
Hierarchical Neural Coding for Controllable CAD Model Generation

Xiang Xu 1 2 * Pradeep Kumar Jayaraman 2 Joseph G. Lambourne 2 Karl D.D. Willis 2 Yasutaka Furukawa 1

Abstract

This paper presents a novel generative model for

Computer Aided Design (CAD) that 1) represents

high-level design concepts of a CAD model as a

three-level hierarchical tree of neural codes, from

global part arrangement down to local curve ge-

ometry; and 2) controls the generation or com-

pletion of CAD models by specifying the target

design using a code tree. Concretely, a novel

variant of a vector quantized VAE with “masked

skip connection” extracts design variations as

neural codebooks at three levels. Two-stage cas-

caded auto-regressive transformers learn to gen-

erate code trees from incomplete CAD models

and then complete CAD models following the

intended design. Extensive experiments demon-

strate superior performance on conventional tasks

such as unconditional generation while enabling

novel interaction capabilities on conditional gen-

eration tasks. The code is available at https:

//github.com/samxuxiang/hnc-cad.

1. Introduction

From automobiles to airplanes, excavators to elevators, man-

made objects are created using Computer Aided Design

(CAD) software. Most modern CAD design tools employ

the “Sketch and Extrude” style workflow (Camba et al.,

2016; Shahin, 2008), where designers 1) draw loops of 2D

curves as outer and inner boundaries to create 2D profiles; 2)

extrude the 2D profiles to 3D shapes; and 3) add or subtract

3D shapes to build complex CAD models.

CAD models created in this way have a natural tree structure

which supports local edits. The curves at the leaves of the

tree can be adjusted and the extrusions regenerated to update

the final shape. For designers, it is also important that edits

preserve “design intent”. Otey et al (Otey et al., 2018) de-

*Work partially done while interning at Autodesk. 1Simon
Fraser University, Canada 2Autodesk Research. Correspondence
to: Xiang Xu <xuxiangx@sfu.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

RANDOM GENERATION

USER EDITING

Input

Input

After

AUTOCOMPLETE

Before

Before

User Edit

User Edit

After

Figure 1: We propose three-level hierarchical neural coding

for controllable CAD model generation. Our system learns

high-level design concepts as discrete codes at different

levels, enabling more diverse and higher-quality generation

(top); novel user controls while specifying design intent

(bottom-left); and autocompleting a partial CAD model

under construction (bottom-right).

fines design intent as “a CAD model’s anticipated behavior

when altered” while Martin (Martin, 2023) describe it as

“relationships between objects, so that a change to one can

propagate automatically to others”. Although “Sketch and

Extrude” allows local changes, it does not provide the rela-

tionships required to give the anticipated behavior when the

model is edited. A computational system with understand-

ing of design intent would revolutionize the practice of CAD.

The system would help designers in 1) generating a diverse

set of CAD models given high-level design concepts; 2)

1

https://github.com/samxuxiang/hnc-cad
https://github.com/samxuxiang/hnc-cad

Hierarchical Neural Coding for Controllable CAD Model Generation

ORIGINAL

DESIGN

PARAMETRIC

VARIATIONS

A

B

C

D

Figure 2: Example failures of parametric CAD, editing

a design (a) by shortening or extending (green) the table.

Inconsistent areas are highlighted in red.

modifying existing CAD models while constraining certain

model properties or 3) auto-completing designs interactively

(See Figure 1).

Unfortunately, such a system is not yet available for de-

signers. A current industry standard is to manually specify

parameters and equations which define the positions and

sizes of profiles, and constraints to align geometry. This

process, known as Parametric CAD, requires specialized

skills (Yares, 2013) and easily breaks with unanticipated

edits. Figure 2 illustrates examples, where editing the geom-

etry of a poorly constrained CAD model breaks the original

design intent. State-of-the-art research employs machine

learning techniques to automatically generate CAD models,

e.g. Wu et al. (2021). However, existing works do not make

use of the hierarchical nature of CAD designs to provide

effective design control.

This paper presents a novel generative network that captures

the design intent of a CAD model as a three-level tree of

neural codes, from local geometric features to global part

arrangement; and controls the generation or completion

of CAD models subject to the design intent specified by

the code tree or an incomplete CAD model. CAD models

are generated as sequences of modeling operations, then

converted into the industry standard boundary representation

(B-Rep) format for editing in mechanical CAD software.

Concretely, a novel variant of the vector quantized VAE (Van

Den Oord et al., 2017) with “masked skip connection” learns

design variations as three neural codebooks from a large-

scale sketch-and-extrude CAD dataset (Wu et al., 2021).

The masked skip connection is simple yet effective at extract-

ing well-abstracted codebooks, making the relationships of

codes and generated geometry intuitive. Then, two-stage

cascaded auto-regressive transformers learn to generate 1)

three-level code trees given an incomplete CAD model, 2)

complete CAD model given the code tree and the incom-

plete data. Designers can also directly provide a code tree

for model generation.

Qualitative and quantitative evaluations against other gener-

ative baselines show that our system generates more realistic

and complicated models in a random generation task. In

user-controlled conditional generation tasks, our system

demonstrates flexible and superior geometry control, en-

abled by the hierarchical code tree representation, over the

current state-of-the-art deep learning-based generative mod-

els (i.e., SkexGen (Xu et al., 2022), DeepCAD (Wu et al.,

2021)). In summary, we make the following contributions:

• A neural code tree representation encoding hierarchi-

cal design concepts that enables generation of high quality

and complex models, design intent aware user editing, and

design auto-completion.

• A novel variant of VQ-VAE with a masked skip connec-

tion for enhanced codebook learning.

• State-of-the-art performance in CAD model generation

over the previous SOTA methods.

2. Related Work

Constructive Solid Geometry (CSG): CSG builds com-

plex shapes as Boolean combinations of simple primitives.

Recent works utilized this representation for reconstructing

CAD shapes with program synthesis (Du et al., 2018; Nandi

et al., 2017; 2018; Sharma et al., 2018; Ellis et al., 2019;

Tian et al., 2019), and unsupervised learning (Kania et al.,

2020; Ren et al., 2021; Chen et al., 2020; Yu et al., 2022).

