
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

Yilun Xu 1 Ziming Liu 1 Yonglong Tian 1 Shangyuan Tong 1 Max Tegmark 1 Tommi Jaakkola 1

Abstract

We introduce a new family of physics-inspired
generative models termed PFGM++ that unifies
diffusion models and Poisson Flow Generative
Models (PFGM). These models realize generative
trajectories for N dimensional data by embed-
ding paths in N+D dimensional space while still
controlling the progression with a simple scalar
norm of theD additional variables. The new mod-
els reduce to PFGM when D=1 and to diffusion
models when D→∞. The flexibility of choos-
ing D allows us to trade off robustness against
rigidity as increasing D results in more concen-
trated coupling between the data and the addi-
tional variable norms. We dispense with the bi-
ased large batch field targets used in PFGM and
instead provide an unbiased perturbation-based
objective similar to diffusion models. To explore
different choices of D, we provide a direct align-
ment method for transferring well-tuned hyperpa-
rameters from diffusion models (D→∞) to any
finite D values. Our experiments show that mod-
els with finite D can be superior to previous state-
of-the-art diffusion models on CIFAR-10/FFHQ
64×64 datasets/LSUN Churches 256×256, with
medianDs. In class-conditional setting, D=2048
yields current state-of-the-art FID of 1.74 on
CIFAR-10 without additional training. Further-
more, we demonstrate that models with smaller
D exhibit improved robustness against modeling
errors. Code is available at https://github.
com/Newbeeer/pfgmpp

1. Introduction
Physics continues to inspire new deep generative models
such as diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021b; Karras et al., 2022) based
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on thermodynamics (Jarzynski, 1997) or Poisson flow gener-
ative models (PFGM) (Xu et al., 2022) derived from electro-
statics (Griffiths, 2005). The associated generative processes
involve iteratively de-noising samples by following phys-
ically meaningful trajectories. Diffusion models learn a
noise-level dependent score function so as to reverse the ef-
fects of forward diffusion, progressively reducing the noise
level σ along the generation trajectory. PFGMs in turn aug-
ment N -dimensional data points with an extra dimension
and evolve samples drawn from a uniform distribution over
a large N+1-dimensional hemisphere back to the z=0 hy-
perplane where the clean data (as charges) reside by tracing
learned electric field lines. Diffusion models in particular
have been demonstrated across image (Song et al., 2021b;
Nichol et al., 2022a; Ramesh et al., 2022), 3D (Zeng et al.,
2022; Poole et al., 2022), audio (Kong et al., 2020; Chen
et al., 2020) and biological data (Shi et al., 2021; Watson
et al., 2022) generation, and have more stable training objec-
tives compared to GANs (Arjovsky et al., 2017; Brock et al.,
2019). More recent PFGM (Xu et al., 2022) rival diffusion
models on image generation.

In this paper, we introduce a broader family of physics-
inspired generative models that we call PFGM++. These
models extend the electrostatic view into higher dimen-
sions through multi-dimensional z ∈ RD augmentations.
When interpreting N -dimensional data points x as posi-
tive charges, the electric field lines define a surjection from
a uniform distribution on an infinite N+D-dimensional
hemisphere to the data distribution located on the z=0 hy-
perplane. We can therefore draw generative samples by
following the electric field lines, evolving points from the
hemisphere back to the z=0 hyperplane. We leverage the
symmetry of z to reduce the vector to a scalar ∥z∥2 = r, sim-
plifying the sampling process. The use of symmetry turns
the aforementioned surjection into a bijection between an
easy-to-sample prior on a large r = rmax hyper-cylinder to
the data distribution. The symmetry reduction also permits
D to take any positive values, including reals. We derive a
new perturbation-based training objective akin to denoising
score matching (Vincent, 2011) that avoids the need to use
large batches to construct electric field line targets in PFGM.
The perturbation-based objective is more efficient, unbiased,
and compatible with paired sample training of conditional
generation models.

1

https://github.com/Newbeeer/pfgmpp
https://github.com/Newbeeer/pfgmpp


PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

PFGM (Xu et al, 2022)
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Figure 1. Overview of paper contributions and structure. PFGM++ unify PFGM and diffusion models, as well as the potential to combine
their strengths (robustness and rigidity).

The models in the new family differ based on their aug-
mentation dimension D which is now a hyper-parameter.
By setting D=1 we obtain PFGM while D→∞ leads to
diffusion models. We establish D→∞ equivalence with
popular diffusion models (Song et al., 2021b; Karras et al.,
2022) both in terms of their training objectives as well as
their inferential processes. We demonstrate that the hyper-
parameter D controls the balance between robustness and
rigidity: using a small D widens the distribution of noisy
training sample norms in comparison to the norm of the
augmented variables, leading to a more robust generative
process. However, small D also leads to a heavy-tailed
problem of training samples, making the training process
more challenging (neural networks cannot rigidly predict the
fields correctly). Neither D=1 nor D→∞ offers an ideal
balance between being insensitive to missteps (robustness)
and allowing effective learning (rigidity). Instead, we adjust
D in response to different architectures and tasks. To facil-
itate quickly finding the best D we provide an alignment
method to directly transfer other hyperparameters across
different choices of D.

Experimentally, we show that some models with fi-
nite D outperform the previous state-of-the-art diffu-
sion models (D→∞), i.e., EDM (Karras et al., 2022),
on image generation tasks. In particular, intermedi-
ate D=2048/128/131072 achieve the best performance
among other choices of D ranging from 64 to ∞, with
min FID scores of 1.91/2.43/6.52 on CIFAR-10/ FFHQ
64×64/LSUN Churches 256×256 datasets in unconditional
generation, using 35/79/99 NFE. In class-conditional gen-
eration, D=2048 achieves new state-of-the-art FID of 1.74
on CIFAR-10. We further verify that in general, decreasing
D leads to improved robustness against a variety of sources
of errors, i.e., controlled noise injection, large sampling step
sizes and post-training quantization.

Our contributions are summarized as follows: (1) We
propose PFGM++ as a new family of generative models
based on expanding augmented dimensions and show that

symmetries involved enable us to define generative paths
simply based on the scalar norm of the augmented vari-
ables (Sec 3.1); (2) We propose a perturbation-based objec-
tive to dispense with any biased large batch derived electric
field targets, allowing unbiased training (Sec 3.2); (3) We
prove that the score field and the training objective of dif-
fusion models arise in the limit D→∞ (Sec 4); (4) We
demonstrate the trade-off between robustness and rigidity
by varying D (Sec 5). We also detail the hyperparameter
transfer procedures from EDM/DDPM (D → ∞) to finite
Ds in Appendix C.2; (5) We empirically show that mod-
els with finite D achieve superior performance to diffusion
models while exhibiting improved robustness (Sec 6).

2. Background and Related Works
Diffusion Model Diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b; Karras et al., 2022)
are often presented as a pair of two processes. A fixed for-
ward process governs the training of the model, which learns
to denoise data of different noise levels. A corresponding
backward process involves utilizing the trained model iter-
atively to denoise the samples starting from a fully noisy
prior distribution. Karras et al. (2022) propose a unifying
framework for popular diffusion models (Variance Explod-
ing (VE)/Variance Preserving (VP) (Song et al., 2021b) and
EDM (Karras et al., 2022)), and their sampling process can
be understood as traveling in time with a probability flow
ordinary differential equation (ODE):

dx = −σ̇(t)σ(t)∇x log pσ(t)(x)dt

where σ(t) is a predefined noise schedule w.r.t. time, and
∇x log pσ(t)(x) is the score of noise-injected data distribu-
tion at time t. A neural network fθ(x, σ) is trained to learn
the score ∇x log pσ(t)(x) by minimizing a weighted sum of
the denoising score-matching objectives (Vincent, 2011):

Eσ∼p(σ)λ(σ)Ey∼p(y)Ex∼pσ(x|y)[
∥fθ(x, σ)−∇x log pσ(x|y)∥22

]
(1)
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where p(σ) defines a training distribution of noise levels,
λ(σ) is a weighting function, p(y) is the data distribution,
and pσ(x|y) = N (y, σ2I) defines a Gaussian perturbation
kernel which samples a noisy version x of the clean data y.
Please refer to Table 1 in Karras et al. (2022) for specific
instantiations of different diffusion models.

