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Abstract
Partial label learning (PLL) aims to train multi-
class classifiers from the examples each annotated
with a set of candidate labels where a fixed but
unknown candidate label is correct. In the last
few years, the instance-independent generation
process of candidate labels has been extensively
studied, on the basis of which many theoretical ad-
vances have been made in PLL. Nevertheless, the
candidate labels are always instance-dependent in
practice and there is no theoretical guarantee that
the model trained on the instance-dependent PLL
examples can converge to an ideal one. In this
paper, a theoretically grounded and practically
effective approach named POP, i.e. PrOgressive
Purification for instance-dependent partial label
learning, is proposed. Specifically, POP updates
the learning model and purifies each candidate
label set progressively in every epoch. Theoreti-
cally, we prove that POP enlarges the region ap-
propriately fast where the model is reliable, and
eventually approximates the Bayes optimal clas-
sifier with mild assumptions. Technically, POP
is flexible with arbitrary PLL losses and could
improve the performance of the previous PLL
losses in the instance-dependent case. Experi-
ments on the benchmark datasets and the real-
world datasets validate the effectiveness of the
proposed method. Source code is available at
https://github.com/palm-ml/POP.

1. Introduction
The difficulty of collecting large scale datasets with high-
quality annotations for training classifiers induces weakly
supervised learning, a typical example among which is par-

1School of Computer Science and Engineering, Southeast
University, Nanjing, China. E-mail: {xning, liubiao01, qiaocy,
xgeng}@seu.edu.cn. 2RIKEN Center for Advanced Intelligence
Project, Tokyo 103-0027, Japan. E-mail: is.jiaqi.lv@gmail.com.
Correspondence to: Xin Geng <xgeng@seu.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tial label learning (PLL) (Nguyen & Caruana, 2008; Cour
et al., 2011; Zhang et al., 2017b; Yao et al., 2020b; Lv et al.,
2020; Feng et al., 2020b; Wen et al., 2021). PLL deals with
the problem where each training example is associated with
a set of candidate labels, among which only one label is
valid. This paradigm naturally arises in various real-world
applications, such as web mining (Luo & Orabona, 2010),
multimedia content analysis (Zeng et al., 2013), ecoinfor-
matics (Tang & Zhang, 2017), etc.

A large number of deep PLL algorithms have recently
emerged that aimed to design regularizers (Yao et al.,
2020a;b; Lyu et al., 2022) or network architectures (Wang
et al., 2022) for PLL data. Further, there are some PLL
works that provided theoretical guarantees while making
their methods compatible with deep networks (Lv et al.,
2020; Feng et al., 2020b; Wen et al., 2021; Wu & Sugiyama,
2021). These existing works have focused on the instance-
independent setting where the generation process of candi-
date labels is homogeneous across training examples. With
an explicit formulation of the generation process, the asymp-
totical consistency (Mohri et al., 2018) of the methods, i.e.,
the classifier learned from partially labeled examples could
approximate the Bayes optimal classifier, can be analyzed.

Previous works have extensively studied instance-
independent PLL and many theoretical advances have been
made in this setting. However, the candidate labels are
always instance-dependent (feature-dependent) in practice
as the incorrect labels related to the feature are more
likely to be picked as candidate label set for each instance.
Therefore, instance-dependent (ID) candidate labels (Xu
et al., 2021b) should be quite realistic and could describe
the ambiguous labeling information for the instance which
is difficult to be annotated with an exact true label in PLL.
By adopting the latent label distributions, recent work (Xu
et al., 2021b) has empirically validated that the classifier
trained on instance-dependent PLL examples could achieve
good performance. Nevertheless, there is no theoretical
guarantee that the model trained on the instance-dependent
PLL examples can converge to an ideal one.

In this paper, we propose a theoretically grounded method
named POP, i.e. PrOgressive Purification for instance-
dependent partial label learning. Specifically, the observed
candidate labels are utilized to train a randomly initialized
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classifier (deep network) for several epochs, and then the
classifier is updated with purified candidate label set for the
remaining epochs. In each epoch, each candidate label set
is purified according to the pure level set with the classifier
for candidate labels and we prove that POP can be guaran-
teed to enlarge the region where the model is reliable by a
promising rate. As a consequence, the false candidate labels
are gradually moved out and the classification performance
of the classifier is improved. We justify POP and outline the
main contributions below:

• We propose a novel approach named POP for the instance-
dependent PLL problem, which purifies the candidate
label sets and refines the classifier iteratively. Extensive
experiments validate the effectiveness of POP.

• We prove that POP can be guaranteed to enlarge the region
where the model is reliable by a promising rate, and
eventually approximates the Bayes optimal classifier with
mild assumptions. To the best of our knowledge, this is
the first theoretically guaranteed approach for instance-
dependent PLL.

• POP is flexible with respect to losses, so that the losses
designed for the instance-independent PLL problems can
be embedded directly. We empirically show that such
embedding allows advanced PLL losses can be applied to
the instance-dependent PLL problem and achieve state-
of-the-art learning performance.

2. Related Work
In this section, we briefly go through the seminal works in
PLL, focusing on the theoretical works and discussing the
underlying assumptions behind them.