Although the CSG tree can be converted into a B-rep by

building equivalent primitives and applying Boolean opera-

tions with a solid modeling kernel, parametric CAD (Camba

et al., 2016), where a sequence of 2D sketches are built and

extruded to 3D, is the dominant paradigm for designing

mechanical parts and supports easy parametric editing.

Direct CAD Generation: Some recent works focused on

directly generating CAD models without any supervision

from CAD modeling sequences, by building the geometry of

parametric curves (Wang et al., 2020) and surfaces (Sharma

et al., 2020) with fixed (Smirnov et al., 2021) or arbitrary

topology for sketches (Willis et al., 2021a) and solid mod-

els(Wang et al., 2022; Guo et al., 2022; Jayaraman et al.,

2022). We focus more on controllable generation of para-

metric CAD in the form of sketch and extrude sequences.

Sketch and Extrude CAD Generation: Recent availabil-

ity of large-scale datasets for parametric CAD has enabled

learning based methods to leverage the CAD modeling se-

quence history (Willis et al., 2021b; Wu et al., 2021; Xu

et al., 2022) and sketch constraints (Seff et al., 2020) to

generate engineering sketches and solid models. The gener-

ated sequences can be parsed with a solid modeling kernel

to obtain editable parametric CAD files containing 2D en-

gineering sketches (Willis et al., 2021a; Para et al., 2021;

Ganin et al., 2021; Seff et al., 2021) or 3D CAD shapes (Wu

2

Hierarchical Neural Coding for Controllable CAD Model Generation

LOOPPROFILESOLIDMODEL

Figure 3: Our hierarchical tree representation of a CAD

model, with which a novel VQ-VAE learns codebooks at

the levels of solid, profile, and loop.

et al., 2021; Xu et al., 2022). Additionally, the generation

can be influenced by a target B-rep (Willis et al., 2021b;

Xu et al., 2021), sketches (Li et al., 2020; Seff et al., 2021),

images (Ganin et al., 2021), voxel grids (Lambourne et al.,

2022) or point clouds with (Uy et al., 2021) and without se-

quence guidance (Ren et al., 2022). But this kind of control

is still on a global level, while we aim to provide hierarchical

control on both global and local levels to support applica-

tions like design intent preserved edits and autocomplete.

User-Controlled CAD Generation: Providing user control

over the generation process, while preserving design intent,

is key for adoption of generative models in real world CAD

software. Although previous approaches can produce di-

verse shapes based on high level guidance, enabling user

control over the generation process is more challenging. In

the Sketch2CAD framework (Li et al., 2020), a network is

trained to predict CAD operations that correspond with seg-

mented sketch strokes, enabling a user interface for sketch

based CAD modeling. Free2CAD (Li et al., 2022) gen-

eralizes this system by additionally learning how to seg-

ment a complete sketch into groups that can be mapped to

CAD operations. These works focus on localized control

over the design process, and require significant user input.

SkexGen (Xu et al., 2022) allows users to explore design

variations with disentangled global control over over the

topology and geometry of CAD shapes. However, their

approach simply aids in creating a new design from scratch

and cannot be easily modified to provide an interactive ex-

perience that users expect for smartly editing CAD models

or autocompleting their next steps to save effort. Different

from existing works, our method leverages the natural hier-

archies which exist inside the CAD models to provide both

global and local control over the generation process.

3. Hierarchical CAD Properties

A sketch and extrude CAD model is naturally hierarchical

(see Figure 3) with a loop defining a closed path of con-

nected curves, a profile defining a closed area in the sketch

plane bounded by one outer loop and some inner loops,

and a solid representing a set of extruded profiles that are

combined to form the entire model. Our goal is to enable

local and global control in the generation of CAD models

where users edit any of these entities and expect the rest

to be updated sensibly automatically. To achieve this, we

capture this hierarchy in the latent space of our neural net-

works. At higher levels of the hierarchy, the network learns

the relative positions of lower level geometric entities, that

is, the bounding boxes of the profiles and extrusions which

make up the model. Concretely, we consider a CAD model

as a (S)olid-(P)rofile-(L)oop tree:

Loop (L): At the leaf of the tree, we have loops. Each loop

consists of a set of lines and arcs or a circle. The proper-

ties of a loop (L) is defined as a series of x-y coordinates

separated by special <SEP> tokens:

L = {(x1, y1), (x2, y2), <SEP>, (x3, y3), . . .}. (1)

Lines are represented by the xy-coordinates of two points.

Here we use the start and end of the curve. Arcs are repre-

sented by three points including start, middle and end point.

Circles are represented by four equally spaced points lying

on the curve. With this representation, the curve types can

be identified by the number of points as in (Willis et al.,

2021a). We sort the curves in a loop so that the initial curve

is the one with the smallest starting point coordinate, and the

next one is its connected curve in counterclockwise order.

Profile (P): The profile is above the leaf level. Since the

loop geometry is captured at the leaf level, the properties

of a profile node is defined as a series of 2D bounding box

parameters of the loops within the sketch plane:

P = {(xi, yi, wi, hi)}
N

loop

i

i=1
. (2)

i is the index of the N
loop
i loops within a profile. (xi, yi) is

the bottom-left corner of the bounding box. (wi, hi) is the

width and height. We determine the order of bounding box

parameters in profile P by sorting the bottom-left corner of

all the 2D bounding boxes in ascending order.

Solid (S): Above the profile level, we have the 3D solid

model formed by extruding one or more profiles. The prop-

erties of a solid node captures the arrangement of extruded

profiles using a series of 3D bounding box parameters:

S = {(xj , yj , zj , wj , hj , dj)}
N

profile

j

j=1
. (3)

j is the index of the N
profile
j extruded profiles within a model.

(xj , yj , zj) is the bottom-left corner of the bounding box

and (wj , hj , dj) is its dimension. Likewise, the parameters

in S is sorted by the bottom-left corner of all the extruded

3D bounding boxes in ascending order.

