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Abstract

Recent studies empirically demonstrate the pos-
itive relationship between the transferability of
neural networks and the within-class variation of
the last layer features. The recently discovered
Neural Collapse (NC) phenomenon provides a
new perspective of understanding such last layer
geometry of neural networks. In this paper, we
propose a novel metric, named Variability Col-
lapse Index (VCI), to quantify the variability col-
lapse phenomenon in the NC paradigm. The VCI
metric is well-motivated and intrinsically related
to the linear probing loss on the last layer fea-
tures. Moreover, it enjoys desired theoretical and
empirical properties, including invariance under
invertible linear transformations and numerical
stability, that distinguishes it from previous met-
rics. Our experiments verify that VCI is indicative
of the variability collapse and the transferability
of pretrained neural networks.

1. Introduction
The pursuit of powerful models capable of extracting fea-
tures from raw data and performing well on downstream
tasks has been a constant endeavor in the machine learn-
ing community (Bommasani et al., 2021). In the past few
years, researchers have developed various pretraining meth-
ods (Chen et al., 2020; Khosla et al., 2020; Grill et al., 2020;
He et al., 2022; Baevski et al., 2022) that enable models
to learn from massive real world datasets. However, there
is still a lack of systematic understanding regarding the
transferability of deep neural networks, i.e., whether they
can leverage the information in the pretraining datasets to
achieve high performance in downstream tasks (Abnar et al.,
2021; Fang et al., 2023).
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The performance of a pretrained model is closely related
to the quality of the features it produces. The recently pro-
posed concept of neural collapse (NC) (Papyan et al., 2020)
provides a paradigmatic way to study the representation of
neural networks. According to neural collapse, the last layer
features of neural networks adhere to the following rule of
variability collapse (NC1): As the training proceeds, the
representation of a data point converges to its corresponding
class mean. Consequently, the within-class variation of the
features converges to zero.

The deep connection between transferability and neural col-
lapse is rooted in the variability collapse criterion. Previous
works (Feng et al., 2021; Kornblith et al., 2021; Sariyildiz
et al., 2022) empirically find that although models with
collapsed last-layer feature representations exhibit better
pretraining accuracy, they tend to yield worse performance
for downstream tasks. These works give an intuitive expla-
nation that pushing the feature to their class means results
in the loss of the diverse structures useful for downstream
tasks. Building upon this understanding, researchers design
various algorithms (Jing et al., 2021; Kini et al., 2021; Chen
et al., 2022; Dubois et al., 2022; Sariyildiz et al., 2023)
that either explicitly or implicitly levarage the variability
collapse criterion to retain the feature diversity in the pre-
training phase, and thereby improve the transferability of
the models.

Straightforward as it is stated, the variability criterion is still
not thoroughly understood. One fundamental question is
how to mathematically quantify variability collapse. Pre-
vious works propose variability collapse metrics that are
meaningful in specific settings (Papyan et al., 2020; Zhu
et al., 2021; Kornblith et al., 2021; Hui et al., 2022). How-
ever, a more principled characterization is required when
we want to use variability collapse to analyze transferability.
For example, in the linear probing setting, the loss function
is invariant to invertible linear transformations on the last
layer features. Consequently, it is reasonable to expect that
the collapse metric of the features would also be invariant
under such transformations, in order to properly reflect the
models performance on downstream tasks. However, as
we will point out in Section 4.2, no previous metric can
achieve this high level of invariance, to the best of the au-
thors’ knowledge.
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To obtain a well-motivated and well-defined variability col-
lapse metric, we tackle the problem from a loss minimiza-
tion perspective. Our analysis reveals that the minimum
mean squared error (MSE) loss in linear probing on a set of
pretrained features can be expressed concisely, with a major
component being Tr[Σ†

TΣB ]. Here, ΣB is the between-
class feature covariance matrix and ΣT is the overall fea-
ture covariance matrix, as defined in Section 3.1. This
term serves as an indicator of variability collapse, since it
achieves its maximum rank(ΣB) for fully collapse configu-
rations where the feature of each data point coincides with
the feature class mean. Furthermore, an important implica-
tion of its connection with MSE loss is that the invertible
linear transformation invariance of the loss function directly
transfers to the quantity Tr[Σ†

TΣB ].

Motivated by the above investigations, we propose the fol-
lowing collapse metric, which we name Variability Col-
lapse Index (VCI):

VCI = 1−
Tr[Σ†

TΣB ]

rank(ΣB)
.

The VCI metric possesses the desirable property of invari-
ance under invertible linear transformation, making it a
proper indicator of last layer representation collapse. Fur-
thermore, VCI enjoys a higher level of numerical stability
compared previous collapse metrics. We conduct extensive
experiments to validate the effectiveness of the proposed
VCI metric. The results show that VCI is a valid index for
variability collapse across different architectures. We also
show that VCI has a strong correlation with accuracy of
various downstream tasks, and serves as a better index for
transferability compared with existing metrics.

2. Related Works
Neural Collapse. The seminal paper Papyan et al. (2020)
proposes the concept of neural collapse, which consists of
four paradigmatic criteria that govern the terminal phase of
training of neural networks.