There have been substantial traditional PLL algorithms from
the pioneering work (Jin & Ghahramani, 2003). From a
practical standpoint, they have been studied along two dif-
ferent research routes: the identification-based strategy and
the average-based strategy. The identification-based strat-
egy purifies each partial label and extracts the true label
heuristically in the training phase, so as to identify the true
labels (Chen et al., 2014; Zhang et al., 2016; Tang & Zhang,
2017; Feng & An, 2019; Xu et al., 2019). On the con-
trary, the average-based strategy treats all candidates equally
(Hüllermeier & Beringer, 2006; Cour et al., 2011; Zhang &
Yu, 2015). On the theoretical side, Liu and Dietterich (Liu &
Dietterich, 2012) analyzed the learnability of PLL by mak-
ing a small ambiguity degree condition assumption, which
ensures classification errors on any instance have a proba-
bility of being detected. And Cour et al. (Cour et al., 2011)
proposed a consistent approach under the small ambigu-
ity degree condition and a dominance assumption on data
distribution. Liu and Dietterich (Liu & Dietterich, 2012)
proposed a Logistic Stick-Breaking Conditional Multino-
mial Model to portray the mapping between instances and

true labels while assuming the generation of the partial label
is independent of the instance itself. The label distribution
is adopted to disambiguate the candidate labels (Xu et al.,
2019) via recovering the latent label distribution in the label
enhancement process (Xu et al., 2021a; 2022; 2023). It
should be noted that the vast majority of traditional PLL
works have only empirically verified the performance of
algorithms on small data sets, without formalizing the sta-
tistical model for the PLL problem, and therefore even less
so for theoretical analysis of when and why the algorithms
work.

In recent years, deep learning has been applied to PLL
and has greatly advanced the practical application of PLL.
Yao et al. (Yao et al., 2020a;b) and Lv et al. (Lv et al.,
2020) proposed learning objectives that are compatible with
stochastic optimization and thus can be implemented by
deep networks. Soon Feng et al. (Feng et al., 2020b) formal-
ized the first generation process for PLL. They assumed that
given the latent true label, the probability of all incorrect
labels being added into the candidate label set is uniform
and independent of the instance. Thanks to the uniform gen-
eration process, they proposed two provably consistent algo-
rithms. Wen et al. (Wen et al., 2021) extended the uniform
one to the class-dependent case, but still keep the instance-
independent assumption unchanged. In addition, a new
paradigm called complementary label learning (Ishida et al.,
2017; Yu et al., 2018; Ishida et al., 2019; Feng et al., 2020a)
has been proposed that learns from instances equipped with
a complementary label. A complementary label specifies
the classes to which the instance does not belong, so it can
be considered to be an inverted PLL problem. However,
all of them made the instance-independent assumption for
analyzing the statistic consistency. Wu and Sugiyama (Wu
& Sugiyama, 2021) proposed a framework that unifies the
formalization of multiple generation processes under the
instance-independent assumption. Wang et al. (Wang et al.,
2022) proposed a data-augmentation-based framework to
disambiguate partial labels with contrastive learning. Zhang
et al. (Zhang et al., 2021a) exploited the class activation
value to identify the true label in candidate label sets.

Very recently, some researchers are beginning to notice
a more general setting— instance-independent (ID) PLL.
Learning with the instance-dependent partial labels is chal-
lenging, and all instance-independent approaches cannot
handle the instance-dependent PLL problem directly. Specif-
ically, the theoretical approaches mentioned above utilize
mainly the loss correction technique, which corrects the pre-
diction or the loss of the classifier using a prior or estimated
knowledge of data generation processes, i.e., a set of pa-
rameters controlling the probability of generating incorrect
candidate labels, or it is often called transition matrix (Pa-
trini et al., 2017). The transition matrix can be characterized
fixedly in the instance-independent setting since it does not
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need to include instance-level information, a condition that
does not hold in instance-dependent PLL. Furthermore, it is
ill-posed to estimate the transition matrix by only exploiting
partially labeled data, i.e., the transition matrix is unidentifi-
able (Xia et al., 2020). Therefore, some new methods should
be proposed to tackle this issue. Xu et al. (Xu et al., 2021b)
introduced a solution that infers the latent label posterior
via variational inference methods (Blei et al., 2017), nev-
ertheless, its effectiveness would be hardly guaranteed. In
this paper, we propose POP for the instance-dependent PLL
problem and theoretically prove that the learned classifier
approximates well to the Bayes optimal.

3. Proposed Method
3.1. Preliminaries

First of all, we briefly introduce some necessary notations.
Consider a multi-class classification problem of c classes.
Let X = Rq be the q-dimensional instance space and
Y = {1, 2, . . . , c} be the label space with c class labels.
In supervised learning, let p(x, y) be the underlying “clean”
distribution generating (x, yx) ∈ X × Y from which n
i.i.d. samples {(xi, yxi)}ni=1 are drawn.

In PLL, there is a candidate label space S := {S|S ⊆
Y, S 6= ∅} and the PLL training set D = {(xi, Si)|1 ≤
i ≤ n} is sampled independently and identically from
a “corrupted” density p̃(x, S) over X × S. It is gen-
erally assumed that p(x, y) and p(x, S) have the same
marginal distribution of instances p(x). Then the gener-
ation process of partial labels can thus be formalized as
p(S|x) =

∑
y p(S|x, y)p(y|x). We define the probability

that, given the instance x and its class label yx, j-label
being included in its partial label as the flipping probability:

ξj(x) = p(j ∈ S|x, yx), ∀j ∈ Y,

The key definition in PLL is that the latent true label of an
instance is always one of its candidate label, i.e., ξy

x

(x) =
1.

We consider use deep models by the aid of an inverse link
function (Reidand & Williamson, 2010) φ : Rc → ∆c−1

where ∆c−1 denotes the c-dimensional simplex, for exam-
ple, the softmax, as learning model in this paper. Then the
goal of supervised multi-class classification and PLL is the
same: a scoring function f : X 7→ ∆c−1 that can make cor-
rect predictions on unseen inputs. Typically, the classifier
takes the form:

h(x) = arg max
j∈Y

fj(x).

The Bayes optimal classifier h? (learned using supervised
data) is the one that minimizes the risk w.r.t the 0-1 loss (or
some classification-calibrated loss (Bartlett et al., 2006)),

i.e.,

h? = arg min
h
R01 = arg min

h
E(X,Y )∼p(x,y)

[
1{h(X)6=Y }

]
.

For strictly proper losses (Gneiting & Raftery, 2007), the
scoring function f∗ recovers the class-posterior probabili-
ties, i.e., f?(x) = p(y|x),∀x ∈ X . When the supervision
information available is partial label, the PLL risk under
p̃(x, S) w.r.t. a suitable PLL loss L : Rk × S → R+ is
defined as

R̃ = E(X,S)∼p̃(x,S)
[
L(h(X), S)

]
.