3

Hierarchical Neural Coding for Controllable CAD Model Generation

MODEL

ENCODER

PREDICTED

CAD OUTPUT

MODEL

GENERATOR

CODEBOOK
LOSS

ENCODER DECODER

INPUT LOOP OUTPUT LOOP

MASKING

AVG

POOL

NEAREST

RETRIEVAL

MLP 1 MLP 2 MLP 3

x y

x y

x y

S S

x y

x y

x y

S S

x y

x y

x y

S S CODE-TREE

GENERATOR

PARTIAL

CAD INPUT

0

Figure 4: Left: VQ-VAE with masked skip connection for codebook learning. Given a CAD model as a construction

sequence (e.g., x, y, S), an MLP and a Transformer encoder convert the input to latent codes (TE
t), and a vector quantization

extracts a code (c) after average pooling. A Transformer decoder recovers the input sequence, conditioned on the vector-

quantized code (c) and the masked input sequence (TD
t). Grey color represents input tokens that were masked out. Right:

Controllable CAD generation module with two-stage auto-regressive generators. Given a partial CAD model, a model

encoder converts it to latent embeddings (TE
t). The first auto-regressive Transformer generates hierarchical neural codes

(TC
t) conditioned on the encoded embeddings. The second auto-regressive Transformer generates a new CAD model.

4. Three-Level Codebook Learning

Given a dataset of sketch and extrude CAD models in the

(S)olid-(P)rofile-(L)oop tree format, a novel variant of the

vector quantized VAE (VQ-VAE) (Van Den Oord et al.,

2017; Razavi et al., 2019) learns their latent patterns as

three discrete codebooks, which encode a CAD model into

a tree of neural codes for downstream applications.

Following SkexGen (Xu et al., 2022), the foundation of our

architecture for learning codebooks is a VQ-VAE, consist-

ing of a Transformer encoder E and decoder D (see Fig-

ure 4). We learn (L)oop, (P)rofile, and (S)olid codebooks

independently. Different from SkexGen and previous work

on masked learning (He et al., 2022), we apply masking

on a skip-connection from the encoder input to the decoder

input. Intuitively, a standard VQ-VAE (i.e., without skip

connection) is trained to recover instance-specific input de-

tails, which would be a challenge for the quantized code if

it is learning instance-agnostic design patterns. A naı̈ve skip

connection allows the decoder to cheat by directly copying

the input. Masking the skip connection forces the decoder

to relate partial details from unmasked elements and fill-in

missing ones, where the relation is guided by design patterns

encoded in the code.

Encoder: Consider a (L)oop node L (Equation 1), contain-

ing a series of x-y coordinates and special <SEP> tokens.

We use a 65D one-hot vector to represent a token, where a

coordinate is quantized to a 6 bit (i.e., 64D) (Xu et al., 2022;

Seff et al., 2021) and <SEP> requires one extra dimension.

Let TE
t denote the 256D embedding of the tth token for the

Transformer encoder. The embedding is initialized as:

TE
t ←

{

MLP(Wembxt ∥Wembyt) + γt (for x-y),

MLP(Wemb<SEP> ∥Wemb<SEP>) + γt.
(4)

Wemb is a 65×32 token embedding matrix. ∥ is the concate-

nation operator. MLP is a 2-layer multilayer perception. γt
is a learnable 256D positional embedding. Second case is

for <SEP> where value is repeated twice. For (P)rofile and

(S)olid codebooks, we process each of the 2D or 3D bound-

ing box parameters the same way as xt, yt coordinates,

except with no <SEP> tokens.

Vector Quantization: The outputs of the encoder (E), with

sequence length T , are first average pooled, forming E(TE).
The standard vector quantization procedure is then applied

to obtain a 256D codebook vector c. More specifically, we

compare the Euclidean distance between codebook vector b

and encoded E(TE) and perform a nearest neighbor lookup.

c← bk, where k = argmini

∣

∣

∣

∣E(TE)− bi

∣

∣

∣

∣

2

. (5)

Decoder with Masked Skip Connection: The decoder

takes the quantized code c and the input series of x-y coor-

dinates and <SEP> tokens with masking, and predicts the

masked tokens. For example, in the case of a loop node,

any of the xt, yt and <SEP> tokens could be masked (con-

cretely 30% to 70% of the tokens per model randomly). Let

TD
t denote the embedding of the tth token as an input to the

decoder. Each token is embedded exactly as in Equation 4,

except that embeddings of masked tokens are replaced with

a learnable shared 32D mask token embedding m.

The 256D codebook vector c from the encoder is concate-

nated together with {TD
t } and passed to the decoder (D),

which has 4 self-attention layers. The idea here is to force

the encoder to learn useful latent features that can help the

decoder to predict the masked tokens. Finally, an MLP is

applied to each token embedding (except the codebook vec-

tor) after the decoder to produce (2× 65)D logits, a pair of

probability values over the 65 class labels for predicting the

4

Hierarchical Neural Coding for Controllable CAD Model Generation

xy-coordinates or the <SEP> token.

Loss Function: The training loss consists of three terms:

∑

t

EMD
(

D(c, {TD
t }), ✶Tt

)

+

∣

∣

∣

∣sg[E(TE)]− c
∣

∣

∣

∣

2

2
+ β

∣

∣

∣

∣E(TE)− sg[c]
∣

∣

∣

∣

2

2
. (6)

The first term is the squared Earth Mover’s Distance Loss

between the decoder output probability and the correspond-

ing data property’s one hot encoding ✶Tt
. The loss is only

applied at masked tokens. We use the EMD loss function

from (Hou et al., 2016) which assumes ordinal class labels

and penalizes predictions closer to the ground-truth less than

those far away. This works better than a cross-entropy loss

since x-y coordinates carry distance relations, allowing the

loss to focus on predictions far away from the ground-truth.

Note that we treat the <SEP> token in loop data properties

differently by applying the standard cross-entropy loss on it

as this is not an ordinal class label.

The second and third terms are the codebook and commit-

ment losses used in VQ-VAE (Van Den Oord et al., 2017;

Razavi et al., 2019). sg denotes the stop-gradient operation,

which is the identity function in forward pass but blocks

gradients in backward pass. β scales the commitment loss

and is set to 0.25. We use the exponential moving average

updates with a decay rate of 0.99 (Razavi et al., 2019).

