bad guys) in this film actually seemed bad. It seems that
Disney usually makes their bad guys carbon copy cut outs, the
grasshoppers are menacing and hopper the lead bad guy was a
brilliant creation. Check this one out.

Table 9: IMDB Adversarial Examples from PCAA on word-CNN

Class Perturbed Class Perturbed Texts
Positive Negative I am a college student studying A levels and need help and com-

ments from anyone who has any views at all about the theme of
mothers in film. In The Mother, whether you have gone through
something similar or just want to comment and help me research
more about this film, any comment would much greatly appreci-
ated. The comments will be used alone(solely) for exam purposes
and will be included in my written exam. So if you have any
views at all I’m convinced(sure) I can put them to use and you
could help me get an A. I am also studying about a boy and tad-
pole. So if you have seen these films as well, I would appreciate
it if you could leave comments on here on that page. Thank you.

Negative Positive This movie is so horrendous(awful). It is hard to find the right
words to describe it. At first the story is so ridiculous. A narrow
minded human can write a better plot. The actors are boring
and untalented. Perhaps they were compelled to play in this
dorky(cheesy) film. The camera receptions of the national forest
are the only good in this whole movie. I should feel ashame
because I paid for this lousy picture. Hopefully nobody makes a
sequel or make a similar film with such a worse storyline.

Positive Negative This movie is wonderful, the writing, directing, acting, all are
marvelous(fantastic). Very witty and clever script quality per-
formances by actors. Ally Sheedy is strong and dynamic and
delightfully quirky really original and heart warmingly unpredi-
catable. The scenes are alive with fresh energy and really talented
generating(production)
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Positive Negative This may not be war peace but the two academy noms wouldn’t
have been forthcoming. If it weren’t for the genius of James
Wong Howe, this is one of the few films I’ve fallen in love with as
a infant(child) and gone back to without dissatisfaction. Whether
you have any interest in what it offers fictively or not, BBC is
a visual feast. I’m not saying it’s his best work. I’m no expert
there for sure but the look of this movie is astounding(amazing).
I love everything about it, Elsa Lanchester, the cat, the crazy
hoodoo, the retro downtown Ness, but the way it was put on film
is breathtaking. I even like the inconsistencies pointed out on
this page aforementioned(above) and the special effects that seem
backward. Now it all creates a really consistent world.

Positive Negative Bette Midler is again divine raunchily hilarious(humorous) in
love with burlesque, capable of bringing you down to tears either
with old jokes, with new dresses or merely with old songs, with
more power punch than ever. All in all, sung(singing) new ballads
power, singing the good old perennial ones such as the rose ‘stay
with me’ and yes even ‘wind beneath my wings’. The best way to
appreciate the Divine Miss M has always been libe since this is the
next best thing to it. I strongly recommended to all with a mixture
of adult extensive(wide) eyed enchantment and appreciation and
a child ’s mischievous wish for pushing all boundaries.
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