Minimizing R̃ induces the classifier and it is desirable
that the minimizer approach h?. In addition, let o =
arg maxj 6=yx p(y = j|x) be the class label with the sec-
ond highest posterior possibility among all labels.

3.2. Overview

In the latter part of this section, we will introduce a concept
pure level set as the region where the model is reliable. We
prove that given a tiny reliable region, one could progres-
sively enlarge this region and improves the model with a
sufficient rate by disambiguating the partial labels. Moti-
vated by the theoretical results, we propose an approach
POP that works by progressively purifying the partial la-
bels to move out the false candidate labels, and eventually
the learned classifier could approximate the Bayes optimal
classifier.

POP employs the observed partial labels to pre-train a ran-
domly initialized classifier for several epochs, and then
updates both partial labels and the classifier for the remain-
ing epochs. We start with a warm-up period, in which we
train the predictive model with a well-defined PLL loss (Lv
et al., 2020). This allows us to attain a reasonable predictive
model before it starts fitting incorrect labels (Zhang et al.,
2017a). After the warm-up period, we iteratively purify
each partial label by moving out the candidate labels for
which the current classifier has high confidence of being
incorrect, and subsequently we train the classifier with the
purified partial labels in the next epoch. After the model
has been fully trained, the predictive model can perform
prediction for unseen instances.

3.3. The POP Approach

We assume that the hypothesis classH is sufficiently com-
plex (and deep networks could meet this condition), such
that the approximation error equals zero, i.e., arg minhR =
arg minh∈HR and we have enough training data i.e., n→
∞. The classifier is able to at least approximate the Bayes
optimal classifier h? and the gap between the learned f(x)
and the the scoring function f?(x) corresponding to h? is
determined by the inconsistency between incorrect candi-
date labels and output of the Bayes optimal classifier.
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For two instance x and z that satisfy p(yz|z) − p(o|z) ≥
p(yx|x) − p(o|x), i.e., the margin between the posterior
of ground-truth label p(yz|z) and the second highest pos-
terior possibility p(o|z) is larger than that in point x,
the indicator function

[
1{j 6=h?(z)}

∣∣∣p(yz|z) − p(o|z) ≥
p(yx|x) − p(o|x), j ∈ Sz

]
equals 1 if the candidate la-

bel j of z is inconsistent with the output of the optimal
Bayes classifier h?(z). Then, the gap between fj(x) and
f?j (x) , i.e., the approximation error of the classifier, could
be controlled by the inconsistency between the incorrect
candidate labels and the output of the Bayes optimal clas-
sifier h? for all the instances z. Therefore, we assume that
there exist constants α, ε < 1, such that for f(x),

|f j(x)− p(y = j|x)| ≤ αE(z,S)∼p̃(z,S)

[
1{j 6=yz}

∣∣∣
p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)

]
+
ε

6

(1)

where the scoring function f∗ corresponding to h∗ on
strictly proper losses (Gneiting & Raftery, 2007) recovers
the class-posterior probabilities, i.e., f?j (x) = p(y = j|x).
In addition, for the probability density function d(u) of cu-
mulative distribution function D(u) = Px∼p(x,y)(u(x) ≤
u) where 0 ≤ u ≤ 1 and the margin u(x) = p(yx|x) −
p(o|x). we assume that there exist constants c?, c? > 0
such that c? < d(u) < c?. Then, the worst-case density-
imbalance ratio is denoted by l = c?

c?
. As the flipping

probability of the incorrect label in the instance-dependent
generation process is related to its posterior probability, we
assume that there exists a constant t > 0 such that:

ξj(x) ≤ p(y = j|x)t. (2)

Motivated by the pure level set in binary classification
(Zhang et al., 2021b), we define the pure level set in instance-
dependent PLL, i.e., the region where the model is reliable:

Definition 3.1. (Pure (e, f)-level set). A set L(e) :=
{x‖p(yx|x)− p(o|x) |≥ e} is pure for f if yx =
arg maxj fj(x) for all x ∈ L(e).

Assume that there exists a set L(e) for all x ∈ L(e) which
satisfies yx = arg maxj fj(x), we have

E(z,S)∼p̃(z,S)

[
1{j 6=h?(z)}

∣∣∣p(yz|z)

−p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz
]

= 0

(3)

which means that there is a tiny region L(e) :=
{x‖p(yx|x)− p(o|x) |≥ e} where the model f is reliable.

Let enew be the new boundary and ε
6lα (p(yx|x) − e) ≤

e − enew ≤ ε
3lα (p(yx|x) − e). As the probability density

function d(u) of the margin u(x) = p(yx|x) − p(o|x) is
bounded by c? < d(u) < c?, we have the following result
for x that satisfies e > p(yx|x)− p(o|x) ≥ enew

1:

E(z,S)∼p̃(z,S)

[
1{j 6=h?(z)}

∣∣∣p(yz|z)−

p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz
]
≤ ε

3α
.

(4)

Combining Eq. (1) and Eq. (4), there is

|fj(x)− f?j (x)| ≤ ε

2
. (5)

Denote by m = arg maxj fj(x) the label with the highest
posterior probability for the current prediction. If fm(x)−
fj 6=m(x) ≥ e+ ε, we have 2

p(yx|x) ≥ p(y = j|x) + e (6)

which means that the label j is incorrect label. Therefore,
we could move the label j out from the candidate label set to
disambiguate the partial label, and then refine the learning
model with the partial label with less ambiguity. In this way,
we would move one step forward by trusting the model with
the tiny reliable region with following theorem.