One research direction regarding neural collapse focuses
on rigorously proving neural collapse for specific learning
models. A large portion of them adopt the layer peeled
model (Mixon et al., 2020; Fang et al., 2021), which treats
the last layer feature vector as unconstrained optimization
variables. In this setting, both cross entropy loss (Lu &
Steinerberger, 2020; Zhu et al., 2021; Ji et al., 2021) and
mean square loss (Tirer & Bruna, 2022; Zhou et al., 2022a)
exhibit neural collapse configurations as the only global
minimizers and have benign optimization landscapes. Addi-
tionally, other theoretical investigations explore neural col-
lapse from the perspective of optimization dynamics (Han
et al., 2021), max margin (Zhou et al., 2022c) and more
generalized setting (Nguyen et al., 2022; Tirer et al., 2022;

Zhou et al., 2022b; Yaras et al., 2022)

Another research direction draws inspiration from the neural
collapse phenomenon to devise training algorithms. For
instance, some studies empirically demonstrate that fixing
the last-layer weights of neural networks to an Equiangular
Tight Frame (ETF) reduces memory usage (Zhu et al., 2021),
and improves the performance on imbalanced dataset (Yang
et al., 2022; Thrampoulidis et al., 2022; Zhu et al., 2022)
and few shot learning tasks (Yang et al., 2023).

Representation Collapse and Transferability. Under-
standing and improving the transferability of neural net-
works to unknown tasks have attracted significant attention
in recent years (Tan et al., 2018; Ruder et al., 2019; Zhuang
et al., 2020). Previous works (Feng et al., 2021; Sariyildiz
et al., 2022; Cui et al., 2022) empirically demonstrate that
the diversity of last layer features is positively correlated
with the transferability of neural networks, highlighting a
tradeoff between pretraining accuracy and transfer accuracy.
To address this challenge, various methods (Schilling et al.,
2021; Touvron et al., 2021b; Xie et al., 2022) have been
proposed to quantify and mitigate representation collapse.
For example, Kornblith et al. (2021) show that using a low
temperature for softmax activation in training reduces class
separation and improves transferability. Neural collapse pro-
vides a novel perspective for understanding this fundamental
tradeoff (Galanti et al., 2021; Li et al.). Notably, Hui et al.
(2022) reveal that neural collapse can be at odds with trans-
ferability by causing a loss of crucial information necessary
for downstream tasks.

3. Preliminaries
3.1. Notations and Problem Setup

Throughout this paper, we adopt the following notation
conventions. We use ∥v∥ to denote Euclidean norm of
vector v ∈ Rd. We use ∥A∥F to denote Frobenious norm
and A† to denote the pseudo-inverse of matrix A ∈ Rd×d,
d ∈ N+. We use [n] as a short hand for {1, · · ·n}. We use
ek ∈ RK to denote the vector whose k-th entry is 1 and the
other entries are 0. We use 1d and 0d to denote the all-one
and the zero vector in Rd, and use Id×d and 0d×d to denote
the identity matrix and the zero matrix in Rd×d. We omit
the subscripts of dimension when the context is clear.

Consider a K-class classification problem on a balanced
dataset D = {(xk,i, ek)}k∈[K],i∈[N ], where N is the num-
ber of samples from each class. It is worth noting that
the results presented in this paper can be readily extended
to imbalanced datasets. Each sample consists of a data
point xk,i ∈ Rd and an one-hot label ek ∈ RK . The
classifier Wϕ(·) + b is composed of a feature extractor
ϕ : Rd → Rp and a linear layer with W ∈ RK×p and
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b ∈ RK . Let hk,i = ϕ(xk,i) denote the feature vector of
xk,i, and H = (hk,i)k∈[K],i∈[N ] ∈ Rp×KN denote the fea-
ture matrix. The feature extractor can be any pretrained
neural network, till its penultimate layer.

For a given feature matrix, we denote µk(H) =
(1/N)

∑
i∈[N ] hk,i as the k-th class mean, and µG(H) =

(1/KN)
∑

k∈[K],i∈[N ] hk,i as the global mean. Through-
out this paper, we will frequently refer to the following
notions of feature covariance. Specifically, we denote the
within-class covariance matrix by

ΣW (H) =
1

KN

∑
k∈[K]

∑
i∈[N ]

(hk,i − µk)(hk,i − µk)
⊤, (1)

and the between-class covariance matrix by

ΣB(H) =
1

K

∑
k∈[K]

(µk − µG)(µk − µG)
⊤. (2)

The overall covariance matrix is defined as

ΣT (H) =
1

KN

∑
k∈[K]

∑
i∈[N ]

(hk,i −µG)(hk,i −µG)
⊤. (3)

A bias-variance decomposition argument gives ΣT (H) =
ΣB(H) + ΣW (H), whose proof is provided in Equation 7
for completeness. We omit the feature matrix H in the
above notations, when the context is clear.

We define VB = span{µ1−µG, · · ·µk−µG} as the column
space of ΣB . In the same way, we can define VW , VT as the
column space of ΣW and ΣT , respectively.

3.2. Previous Collapse Metrics

The first item in the Neural collapse paradigm is referred to
as the variability collapse criterion (NC1), which states that
as the training proceeds, the within-class variation of the last
layer features will diminish and the features will concentrate
to the corresponding class means. Use the quantities defined
above, NC1 happens if ΣW → 0. In the related literature,
researchers propose various ways to non-asymptotically
characterize NC1.

Fuzziness. One of the commonly adopted metrics for NC1
is the normalized within-class covariance Tr[Σ†

BΣW ] (Pa-
pyan et al., 2020; Zhu et al., 2021; Tirer & Bruna, 2022).
The term is commonly referred to as Separation Fuzzi-
ness or simply Fuzziness in the related literature (He & Su,
2022), and is inherently related to the fisher discriminant
ratio (Zarka et al., 2020).

Squared Distance. Hui et al. (2022) uses the quantity∑
k∈[K]

∑
i∈[N ] ∥hk,i − µk∥2

N
∑

k∈[K] ∥µk − µG∥2
(4)

to characterize NC1. In this paper, we refer to it as Squared
Distance for convenience. Unlike fuzziness, square distance
disregards the structure of the covariance matrix and uses the
ratio of the square norm between the within-class variation
and the between-class variation as a measure of collapse
metric.