PFGM Inspired by the theory of electrostatics (Griffiths,
2005), Xu et al. (2022) propose Poisson flow generative
models (PFGM), which interpret the N -dimensional data
x ∈ RN as electric charges in an N+1-dimensional space
augmented with an extra dimension z: x̃ = (x, z) ∈ RN+1.
In particular, the training data is placed on the z=0 hyper-
plane, and the electric field lines emitted by the charges
define a bijection between the data distribution and a uni-
form distribution on the infinite hemisphere of the aug-
mented space1. To perform generative modeling, PFGM
learn the following high-dimensional electric field, which is
the derivative of the electric potential in a Poisson equation:

E(x̃) =
1

SN (1)

∫
x̃− ỹ

∥x̃− ỹ∥N+1
p(y)dy (2)

where SN (1) is the surface area of a unit N -sphere (a ge-
ometric constant), and p(y) is the data distribution. Sam-
ples are then generated by following the electric field lines,
which are described by the ODE dx̃ = E(x̃)dt. In prac-
tice, the network is trained to estimate a normalized ver-
sion of the following empirical electric field: Ê(x̃) =
c(x̃)

∑n
i=1

x̃−ỹi

∥x̃−ỹi∥N+1 , where c(x̃) = 1/
∑n
i=1

1
∥x̃−ỹi∥N+1

and {ỹi}ni=1 ∼ p̃(ỹ) is a large batch used to approximate
the integral in Eq. (2). The training objective is minimizing
the ℓ2-loss between the neural model prediction fθ(x̃) and
the normalized field E(x̃)/∥E(x̃)∥ at various positions of x̃.
These positions are heuristically designed to carefully cover
the regions that the sampling trajectories pass through.

Phases of Score Field Xu et al. (2023) show that the score
field in the forward process of diffusion models can be
decomposed into three phases. When moving from the
near field (Phase 1) to the far field (Phase 3), the perturbed
data get influenced by more modes in the data distribution.
They show that the posterior p0|σ(y|x) ∝ pσ(x|y)p(y)
serves as a phase indicator, as it gradually evolves from
a delta distribution to uniform distribution when shifting
from Phase 1 to Phase 3. The relevant concepts of phases
have also been explored in Karras et al. (2022); Choi et al.
(2022); Xiao et al. (2022). Similar to the PFGM training
objective, Xu et al. (2023) approximates the score field by
large batches to reduce the variance of training targets in
Phase 2, where multiple data points exert comparable but
distinct influences on the scores. These observations inspire
us to align the phases of different Ds in Sec 4.

1In practice, the hemisphere is projected to a hyperplane
z=zmax, so that all samples have the initial z.

3. PFGM++: A Novel Generative Framework
In this section, we present our new family of generative
models PFGM++, generalizing PFGM (Xu et al., 2022) in
terms of the augmented space dimensionality. We show that
the electric fields in N+D-dimensional space with D ∈ Z+

still constitute a valid generative model (Sec 3.1). Fur-
thermore, we show that the additional D-dimensional aug-
mented variable can be condensed into their scalar norm due
to the inherent symmetry of the electric field. To improve the
training process, we propose an efficient perturbation-based
objective for training PFGM++ (Sec 3.2) without relying on
the large batch approximation in the original PFGM.

3.1. Electric field in N+D-dimensional space

While PFGM (Xu et al., 2022) consider the electric field
in a N+1-dimensional augmented space, we augment the
data x with D-dimensional variables z = (z1, . . . , zD), i.e.,
x̃ = (x, z) and D ∈ Z+. Similar to the N+1-dimensional
electric field (Eq. (2)), the electric field at the augmented
data x̃ = (x, z) ∈ RN+D is:

E(x̃) =
1

SN+D−1(1)

∫
x̃− ỹ

∥x̃− ỹ∥N+D
p(y)dy (3)

Analogous to the theoretical results presented in PFGM,
with the electric field as the drift term, the ODE dx̃=E(x̃)dt
defines a surjection from a uniform distribution on an infinite
N+D-dim hemisphere (the measure we used on hemisphere
is defined as the “surface area” of the hypersphere, i.e.,
r̄N+D−1dΩ, where dΩ is the solid angle on the N+D−1-
dimensional sphere with radius r̄) and the data distribution
on the N -dim z=0 hyperplane. However, the mapping
has SO(D) symmetry on the surface of D-dim cylinder∑D
i=1 z

2
i = r2 for any positive r. We provide an illustrative

example at the bottom of Fig. 2 (D=2, N=1), where the
electric flux emitted from a line segment (red) has rotational
symmetry through the ring area (blue) on the z21 + z22 = r2

cylinder. Hence, instead of modeling the individual behav-
ior of each zi, it suffices to track the norm of augmented
variables — r(x̃) = ∥z∥2 — due to symmetry. Specifically,
note that dzi = E(x̃)zidt, and the time derivative of r is

dr

dt
=

D∑
i=1

zi
r

dzi
dt

=

∫ ∑D
i=1 z

2
i

SN+D−1(1)r∥x̃− ỹ∥N+D
p(y)dy

=
1

SN+D−1(1)

∫
r

∥x̃− ỹ∥N+D
p(y)dy

Henceforth we replace the notation for augmented data with
x̃ = (x, r) for simplicity. After the symmetry reduction, the
field to be modeled has a similar form as Eq. (3) except that
the lastD sub-components {E(x̃)zi}Di=1 are condensed into
a scalar E(x̃)r = 1

SN+D−1(1)

∫
r

∥x̃−ỹ∥N+D p(y)dy. There-
fore, we can use the physically meaningful r as the anchor
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Figure 2. The augmented dimension D affects electric field lines
(gray), which connect charge/data on a line (purple) to latent
space (green). When D = 1 (top) or D = 2 (bottom), electric field
lines map the same red line segment to a blue line segment or onto
a blue ring, respectively. The mapping defined by electric lines has
SO(2) symmetry on the surface of z21 + z22 = r2 cylinder.

variable in the ODE dx/dr by change-of-variable:

dx

dr
=

dx

dt

dt

dr
=

E(x̃)x
E(x̃)r

(4)

Indeed, the ODE dx/dr turns the aforementioned surjection
into a bijection between an easy-to-sample prior distribution
on the r=rmax hyper-cylinder2 and the data distribution on
r=0 (i.e., z=0) hyperplane. The following theorem states
the observation formally:

Theorem 3.1. Assume the data distribution p ∈ C1 and
p has compact support. As rmax→∞, for D ∈ R+, the
ODE dx/dr = E(x̃)x/E(x̃)r defines a bijection between
limrmax→∞ prmax(x) ∝ limrmax→∞ rDmax/(∥x∥22 + r2max)

N+D
2

when r = rmax and the data distribution p when r = 0.

Proof sketch. The r-dependent intermediate distribution of
the ODE (Eq. (4)) is pr(x)∝

∫
rD/∥x̃− ỹ∥N+Dp(y)dy,

which satisfies initial/terminal conditions, i.e., pr=0=p,
limrmax→∞ prmax ∝ limrmax→∞ rDmax/(∥x∥22 + r2max)

N+D
2 , as

well as the continuity equation of the ODE, i.e., ∂rpr+∇x ·
(prE(x̃)x/E(x̃)r) = 0.

We defer the formal proof to Appendix A.1. Note that in the
theorem we further extend the domain ofD from positive in-
tegers to positive real numbers. In practice, the starting con-
dition of the ODE is some sufficiently large rmax such that

2The hyper-cylinder here is consistent with the hemisphere in
PFGM (Xu et al., 2022), because hyper-cylinders degrade to hyper-
planes for D = 1, which are in turn isomorphic to hemispheres.

prmax(x) ∝∼ rDmax/(∥x∥22 + r2max)
N+D

2 . The terminal condi-
tion is r= 0, which represents the generated samples reach-
ing the data support. The proposed PFGM++ framework
thus permits choosing arbitrary D, including D = 1 which
recovers the original PFGM formulation. Interestingly, we
will also show that when D→∞, PFGM++ recover the dif-
fusion models (Sec 4). In addition, as discussed in Sec 5,
the choice of D is important, since it controls two properties
of the associated electric field, i.e., robustness and rigidity,
which affect the sampling performance.