We start with a warm-up period, as the classifier is able to
attain reasonable outputs before fitting label noise (Zhang
et al., 2017a). Note that the warm-up training is employed
to find a tiny reliable region and the ablation experiments
show that the performance of POP does not rely on the
warm-up strategy. The predictive model θ could be trained
on partially labeled examples by minimizing any PLL loss
function. Here we adopt PRODEN loss (Lv et al., 2020) to
to find a tiny reliable region:

LPLL =

n∑
i=1

c∑
j=1

wij`(fj(xi), Si). (7)

Here, ` is the cross-entropy loss and the weight wij is initial-
ized with with uniform weights and then could be tackled
simply using the current predictions for slightly putting
more weights on more possible labels (Lv et al., 2020):

wij =

{
fj (xi) /

∑
j∈Si fj (xi) if j ∈ Si
0 otherwise

(8)

Theorem 3.2. Assume that we have enough training
data(n → ∞) and there is a pure (e, f)-level set where
x ∈ L(e) can be correctly classified by f . For each x and
∀j ∈ S and j 6= m, if fm(x) − fj(x) ≥ e + ε, we move
out label j from the candidate label set and then update the

1More details could be found in Appendix A.1.
2More details could be found in Appendix A.2.
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Algorithm 1 POP Algorithm
Input: The PLL training set D = {(x1, S1), ..., (xn, Sn)},
initial threshold e0, end threshold eend, total round R, step-
size es;

1: Initialize the predictive model θ by warm-up training
with the PLL loss Eq. 7, and threshold e = e0;

2: for r = 1, ..., R do
3: Train the predictive model f on D;
4: for i = 1, ..., n do
5: for j ∈ Si do
6: if fmi(xi)− fj(xi) ≥ e+ ε then
7: Purify the incorrect label j by removing it

from the candidate label set Si;
8: end if
9: end for

10: end for
11: if e ≤ eend, and there is no purification for any candi-

date label set then
12: Decrease e with step-size es;
13: end if
14: end for
Output: The final predictive model f

candidate label set as Snew. Then the new classifier fnew(x)
is trained on the updated data with the new distribution
p̃(x, Snew). Let enew be the minimum boundary that L(enew)
is pure for fnew. Then, we have

p(yx|x)− enew ≥ (1 +
ε

6αl
)(p(yx|x)− e).

The detailed proof can be found in Appendix A.1. Theorem
3.2 shows that the purified region γ = p(yx|x)− e would
be enlarged by at least a constant factor with the given
purification strategy.

After the warm-up period, the classifier could be employed
for purification. According to Theorem 3.2, we could pro-
gressively move out the incorrect candidate label with the
continuously strict bound, and subsequently train an effec-
tive classifier with the purified labels with the PLL loss (Lv
et al., 2020) since the PLL loss (Lv et al., 2020) is model-
independent and could operates in a mini-batched training
manner to update the model with the labeling-confidence
weight. Specifically, we set a high threshold e0 and calcu-
late the difference fm(xi)−fj(xi) for each candidate label.
If there is a label j for xi satisfies fm(xi) − fj(xi) ≥ e0,
we move out it from the candidate label set and update the
candidate label set. We depart from the theory by reusing
the same fixed dataset over and over, but the empirics are
reasonable.

If there is no purification for all partial labels, we begin
to decrease the threshold e and continue the purification

for improving the training of the model. In this way, the
incorrect candidate labels are progressively removed from
the partial label round by round, and the performance of
the classifier is continuously improved. The algorithmic
description of POP is shown in Algorithm 1.

Then we prove that if there exists a pure level set for an ini-
tialized model, our proposed approach can purify incorrect
labels and the classifier f will finally match the Bayes opti-
mal classifier h after sufficient rounds R under the instance-
dependence PLL setting .
Theorem 3.3. For any flipping probability of each incorrect
label ξj(x), define e0 =

(1+t)α+ ε
6

1+α . And for a given function
f0 there exists a level set L(e0) which is pure for f0. If
one runs purification in Theorem 3.2 with enough traing
data (n → ∞) starting with f0 and the initialization: (1)
e0 ≥

(1+t)α+ ε
6

1+α , (2) R ≥ 6l
ε log

(
1−ε
1
c−e0

)
, (3) eend ≥ ε, then

we have:

Px∼D[yffinal(x) = h?(x)] ≥ 1− c?ε

The proof of Theorem 3.3 is provided in Appendix A.3.
According to Theorem 3.3, the learned classifier under the
instance-dependent PLL setting will be consistent with the
Bayes optimal classifier eventually. Theorem 3.3 shows that
the classifier can be guaranteed to eventually approximate
the Bayes optimal classifier.

4. Experiments
4.1. Datasets

We adopt five widely used benchmark datasets includ-
ing MNIST (LeCun et al., 1998), Kuzushiji-MNIST
(Clanuwat et al., 2018), Fashion-MNIST (Xiao
et al., 2017), CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-100 (Krizhevsky & Hinton, 2009). These
datasets are manually corrupted into instance-dependent par-
tially labeled versions. Specifically, we set the flipping prob-
ability of each incorrect label corresponding to an instance
x by using the confidence prediction of a neural network
trained using supervised data parameterized by θ̂ (Xu et al.,
2021b). The flipping probability ξj(x) =

fj(x;θ̂)

maxj∈Ȳ fj(x;θ̂)
,

where Ȳi is the set of all incorrect labels except for the true
label of xi. The average number of candidate labels (avg.
#CLs) for each benchmark dataset corrupted by the instance-
dependent generation process is recorded in Appendix A.4.

In addition, seven real-world PLL datasets which are col-
lected from different application domains are used, in-
cluding Lost (Cour et al., 2011), Soccer Player
(Zeng et al., 2013), Yahoo!News (Guillaumin et al.,
2010) from automatic face naming, MSRCv2 (Liu & Diet-
terich, 2012) from object classification, Malagasy (Gar-
rette & Baldridge, 2013) from POS tagging, Mirflickr
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Table 1. Classification accuracy (mean±std) of each comparing approach on benchmark datasets corrupted by the instance-dependent
generation process.