Cosine Similarity. Kornblith et al. (2021) uses the ratio
of the average within-class cosine similarity to the overall
cosine similarity to measure the dispersion of feature vectors.
Define sim(x, y) = x⊤y/ (∥x∥∥y∥) as the cosine similarity
between vectors. Denote the within-class cosine distance
and overall cosine distance as

d̄within =

K∑
k=1

N∑
i=1

N∑
j=1

1− sim (hk,i, hk,j)

KN2
,

d̄total =

K∑
k=1

K∑
l=1

N∑
i=1

N∑
j=1

1− sim (hk,i, hl,j)

K2N2
.

They refer to the term 1− d̄within /d̄total as class separation.
They also propose a simplified quantity 1− d̄within , and em-
pirically show that both of them have a negative correlation
with linear probing transfer performance across different
settings. In this paper, we adopt d̄within as the baseline met-
ric in Kornblith et al. (2021), and call it Cosine Similarity
for brevity.

4. What is an Appropriate Variability Collapse
Metric?

In this section, we explore the essential properties that a
valid variability collapse metric should and should not have.

4.1. Do Last Layer Features Fully Collapse?

The original NC1 argument states that the within class co-
variance converges to zero, i.e., ΣW → 0, as the training
proceeds. This implies that a collapse metric should achieve
minimum or maximum at these fully collapsed configura-
tions with ΣW = 0.

However, the following proposition shows that the oppo-
site is not true, i.e., full collapse is not necessary for loss
minimization.

Proposition 4.1. Consider a loss function ℓ : Rk×Rk → R.
Define the training loss as

L(W, b,H) =
1

KN

∑
k∈[K]

∑
i∈[N ]

ℓ(Whk,i + b, ek)

+
λW

2
∥W∥2F +

λb

2
∥b∥2, (5)

where λW , λb ≥ 0 are regularization parameters. Sup-
pose that p > K, N ≥ 2. Then for any constant C > 0,
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Figure 1: Projections of Squared Distance onto VB and
V ⊥
B show opposite trends as the training proceeds. The

model is a ResNet50 trained on ImageNet-1K, using the
setting specified in Section 6.1.

there exists an H ′, such that L(W, b,H ′) = L(W, b,H),
ΣB(H

′) = ΣB(H), but ∥ΣW (H ′)∥F > C.

The proof of the proposition is provided in Appendix A.1.
It is worth noting that the above proposition does not con-
tradict previous conclusions that ETF configurations are the
only minimizers (Zhu et al., 2021; Tirer & Bruna, 2022),
since they require feature regularization (λH/2)∥H∥2F in
the loss function.

Our experiments show that Proposition 4.1 truly re-
flects the trend of neural network training. We train a
ResNet50 model on ImageNet-1K dataset, and decom-
pose ΣW into the VB part and the V ⊥

B part by com-
puting (1/KN)

∑
k∈[K],i∈[N ] ∥ProjVB

(hk,i − µk)∥2 and
(1/KN)

∑
k∈[K],i∈[N ] ∥ProjV ⊥

B
(hk,i − µk)∥2. The results

are shown in Figure 1. We observe that although the VB

part steadily decreases, the V ⊥
B part keeps increasing in the

training process. Therefore, ΣW → 0 may not occur for
real world neural network training.

Proposition 4.1 and Figure 1 show that the last layer of
neural networks exhibits high flexibility due to overparame-
terization. Consequently, it is unrealistic to expect standard
empirical risk minimization training to achieve fully col-
lapsed last layer representation, unless additional inductive
bias are introduced. Therefore, requiring that the collapse
metric reaches its minima only at fully collapsed configu-
rations, such as Squared Distance, will be too stringent for
practical use.

4.2. Invariance to Invertible Linear Transformations
Matters

Symmetry and invariance is a core concept in deep learn-
ing (Gens & Domingos, 2014; Tan et al., 2018; Chen et al.,
2019). The collapse metric discussed in Section 3.2 enjoy
certain level of invariance properties.

Observation 4.2. The Fuzziness metric Tr[Σ†
BΣW ] is in-

variant to invertible linear transformation U ∈ Rp×p that
can be decomposed into two separate transformations in
VB and V ⊥

B . The claim comes from the fact that

Tr
[(
UΣBU

⊤)† UΣWU⊤
]

= Tr
[
U−1,⊤Σ†

BU
−1UΣWU⊤

]
= Tr

[
Σ†

BΣW

]
.

However, Fuzziness is not invariant to all invertible lin-
ear transformations in Rp. A simple counter example

is ΣB =

[
1 0
0 0

]
, ΣW =

[
1 0
0 1

]
, and the linear

transformation U =

[
1 1
0 1

]
. It can be calculated that

Tr
[(
UΣBU

⊤)† UΣWU⊤
]
= 2 ̸= 1 = Tr

[
Σ†

BΣW

]
.

Observation 4.3. The Squared Distance metric in Equa-
tion 4 is invariant to isotropic scaling and orthogonal trans-
formation on the feature vectors, i.e., since such transfor-
mations preserve the pairwise distance between the feature
vectors. However, it is not invariant to invertible linear
transformations in Rp.

Observation 4.4. The Cosine Similarity metric is invariant
to independent scaling of each hk,i. It is also invariant to
orthogonal transformation in Rp, as such transformations
preserves the cosine similarity between feature vectors. But
it is easy to see that Cosine Similarity is not invariant to
invertible linear transformation in Rp.

However, the next proposition shows that the linear probing
loss of the last layer feature is invariant under a much more
general class of transformations.

Observation 4.5. The minimum value of loss function in
Equation 5 is invariant to invertible linear transformations
on the feature vector, i.e.

min
W,b

L(W, b,H) = min
W,b

L(W, b, V H),

for any invertible V ∈ Rp×p.