5. Controllable CAD Generation

Loop, profile, and solid codebooks allow us to express the

design concepts of a CAD model as hierarchical neural

codes, enabling diverse and high-quality generation, novel

user controls specifying design intent, and autocompletion

of incomplete CAD models. Concretely, given an incom-

plete CAD model as a sketch and extrude construction se-

quence: 1) A model encoder turns the input sequence into

latent embeddings; 2) An auto-regressive Transformer gen-

erates a code tree, conditioned on the embedded input se-

quence; and 3) The second auto-regressive Transformer gen-

erates the full CAD models, conditioned on the embedded

input sequence and a code tree.

Model Encoder: The model encoder backbone is the stan-

dard Transformer encoder module with 6 self-attention lay-

ers. We borrow the format used in SkexGen (Xu et al.,

2022) and represent a model as a sequence of tokens, each

of which is a one-hot vector, uniquely determining a curve

type, quantized curve parameter and quantized extrusion

parameter. The encoder converts the one-hot vectors into a

series of 256D latent embeddings {TE
t }.

1

1As in SkexGen, we encode “geometry” and “extrusion” se-
quence separately and concatenate the embeddings to get TE

t . For
experiments with 2D sketches, only the geometry encoder is used.

Code Tree Generator: Gcode is an autoregressive decoder

which generates a hierarchy of codes {TC
t }. A code is

assigned to each (S)olid, (P)rofile, or (L)oop from a cor-

responding codebook, conditioned on the encoded embed-

dings {TE
t }. Similar to the hierarchical property represen-

tation (section 3), hierarchical codes are represented as a

series of feature vectors indicating either a code or a separa-

tor token. Concretely, a feature is a one-hot vector whose

size is the total number of codes in the three codebooks plus

one for the separator. For example, consider the code tree in

Figure 3, consisting of a model with one solid, two profiles,

and two or four loops. This tree is represented as features in

the following order [S, <SEP>, P, L, L, <SEP>, P, L, L, L,

L]. Here we perform depth-first traversal of the neural code

tree and the boundary command <SEP> is used to indicate

a new grouping of profile and loop codes.

Gcode has 6 self-attention (SA) layers interleaved with 6

cross-attention (CA) layers. The first SA layer is over the

query tokens {T C̃
t }, each of which is initialized by a position

encoding γt and autoregressively estimated. The input to

each of the CA layers is {TE
t }. Each SA or CA layer has

8-heads attentions, followed by an Add-Norm layer. A

query token {T C̃
t } will have a generated code index, which

is converted to a code TC
t . A separator is replaced by a

learnable embedding.

TC
t ←

{

Codebook(T C̃
t) + γt (for code),

Wemb<SEP> + γt (for <SEP>).
(7)

Codebook denotes the mapping from a code index to the

code. We train Gcode with the standard cross-entropy loss.

Note that for unconditional generation, we remove the par-

tial CAD model encoder and train SA layers with query to-

kens ({T C̃
t }) only, without cross-attention layers and {TE

t }.

Model Generator: The model generator is the second auto-

regressive decoder Gcad, generating a sketch-and-extrude

CAD model. Gcad is the same as the SkexGen decoder (Xu

et al., 2022) except that partial CAD model embeddings

{TE
t } and the hierarchical neural codes {TC

t } control the

generation via the cross-attention layers, while SkexGen

only allows the specification of global codes. The archi-

tecture specification is the same as the first decoder. The

query tokens (T out
t) contain the generated CAD command

sequences as one-hot vectors (Xu et al., 2022), where we

use the same standard cross entropy loss.

6. Evaluation

This section presents unconditional and conditional gener-

ation results, which demonstrate 1) Higher quality, more

diverse, and more complex CAD models far beyond the cur-

rent state-of-the-art; 2) Control over the CAD generation via

hierarchical neural codes; and 3) Two important application

5

Hierarchical Neural Coding for Controllable CAD Model Generation

(a) DeepCAD (b) SkexGen (c) Ours

Figure 5: Unconditional generation results by (a) DeepCAD, (b) SkexGen and (c) our method. The bottom three rows (red

color) show complex samples with three or more sketch-extrude steps.

scenarios, user-edit and auto-completion.

6.1. Experiment Setup

Dataset: We use the large-scale DeepCAD dataset (Wu

et al., 2021) with ground-truth sketch-and-extrude mod-

els. DeepCAD contains 178,238 sketch-and-extrude models

with a split of 90% train, 5% validation, and 5% test samples.

We detect and remove duplicate models from the training set

as in prior works (Willis et al., 2021a; Xu et al., 2022). After

extracting the hierarchical properties for (L)oop, (P)rofile,

and (S)olid (section 3), we also remove duplicate properties

for each level. Lastly, we use a CAD model for training only

when the number of solids is at most 5, the number of loops

is at most 20 for every profile, the number of curves is at

most 60 for every loop, and the total number of commands

in the sketch-and-extrude sequence is at most 200. After

the duplicate removal and filtering, the training set contains

102,114 solids, 60,584 profiles, 150,158 loops for code-

book learning, and 124,451 sketch-and-extrude sequences

for CAD model generation training. For CAD engineering

drawings, we follow SkexGen (Xu et al., 2022) and extract

sketches from DeepCAD. A total of 99,650 sketches are

used for training after duplicate removal.

Implementation Details: Models are trained on an Nvidia

RTX A6000 GPU with a batch size of 256. The code-

book module and the generation module are trained for 250

and 350 epochs, respectively. We use the improved Trans-

former backbone with pre-layer normalization as in (Wu

et al., 2021; Xu et al., 2022). Input embedding dimension

is 256. Feed-forward dimension is 512. Dropout rate is

0.1. Each Transformer network in the generation module

has 6 layers with 8 attention heads. The codebook learning

networks have 4 layers. We use the AdamW (Loshchilov &

Hutter, 2018) optimizer with a learning rate of 0.001 after

linear warm-up for 2000 steps. At test time, we use nucleus

sampling (Holtzman et al., 2020) to autoregressively gen-

erate the codes and CAD tokens. To reduce overfitting, we

follow (Xu et al., 2022) and augment the training data by

adding a small random noise to the input curve coordinates.