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 CIFAR-100

POP 99.28±0.02% 91.09±0.14% 96.93±0.07% 93.00±0.26% 71.82±0.08%

VALEN 99.03±0.02% 90.15±0.02% 96.31±0.12% 92.01±0.09% 71.48±0.12%
RCR 98.81±0.07% 90.62±0.22% 96.64±0.10% 86.11±0.43% 71.07±0.25%
PICO 98.76±0.04% 88.87±0.06% 94.83±0.17% 89.35±0.17% 66.30±0.24%

PRODEN 99.01±0.02% 90.48±0.14% 96.14±0.07% 78.87±0.26% 55.59±0.08%
RC 99.09±0.09% 90.56±0.14% 96.17±0.08% 80.13±0.14% 56.41±0.17%
CC 99.08±0.10% 90.40±0.20% 96.12±0.10% 76.17±0.11% 56.48±0.06%
LW 98.98±0.05% 89.82±0.2% 93.23±0.08% 43.16±0.63% 49.63±0.12%

CAVL 98.95±0.05% 87.85±0.06% 95.84±0.06% 75.41±4.77% 58.17±0.11%
CLPL 98.83±0.05% 90.21±0.08% 93.18±0.08% 51.61±0.39% 30.84±0.40%

Table 2. Classification accuracy (mean±std) of each comparing approach on the real-world datasets.

Lost BirdSong MSRCv2 Mirflickr Malagasy Soccer Player Yahoo!News

POP 78.57±0.45% 74.47±0.36% 45.86±0.28% 61.09±0.10% 72.29±0.33% 54.48±0.10% 66.38±0.07%

VALEN 76.87±0.86% 73.39±0.26% 49.97±0.43% 59 13±0.12% 69.44±0.06% 55.81±0.10% 66.26±0.13%
PRODEN 76.47±0.25% 73.44±0.12% 45.10±0.16% 59.59±0.52% 69.34±0.09% 54.05±0.15% 66.14±0.10%

RC 76.26±0.46% 69.33±0.32% 49.47±0.43% 58.93±0.10% 70.69±0.14% 56.02±0.59% 63.51±0.20%
CC 63.54±0.25% 69.90±0.58% 41.50±0.44% 58.81±0.54% 69.53±0.34% 49.07±0.36% 54.86±0.48%
LW 73.13±0.32% 51.45±0.26% 49.85±0.49% 54.50±0.81% 59.34±0.25% 50.24±0.45% 48.21±0.29%

CAVL 73.96±0.51% 69.63±0.93% 46.62±1.29% 57.13±0.10% 65.82±0.06% 52.92±0.40% 60.97±0.13%
CLPL 63.39±0.12% 62.90±3.33% 37.8±0.71% 58.87±0.10% 64.25±0.29% 48.23±0.03% 49.42±0.13%

(Huiskes & Lew, 2008) from web image classification, and
BirdSong (Briggs et al., 2012) from bird song classifica-
tion. The average number of candidate labels (avg. #CLs)
for each real-world PLL dataset is also recorded in Appendix
A.4.

4.2. Baselines

The performance of POP is compared against five deep PLL
approaches:

• PRODEN (Lv et al., 2020): A progressive identification
approach which approximately minimizes a risk estimator
and identifies the true labels in a seamless manner;

• RC (Feng et al., 2020b): A risk-consistent approach
which employs the loss correction strategy to establish
the true risk by only using the partially labeled data;

• CC (Feng et al., 2020b): A classifier-consistent approach
which also uses the loss correction strategy to learn the
classifier that approaches the optimal one;

• VALEN (Yao et al., 2020a): An instance-dependent PLL
approach which recovers the latent label distribution via
variational inference methods;
• LW (Wen et al., 2021): A risk-consistent approach which

proposes a leveraged weighted loss to trade off the losses
on candidate labels and non-candidate ones.

• CAVL (Zhang et al., 2021a): A progressive identifica-
tion approach which exploits the class activation value to
identify the true label in candidate label sets.

• CLPL (Cour et al., 2011): A avearging-based disambigua-
tion approach based on a convex learning formulation.

• PICO (Wang et al., 2022): A data-augmentation-based
method which identifies the true label via contrastive-
learning with learned prototypes for image datasets.

• RCR (Wu et al., 2022): A data-augmentation-based
method which identifies the true label via consistency
regularization with random augmented instances for im-
age datasets.

For the benchmark datasets, we use the same data aug-
mentation strategy for the data-augmentation-free methods
(VALEN, PRODEN, RC, CC, LW and CAVL) to make fair
comparisons with the data-augmentation-based methods
(PICO and RCR). However, data augmentation cannot be
employed on the realworld datasets that contain extracted
feature from audio and video data, we just compared our
methods with the data-augmentation-free methods on real-
world datasets.

For all the deep approaches, We used the same train-
ing/validation setting, models, and optimizer for fair com-
parisons. Specifically, a 5-layer LeNet is trained on MNIST,
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Table 3. Classification accuracy (mean±std) of each comparing approach on benchmark datasets corrupted by the instance-dependent
generation process.

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 CIFAR-100

PRODEN 97.70±0.03% 87.60±0.23% 87.21±0.11% 76.77±0.63% 55.12±0.12%
PRODEN+POP 97.87±0.04% 88.70±0.02% 87.62±0.04% 79.00±0.28% 57.68±0.14%

RC 97.72±0.02% 87.25±0.06% 87.06±0.14% 76.49±0.52% 55.18±0.70%
RC+POP 98.08±0.03% 87.78±0.09% 87.45±0.05% 78.89±0.17% 57.66±0.11%

CC 97.25±0.11% 83.31±0.07% 86.01±0.13% 72.87±0.82% 55.56±0.23%
CC+POP 97.99±0.06% 83.98±0.10% 86.32±0.06% 77.03±0.58% 56.18±0.06%