3.2. New objective with Perturbation Kernel

Although the training process in PFGM can be directly ap-
plied to PFGM++, we propose a more efficient training
objective to dispense with the large batch in PFGM. The
objective from PFGM paper (Xu et al., 2022) requires sam-
pling a large batch of data {yi}ni=1∼pn(y) in each training
step to approximate the integral in the electric field (Eq. (3)):

E{yi}n
i=1∼pn(y)Ex̃∼p̃train(x̃|ỹ1=(y1,0))[∥∥∥∥fθ(x̃)−

∑n−1
i=0

x̃−ỹi

∥x̃−ỹi∥N+D∥∥∑n−1
i=0

x̃−ỹi

∥x̃−ỹi∥N+D

∥∥
2
+ γ

∥∥∥∥2
2

]

where p̃train is heuristically designed to cover the regions
that the backward ODE traverses and γ in the denominator
is a tiny positive number to prevent numerical issues. This
objective has several obvious drawbacks: (1) The large
batch incurs additional overheads; (2) Its minimizer is a
biased estimator of the electric field (Eq. (3)); (3) The large
batch is incompatible with typical paired sample training of
conditional generation, where each condition is paired with
only one sample, such as text-to-image (Rombach et al.,
2021; Saharia et al., 2022) and text-to-3D generation (Poole
et al., 2022; Nichol et al., 2022b).

To remedy these issues, we propose a perturbation-based ob-
jective without the need for the large batch, while achieving
an unbiased minimizer and enabling paired sample train-
ing of conditional generation. Inspired by denoising score-
matching (Vincent, 2011), we design the perturbation kernel
to guarantee that the minimizer in the following square loss
objective matches the ground-truth electric field in Eq. (3):

Er∼p(r)Ep(y)Epr(x|y)
[
∥fθ(x̃)− (x̃− ỹ)∥22

]
(5)

where r ∈ (0,∞), p(r) is the training distribution over r,
pr(x|y) is the perturbation kernel and ỹ=(y, 0)/x̃=(x, r)
are the clean/perturbed augmented data. The mini-
mizer of Eq. (5) is f∗θ (x̃)∝

∫
pr(x|y)(x̃− ỹ)p(y)dy,

which matches the direction of electric field
E(x̃)∝

∫
(x̃− ỹ)/∥x̃− ỹ∥N+Dp(y)dy when setting

the perturbation kernel to pr(x)∝1/(∥x∥22 + r2)
N+D

2 . De-
noting the r-dependent intermediate marginal distribution as
pr(x)=

∫
pr(x|y)p(y)dy, the following proposition states
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that the choice of pr(·|y) guarantee that the minimizer of
the square loss to match the direction of the electric field:

Proposition 3.2. With perturbation kernel pr(x|y) ∝
1/(∥x− y∥22 + r2)

N+D
2 , for ∀x ∈ RN , r > 0, the mini-

mizer f∗θ (x̃) in the PFGM++ objective (Eq. (5)) matches
the direction of electric field E(x̃) in Eq. (3). Specifically,
f∗θ (x̃) ∝ (SN+D−1(1)/pr(x))E(x̃).

We defer the proof to Appendix A.2. The proposition in-
dicates that the minimizer f∗θ (x̃) can match the direction
of E(x̃) with sufficient data and model capacity. The cur-
rent training target in Eq. (5) is the directional vector be-
tween the clean data ỹ and perturbed data x̃ akin to de-
noising score-matching for diffusion models (Song et al.,
2021b; Karras et al., 2022). In addition, the new objective
allows for conditional generations under a one-sample-per-
condition setup. Since the perturbation kernel is isotropic,
we can decompose pr(·|y) in hyperspherical coordinates
to Uψ(ψ)pr(R), where Uψ is the uniform distribution over
the angle component and the distribution of the perturbed
radius R = ∥x− y∥2 is

pr(R) ∝
RN−1

(R2 + r2)
N+D

2

We defer the practical sampling procedure of the perturba-
tion kernel to Appendix B. The mean of the r-dependent
radius distribution pr(R) is around r

√
N/D. Hence we

explicitly normalize the target in Eq. (5) by r/
√
D, to keep

the norm of the target around the constant
√
N , similar to

diffusion models (Song et al., 2021b). In addition, we drop
the last dimension of the target because it is a constant —
(x̃− ỹ)r/(r/

√
D) =

√
D. Together, the new objective is

Er∼p(r)Ep(ỹ)Epr(x̃|ỹ)
[∥∥∥fθ(x̃)− x− y

r/
√
D

∥∥∥2
2

]
(6)

which is essentially a rescaled version of Eq. (5). After
training the neural network through objective Eq. (6), we
can use the ODE (Eq. (4)) anchored by r to generate sam-
ples, i.e., dx/dr = E(x̃)x/E(x̃)r = fθ(x̃)/

√
D, starting

from the prior distribution prmax . We would like to highlight
that PFGM++ maintain the same memory requirements as
PFGM (iD = 1) or diffusion models (D = ∞) during both
training and sampling. This is achieved by condensing the
high-dimensional augmented variable z into the scalar r.

4. Diffusion Models as D→∞ Special Cases
Diffusion models generate samples by simulating ODE/SDE
involving the score function ∇x log pσ(x) at different inter-
mediate distributions pσ (Song et al., 2021b; Karras et al.,
2022), where σ is the standard deviation of the Gaussian
kernel. In this section, we show that both sampling and
training schemes in diffusion models are equivalent to those

in D→∞ case under the PFGM++ framework. To begin
with, we show that the electric field (Eq. (3)) in PFGM++
has the same direction as the score function when D tends
to infinity, and their sampling processes are also identical.
Theorem 4.1. Assume the data distribution p ∈ C1. Con-
sider taking the limit D → ∞ while holding σ = r/

√
D

fixed. Then, for all x,

lim
D→∞
r=σ

√
D

∥∥∥∥−
√
D

E(x̃)r
E(x̃)x − σ∇x log pσ=r/

√
D(x)

∥∥∥∥
2

= 0

where E(x̃ = (x, r))x is given in Eq. (3). Fur-
ther, given the same initial point, the trajectory of
the PFGM++ ODE (dx/dr=E(x̃)x/E(x̃)r) matches
the diffusion ODE (Karras et al., 2022) (dx/dt= −
σ̇(t)σ(t)∇x log pσ(t)(x)) in the same limit.

Proof sketch. By re-expressing the x component E(x̃)x
in the electric field and the score ∇x log pσ in dif-
fusion models, the proof boils down to show that
limD→∞,r=σ

√
D pr(x|y) ∝ exp(−∥x− y∥22/2σ2) for

∀x,y ∈ RN+D:

lim
D→∞,r=σ

√
D

1

(∥x− y∥22 + r2)
N+D

2

∝ lim
D→∞,r=σ

√
D
e−

(N+D)
2 ln(1+

∥x−y∥2

r2
)

= lim
D→∞,r=σ

√
D
e−

(N+D)∥x−y∥22
2r2 = e−

∥x−y∥22
2σ2 (7)

The equivalence of trajectories can be proven by change-of-
variable dσ = dr/

√
D. Their prior distributions are also the

same since limD→∞ prmax=σmax
√
D(x) = N (0, σmaxI).

We defer the formal proof to Appendix A.3. Since ∥x −
y∥22/r2 ≈ N/D when x ∼ pr(x),y ∼ p(y), Eq. (7) ap-
proximately holds under the condition D ≫ N . Remark-
ably, the theorem states that PFGM++ recover the field
and sampling of previous popular diffusion models, such
as VE/VP (Song & Ermon, 2020) and EDM (Karras et al.,
2022), by choosing the appropriate schedule and scale func-
tion in Karras et al. (2022).