VQ-VAEs suffer from codebook collapse and we employ an

approach from Jukebox (Dhariwal et al., 2020) that reinitial-

izes under-utilized codes (less than 7 mapped samples). To

identify the optimal codebook size, we trained our model us-

ing different codebook sizes and evaluated the unconditional

generation results using the 5% validation set in DeepCAD.

Our analysis revealed that the model performance was best

for codebook size ranging from 2,000 to 4,000, with larger

codebook not providing noticeable improvement. Our final

codebook size is around 3,500 for profile and solid, and

2,500 for loop. The compression ratio of dividing the num-

ber of unique data by the codebook size is approximately

60x for loop, 17x for profile, and 29x for solid.

6.2. Metrics

Five established metrics quantitatively evaluate random gen-

eration. Three metrics are based on point clouds sampled

on the model surfaces. Two metrics are based on generated

tokens of sketch and extrude construction sequence.

Point-cloud metrics measure generation diversity and qual-

ity by sampling 2,000 points on each generated or ground-

truth data and compare two sets of point clouds (Achlioptas

et al., 2018; Wu et al., 2021; Xu et al., 2022).

• Coverage (COV) is the percentage of ground-truth models

that have at least one matched generated sample. The match-

6

Hierarchical Neural Coding for Controllable CAD Model Generation

Table 1: Quantitative evaluations on the CAD generation

task based on the Coverage (COV) percentage, Minimum

Matching Distance (MMD), Jensen-Shannon Divergence

(JSD), the percentage of Unique and Novel scores and Real-

ism as perceived by human evaluators.

Method COV MMD JSD Novel Unique Realism
% ↑ ↓ ↓ % ↑ % ↑ % ↑

DeepCAD 80.62 1.10 3.29 91.7 85.8 38.7
SkexGen 84.74 1.02 0.90 99.1 99.8 46.9
Ours 87.73 0.96 0.68 93.9 99.7 49.2

ing process assigns every generated sample to its closest

neighbor in the ground-truth set based on Chamfer Distance

(CD) or Earth Mover’s Distance (EMD). COV measures the

diversity of generated shapes. If CAD generation suffers

from mode collapse, generated shapes would only match a

few ground-truth models, leading to low coverage scores.

• Minimum Matching Distance (MMD) reports the average

minimum matching distance between the ground-truth set

and the generated set.

• Jensen-Shannon Divergence (JSD) is the similarity be-

tween two probability distributions, measuring how often

the ground-truth points clouds occupied similar locations

as the generated point clouds. We voxelize the 3D space

and count the number of points in each voxel. This gives us

occupancy distributions for computing the JSD score.

Token metrics measure uniqueness (Willis et al., 2021a).

Numeric fields are quantized to 6-bit.

• Novel is the percentage of generated CAD sequence that

does not appear in the training set.

• Unique is the percentage of generated data that appears

once in the generated set.

6.3. Unconditional Generation

We compare with two sketch-and-extrude baselines, Deep-

CAD (Wu et al., 2021) and SkexGen (Xu et al., 2022),

for the unconditional generation task. Our cascaded auto-

regressive system generates a code tree and then a CAD

model. Each method generates 10,000 CAD models, which

are compared with randomly selected 2,500 ground truth

models from the test set.

Quantitative Evaluation: Table 1 reports the average

scores across 3 different runs. Our method outperforms

baselines on all three point cloud evaluation metrics, demon-

strating great improvements in quality and diversity. The

Unique score of our method matches SkexGen and is sig-

nificantly better than DeepCAD. For the Novel score, our

0 1 2 3 4 5 6 7
Number of raters selecting generated result as more realistic

0

5

10

15

20

%
 o

f p
ai

rs
 ra

te
d DeepCAD

SkexGen
Ours

Less realistic More realistic

Figure 6: Distribution of votes by 7 human evaluators com-

paring the realism of complex samples produced by the

three methods with the training set.

Figure 7: Generated results from hierarchical code tree

editing. Code is edited in the (L)oop level of the tree in the

first row, the (P)rofile level of the tree in the second row,

and the (S)olid level of the tree in the third row. The code

tree corresponding to each result is inset below.

method is slightly worse than SkexGen, while still signifi-

cantly better than DeepCAD, which is caused by the smaller

training set that lacks diversity and has only a few complex

shapes. SkexGen suffers less from this issue since it fails to

generate very complex CAD models (see Figure 5).

Qualitative Evaluation: Figure 5 provides side-by-side

qualitative comparisons at different steps of sketch-and-

extrude. The figure shows that our approach generates well-

structured CAD models, reminiscent of real-world examples.

Generated solids have more complicated shape geometries

and part arrangements. Additional qualitative results are

available in Figure 15 and Figure 16. Also see Appendix C

for the sketch generation results.

Human Evaluation: To evaluate the perceived quality of

our generation results, we run a human evaluation follow-

ing the methodology in (Jayaraman et al., 2022). As our

hierarchical technique excels at generating complex models,

we choose to perform the human evaluation on models with

three or more extrusions. For the DeepCAD and SkexGen

benchmarks, where control over the complexity of the gen-

erated models is not possible, we randomly sample models

that have three or more extrusions from a larger pool of un-

conditional generation results. For each model created by a

7

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 8: CAD parameter edits with fixed code trees. Red

arrows indicate the individual parts edited by the user. Other

parts automatically got modified.

Figure 9: Autocompleted sketches (column 2 ∼ 4) from

partial loops (column 1).

generative method, we randomly select another ground-truth

model from DeepCAD and display renderings of the two

side by side. The image pairs were presented to crowd work-

ers from the Amazon Mechanical Turk workforce (Mishra,

2019), who were asked to evaluate which of the two is more

“realistic”. To assist the crowd workers with this task, we

provide carefully chosen examples of complex CAD models

and low quality generations. See Appendix A for details.

Each image pair was rated independently by 7 crowd work-

ers and we record the number of times generated data was

selected as more realistic than training data, giving us a

“realism” score from 0 to 7. Figure 6 shows the distribu-

tion of the“realism” scores. We see that for our method the

distribution is symmetric, indicating the crowd workers are

unable to distinguish the generated models from the training.