In other words, if we have two pretrained models ϕ1(·) and
ϕ2(·), and there exists an invertible linear transformation
V ∈ Rp×p such that ϕ1(x) = V ϕ2(x) for any x ∈ Rd, then
ϕ1(·) and ϕ2(·) will have exactly the same linear probing
loss on any downstream data distribution. Therefore, when
considering a collapse metric that may serve as an indicator
of transfer accuracy, it is desirable for the metric to exhibit
invariance to invertible linear transformations. However, as
discussed previously, the metrics listed in Section 3.2 do not
possess this level of invariance.
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Figure 2: The Eigenvalue spectra of ΣB and ΣT . The
spectrum of ΣT has a substantially larger scale. The model
is a ResNet50 trained on ImageNet-1K, using the setting
specified in Section 6.1.

4.3. Numerical Stability Issues

Numerical stability is an essential property for the collapse
metric to ensure its practical usability. Unfortunately, the
Fuzziness metric is prone to numerical instability, primarily
due to the pseudoinverse operation applied to ΣB .

Firstly, the between-class covariance matrix ΣB is singular
when K ≤ p, and its rank is unknown. Due to computa-
tional imprecision, its zero eigenvalues are always occupied
with small nonzero values. In the default PyTorch (Paszke
et al., 2019) implementation, the pseudoinverse operation in-
cludes a thresholding step to eliminate the spurious nonzero
eigenvalues. However, selecting the appropriate threshold is
a manual task, as it may vary depending on the architecture,
dataset, or training algorithms.

To tackle this issue, one possible solution is to retain only
the top min{p,K − 1} eigenvalues, which is the maximum
rank of ΣB . Nevertheless, ΣB can still possess small trailing
nonzero eigenvalues. For example, in the experiments illus-
trated in Figure 2, the 999-th eigenvalue is about 2× 10−3,
significantly smaller than the typical scale of nonzero eigen-
values. Including such small eigenvalues in the computation
would yield a substantially large fuzziness value.

To address the numerical stability issue, an alternative ap-
proach is to discard the ΣB and instead employ the more
well-behaved overall covariance matrix ΣT . As shown in
Figure 2, the eigenvalues of ΣT exhibit a larger scale and
a more uniform distribution compared with eigenvalues of
ΣB , making it a numerically stable choice for pseudoinverse
operation. Interestingly, the quantity Σ†

T naturally emerges
in the solution of a loss minimization problem, which we
will explore in the next section.

5. The Proposed Metric
As we have discussed, the existing collapse metrics dis-
cussed in Section 3.2 do not have the desired properties

to fully measure the quality of the representation in down-
stream tasks. In this section, we introduce a novel and
well-motivated collapse metric, which we call Variability
Collapse Index (VCI), that satisfy all the aforementioned
properties.

Previous studies (Zhu et al., 2021; Tirer & Bruna, 2022)
indicate that fully collapsed last layer features minimizes
the linear probing loss. Therefore, it is natural to explore
the inverse direction, namely, using the linear probing loss
to quantify the collapse level of last layer features.

Suppose we have a labeled dataset with corresponding last
layer feature H = (hk,i)k∈[K],i∈[N ]. We perform linear
regression on the last layer to find the optimal parameter W
that minimizes the following MSE loss:

L(W, b,H) =
1

2KN

∑
k∈[K],i∈[N ]

∥Whk,i + b− ek∥2.

The following theorem gives the optimal linear probing loss.

Theorem 5.1. The optimal linear probing loss has the fol-
lowing form.

min
W,b

L(W, b,H) = − 1

2K
Tr
[
Σ†

TΣB

]
+

1

2
− 1

2K
,

where ΣB and ΣT are the between-class and overall covari-
ance matrix defined in Equation 2 and 3.

Theorem 5.1 shows that the information of the minimum
MSE loss can be fully captured by the simple quan-
tity Tr

[
Σ†

TΣB

]
. It is easy to see that the minimum of

Tr[Σ†
TΣB ] is 0. The following theorem gives an upper

bound of Tr[Σ†
TΣB ].

Theorem 5.2. Tr[Σ†
TΣB ] ≤ rank(ΣB). The equality holds

for fully collapsed configuration ΣW = 0.

The term Tr[Σ†
TΣB ] has a positive correlation with the level

of collapse in the representation. Theorem 5.1 implies that
for MSE loss, a more collapsed representation leads to a
smaller loss. Therefore, this term is a natural candidate for
collapse metric.

Definition 5.3. Define the Variability Collapse In-
dex (VCI) of a set of features H = (hk,i)k∈[K],i∈[N ] as

VCI = 1−
Tr[Σ†

TΣB ]

rank(ΣB)
,

where ΣB and ΣT are the between-class and overall covari-
ance matrix defined in Equation 2 and 3.

One of the advantages of VCI is its invariance to invertible
linear transformations, which is inherited from the invari-
ance of the MSE loss.
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Figure 3: Variability Collapse metrics of training ResNet18 on CIFAR-10 dataset. From left to right: Fuzziness, Squared
Distance, Cosine Similarity and our proposed VCI. The three curves are obtained with different training settings specified
below, all achieving ≥ 92.1% test accuracy. Green: step-wise lerning rate decay schedule. Orange: cosine annealing
schedule. Blue: cosine annealing schedule without weight decay and warmup.
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Figure 4: Variability Collapse metrics of training ResNet50 on ImageNet-1k dataset. From left to right: Fuzziness,
Squared Distance, Cosine Similarity and our proposed VCI. The three curves are obtained with different training settings,
all achieving ≥ 77.8% test accuracy. green: CE loss. orange: MSE loss. blue: MSE loss + cosine annealing schedule.

Corollary 5.4. VCI is invariant to invertible linear trans-
formation of the feature vector, i.e., multiplying each hk,i

with an invertible matrix U ∈ Rp×p.