LW 96.80±0.07% 84.46±0.22% 86.25±0.01% 46.77±0.66% 48.00±0.16%
LW+POP 97.47±0.06% 84.71±0.07% 86.40±0.05% 48.54±0.04% 49.61±0.27%

CAVL 96.25±0.40% 79.38±0.69% 84.66±0.05% 62.69±1.65% 47.35±0.16%
CAVL+POP 96.71±0.11% 79.83±0.12% 85.04±0.10% 63.12±0.23% 47.61±0.06%

CLPL 96.11±0.21% 83.31±0.24% 83.16±0.25% 53.61±0.31% 22.31±0.11%
CLPL+POP 96.51±0.22% 83.63±0.11% 83.71±0.15% 54.22±0.51% 23.37±0.29%

Table 4. Classification accuracy (mean±std) of each comparing approach on the real-world datasets.
Lost BirdSong MSRCv2 Mirflickr Malagasy Soccer Player Yahoo!News

PRODEN 76.47±0.25% 73.44±0.12% 45.10±0.16% 59.59±0.52% 69.34±0.09% 54.05±0.15% 66.14±0.10%
PRODEN+POP 78.57±0.45% 74.47±0.36% 45.86±0.28% 61.09±0.10% 72.29±0.33% 54.48±0.10% 66.38±0.07%

RC 76.26±0.46% 69.33±0.32% 49.47±0.43% 58.93±0.10% 70.69±0.14% 56.02±0.59% 63.51±0.20%
RC+POP 78.56±0.45% 70.77±0.26% 51.18±0.59% 59.65±0.52% 71.04±0.10% 56.49±0.03% 63.86±0.22%

CC 63.54±0.25% 69.90±0.58% 41.50±0.44% 58.81±0.54% 69.53±0.34% 49.07±0.36% 54.86±0.48%
CC+POP 65.47±0.93% 71.50±0.06% 43.21±0.43% 59.89±0.48% 71.19±0.40% 49.36±0.02% 55.22±0.05%

LW 73.13±0.32% 51.45±0.26% 49.85±0.49% 54.50±0.81% 59.34±0.25% 50.24±0.45% 48.21±0.29%
LW+POP 75.30±0.26% 52.35±0.26% 52.42±0.86% 55.46±0.27% 60.85±0.57 50.94±0.47% 48.6±0.12%

CAVL 73.96±0.51% 69.63±0.93% 46.62±1.29% 57.13±0.10% 65.82±0.06% 52.92±0.40% 60.97±0.13%
CAVL+POP 75.32±0.11% 70.13±0.22% 46.92±0.13% 58.63±0.48% 67.70±0.19% 53.44±0.10% 61.37±0.11%

CLPL 63.39±0.12% 62.90±3.33% 37.8±0.71% 58.87±0.10% 64.25±0.29% 48.23±0.03% 49.42±0.13%
CLPL+POP 64.73±0.14% 64.06±0.48% 39.32±0.24% 60.31±0.27% 66.04±0.25% 49.11±0.21% 50.33±0.18%

Kuzushiji-MNIST and Fashion-MNIST, the Wide-ResNet-
28-2 (Zagoruyko & Komodakis, 2016; Yang et al., 2017) is
trained on CIFAR-10 and CIFAR-100, and the linear model
is trained on real-world PLL datasets, respectively. The
hyper-parameters of the deep models are selected so as to
maximize the accuracy on a validation set (10% of the train-
ing set). We set e0 = 0.9, eend = 0.1 and es = 0.01. We
run 5 trials on the benchmark datasets and the real-world
PLL datasets. The mean accuracy as well as standard de-
viation are recorded for all comparing approaches. All the
comparing methods are implemented with PyTorch.

4.3. Experimental Results

Table 1 and Table 2 report the classification accuracy of
each approach on benchmark datasets corrupted by the
instance-dependent generation process and the real-world
PLL datasets, respectively. The best results are highlighted

in bold. Due to the inability of data augmentation to be em-
ployed on extracted feature , we didn’t compare our methods
with PICO and RCR on real-world datasets. As shown in
Table 1 and Table 2, it is impressive to observe that:

• POP achieves the best performance against other ap-
proaches in most cases;

• The performance advantage of POP over comparing ap-
proaches is stable under varying the number of candidate
labels.

• POP achieves the best performance against other ap-
proaches on all benchmark datasets by the instance-
dependence generation process.

• POP achieves the best performance against other ap-
proaches on all real-world datasets except VALEN on
MSRCv2 and RC on Soccer Player.
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Table 5. Classification accuracy (mean±std) of the ablation studies on the warm-up round.

Warm-up rounds 0 1 5 10 15 20

Lost 78.28±0.25% 78.42±0.25% 78.42±0.68% 78.57±0.44% 78.72±0.25% 78.42±0.51%
BirdSong 74.10±0.35% 73.14±0.31% 74.10±0.35% 74.47±0.40% 74.24±0.40% 74.20±0.23%
MSRCv2 45.01±0.29% 44.91±0.43% 45.67±0.16% 45.58±0.29% 45.77±0.16% 45.67±0.33%

Soccer Player 54.32±0.08% 54.38±0.05% 54.42±0.02% 54.44±0.03% 54.43±0.03% 54.42±0.05%
Yahoo!News 66.25±0.08% 66.33±0.04% 66.31±0.04% 66.42±0.13% 66.4±0.15% 66.39±0.17%

Kuzushiji-mnist 88.31±0.12% 88.3±0.15% 88.74±0.49% 88.58±0.36% 88.73±0.24% 88.87±0.29%
Fashion-mnist 87.22±0.11% 87.27±0.04% 87.47±0.17% 87.54±0.18% 87.61±0.07% 87.63±0.03%
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Figure 1. Further analysis of POP.

4.4. Further Analysis

In addition, to analysis the purified region in Theorem 3.2,
we employ the confidence predictions of f(x, θ̃) (the net-
work in Section 4.1) as the posterior and plot the curve of
the estimated purified region in every epoch on Lost in
Figure 1(a). We can see that although the estimated purified
region would be not accurate enough, the curve could show
that the trend of continuous increase for the purified region.