DeepCAD and SkexGen distributions are skewed towards

”less realistic”, indicating crowd workers were able to iden-

tify models generated by them as simplistic or malformed.

We consider a generated model as more “realistic” than the

training data if 4 or more of the 7 raters selected it. For our

method, 49.2% of the generated models were more “realis-

tic” than complex examples from the training data compared

to 46.9% for SkexGen and 38.7% for DeepCAD.

6.4. Controllable Generation

We demonstrate controllable generation in two “editing”,

and one “auto-completion” application scenarios.

Figure 10: Autocompleted CAD models (blue) from partial

extruded profiles (gray).

Code Tree Editing: Given a code tree, a user can edit

the code nodes at three different levels, achieving local

and global modifications across the CAD hierarchy. This

hierarchical control over the generation is unavailable in

previous methods (Wu et al., 2021; Xu et al., 2022). Figure 7

illustrates the diverse and well-controlled generated results

from editing of the code tree. We see that loop codes control

the shape geometry, profile codes control the loop dimension

and positioning in 2D, and finally solid code controls the

height of extruded sketches and their 3D combination.

Design-Preserving Editing: With the code tree fixed, a user

can preserve the current design while making local edits to

the model parameters to iteratively refine it. Treating user

edited parameters as partial input and reuse the previous

neural codes, the model generator outputs a new CAD model

following both the current design and the user edited values.

Figure 8 demonstrates that after a user edit to the horizontal

length of a local part, the bottom part in the left and the two

supporting arms in the right adjusted their size accordingly

to accommodate the user edit. This automatic process is

the result of keeping the code tree that encodes the part

connectivity and dimension relations.

Autocompletion from User Input: We consider partial

user input in the format of one or multiple extruded profiles

or loops. Our code tree generator can predict a set of likely

codes from partial input and use the generated code together

with the partial input to autocomplete the full CAD model.

Figure 9 shows the sketch autocomplete results when a

user provide partial loops and model completes the full

sketch. Likewise, Figure 10 shows the CAD autocomplete

results from partial extruded profiles. Each row contains

8

Hierarchical Neural Coding for Controllable CAD Model Generation

 Partial Input Nearest Neighbor Search Ours

Figure 11: Qualitative comparison between our method (center) and the nearest neighbor search baseline (right). Given the

same partial user input (left), our method autocompletes the CAD model with better diversity and fidelity.

multiple generated results from different generated codes.

Here we use top-1 sampling in the model generator to limit

the generation diversity to code only. See Appendix B and

Appendix C for additional results.

For comparison, we also implemented a nearest-neighbor

search baseline. Partial CAD solids built from intermedi-

ate steps of the sketch-and-extrude formed a ground-truth

incomplete CAD database. User input is the query and we

compute its Chamfer distance to all shapes in the database.

The k-nearest shapes are considered to be geometrically

similar and we retrieve their corresponding ground-truth

complete CAD models as the completed result. Figure 11

compares our generated results with the top-3 nearest neigh-

bor results. Nearest-neighbor results have less diversity and

fail to closely match the user input. In contrast, our results

correctly auto-complete the user input with high diversity.

6.5. Instance-Agnostic Design Pattern

To better understand the unsupervised features learned by

the codebook, Figure 12 shows the data and code mapping

after encoding. We see that data assigned to the same code

share similar instance-agnostic design patterns, such as the

oscillating pattern in the first row, while effectively ignoring

data-specific details like the exact number of curves or its

type. More visualization is in Appendix D.

7. Limitations

A primary failure mode of our current system is the lack of

validity in the generated CAD models with self-intersecting

edges or solids. Our loss functions do not explicitly penal-

ize invalid geometries; future work is the addition of a loss

function that explicitly penalizes the CAD model invalidity

with domain knowledge. Another direction is to learn to

recover from such failures, which currently poses a chal-

lenge due to the lack of an “invalid CAD model dataset”.

Lastly, another limitation of our approach is the use of the

sketch-and-extrude CAD format that excludes other popular

modeling operations such as revolve, mirror, and sweep.

Figure 12: Loops (row 1,2) and profiles (row 3) encoded to

the same code. Profiles shown as bounding boxes.

8. Conclusion

We introduce a novel generative model for controllable CAD

generation. A key to our approach is a three-level neural

coding that captures design patterns and intent at different

levels of the modeling hierarchy. This paper makes another

step towards intelligent generative design with users in the

loop. Extensive evaluations demonstrate major boosts in

generation quality and promising applications of our hi-

erarchical neural coding such as intent-aware editing or

auto-completion.

Acknowledgements

This research is partially supported by NSERC Discovery

Grants with Accelerator Supplements and DND/NSERC

Discovery Grant Supplement, NSERC Alliance Grants, and

John R. Evans Leaders Fund (JELF).

9

Hierarchical Neural Coding for Controllable CAD Model Generation

References

Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.

Learning representations and generative models for 3d

point clouds. In International conference on machine

learning, pp. 40–49. PMLR, 2018.

Camba, J. D., Contero, M., and Company, P. Parametric cad

modeling: An analysis of strategies for design reusability.

Computer-Aided Design, 74:18–31, 2016.

Chen, Z., Tagliasacchi, A., and Zhang, H. Bsp-net: Gener-

ating compact meshes via binary space partitioning. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 45–54, 2020.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,

and Sutskever, I. Jukebox: A generative model for music.

arXiv preprint arXiv:2005.00341, 2020.

Du, T., Inala, J. P., Pu, Y., Spielberg, A., Schulz, A., Rus,

D., Solar-Lezama, A., and Matusik, W. Inversecsg: Au-

tomatic conversion of 3d models to csg trees. Annual

Conference on Computer Graphics and Interactive Tech-

niques (SIGGRAPH), 37(6):1–16, 2018.

Eitz, M., Hays, J., and Alexa, M. How do humans sketch

objects? ACM Trans. Graph. (Proc. SIGGRAPH), 31(4):

44:1–44:10, 2012.

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., and

Solar-Lezama, A. Write, execute, assess: Program syn-

thesis with a repl. In Advances in Neural Information

Processing Systems (NeurIPS), pp. 9169–9178, 2019.