Proof. From Observation 4.5, we know that the minimum of
the loss function L(W, b,H) is invariant to invertible linear
transformations on H . This implies the same invariance
property of the term Tr[Σ†

TΣB ]. The proof is complete by
noting that invertible linear transformation will also preserve
the rank of ΣB .

Another advantage of VCI lies in its numerical stability.
This advantage primarily stems from the well-behaved na-
ture of the spectrum of ΣT compared to that of ΣB , as
discussed in Section 4.3. Therefore, the pseudo-inverse
operation does not lead to an explosive increase in VCI. Fur-
thermore, one can safely takes rank(ΣB) = min{p,K−1},
since the unknown rank is not the cause of numerically in-
stability as in Fuziness.

6. Experiment Results
In this section, we present experiments that reflect the dif-
ferences between the previous variability collapse metrics
and our proposed VCI metric.

6.1. Setups

We conduct experiments to analyze the behavior of four
variability collapse metrics, namely Fuzziness, Squared Dis-
tance, Cosine Similarity. We evaluate the metrics on the
feature layer of ResNet18 (He et al., 2016) trained on CI-
FAR10 (Krizhevsky et al., 2009) and ResNet50 / variants
of ViT (Dosovitskiy et al., 2020) trained on ImageNet-1K
with AutoAugment (Cubuk et al., 2018) for 300 epochs.
ResNet18s are trained on one NVIDIA GeForce RTX 3090
GPU, ResNet50s and ViT variants are trained on four GPUs.
The batchsize for each GPU is set to 256. The metric val-
ues are recorded every 20 epochs, where rank(ΣB) in the
expression of VCI is taken to be min{p,K − 1} as stated
in the previous section.

For all experiments on ResNet models, We use the im-
plementation of ResNet from the torchvision library,
called ‘ResNet v1.5’. We use SGD with Nesterov Momen-
tum as the optimizer. The maximum learning rate is set
to 0.1× batch size/256. We try both the cosine annealing
and step-wise learning rate decay scheduler. When using
a step-wise learning rate decay schedule, the learning rate
is decayed by a factor of 0.975 every epoch. We also use a
linear warmpup procedure of 10 epochs, starting from an
initial 10−5 learning rate. The weight-decay factor is set to
8× 10−5. For training on CIFAR10, we replace the random
resized crop with random crop after padding 4 pixels on
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Figure 5: Variability Collapse metrics of training ViT on ImageNet-1k dataset. From left to right: Fuzziness, Squared
Distance, Cosine Similarity and our proposed VCI. Blue: DeiT-S. Orange: DeiT-T. All of the four metrics indicate
variability collapse happens for this setting.
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Figure 6: Train Collapse and Test Collapse both happen for VCI. Train collapse is evaluated on a 50000 subset of
ImageNet-1K training dataset. Test collapse is evaluated on the full ImageNet-1K test dataset. Left: ResNet18 on CIFAR-10.
Middle: ResNet50 on ImageNet-1K. Right: DeiT-S on ImageNet-1K.

each side as in He et al. (2016). Cross-Entropy loss is used
if not specified otherwise.

For DeiT-T and DeitT-S (Touvron et al., 2021a), the
two ViT variants used in our experiments, we use
AdamW (Loshchilov & Hutter, 2017) with a cosine an-
nealing scheduler as the optimizer. We incorporate a linear
warm-up phase of 5 epochs, starting from a learning rate
of 10−6 and gradually increasing to the maximum learn-
ing rate of 10−3. For other modules of training, such as
weight initialization, mixup/cutmix, stochastic depth and
random erasing, we keep the same with those of Touvron
et al. (2021a).

At test time for ImageNet-1K, we resize the short side of
image to a length of 256 pixels and perform a center crop.
When evaluating the variability collapse metrics, we use the
same data transformation as at test time. All transformed
images are finally normalized with ImageNet mean and
standard deviation during training, testing, and metric eval-
uation.

6.2. How do Variability Collapse Metrics Evolve as the
Training Proceeds

Figure 3 demonstrates the trend of four different variability
collapse metrics when training ResNet18 on CIFAR-10. It
is observed that Squared Distance and Cosine Similarity
fail to exhibit a consistent trend of collapse, as explained in

Section 4.1. On the other hand, Fuzziness and VCI show a
decreasing trend across these settings.

The results for ResNet50s trained on ImageNet are provided
in Figure 4. In contrast to the case of ResNet18 on CIFAR10,
all evaluated metrics consistently demonstrate a decreasing
curve since the ratio of the V ⊥

B part becomes smaller with
a smaller p/K value, as shown in Figure 1. Additionally,
it is observed that neural networks trained with MSE loss
exhibit a higher level of collapse compared to those trained
with CE loss, which aligns with the findings of Kornblith
et al. (2021).

The results for ViT variants trained on ImageNet are given
in Figure 5. For DeiT-T and DeitT-S with embedding di-
mensions of 192 and 384, VB becomes the whole feature
space due to p < K, leading to a clearer trend of variability
collapse since V ⊥

B becomes 0.

Finally, we show that test collapse also happens for VCI
in Figure 6. This indicates that variability collapse is a
phenomenon that reflects the properties of underlying data
distributions, rather than being solely caused by overfitting
the training datasets. We refer to Appendix B for com-
parisons between train collapse and test collapse for other
variability metrics.
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Figure 7: Only VCI consistently indicates transferability in both groups of our experiments: In each graph, x-axis
represents the metric value evaluated on a 50000 subset of ImageNet train set, y-axis shows the mean log odds gain defined
as in Equation (6), and the Pearson correlation coefficient is shown in the legend. Top Row: A negative relation between all
variability metrics and transferability can be observed when changing the temperature τ of softmax in pretraining. Bottom
Row: Nearly opposite trends emerge on previous variability metrics when we adjust the coefficient λ of the Cosine Similarity
regularization term. In contrast, VCI maintains a positive correlation with the mean log odds gain.