In addition to the field and sampling equivalence, we demon-
strate that the proposed PFGM++ objective (Eq. (6)) with
perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)

N+D
2 re-

covers the weighted sum of the denoising score matching
objective (Vincent, 2011) for training continuous diffusion
model (Karras et al., 2022; Song et al., 2021b) whenD→∞.
All previous objectives for training diffusion models can be
subsumed in the following form (Karras et al., 2022), under
different parameterizations of the neural networks fθ:

Eσ∼p(σ)λ(σ)Ep(y)Epσ(x|y)
[∥∥∥fθ(x, σ)− x− y

σ

∥∥∥2
2

]
(8)
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where pσ(x|y) ∝ exp(−∥x− y∥22/2σ2). The ob-
jective of the diffusion models resembles the one of
PFGM++ (Eq. (6)). Indeed, we show that when D→∞, the
minimizer of the proposed PFGM++ objective at x̃=(x, r)
is f∗θ (x, r = σ

√
D)= − σ∇x log pσ(x), the same as

the minimizer of diffusion objective at the noise level
σ=r/

√
D.

Proposition 4.2. When r = σ
√
D,D → ∞, the minimizer

in the PFGM++ objective (Eq. (6)) is equaivalent to the
minimizer in the weighted sum of denoising score matching
objective (Eq. (8))

We defer the proof to Appendix A.4. The proposition states
that the training objective of diffusion models is essentially
the same as PFGM++’s when D→∞. Combined with The-
orem 4.1, PFGM++ thus recover both the training and sam-
pling processes of diffusion models when D→∞.

Transfer hyperparameters to finite Ds The training
hyperparameters of diffusion models (D→∞) have been
highly optimized through a series of works (Ho et al., 2020;
Song et al., 2021b; Karras et al., 2022). It motivates us to
transfer hyperparameters, such as rmax and p(r), of D→∞
to finite Ds. Here we present an alignment method that
enables a “zero-shot” transfer of hyperparameters across dif-
ferent Ds. Our alignment method is inspired by the concept
of phases in Xu et al. (2023), which demonstrates that the
score field in the forward process of diffusion models can be
decomposed into three successive phases. As we move from
the near field (Phase 1) to the far field (Phase 3), the per-
turbed data become influenced by more modes in the data
distribution. The authors show that the posterior p0|σ serves
as a phase indicator, as it gradually evolves from a delta dis-
tribution to a uniform distribution when transitioning from
Phase 1 to Phase 3.

We aim to align the phases for two distinct D1, D2 > 0.
In Appendix C.1, we demonstrate that when r ∝

√
D,

the phase of the intermediate distribution pr is approxi-
mately invariant to all D > 0 (including D→∞). In
other words, when rD1

/rD2
=
√
D1/D2, the phases

of prD1
and prD2

, under D1 and D2 respectively, are
roughly aligned. Theorem 4.1 further shows that the relation
r=σ

√
D makes PFGM++ equivalent to diffusion models

when D→∞. Together, the r=σ
√
D formula aligns the

phases of pσ in diffusion models and pr=σ√D in PFGM++
for ∀D>0. Such alignment enables directly transferring
the finely tuned hyperparameters σmax, p(σ) in previous
state-of-the-art diffusion models (Karras et al., 2022) with
rmax=σmax

√
D, p(r)=p(σ=r/

√
D)/

√
D. We put the prac-

tical hyperparameter transfer procedures in Appendix C.2.

We empirically verify the alignment formula on the CIFAR-
10 (Krizhevsky, 2009). Xu et al. (2023) shows that the pos-
terior p0|r(y|x) ∝ pr(x|y)p(y) gradually grows towards

0 20000 40000 60000 80000
r

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
TV

D

No alignment
D = 24

D = 28

D = 212

D = 216

D = 220

(a) No alignment

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0
r = D  alignment

D = 24

D = 28

D = 212

D = 216

D = 220

(b) r = σ
√
D alignment

Figure 3. Mean TVD between the posterior p0|r(·|x) (x is per-
turbed sample) and the uniform prior, w/o (a) and w/ (b) the phase
alignment (r = σ

√
D).

a uniform distribution from the near to the far field. As a
result, the mean total variational distance (TVD) between a
uniform distribution and the posterior serves as an indicator
of the phase of pr: Epr(x)TVD

(
U(·) ∥ p0|r(·|x)

)
. Fig. 3

reports the mean TVD before and after the r=σ
√
D align-

ment. We observe that the mean TVDs of a wide range of
Ds take similar values after the alignment, suggesting that
the phases of pr=σ√D are roughly aligned for different Ds.

5. Balancing Robustness and Rigidity
In this section, we first delve into the behaviors of PFGM++
with different Ds (Sec 5.1) based on the alignment formula.
Then we demonstrate how to leverage D to balance the
robustness and rigidity of models (Sec 5.2). We defer all
experimental details in this section to Appendix D.1.

5.1. Behavior of perturbation kernel when varying D

According to Theorem 4.1, when D→∞, the field in
PFGM++ has the same direction as the score function,
i.e.,

√
DE(x̃)x/E(x̃)r=σ∇x log pσ=r/

√
D(x). In addi-

tion to the theoretical analysis, we provide further empir-
ical study to characterize the convergence towards diffu-
sion models as D increases. Fig. 4(a) reports the average
ℓ2 difference between the two quantities, i.e., Epσ(x)[∥ −√
DE(x̃)x/E(x̃)r−σ∇x log pσ(x)∥2] with r=σ

√
D. We

observe that the difference monotonically decreases as a
function of D, and converges to 0 as predicted by theory.
For σ=1, the distance remains 0 since the empirical pos-
terior p0|r (a categorical distribution) concentrates around
a single example for all D. This is because the distance
between the perturbed data x and a specific data point is
much smaller than the distance between x and any other
data points in the training set. The posterior will gradually
allocate all the mass on a certain datapoint for all D when
decreasing σ.

Next, we examine the behavior of the perturbation kernel
after the phase alignment. Recall that the isotropic per-
turbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)

N+D
2 can

be decomposed into a uniform angle component and a ra-
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Figure 4. (a) Average ℓ2 difference between scaled electric field and score function, versus D. (b) Log-variance of radius distribution
versus D. (c) Density of radius distributions pr=σ

√
D(R) with varying σ and D.

dius distribution pr(R) ∝ RN−1/(R2 + r2)
N+D

2 . Fig. 4(b)
shows the variance of the radius distribution significantly
decreases as D increases. The results imply that with rel-
atively large r, the norm of the training sample in pr(x)
becomes increasingly concentrated around a specific value
asD increases, reaching its highest level of concentration as
D→∞ (diffusion models). Fig. 4(c) further shows the den-
sity of training sample norms in pr=σ√D(x) on CIFAR-10.
We can see that the range of the high-mass region gradually
shrinks when D increases.

5.2. Balancing the trade-off by controlling D

As noted in Xu et al. (2022), diffusion models (D→∞)
are more susceptible to estimation errors compared to
PFGM (D=1) due to the strong correlation between σ
and the training sample norm, as demonstrated in Fig. 4(c).
When D and r are large, the marginal distribution pr(x) is
approximately supported on the sphere with radius r

√
N/D.

The backward ODE can lead to unexpected results if the
sampling trajectories deviate from this norm-r relation
present in training samples. This phenomenon was em-
pirically confirmed by Xu et al. (2022) for PFGM/diffusion
models (D=1 and D→∞ cases) using a weaker architec-
ture NCSNv2 (Song & Ermon, 2020), where PFGM was
shown to be significantly more robust than diffusion models.

Smaller D, however, implies a heavy-tailed input distribu-
tion. Fig. 4(c) illustrates that the examples used as the input
to the neural network have a broader range of norms whenD
is small. In particular, when D<25, the variance of pertur-
bation radius can be larger than 210 (Fig. 4(b)). This broader
input range can be challenging for any finite-capacity neural
network. Although Xu et al. (2022) introduced heuristics
to bypass this issue in the D=1 case, e.g., restricting the
sampling/training regions, these heuristics also prevent the
sampling process from faithfully recovering the data distri-
bution.

Thus, we can view D as a parameter to optimize so as to

balance the robustness of generation against rigidity that
helps learning. Increased robustness allows practitioners to
use smaller neural networks, e.g., by applying post-training
quantization (Han et al., 2015; Banner et al., 2018). In
other words, smaller D allows for more aggressive quantiza-
tion/larger sampling step sizes/smaller architectures. These
can be crucial in real-world applications where computa-
tional resources and storage are limited. On the other hand,
such gains need to be balanced against easier training af-
forded by larger values of D. The ability to optimize the
balance by varying D can be therefore advantageous. We
expect that there exists a sweet spot of D in the middle
striking the balance, as the model robustness and rigidity go
in opposite directions.