Ganin, Y., Bartunov, S., Li, Y., Keller, E., and Saliceti,

S. Computer-aided design as language. In Advances in

Neural Information Processing Systems (NeurIPS), 2021.

Guo, H., Liu, S., Pan, H., Liu, Y., Tong, X., and Guo, B.

Complexgen: Cad reconstruction by b-rep chain complex

generation. ACM Trans. Graph. (SIGGRAPH), 41(4), July

2022. doi: 10.1145/3528223.3530078. URL https:

//doi.org/10.1145/3528223.3530078.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,

R. Masked autoencoders are scalable vision learners. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 16000–16009, 2022.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and

Hochreiter, S. Gans trained by a two time-scale update

rule converge to a local nash equilibrium. Advances in

neural information processing systems, 30, 2017.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The

curious case of neural text degeneration. In International

Conference on Learning Representations (ICLR), 2020.

Hou, L., Yu, C.-P., and Samaras, D. Squared earth mover’s

distance-based loss for training deep neural networks.

arXiv preprint arXiv:1611.05916, 2016.

Jayaraman, P. K., Lambourne, J. G., Desai, N., Willis, K.

D. D., Sanghi, A., and Morris, N. J. W. Solidgen: An au-

toregressive model for direct b-rep synthesis. ”arXiv

Preprint”, 2022. doi: 10.48550/ARXIV.2203.13944.

URL https://arxiv.org/abs/2203.13944.

Kania, K., Zieba, M., and Kajdanowicz, T. Ucsg-net-

unsupervised discovering of constructive solid geometry

tree. Advances in Neural Information Processing Systems,

33:8776–8786, 2020.

Lambourne, J. G., Willis, K. D., Jayaraman, P. K., Zhang,

L., Sanghi, A., and Malekshan, K. R. Reconstructing

editable prismatic cad from rounded voxel models. In

SIGGRAPH Asia, December 2022.

Li, C., Pan, H., Bousseau, A., and Mitra, N. J. Sketch2cad:

Sequential cad modeling by sketching in context. ACM

Transactions on Graphics (TOG), 39(6):1–14, 2020.

Li, C., Pan, H., Bousseau, A., and Mitra, N. J. Free2cad:

Parsing freehand drawings into cad commands. ACM

Trans. Graph. (Proceedings of SIGGRAPH 2022), 41(4):

93:1–93:16, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-

ularization. In International Conference on Learning

Representations, 2018.

Martin, D. What is design intent?, 2023. Accessed: Janurary

19, 2023.

Mishra, A. Machine learning in the aws cloud: Add intelli-

gence to applications with amazon sagemaker and ama-

zon rekognition, 2019. URL https://aws.amazon.

com/sagemaker/groundtruth/.

Nandi, C., Caspi, A., Grossman, D., and Tatlock, Z. Pro-

gramming language tools and techniques for 3d printing.

In 2nd Summit on Advances in Programming Languages

(SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2017.

Nandi, C., Wilcox, J. R., Panchekha, P., Blau, T., Grossman,

D., and Tatlock, Z. Functional programming for compil-

ing and decompiling computer-aided design. Proceedings

of the ACM on Programming Languages, 2(ICFP):1–31,

2018.

10

https://doi.org/10.1145/3528223.3530078
https://doi.org/10.1145/3528223.3530078
https://arxiv.org/abs/2203.13944
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/

Hierarchical Neural Coding for Controllable CAD Model Generation

Otey, J., Company, P., Contero, M., and Camba, J. D.

Revisiting the design intent concept in the context of

mechanical cad education. Computer-Aided Design

and Applications, 15(1):47–60, 2018. doi: 10.1080/

16864360.2017.1353733. URL https://doi.org/

10.1080/16864360.2017.1353733.

Para, W. R., Bhat, S. F., Guerrero, P., Kelly, T., Mitra, N.,

Guibas, L., and Wonka, P. Sketchgen: Generating con-

strained cad sketches. In Advances in Neural Information

Processing Systems (NeurIPS), 2021.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating

diverse high-fidelity images with vq-vae-2. Advances in

neural information processing systems, 32, 2019.

Ren, D., Zheng, J., Cai, J., Li, J., Jiang, H., Cai, Z., Zhang,

J., Pan, L., Zhang, M., Zhao, H., et al. Csg-stump: A

learning friendly csg-like representation for interpretable

shape parsing. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp. 12478–12487,

2021.

Ren, D., Zheng, J., Cai, J., Li, J., and Zhang, J. Extrudenet:

Unsupervised inverse sketch-and-extrude for shape pars-

ing. In ECCV, 2022.

Seff, A., Ovadia, Y., Zhou, W., and Adams, R. P. Sketch-

Graphs: A large-scale dataset for modeling relational

geometry in computer-aided design. In ICML 2020 Work-

shop on Object-Oriented Learning, 2020.

Seff, A., Zhou, W., Richardson, N., and Adams, R. P. Vit-

ruvion: A generative model of parametric cad sketches.

arXiv:2109.14124, 2021.

Shahin, T. Feature-based design – an overview. Computer-

aided Design and Applications, 5, 01 2008. doi: 10.3722/

cadaps.2008.639-653.

Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., and Maji,

S. Csgnet: Neural shape parser for constructive solid

geometry. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

Sharma, G., Liu, D., Maji, S., Kalogerakis, E., Chaudhuri,

S., and Měch, R. Parsenet: A parametric surface fitting

network for 3d point clouds. In European Conference on

Computer Vision (ECCV), pp. 261–276. Springer, 2020.

Smirnov, D., Bessmeltsev, M., and Solomon, J. Learn-

ing manifold patch-based representations of man-made

shapes. In International Conference on Learning Repre-

sentations (ICLR), 2021.

Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W. T., Tenen-

baum, J. B., and Wu, J. Learning to infer and execute 3d

shape programs. In International Conference on Learning

Representations (ICLR), 2019.

Uy, M. A., Chang, Y., Sung, M., Goel, P., Lambourne,

J., Birdal, T., and Guibas, L. J. Point2cyl: Reverse

engineering 3d objects from point clouds to extrusion

cylinders. CoRR, abs/2112.09329, 2021. URL https:

//arxiv.org/abs/2112.09329.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-

resentation learning. Advances in neural information

processing systems, 30, 2017.