6.3. Only VCI consistently Indicates Transferability

In this section, we investigate the correlation between vari-
ability metrics and transferability through two sets of experi-
ments. We pretrain ResNet50 on ImageNet-1K with a single
varying hyperparameter specified within each group. We
evaluate the pretrained neural representations using linear
probing (Kornblith et al., 2019; Chen et al., 2020) on 10
downstream datasets, including Oxford-IIIT Pets (Parkhi
et al., 2012), Oxford 102 Flowers (Nilsback & Zisser-
man, 2008), FGVC Aircraft (Maji et al., 2013), Stanford
Cars (Krause et al., 2013), the Describable Textures Dataset
(DTD) (Cimpoi et al., 2014), Food-101 dataset (Bossard
et al., 2014), CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009), Caltech-101 (L. Fei-Fei et al., 2004), the SUN397
scene dataset (Xiao et al., 2010). We use L-BFGS to train
the linear classifier, with the optimal L2-penalty strength
determined by searching through 97 logarithmically spaced
values between 10−6 and 106 on a validation set. We pro-
vide the raw experiment results in Appendix C.

We use the following mean log odds gain

MLOG =
1

10

10∑
i=1

log
pi

1− pi
− log

ppretrain

1− ppretrain
(6)

to measure the transferability of a neural representation,
where ppretrain is the final test accuracy in pretraining. Com-
pared with Kornblith et al. (2019), we subtract the log odds
of the pretrain accuracy from the mean log odds of linear
classification accuracy over the downstream tasks, to isolate

the impact of variability collapse on transfer performance.

In the first group, we change the temperature τ in the soft-
max function

Softmaxτ (z) =

(
exp( 1

τ
z1)∑K

k=1 exp(
1
τ
zk)

, · · · ,
exp( 1

τ
zK)∑K

k=1 exp(
1
τ
zk)

)
.

The results of the first group of experiments are shown in
the top row of Figure 7. The results are consistent with the
findings in (Kornblith et al., 2021), as all considered metrics
show a negative relation between variability collapse and
transfer performance.

In the second group of experiments, we introduce regulariza-
tion to control the collapse behavior of neural networks (Ko-
rnblith et al., 2021). The regularization term we used is the
average within-class cosine similarity divided by the num-
ber of data points of each class in the batch. By varying the
value of λ multiplied to the regularization term, we investi-
gate whether the observed correlation in the first group still
holds true. The bottom row of Figure 7 shows that for the
three previous metrics, the correlation changes from positive
to negative, or vice versa. However, a strong positive cor-
relation consistently holds between VCI and transferability.
Therefore, VCI serves as an effective indicator of transfer
performance, compared to other variability collapse metrics.

7. Conclusions and Future Directions
In this paper, we study the variability collapse phenomenon
of neural networks, and propose the VCI metric as a quan-
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titative characterization. We demonstrate that VCI enjoys
many desired properties, including invariance and numerical
stability, and verify its usefulness via extensive experiments.

Moving forward, there are several promising directions for
future research. Firstly, it would be beneficial to explore the
applicability of VCI to a broader range of training recipes
and architectures, by analyzing its performance using alter-
native network architectures, training methodologies, and
datasets. Secondly , it would be valuable to conduct theoret-
ical investigations into the relationship between variability
collapse and transfer accuracy. Understanding the mecha-
nisms and principles behind this could provide insights to
designing better transfer learning algorithms.
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A. Proofs
A.1. Proof of Proposition 4.1

Proof. Since p > K, we can find a nonzero vector v ∈ Rp, such that Wv = 0. For some λ > 0, define the elements of H ′

as

h′
k,i =

{
hk,i + λv i = 1,

hk,i 2 ≤ i ≤ N.

For such an H ′, we have Whk,i = Wh′
k,i, and therefore L(W, b,H) = L(W, b,H ′). Furthermore, we can calculate

µk(H
′) = µk(H) + λ

N v, and µG(H
′) = µG(H) + λ

N v, which implies that ΣB(H
′) = ΣB(H).

Next, we calculate ΣW (H ′):

ΣW (H ′) =
1

KN

∑
k∈[K],i∈[N ]

(
h′
k,i − µk(H

′)
) (

h′
k,i − µk(H

′)
)⊤

=
1

KN

K∑
k=1

[(
hk,1 + λv − µk(H)− λ

N
v

)(
hk,1 + λv − µk(H)− λ

N
v

)⊤

+

N∑
i=2

(
hk,i − µk(H)− λ

N
v

)(
hk,i − µk(H)− λ

N
v

)⊤
]

=
1

KN

K∑
k=1

[
(hk,1 − µk(H)) (hk,1 − µk(H))

⊤
+

λ(N − 1)

N
v(hk,1 − µk(H))⊤

+
λ(N − 1)

N
(hk,1 − µk(H))v⊤ +

λ2(N − 1)2

N2
vv⊤ +

N∑
i=2

(hk,i − µk(H)) (hk,i − µk(H))
⊤

− λ

N
v

N∑
i=2

(hk,i − µk(H))
⊤ − λ

N

N∑
i=2

(hk,i − µk(H)) v⊤ +
λ2(N − 1)

N2
vv⊤

]

=
1

KN

K∑
k=1

 N∑
i=1

(hk,i − µk(H)) (hk,i − µk(H))
⊤
+

λ

N
v

(
(N − 1)hk,1 −

N∑
i=2

hk,i

)⊤

+
λ

N

(
(N − 1)hk,1 −

N∑
i=2

hk,i

)
v⊤ +

λ2(N − 1)

N
vv⊤

]

= ΣW (H) +
λ

KN2

v K∑
k=1

(
(N − 1)hk,1 −

N∑
i=2

hk,i

)⊤

+

K∑
k=1

(
(N − 1)hk,1 −

N∑
i=2

hk,i

)
v⊤

]
+

λ2(N − 1)

N2
vv⊤.