As the framework of POP is flexible for the loss function, we
integrate the proposed method with the previous methods
for instance-independent PLL including PRODEN, RC, CC,
LW, CAVL and CLPL. In this subsection, we empirically
prove that the previous methods for instance-independent
PLL could be promoted to achieve better performance after
integrating with POP.

Table 3 and Table 4 report the classification accuracy of
each method for instance-independent PLL and its variant
integrated with POP on benchmark datasets corrupted by the
instance-dependent generating procedure and the real-world
datasets, respectively. We didn’t use any data augmentation
on benchmark datasets in this part of experiments. As shown
in Table 3 and Table 4, the approaches integrated with POP
including PRODEN+POP, RC+POP, CC+POP , LW+POP,
CAVL+POP and CLPL+POP achieve superior performance
against original method, which clearly validates the use-

fulness of POP framework for improving performance for
instance-dependent PLL.

Figure 1(b) and 1(c) illustrate the performance of POP un-
der different e0 and es on CIFAR-10 while similar obser-
vations are also made on other data sets. The sensitivity
analysis of eend could be founded in Appendix A.4. As
shown in Figure 1(b) and 1(c), it is obvious that the perfor-
mance of the variant integrated with POP is relatively stable
across a broad range of each hyper-parameter. This property
is quite desirable as POP framework could achieve robust
classification performance.

The ablation studies on the warm-up round are shown in
Table 5. These results show that the performance of our
method does not rely on the warm-up strategy.

5. Conclusion
In this paper, the problem of partial label learning is studied
where a novel approach POP is proposed. we consider
instance-dependent partial label learning and propose a
theoretically-guaranteed approach, which could train the
classifier with progressive purification of the candidate la-
bels and is theoretically guaranteed to eventually approxi-
mates the Bayes optimal classifier for instance-dependent
PLL. Experiments on benchmark and real-world datasets
validate the effectiveness of the proposed method. If PLL
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methods become very effective, the need for exactly anno-
tated data would be significantly reduced.
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A. Appendix
A.1. Proofs of Theorem 1

Assume that there exists a set L(e) for all x ∈ L(e) which satisfies yx = arg maxj fj(x) and p(yx|x)− p(o|x) ≥ e, we
have

E(z,S)∼p̃(z,Snew)

[
1{j 6=h?(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz
]

= 0 (9)

Let enew be the new boundary and ε
6lα (p(yx|x)− e) ≤ e− enew ≤ ε

3lα (p(yx|x)− e). As the probability density function
d(u) of the margin u(x) = p(yx|x) − p(o|x) is bounded by c? < d(u) < c?, we have the following result for x that
satisfies p(yx|x)− p(o|x) ≥ enew

3

E(z,S)∼p̃(z,Snew)

[
1{j 6=h?(z)}

∣∣∣j ∈ Sz,p(y
z|z)− p(o|z) ≥ p(yx|x)− p(o|x)

]
≤E(z,S)∼p̃(z,Snew)

[
1{j 6=h?(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

=Pz

[
j 6= h?(z)

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

=
Pz [j 6= h?(z), p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

≤ Pz [j 6= h?(z), p(yz|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)] +
Pz [j 6= h?(z), enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

=
Pz [j 6= h?(z), p(yz|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ e]

Pz [p(y
z|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

+
Pz [j 6= h?(z), enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

=E(z,S)∼p̃(z,S)

[
1{h(z)6=yz}

∣∣∣p(yz|z)− p(o|z) ≥ e
]

︸ ︷︷ ︸
=0(According to Eq. (9))

Pz [p(y
z|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

+
Pz [j 6= yz, enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

=
Pz [enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

≤ c?(e− enew)

c? (p(yx|x)− e)
.

(10)

Due to that ε
6lα (p(yx|x)− e) ≤ e− enew ≤ ε

3lα (p(yx|x)− e) holds, we can further relax Eq. (10) as follows:

E(z,S)∼p̃(z,Snew)

[
1{j 6=h?(z)}

∣∣∣j ∈ Sz, p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

≤ c∗(e− enew)

c∗ (p(yx|x)− e)

≤ c∗

c∗ (p(yx|x)− e)
ε

3lα
(p(yx|x)− e)

=
ε

3α
.

(11)

Then, we can find that the assumption that the gap between fj(x) and f?j (x) should be controlled by the risk at point z
implies: ∣∣fj(x)− f?j (z)

∣∣
≤αE(z,S)∼p̃(z,Snew)

[
1{h(z)6=yz}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

+
ε

6

≤α ε

3α
+
ε

6

≤ ε

2
.

(12)

3Details of Eq. (3) in the paper submission
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Figure 2. The sensitivity of eend on CIFAR-10.

Hence, for x s.t. p(yx|x)− p(o|x) ≥ enew, according to Eq. (12) we have

fyx(x)− fj 6=yx(x) ≥ (p(y = yx|x)− ε

2
)− (p(y = j|x) +

ε

2
)

= p(y = yx|x)− p(y = j|x)− ε
≥ p(y = yx|x)− p(o|x)− ε
≥ enew − ε
≥ 0,

(13)

which means that j(x) will be the same label as h? and thus the level set L(enew) is pure for f . Meanwhile, the choice of
enew ensures that

p(yx|x)− enew ≥ p(yx|x)− (e− ε

6lα
(p(yx|x)− e))

= p(yx|x)− e+
ε

6lα
(p(yx|x)− e)

= (1 +
ε

6lα
)(p(yx|x)− e).

(14)

Here, the proof of Theorem 1 has been completed.

A.2. Details of Eq. (5)

If fm(x)− fj 6=m ≥ e+ ε, according to Eq. (12) we have:

p(yx|x) ≥ p(y = m|x)

= p(y = j|x) + p(y = m|x)− p(y = j|x)

≥ p(y = j|x) + p(y = m|x)− p(y = j|x)

≥ p(y = j|x) + (fm(x)− ε

2
)− (fj(x) +

ε

2
)

= p(y = j|x) + (fm(x)− fj(x))− ε
≥ p(y = j|x) + (e+ ε)− ε
= p(y = j|x) + e.