6. Experiments
6.1. Image generation

We consider the widely used benchmarks CIFAR-10
32×32 (Krizhevsky, 2009), FFHQ 64×64 (Karras et al.,
2018) and LSUN Churches 256 × 256 (Yu et al., 2015)
for image generation. For training, we utilize the im-
proved NCSN++/DDPM++ architectures, preconditioning
techniques and hyperparameters from the state-of-the-art
diffusion model EDM (Karras et al., 2022). Specifically,
we use the alignment method developed in Sec 4 to transfer
their tuned critical hyperparameters σmax, σmin, p(σ) in the
D→∞ case to finite D cases. According to the experimen-
tal results in Karras et al. (2018), the log-normal training
distribution p(σ) has the most substantial impact on the final
performances. For ODE solver during sampling, we use
Heun’s 2nd method (Ascher & Petzold, 1998) as in EDM.

We compare models trained with D→∞ (EDM) and
D∈{64, 128, 2048, 3072000}. In our experiments, we ex-
clude the case ofD=1 (PFGM) because the perturbation ker-
nel is extremely heavy-tailed (Fig. 4(b)), making it difficult
to integrate with our perturbation-based objective without
the restrictive region heuristics proposed in Xu et al. (2022).
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Table 1. CIFAR-10 sample quality (FID) and number of function
evaluations (NFE).

Min FID ↓ Top-3 Avg FID ↓ NFE ↓

DDPM (Ho et al., 2020) 3.17 - 1000
DDIM (Song et al., 2021a) 4.67 - 50
VE-ODE (Song et al., 2021b) 5.29 - 194
VP-ODE (Song et al., 2021b) 2.86 - 134
PFGM (Xu et al., 2022) 2.48 - 104

PFGM++ (unconditional)

D = 64 1.96 1.98 35
D = 128 1.92 1.94 35
D = 2048 1.91 1.93 35
D = 3072000 1.99 2.02 35
D → ∞ (Karras et al., 2022) 1.98 2.00 35

PFGM++ (class-conditional)

D = 2048 1.74 - 35
D → ∞ (Karras et al., 2022) 1.79 - 35

Table 2. FFHQ 64 × 64 sample quality (FID) with 79 NFE in
unconditional setting

Min FID ↓ Top-3 Avg FID ↓
D = 128 2.43 2.48
D = 2048 2.46 2.47
D = 3072000 2.49 2.52
D → ∞ (Karras et al., 2022) 2.53 2.54

We also exclude the small D = 64 for the higher-resolution
dataset FFHQ. Since the data dimension of LSUN Churches
is relatively high (N=196608), we only try D=131072 to
validate our ideas while saving computations. We include
several popular generative models for reference and defer
more training and sampling details to Appendix D.

Results: In Table 1, 2 and 3, we report the sample qual-
ity measured by the FID score (Heusel et al., 2017) (lower
is better), and inference speed measured by the number
of function evaluations. As in EDM, we report the min-
imum FID score over checkpoints. Since we empiri-
cally observe a large variation of FID scores on FFHQ
across checkpoints (Appendix D.4), we also use the av-
erage FID score over the Top-3 checkpoints as another
metric. Our main findings are (1) Median Ds outper-
form previous best diffusion models (Karras et al.,
2022) under PFGM++ framework. We observe that the
D=2048/128/131072 cases achieve the best performance
among our choices on CIFAR-10/FFHQ/LSUN Churches,
with min FID score of 1.91/2.43/6.52 in unconditional set-
ting, using the perturbation-based objective. In addition,
median Ds obtain better Top-3 average FID scores than
EDM across datasets in unconditional setting and achieve
a current state-of-the-art FID score of 1.74 in CIFAR-10
class-conditional setting. (2) There is a sweet spot be-
tween (1,∞). Neither small D nor infinite D obtains the
best performance, which confirms that there is a sweet spot
in the middle, well-balancing rigidity and robustness. (3)

Table 3. LSUN Churches 256× 256 sample quality (FID) with 99
NFE in unconditional setting

Min FID ↓ Top-3 Avg FID ↓
D = 131072 6.52 6.58
D → ∞ (Karras et al., 2022) 6.63 6.66

Model with D≫N recovers diffusion models. We find
that model with sufficiently large D roughly matches the
performance of diffusion models, as predicted by the theory.
Further results in Appendix E.1 show that D=3072000 and
diffusion models obtain the same FID score when using a
more stable training target (Xu et al., 2023) to mitigate the
variations between different runs and checkpoints.

6.2. Model robustness versus D
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Figure 5. FID score versus (left) α and (right) NFE on CIFAR-10.

In Section 5, we show that the model robustness degrades
with an increasing D by analyzing the behavior of pertur-
bation kernels. To further validate the phenomenon, we
conduct three sets of experiments with different sources
of errors on CIFAR-10. We defer more details to Ap-
pendix D.5. Firstly, we perform controlled experiments
to compare the robustness of models quantitatively. To sim-
ulate the errors, we inject noise into the intermediate point
xr in each of the 35 ODE steps: xr = xr + αϵr where
ϵr ∼ N (0, r/

√
DI), and α is a positive number control-

ling the amount of noise. Fig. 5(a) demonstrates that as α
increases, FID score exhibits a much slower degradation for
smaller D. In particular, when D=64, 128, the sample qual-
ity degrades gracefully. We further visualize the generated
samples in Appendix E.2. It shows that when α=0.2, mod-
els with D=64, 128 can still produce clean images while
the sampling process of diffusion models (D→∞) breaks
down.

In addition to the controlled scenario, we conduct two more
realistic experiments: (1) We introduce more estimation
error of neural networks by applying post-training quan-
tization (Sung et al., 2015), which can directly compress
neural networks without fine-tuning. Table 4 reports the FID
score with varying quantization bit-widths for the convolu-
tion weight values. We can see that finite Ds have better
robustness than the infinite case, and a lower D exhibits
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a larger performance gain when applying lower bit-widths
quantization. (2) We increase the discretization error dur-
ing sampling by using smaller NFEs, i.e., larger sample
steps. As shown in Fig. 5(b), gaps between D=128 and
diffusion models gradually widen, indicating greater robust-
ness against the discretization error. The rigidity issue of
smaller D also affects the robustness to discretization error,
as D=64 is consistently inferior to D=128.

Table 4. FID score versus quantization bit-widths on CIFAR-10.
Quantization bits: 9 8 7 6 5

D = 64 1.96 1.96 2.12 2.94 28.50
D = 128 1.93 1.97 2.15 3.68 34.26
D = 2048 1.91 1.97 2.12 5.67 47.02
D → ∞ 1.97 2.04 2.16 5.91 50.09

7. Conclusion and Future Directions
We present a new family of physics-inspired generative
models called PFGM++, by extending the dimensionality
of augmented variable in PFGM from 1 to D ∈ R+. Re-
markably, PFGM++ includes diffusion models as special
cases when D→∞. To address issues related to large batch
training, we propose a perturbation-based objective. In ad-
dition, we show that D effectively controls the robustness
and rigidity in the PFGM++ family. The multi-dimensional
augmentation is crucial for empirical improvement, as it
allows us to search for better models tailored to specific
tasks and architectures, and enables the perturbation-based
training objective (avoid the heavy-tailed problem when
D = 1 as in PFGM (Xu et al., 2022)). On the other hand,
the perturbation-based objective reduces training overheads
and makes PFGM++ applicable to typical conditional gen-
eration settings. Empirical results show that models with
finite values of D can perform better than previous state-
of-the-art diffusion models, while also exhibiting improved
robustness.