Since V V ⊤ is a nonzero positive semidefinite matrix, we can let λ → ∞ and get ∥ΣW (H ′)∥F → ∞.

A.2. Proof of Theorem 5.1

Proof. Without loss of generality, we can assume that µG = 0, since we can replace b with b−WµG. The loss contributed
by the i-th datapoint in the k-th class can be calculated as

Lk,i(W, b) ≜
1

2
∥Whk,i + b− ek∥2

=
1

2

[
h⊤
k,iW

⊤Whk,i + 2(b− ek)
⊤Whk,i + (b− ek)

⊤(b− ek)
]

=
1

2
Tr
[
hk,ih

⊤
k,iW

⊤W
]
+ b⊤Whk,i − e⊤k Whk,i +

1

2
b⊤b− e⊤k b+

1

2
.

12
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The total loss function can be calculated as

L(W, b) =
1

KN

∑
k∈[K],i∈[N ]

Lk,i(W, b)

=
1

2
Tr
[
ΣTW

⊤W
]
− 1

K

K∑
k=1

e⊤k Wµk +
1

2
b⊤b− 1

K
1⊤b+

1

2
.

The loss function is convex and quadratic, whose optima can be obtained by first order stationary condition. The first order
condition with regard to W can be expressed as

∇WL(W, b) = WΣT − 1

K

K∑
k=1

ekµ
⊤
k = 0.

To solve this equality, we make a little digress and prove the following bias-variance decomposition:

ΣT =
1

KN

∑
k∈[K],i∈[N ]

hk,ih
⊤
k,i

=
1

KN

∑
k∈[K],i∈[N ]

(hk,i − µk + µk)(hk,i − µk + µk)
⊤

=
1

KN

∑
k∈[K],i∈[N ]

(hk,i − µk)(hk,i − µk)
⊤ +

2

KN

∑
k∈[K],i∈[N ]

(hk,i − µk)µ
⊤
k +

1

K

∑
k∈[K]

µkµ
⊤
k

= ΣB +ΣW ,

(7)

From this we know that ΣT −ΣB = ΣW is positive semidefinite. This implies that µ1, · · · , µk lies in the column space VT

of ΣT .

Let r = rank(ΣT ). There exists a eigenvalue decomposition ΣT = UΣU⊤, such that Σ = diag(s1, · · · sr, 0, · · · , 0), and
U = (u1, · · ·ud) satisfying

1. ui ⊥ uj , i ̸= j; 2. ∥ui∥2 = 1; 3. ui ⊥ µk, k ≤ K, i > K.

Therefore

1

K

(
K∑

k=1

ekµ
⊤
k

)
Σ†

TΣT =
1

K

(
K∑

k=1

ekµ
⊤
k

)
UΣ†U⊤UΣU⊤

=
1

K

(
K∑

k=1

ekµ
⊤
k

)
·

(
r∑

i=1

uiu
⊤
i

)

=
1

K

(
K∑

k=1

ekµ
⊤
k

)
− 1

K

(
K∑

k=1

ekµ
⊤
k

)
·

(
d∑

i=r+1

uiu
⊤
i

)

=
1

K

(
K∑

k=1

ekµ
⊤
k

)
.

This implies that W = 1
K

(∑K
k=1 ekµ

⊤
k

)
Σ†

T satisfies the first order optimality condition for W . It is also easy to see that

b = 1
K1 satisfies the first order optimality condition of b. Therefore, L(W, b) attains its minimum at

W =
1

K

(
K∑

k=1

ekµ
⊤
k

)
Σ†

T , b =
1

K
1,

13
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with optimal value

min
W,b

L(W, b) =
1

2
Tr

[
ΣT · Σ†

T · 1

K

(
K∑

k=1

µke
⊤
k

)
· 1

K

(
K∑

k=1

ekµ
⊤
k

)
Σ†

T

]

− Tr

[
1

K

(
K∑

k=1

µke
⊤
k

)
· 1

K

(
K∑

k=1

ekµ
⊤
k

)
Σ†

T

]
+

1

2
− 1

2K

= − 1

2K
Tr

[
1

K

(
K∑

k=1

µkµ
⊤
k

)
· Σ†

T

]
+

1

2
− 1

2K

= − 1

2K
Tr
[
Σ†

TΣB

]
+

1

2
− 1

2K

where we use Σ†
TΣTΣ

†
T = Σ†

T in the second equality.

A.3. Proof for Theorem 5.2

We need the following lemmas on block matrices.

Lemma A.1. Let A ∈ Rd1×d1 , B ∈ Rd1×d2 , C ∈ Rd2×d1 , D ∈ Rd2×d2 . If
[

A B
C D

]
and D are invertible, then

A−BD−1C is invertible and[
A B
C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]
. (8)

Proof. The invertibility of A and D are obvious. The following identity gives the invertibility of A−BD−1C:[
A B
C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C B

0 D

]
The equation 8 can be check by direct calculation.

Lemma A.2. Let A ∈ Rd1×d1 , B ∈ Rd1×d2 , C ∈ Rd2×d2 . If
[

A B
B⊤ C

]
≻ 0, then A−BC−1B⊤ ≻ 0.