Wang, K., Zheng, J., and Zhou, Z. Neural face identification

in a 2d wireframe projection of a manifold object. In

2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1612–1621, 2022. doi:

10.1109/CVPR52688.2022.00167.

Wang, X., Xu, Y., Xu, K., Tagliasacchi, A., Zhou, B.,

Mahdavi-Amiri, A., and Zhang, H. Pie-net: Paramet-

ric inference of point cloud edges. In Advances in Neural

Information Processing Systems, volume 33, pp. 20167–

20178. Curran Associates, Inc., 2020.

Willis, K. D., Jayaraman, P. K., Lambourne, J. G., Chu, H.,

and Pu, Y. Engineering sketch generation for computer-

aided design. In IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPR Workshop),

pp. 2105–2114, 2021a.

Willis, K. D. D., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne,

J. G., Solar-Lezama, A., and Matusik, W. Fusion 360

gallery: A dataset and environment for programmatic

cad construction from human design sequences. ACM

Transactions on Graphics (TOG), 40(4), 2021b.

Wu, R., Xiao, C., and Zheng, C. Deepcad: A deep genera-

tive network for computer-aided design models. In IEEE

International Conference on Computer Vision (ICCV), pp.

6772–6782, October 2021.

Xu, X., Peng, W., Cheng, C.-Y., Willis, K. D., and Ritchie,

D. Inferring cad modeling sequences using zone graphs.

In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 6062–6070, June 2021.

Xu, X., Willis, K. D., Lambourne, J. G., Cheng, C.-Y.,

Jayaraman, P. K., and Furukawa, Y. Skexgen: Autore-

gressive generation of cad construction sequences with

disentangled codebooks. In International Conference on

Machine Learning, pp. 24698–24724. PMLR, 2022.

Yares, E. The failed promise of parametric cad, 2013. Ac-

cessed: November 5, 2022.

Yu, F., Chen, Z., Li, M., Sanghi, A., Shayani, H., Mahdavi-

Amiri, A., and Zhang, H. Capri-net: Learning compact

cad shapes with adaptive primitive assembly. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 11768–11778, 2022.

11

https://doi.org/10.1080/16864360.2017.1353733
https://doi.org/10.1080/16864360.2017.1353733
https://arxiv.org/abs/2112.09329
https://arxiv.org/abs/2112.09329

Hierarchical Neural Coding for Controllable CAD Model Generation

Realistic models

Unrealistic models

Figure 13: Images shown to crowd workers of realistic and unrealistic models.

A. Human Evaluation Details

The perceived quality of our generation results was assessed using a “two-alternative forced choice” task, in which crowd

workers from the Amazon Mechanical Turk workforce were asked to choose whether a generated model was more “realistic”

than a random model from training data. To assist the crowd workers, we provide examples of six high quality models from

the DeepCAD training data and ten examples of bad quality generations. The example images are shown in Figure 13. The

high quality models are chosen to include desirable properties like symmetry, complexity and a coherent design, while

the low quality examples include models which are very simple, not watertight or incoherent jumbles of extrusions. The

evaluation was conduced on 950 image pairs for each generative method, with 7 crowd workers rating each pair, resulting in

a total of 19,950 human annotations.

B. Additional CAD Results

Figure 10 only shows the partial input and the final autocompleted CAD model. Here, we provide more examples in

Figure 14 with detailed steps of the sketch-and-extrude from left to right. For every partial input, we show two generation

of sketch-and-extrude CAD construction sequences due to the prediction of different code tree. Figure 15 and Figure 16

provide additional randomly generated CAD models from our method.

C. Sketch Generation Results

This section provides additional 2D sketch generation results conditioned on loop and profile codes. For random generation

evaluation, we report the Fréchet inception distance (FID) score (Heusel et al., 2017) which computes the difference in

mean and covariance for real and generated 2D data in a network feature space. Following SkexGen, we use ResNet-18 (He

et al., 2016) pre-trained on human sketch classification (Eitz et al., 2012) for extracting the features to compute the FID.

Quantitative numbers for our random sketch generation are reported in Table 2. Compared to DeepCAD and SkexGen, our

model achieves a similar FID score as SkexGen but has slightly better Novel score. Qualitative result in Figure 17 contains

samples of randomly generated sketches from our method. Qualitatively, sketches from our method have complex shapes

with few self-intersections or broken curves.

We provide additional sketch autocompletion results in Figure 18. We also trained our model to autocomplete the full sketch

from partial curves, which is a more general case for user interaction.

12

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 14: Autocompleted CAD models from partial user input. The order of sketch-and-extrude is from left to right. User

provided extruded profiles are colored in orange. We show two different autocompletion results from the same input. In the

second example, user input consists of multiple extruded profiles at different steps of the construction sequence.

Table 2: Quantitative metrics for unconditional sketch generation with models trained on sketches from the DeepCAD

dataset.

Method FID (↓) Unique (%,↑) Novel (%,↑)

DeepCAD 75.47 98.79 97.45
SkexGen 18.56 96.02 83.54
Ours 18.14 97.11 85.62

D. Additional Code and Data Mapping

Qualitative results from Figure 19 and Figure 20 contain more visualization of profile and loop data encoded to the same

code. We see that data assigned to the same code also have similar design patterns, such as the circular layout around a

center or the shape geometry approximating an ’X’ shape. Those patterns ignore instance-specific details like the number of

the bounding boxes, the number of curves, and the type of the curves.

13

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 15: Randomly generated CAD models from our method.

14

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 16: Randomly generated CAD models with three or more sketch-extrude steps from our method.

15

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 17: Randomly generated sketches from our method.

16

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 18: Left: Autocompleted sketches (column 2 ∼ 4) from partial loops (column 1). Right: Autocompleted sketches

(column 6 ∼ 8) from partial curves (column 5).

17

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 19: Profile data at each row are mapped to the same code.

18

Hierarchical Neural Coding for Controllable CAD Model Generation

Figure 20: Loop data at each row are mapped to the same code.

19