There are many potential avenues for future research in the
PFGM++ framework. For example, it may be possible to
identify the “sweet spot” value of D for different architec-
tures and tasks by analyzing the behavior of errors. Since
PFGM++ enables adjusting robustness, another direction is
to apply aggressive network compression techniques, i.e.,
pruning and low-bit training, to smaller D. Furthermore,
there may be opportunities to develop stochastic samplers
for PFGM++, with the reverse SDE in diffusion models as
a special case. Lastly, PFGM++ may yield more signifi-
cant performance improvements over diffusion models (the
D → ∞ case) in fields with less optimized network archi-
tectures. Our theoretical and experimental results demon-
strate that PFGM++ exhibit superior robustness compared to
diffusion models when using a smallerD. This increased ro-
bustness can translate to more substantial improvements on

weaker architectures.we expect PFGM++ to have more sig-
nificant performance gains than diffusion models in domains
other than image generation, where network architectures
have already been extensively optimized. We will leave the
application of PFGM++ to other fields for future work.
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Appendix
A. Proofs
A.1. Proof of Theorem 3.1

Theorem 3.1. Assume the data distribution p ∈ C1 and p has compact support. As rmax→∞, for D ∈ R+, the ODE
dx/dr = E(x̃)x/E(x̃)r defines a bijection between limrmax→∞ prmax(x) ∝ limrmax→∞ rDmax/(∥x∥22 + r2max)

N+D
2 when

r = rmax and the data distribution p when r = 0.

Proof. Let qr(x) = SD−1

SN+D−1

∫
rD/∥x̃− ỹ∥N+Dp(y)dy, where Sn is the surface area of the n-sphere. We will show

that qr ∝
∫
rD/∥x̃− ỹ∥N+Dp(y)dy is equal to the r-dependent marginal distribution pr by verifying (1) the starting

distribution is correct when r=0; (2) the continuity equation holds, i.e., ∂rqr +∇ · (qrE(x̃)x/E(x̃)r) = 0. The starting
distribution is limr→0 qr(x) ∝ limr→0

∫
rD/∥x̃− ỹ∥N+Dp(y)dy ∝ p(x), which confirms that qr=p. The continuity

equation can be expressed as:

∂rqr +∇ · (qrE(x̃)x/E(x̃)r)

= ∂r

(∫
rD

∥x̃− ỹ∥N+D
p(y)dy

)
+∇ ·

(∫
rD

∥x̃− ỹ∥N+D
p(y)dy

∫
x̃−ỹ

∥x̃−ỹ∥N+D p(y)dy∫
r

∥x̃−ỹ∥N+D p(y)dy

)

=

∫ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)r

∥x̃− ỹ∥N+D−2

)
p(y)dy +∇ ·

(
rD−1

∫
x̃− ỹ

∥x̃− ỹ∥N+D
p(y)dy

)
=

∫ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)r

∥x̃− ỹ∥N+D−2

)
p(y)dy +∇ ·

(
rD−1

∫
x̃− ỹ

∥x̃− ỹ∥N+D
p(y)dy

)
=

∫ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)r

∥x̃− ỹ∥N+D−2

)
p(y)dy

+ rD−1
N∑
i=1

∫
∥x̃− ỹ∥N+D − ∥x̃− ỹ∥N+D−2(xi − yi)

2(N +D)

∥x̃− ỹ∥2(N+D)
p(y)dy

=

∫ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)rD+1

∥x̃− ỹ∥N+D−2

)
p(y)dy

+ rD−1

∫
N∥x̃− ỹ∥N+D − ∥x̃− ỹ∥N+D−2∥x− y∥2(N +D)

∥x̃− ỹ∥2(N+D)
p(y)dy

= rD−1

∫
∥x̃−ỹ∥N+DD − (N+D)r2∥x̃− ỹ∥N+D−2 +N∥x̃−ỹ∥N+D − ∥x̃−ỹ∥N+D−2∥x−y∥2(N+D)

∥x̃−ỹ∥2(N+D)
p(y)dy

= rD−1

∫
(N +D)(∥x̃− ỹ∥N+D − ∥x̃− ỹ∥N+D−2∥x− y∥2)− (N +D)r2∥x̃− ỹ∥N+D−2

∥x̃− ỹ∥2(N+D)
p(y)dy

= rD−1

∫
(N +D)r2∥x̃− ỹ∥N+D−2 − (N +D)r2∥x̃− ỹ∥N+D−2

∥x̃− ỹ∥2(N+D)
p(y)dy

= 0

It means that qr satisfies the continuity equation for any r ∈ R≥0. Together, we conclude that qr = pr. Lastly, note that the
terminal distribution is

lim
rmax→∞

prmax(x) ∝ lim
rmax→∞

∫
rDmax

∥x̃− ỹ∥N+D
p(y)dy = lim

rmax→∞

∫
rDmax

(∥x− y∥2 + r2max)
N+D

2

p(y)dy

= lim
rmax→∞

rDmax

(∥x∥2 + r2max)
N+D

2

+ lim
rmax→∞

∫ (
rDmax

(∥x− y∥2 + r2max)
N+D

2

− rDmax

(∥x∥2 + r2max)
N+D

2

)
p(y)dy

= lim
rmax→∞

rDmax

(∥x∥2 + r2max)
N+D

2

(p has a compact support)

12
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A.2. Proof of Theorem 3.2

Proposition A.1. With perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 , for ∀x ∈ RN , r > 0, the minimizer
f∗θ (x̃) in the PFGM++ objective (Eq. (5)) matches the direction of electric field E(x̃) in Eq. (3). Specifically, f∗θ (x̃) ∝
(SN+D−1(1)/pr(x))E(x̃).

Proof. The minimizer at x̃ in Eq. (5) is

f∗θ (x̃) =

∫
pr(y|x)(x̃− ỹ)dỹ =

∫
pr(x|y)(x̃− ỹ)p(y)dy

pr(x)
(9)

The choice of perturbation kernel is

pr(x|y) ∝
1

∥x̃− ỹ∥N+D
=

1

(∥x− y∥22 + r2)
N+D

2

By substituting the perturbation kernel in Eq. (9), we have:

f∗θ (x̃) =

∫
x̃−ỹ

(∥x−y∥2
2+r

2)
N+D

2

p(y)dy

pr(x)

=

∫
x̃−ỹ

∥x̃−ỹ∥2
N+D p(y)dy

pr(x)

= (SN+D−1(1)/pr(x))E(x̃)

A.3. Proof of Theorem 4.1

Theorem 4.1. Assume the data distribution p ∈ C1. Consider taking the limit D → ∞ while holding σ = r/
√
D fixed.

Then, for all x,

lim
D→∞
r=σ

√
D

∥∥∥∥−
√
D

E(x̃)r
E(x̃)x − σ∇x log pσ=r/

√
D(x)

∥∥∥∥
2

= 0

where E(x̃ = (x, r))x is given in Eq. (3). Further, given the same initial point, the trajectory of the PFGM++
ODE (dx/dr=E(x̃)x/E(x̃)r) matches the diffusion ODE (Karras et al., 2022) (dx/dt= − σ̇(t)σ(t)∇x log pσ(t)(x))
in the same limit.

Proof. The x component in the Poisson field can be re-expressed as

E(x̃)x =
1

SN+D−1(1)

∫
x− y

∥x̃− ỹ∥N+D
p(y)dy

∝
∫
pr(x|y)(x− y)p(y)dy

where the perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 . The direction of the score can also be written down in a
similar form:

∇x log pσ(x) =

∫
pσ(x|y)y−x

σ2 p(y)dy

pσ(x)
∝
∫
pσ(x|y)(x− y)p(y)dy

where pσ(x|y) ∝ exp−∥x−y∥2
2

2σ2 . Since p ∈ C1, and obviously pr(x|y) ∈ C1, then limD→∞
∫
pr(x|y)(x− y)p(y)dy =∫

limD→∞ pr(x|y)(x− y)p(y)dy. It suffices to prove that the perturbation kernel pr(x|y) point-wisely converge to the

13
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Gaussian kernel pσ(x|y), i.e., limD→∞ pr(x|y) = pσ(x|y), to ensure E(x)x ∝ ∇x log pσ(x). Given ∀x,y ∈ RN ,

lim
D→∞

pr(x|y) ∝ lim
D→∞

1

(∥x− y∥22 + r2)
N+D

2

= lim
D→∞

(∥x− y∥22 + r2)−
N+D

2

∝ lim
D→∞

(1 +
∥x− y∥22

r2
)−

N+D
2

= lim
D→∞

(1 +
∥x− y∥22
Dσ2

)−
N+D

2 (r = σ
√
D)

= lim
D→∞

exp

(
−N +D

2
ln(1 +

∥x− y∥22
Dσ2

)