Proof. It is the direct consequence of the following identity.(
I 0

−B⊤A−1 I

)(
A B
B⊤ C

)(
I 0

−B⊤A−1 I

)⊤

=

(
A 0
0 C −B⊤A−1B

)

Proof of Theorem 5.2. Let r = rank(ΣT ). There exists an eigenvalue decomposition ΣT = U

[
Σ

0

]
U⊤ with

Σ = diag(s1, · · · sr). From Equation 7, we know that VB , the column space of ΣB is a subspace of VT , the column space of

ΣT . Therefore, there exists W ∈ Rr×r, such that ΣB = U

[
W

0

]
U⊤. This implies that

Tr
[
Σ†

TΣB

]
= Tr

[
(U

[
Σ

0

]
U⊤)†U

[
W

0

]
U⊤
]

= Tr

[
U

[
Σ

0

]†
U⊤U

[
W

0

]
U⊤

]
= Tr[Σ−1W ]

14
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Table 1: Raw data of downstream classification experiments in Section 6.3. The meanings of τ and λ are introduced in the
main text. MLO = mean log odds.

PARAM PETS FLOWERS AIRCRAFT CARS DTD CIFAR10 FOOD101 CIFAR100 CALTECH SUN397 MLO

τ = 0.1 90.8 95.03 58.85 64.73 74.47 93.1 75.45 77.14 84.9 62.44 1.445
τ = 0.2 91.52 95.25 57.5 64.1 74.41 92.89 75.41 77.65 85.58 63.28 1.459
τ = 0.4 91.64 94.66 57.67 64.42 74.63 92.58 74.97 77.1 85.59 63.3 1.441
τ = 0.6 91.74 94.14 57.54 61.56 76.22 92.42 74.86 76.6 85.2 63.51 1.421
τ = 0.8 92.35 93.52 55.64 61.6 75.37 92.37 74.2 76.07 84.49 62.74 1.39
τ = 1.0 91.7 93.68 55.37 60.14 73.99 91.9 74.42 75.96 85.82 62.98 1.375
λ = 2.5 90.86 92.01 51.07 55.14 74.36 91.79 72.9 75.44 85.19 62.01 1.282
λ = 3.75 90.87 90.79 47.81 50.44 76.01 91.89 72.19 75.31 82.97 60.98 1.22
λ = 5 90.51 90.03 45.12 50.52 74.41 91.63 71.84 74.64 82.63 60.38 1.174
λ = 7.5 89.33 86.54 44.52 46.87 73.14 91.64 71.19 74.13 81.23 58.55 1.08
λ = 10 89.92 83.6 43.39 43.55 72.5 91.43 70.29 73.76 78.25 56.9 1.008

Let r1 = rank(W ). Denote W = U1

[
Σ1

0

]
U⊤
1 as the eigenvalue decomposition of W . Denote V =

[
V1 V2

V ⊤
2 V3

]
=

U⊤
1 ΣU1, where V1 ∈ Rr1×r1 . Since V ≻ 0, we can evoke Lemma A.1 have

Tr
[
Σ−1W

]
= Tr

[
U1V

−1U⊤
1 U1

[
Σ1

0

]
U⊤
1

]
= Tr

[(
V1 − V ⊤

2 V −1
3 V2

)−1
Σ1

]
From Equation 7, we know that W ⪯ Σ. Use Lemma A.2, we get 0 ≺ Σ1 ⪯ V1 − V ⊤

2 V −1
3 V2. This implies that

Tr
[(
V1 − V ⊤

2 V −1
3 V2

)−1
Σ1

]
= r1 − Tr

[(
V1 − V ⊤

2 V −1
3 V2

)−1 (
V1 − V ⊤

2 V −1
3 V2 − Σ1

)]
≤ r1,

where in the last inequality, we use the fact that the trace of the product of two symmetric positive semidefinite matrices is
nonnegative. Therefore, we obtain the inequality that

Tr[Σ†
TΣB ] ≤ rank(ΣB).

For fully collapsed configuration, we have ΣB = ΣT , and the equality is attained.

B. Additional Experimental Results in Section 6.2
We show in Figure 8 the test collapse for Fuzziness, Squared Distance and Cosine Similarity.

C. Raw Experiment Data in Section 6.3
See Table 1 and Table 2 for raw data in downstread classification experiments and pretraining experiments, respectively. For
Aircraft, Pets, Caltech101 and Flowers, we use mean per-class accuracy. (Chen et al., 2020) For other datasets, we use top-1
accuracy.
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Figure 8: Additional Experiments on the Comparisons of Train Collapse and Test Collapse for Previous Variability
Collapse Metrics. Train collapse is evaluated on a 50000 subset of ImageNet-1K training dataset. Top Row: Fuzziness.
Middle Row: Squared Distance. Bottom Row: Cosine Similarity. Left: ResNet18 on CIFAR-10. Middle: ResNet50 on
ImageNet-1K. Orange: DeiT-S on ImageNet-1K.

Table 2: Raw data of pretraining runs in Section 6.3.

PARAM FUZZINESS SQR DIST COS SIM VCI ACCURACY MLOG

τ = 0.1 15.93 2.829 0.4634 0.796 75.4 0.3250
τ = 0.2 15.64 2.534 0.4856 0.7849 76.64 0.2704
τ = 0.4 13.45 2.141 0.512 0.7552 77.53 0.2029
τ = 0.6 12.62 1.923 0.5371 0.7406 77.72 0.1711
τ = 0.8 11.83 1.742 0.5589 0.728 77.83 0.1343
τ = 1.0 11.46 1.625 0.5767 0.7201 77.88 0.1161
λ = 2.5 13.15 2.78 0.4097 0.7216 77.52 0.0440
λ = 3.75 14.31 3.803 0.3556 0.719 77.31 -0.0063
λ = 5 14.51 4.783 0.3551 0.7099 77.29 -0.0507
λ = 7.5 15.22 7.287 0.2794 0.6936 77.46 -0.1539
λ = 10 13.92 9.964 0.172 0.6652 77.65 -0.2375
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