(15)
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Table 6. Characteristic of the benchmark datasets corrupted by the instance-dependent generation process.

Dataset #Train #Test #Features #Class Labels avg. #CLs
MNIST 60000 10000 784 10 8.71

Fashion-MNIST 60,000 10,000 784 10 3.46

Kuzushiji-MNIST 60,000 10,000 784 10 3.87

CIFAR-10 50,000 10,000 3,072 10 3.68

CIFAR-100 50,000 10,000 3,072 100 4.64

A.3. Proofs of Theorem 2

To begin with, we prove that there exists at least a level set L(e0) pure to f0. Considering x satisfies p(yx|x)− p(o|x) ≥ e0,
we have Pz

[
j 6= h?(z)

∣∣∣j ∈ Sz, p(yz|z)− p(o|z) ≥ e0
]
≤ p(yz|z) − e0 + ξj(z). Due to the assumption

|fj(x) − f?j (x)| ≤ αE(z,S)∼p̃(z,S)

[
1{j 6=h?(z)}

∣∣∣j ∈ Sz, p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

+ ε
6 , it suffices to

satisfy α(p(yx|x)− e0 + ξ) + ε
6 ≤ e0 to ensure that fj(x) has the same prediction with h? when p(yx|x)− p(o|x) ≥ e0.

Since we have ξj(x) ≤ p(y = j|x)t ≤ p(yx|x)t, by choosing e0 ≥
(1+t)α+ ε

6

1+α ≥ (1+t)αp(yx|x)+ ε
6

1+α one can ensure that
initial f0 has a pure L(e0)-level set.

Then in the rest of the iterations we ensure the level set p(yz|z)− p(o|z) ≥ e is pure. We decrease e by a reasonable factor
to avoid incurring too many corrupted labels while ensuring enough progress in label purification, i.e. ε

6lα (p(yx|x)− e) ≤
e−enew ≤ ε

3lα (p(yx|x)−e), such that in the level set p(yx|x)−p(o|x) ≥ enew we have |fj(x)−f?j (x)| ≤ ε
2 . This condition

ensures the correctness of flipping when e ≥ ε. The the purified region cannot be improved once e < ε since there is no
guarantee that fj(x) has consistent label with h? when p(yx|x)− p(o|x) < ε and |fj(x)− f?j (x)| ≤ ε

2 . To get the largest
purified region, we can set eend = ε. Since the probability density function d(u) of the margin u(x) = p(yx|x)− p(o|x) is
bounded by c? ≤ d(u) ≤ c?, we have:

Px∼D[yffinal(x) 6= h?] ≤ P[p(yx|x)− p(o|x) < eend]

= Px∼D[p(yx|x)− p(o|x) < ε]

≤ c?ε.
(16)

Then Px∼D[yffinal(x) = h?] = 1− Px∼D[yffinal(x) 6= h?] ≥ 1− c?ε.

The rest of the proof is the total round R ≥ 6αl
ε log

(
1−ε
1
c−e0

)
, which follows from the fact that each round of label flipping

improves the the purified region by a factor of (1 + ε
6lα ):(

1 +
ε

6lα

)R
(p(yx|x)− e0) ≥ p(yx|x)− ε

⇒
(

1 +
ε

6lα

)R
≥ p(yx|x)− ε
p(yx|x)− e0

⇒ R log
(

1 +
ε

6lα

)
≥ log

(
p(yx|x)− ε
p(yx|x)− e0

)
⇒ R

ε

6lα
≥ R log

(
1 +

ε

6lα

)
≥ log

(
p(yx|x)− ε
p(yx|x)− e0

)
⇒ R ≥ 6lα

ε
log

(
p(yx|x)− ε
p(yx|x)− e0

)
≥ 6lα

ε
log

(
1− ε
1
c − e0

)
.

(17)

A.4. Details of Experiments

We collect five widely used benchmark datasets including MNIST (LeCun et al., 1998), Kuzushiji-MNIST (Clanuwat et al.,
2018), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton,
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Table 7. Characteristic of the real-world PLL datasets.
Dataset #Train #Test #Features #Class Labels avg. #CLs Task Domain

Lost 898 224 108 16 2.23 automatic face naming (Cour et al., 2011)
MSRCv2 1,406 352 48 23 3.16 object classification (Liu & Dietterich, 2012)
Mirflickr 2224 556 1536 14 2.76 web image classification (Huiskes & Lew, 2008)
BirdSong 3,998 1,000 38 13 2.18 bird song classification (Briggs et al., 2012)
Malagasy 4243 1069 384 44 8.35 POS Tagging (Garrette & Baldridge, 2013)

Soccer Player 13,978 3,494 279 171 2.09 automatic face naming (Zeng et al., 2013)
Yahoo! News 18,393 4,598 163 219 1.91 automatic face naming (Guillaumin et al., 2010)

2009). In addition, seven real-world PLL datasets which are collected from different application domains are used, including
Lost (Cour et al., 2011), Soccer Player (Zeng et al., 2013), Yahoo!News (Guillaumin et al., 2010) from automatic face
naming,, MSRCv2 (Liu & Dietterich, 2012) from object classification, Malagasy (Garrette & Baldridge, 2013) from POS
tagging, Mirflickr (Huiskes & Lew, 2008) from web image classification, and BirdSong (Briggs et al., 2012) from bird song
classification. Figure 2 illustrates the variant integrated with POP performs under different hyper-parameter configurations
on Lost.

The average number of candidate labels (avg. #CLs) for each benchmark dataset corrupted by the instance-dependent
generation process is recorded in Table-6 and the average number of candidate labels (avg. #CLs) for each real-world PLL
dataset is recorded in Table-7.
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