)
= lim
D→∞

exp

(
−N +D

2

∥x− y∥22
Dσ2

)
( limD→∞

∥x−y∥2
2

Dσ2 = 0)

= exp−∥x− y∥22
2σ2

∝ pσ(x|y)

Hence limD→∞ pr(x|y) = pσ(x|y), and we establish that E(x̃)x ∝ ∇x log pσ(x). We can rewrite the drift term in the
PFGM++ ODE as

lim
D→∞
r=σ

√
D

√
DE(x̃)x/E(x̃)r = lim

D→∞
r=σ

√
D

√
D
∫
pr(x|y)(x− y)p(y)dy∫
pr(x|y)(−r)p(y)dy

= lim
D→∞
r=σ

√
D

√
D
∫
pr(x|y)(y − x)p(y)dy

rpr(x)

= lim
D→∞
r=σ

√
D

√
D
∫
pσ(x|y)(y − x)p(y)dy

rpσ(x)

= σ∇x log pσ(x) (∇x log pσ(x) =

∫
pσ(x|y)y−x

σ2 p(y)dy

pσ(x)
) (10)

which establishes the first part of the theorem. For the second part, by the change-of-variable dσ = dr/
√
D, the PFGM++

ODE is

lim
D→∞
r=σ

√
D

dx

dσ
=

dx

dr
· dr
dσ

= lim
D→∞
r=σ

√
D

E(x̃)x · E(x̃)−1
r ·

√
D

= lim
D→∞
r=σ

√
D

σ∇x log pσ(x)√
D

·
√
D (by Eq. (10))

= σ∇x log pσ(x)

which is equivalent to the diffusion ODE.

A.4. Proof of Proposition 4.2

Proposition A.2. When r = σ
√
D,D → ∞, the minimizer in the PFGM++ objective (Eq. (6)) is equaivalent to the

minimizer in the weighted sum of denoising score matching objective (Eq. (8))

14
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Proof. For ∀x ∈ RN , the minimizer in PFGM++ objective (Eq. (6)) at point x̃ = (x, r) is

f∗θ,PFGM++(x̃) = lim
D→∞
r=σ

√
D

∫
pr(x|y) x−y

r/
√
D
p(y)dy

pr(x)

= lim
D→∞
r=σ

√
D

∫
pσ(x|y) x−y

r/
√
D
p(y)dy

pσ(x)
(By Theorem 4.1, limD→∞ pr(x|y) = pσ(x|y))

=

∫
pσ(x|y)x−y

σ p(y)dy

pσ(x)
(11)

On the other hand, the minimizer in denoising score matching at point x in noise level σ = r/
√
N +D is

f∗θ,DSM(x, σ) =

∫
pσ(x|y)x−y

σ p(y)dy

pσ(x)
(12)

Combining Eq. (11) and Eq. (12), we have

lim
D→∞
r=σ

√
D

f∗θ,PFGM++(x, σ
√
N +D) = f∗θ,DSM(x, σ)

B. Practical Sampling Procedures of Perturbation Kernel and Prior Distribution

In this section, we discuss how to simple from the perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 in practice. We
first decompose pr(·|y) in hyperspherical coordinates to Uψ(ψ)pr(R), where Uψ is the uniform distribution over the angle
component and the distribution of the perturbed radius R = ∥x− y∥2 is

pr(R) ∝
RN−1

(R2 + r2)
N+D

2

(13)

The sampling procedure of the radius distribution encompasses three steps:

R1 ∼ Beta(α =
N

2
, β =

D

2
)

R2 =
R1

1−R1

R3 =
√
r2R2

Next, we prove that p(R3) = pr(R3). Note that the pdf of the inverse beta distribution is

p(R2) ∝ R
N
2 −1
2 (1 +R2)

−N+D
2
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By change-of-variable, the pdf of R3 =
√
r2maxR2 is

p(R3) ∝ R
N
2 −1
2 (1 +R2)

−N
2 −D

2 ∗ 2R3

r2max

∝ R3R
N
2 −1
2

(1 +R2)
N+D

2

=
(R3/r)

N−1

(1 + (R2
3/r

2))
N+D

2

∝ RN−1
3

(1 + (R2
3/r

2))
N+D

2

∝ RN−1
3

(r2 +R2
3)

N+D
2

∝ pr(R3) (By Eq. (13))

Note that R1 has mean N
N+D and variance O( ND

(N+D)3 ). Hence when D = O(N), pr(R) would highly concentrate on a
specific value, resolving the heavy-tailed problem. We can sample the uniform angel component by u = w/∥w∥,w ∼
N (0, IN×N ). Together, sampling from the perturbation kernel pr(x|y) is equivalent to setting x = y +R3u. On the other
hand, the prior distribution is

prmax(x) ∝ lim
rmax→∞

∫
rDmax/∥x̃− ỹ∥N+Dp(y)dy = lim

rmax→∞
rDmax/(∥x∥2 + r2max)

N+D
2

We observe that prmax(x) the same as the perturbation kernel prmax(x|y = 0). Hence we can sample from the prior following
x = R3u with R3,u defined above and r = rmax.

C. r = σ
√
D for Phase Alignment

C.1. Analysis

In this section, we examine the phase of intermediate marginal distribution pr under different Ds to derive an alignment
method for hyper-parameters. Consider a N -dimensional dataset D in which the average distance to the nearest neighbor is
about l. We consider an arbitrary datapoint x1 ∈ D and denote its nearest neighbor as x2. We assume ∥x1 − x2∥2 = l, and
uniform prior on D.

To characterize the phases of pr,∀r > 0, we study the perturbation point y ∼ pr(y|x1). According to Appendix B, the

distance ∥x1−y∥ is roughly r
√

N
D−1 . Since pr(y|x1) is isotropic, with high probability, the two vectors y−x1,x2−x1 are

approximately orthogonal. In particular, the vector product (y− x1)
T (x1 − x2) = O( 1√

N
∥y− x1∥∥x1 − x2∥) = O( rl√

D
)

w.h.p. It reveals that ∥y− x2∥ =
√
l2 + r2 N

D−1 +O( rl√
D
). Fig. 6 depicts the relative positions of x1,x2 and the perturbed

point y.

The ratio of the posterior of the x2 and x1 — pr(x2|y)
pr(x1|y) — is an indicator of different phases of field (Xu et al., 2023): point

in the nearer field tends to have a smaller ratio. Indeed, the ratio would gradually decay from 1 to 0 when moving from the
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Figure 6. Illustration of the phase alignment analysis

far to the near field. We can calculate the ratio of the coefficients after approximating the distance ∥y − x2∥:

pr(x2|y)
pr(x1|y)

=
pr(y|x2)

pr(y|x1)
=

(
l2 + r2 N

D−1 +O( rl√
D
) + r2

r2 N
D−1 + r2

)N+D
2

=

(
1 +

l2 +O( rl√
D
)

r2 N
D−1 + r2

)N+D
2

= exp

(
ln(1 +

l2 +O( rl√
D
)

r2 N
D−1 + r2

) · N +D

2

)

≈ exp

(
l2 +O( rl√

D
)

r2 N
D−1 + r2

· N +D

2

)

= exp

(
l2 +O( rl√

D
)

r2
· N +D

2(N +D − 1)
· (D − 1)

)

≈ exp

(
l2 +O( rl√

D
)

r2
·D

)
(14)

Hence the relation r ∝
√
D should hold to keep the ratio invariant of the parameter D. On the other hand, by Theorem 4.1

we know that pσ is equivalent to pr=σ√D when D → ∞. To achieve phase alignment on the dataset, one should roughly set
r = σ

√
D.

C.2. Practical Hyperparameter Transfer from Diffusion Models

C.2.1. TRANSFER EDM TRAINING AND SAMPLING

We list out and compare the EDM training algorithm (Alg 1) and the PFGM++ with transferred hyper-parameters (Alg 2).
The major modification is to replace the Gaussian noise ni ∼ N (0, σ2I) with the additive noise Rivi ∼ Uψ(ψ)pr(R),
where r = σ

√
D. We highlight the major modifications in blue.

We also show the sampling algorithms of EDM (Alg 3) and PFGM++ (Alg 4). Note that we only change the prior
sampling process while the for-loop is identical for both algorithms, since EDM (Karras et al., 2022) sets σ = t, and
dx
dr = x−fθ(x,r)

r = x−fθ(x,r)
σ
√
D

= dx√
Ddσ

= dx
dσ

dσ
dr = dx

dσ = dx
dt . Thus we can use the original samplers of EDM without

further modification.
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Algorithm 1 EDM training

1: Sample a batch of data {yi}Bi=1 from p(y)
2: Sample standard deviations {σi}Bi=1 from p(σ)
3: Sample noise vectors {ni ∼ N (0, σ2

i I)}Bi=1

4: Get perturbed data {ŷi = yi + ni}Bi=1

5: Calculate loss ℓ(θ) =
∑B
i=1 λ(σi)∥fθ(ŷi, σi)−yi∥22

6: Update the network parameter θ via Adam optimizer

Algorithm 2 PFGM++ training with hyperparameter trans-
ferred from EDM

1: Sample a batch of data {yi}Bi=1 from p(y)
2: Sample standard deviations {σi}Bi=1 from p(σ)
3: Sample r from pr: {ri = σi

√
D}Bi=1

4: Sample radiuses {Ri ∼ pri(R)}Bi=1

5: Sample uniform angles {vi = ui

∥ui∥2
}Bi=1, with ui ∼

N (0, I)
6: Get perturbed data {ŷi = yi +Rivi}Bi=1

7: Calculate loss ℓ(θ) =
∑B
i=1 λ(σi)∥fθ(ŷi, σi)− yi∥22

8: Update the network parameter θ via Adam optimizer

Algorithm 3 EDM sampling (Heun’s 2nd order method)

1: x0 ∼ N (0, σ2
maxI)

2: for i = 0, . . . , T − 1 do
3: di = (xi − fθ(xi, ti))/ti
4: xi+1 = xi + (ti+1 − ti)di
5: if ti+1 > 0 then
6: d′

i = (xi+1 − fθ(xi+1, ti+1))/ti+1

7: xi+1 = xi + (ti+1 − ti)(
1
2di +

1
2d

′
i)

8: end if
9: end for

Algorithm 4 PFGM++ training with hyperparameter trans-
ferred from EDM

1: Set rmax = σmax
√
D

2: Sample radiusR ∼ prmax(R) and uniform angle v = u
∥u∥2

,
with u ∼ N (0, I)

3: Get initial data x0 = Rv
4: for i = 0, . . . , T − 1 do
5: di = (xi − fθ(xi, ti))/ti
6: xi+1 = xi + (ti+1 − ti)di
7: if ti+1 > 0 then
8: d′

i = (xi+1 − fθ(xi+1, ti+1))/ti+1

9: xi+1 = xi + (ti+1 − ti)(
1
2di +

1
2d

′
i)

10: end if
11: end for

C.2.2. TRANSFER DDPM (CONTINUOUS) TRAINING AND SAMPLING

Here we demonstrate the “zero-shot” transfer of hyperparameters from DDPM to PFGM++, using the r = σ
√
D formula.

We highlight the modifications in blue. In particular, we list the DDPM training/sampling algorithms (Alg 5/Alg 7), and
their counterparts in PFGM++ (Alg 6/Alg 8) for comparions. Let βT and β1 be the maximum/minimum values of β in
DDPM (Ho et al., 2020). Similar to Song et al. (2021b), we denote αt = e−

1
2 t

2(β̄max−β̄min)−tβ̄min , with β̄max = βT · T and
β̄min = β1 · T . For example, on CIFAR-10, β̄min = 1e− 1 and β̄max = 20 with T = 1000. We would like to note that the tis
in the sampling algorithms (Alg 7 and Alg 8) monotonically decrease from 1 to 0 as i increases.

Algorithm 5 DDPM training

1: Sample a batch of data {yi}Bi=1 from p(y)
2: Sample time {ti=t′i/T}Bi=1 with t′i∼U({1, . . . , T})
3: Get perturbed data {ŷi =

√
αtiyi+

√
1− αtiϵi}Bi=1,

where ϵi ∼ N (0, I)

4: Calculate loss ℓ(θ) =
∑B
i=1 λ(ti)∥fθ(ŷi, ti)− ϵi∥22

5: Update the network parameter θ via Adam optimizer

Algorithm 6 PFGM++ training with hyperparameter trans-
ferred from DDPM

1: Sample a batch of data {yi}Bi=1 from p(y)
2: Sample time {ti}Bi=1 from U [0, 1]
3: Get σi from ti: {σi =

√
1−αti

αti
}

4: Sample r from pr: {ri = σi
√
D}Bi=1

5: Sample radiuses {Ri ∼ pri(R)}Bi=1

6: Sample uniform angles {vi = ui

∥ui∥2
}Bi=1, with ui ∼

N (0, I)
7: Get perturbed data {ŷi =

√
αti(yi +Rivi)}Bi=1

8: Calculate loss ℓ(θ) =
∑B
i=1 λ(ti)∥fθ(ŷi, ti)−

√
DRivi

r ∥22
9: Update the network parameter θ via Adam optimizer
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Algorithm 7 DDIM sampling

1: xT ∼ N (0, I)
2: for i = T, . . . , 1 do
3: xi−1 =

√
αti−1

αti
xi

+(
√
1− αti−1−

√
αti−1

αti

√
1− αti)fθ(xi, ti)

4: end for

Algorithm 8 PFGM++ sampling transferred from DDIM

1: Set σmax =
√

1−α1

α1
, rmax = σmax

√
D

2: Sample radiusR ∼ prmax(R) and uniform angle v = u
∥u∥2

,
with u ∼ N (0, I)

3: Get initial data xT =
√
α1Rv

4: for i = T, . . . , 1 do
5: xi−1 =

√
αti−1

αti
xi

+(
√
1− αti−1

−
√

αti−1

αti

√
1− αti)fθ(xi, ti)

6: end for

D. Experimental Details
We show the experimental setups in section 5, as well as the training, sampling, and evaluation details for PFGM++. All the
experiments are run on four NVIDIA A100 GPUs or eight NVIDIA V100 GPUs.

D.1. Experiments for the Analysis in Sec 5

In the experiments of section 4 and section 5.1, we need to access the posterior p0|r(y|x) ∝ pr(x|y)p(y) to calculate the
mean TVD. We sample a large batch {yi}ni=1 with n = 1024 on CIFAR-10 to empirically approximate the posterior:

p0|r(yi|x) =
pr(x|yi)p(yi)

pr(x)
≈ pr(x|yi)∑n

j=1 pr(x|yj)
=

1/(∥x− yi∥22 + r2)
N+D

2∑n
j=1 1/(∥x− yj∥22 + r2)

N+D
2

We sample a large batch of 256 to approximate all the expectations in section 5, such as the average TVDs.

D.2. Training Details

We borrow the architectures, preconditioning techniques, optimizers, exponential moving average (EMA) schedule, and
hyper-parameters from previous state-of-the-art diffusion model EDM (Karras et al., 2022). We apply the alignment method
in section 4 to transfer their well-tuned hyper-parameters.

For architecture, we use the improved NCSN++ (Karras et al., 2022) for the CIFAR-10 dataset (batch size 512), and the
improved DDPM++ for the FFHQ dataset (batch size 256). Since (Karras et al., 2022) does not experiment on LSUN
Churches dataset, we set the number of blocks to 2, and the feature maps (× 1

128 ) to 1-1-2-2-2-2-2 without augmentation,
inspired by the architecture in (Song et al., 2021b). For optimizers, following EDM, we adopt the Adam optimizer with a
learning rate of 10e− 4. We further incorporate the EMA schedule, learning rate warm-up, and data augmentations in EDM.
Please refer to Appendix F in EDM paper (Karras et al., 2022) for details.

The most prominent improvements in EDM are the preconditioning and the new training distribution for σ, i.e., p(σ).
Specifically, adding these two techniques to the vanilla diffusion objective (Eq. (8)), their effective training objective can be
written as:

Eσ∼p(σ)λ(σ)cout(σ)
2Ep(y)Epσ(x|y)

[∥∥∥Fθ(cin(σ) · x, cnoise(σ))−
1

cout(σ)
(y − cskip(σ) · x)

∥∥∥2
2

]
(15)

with the predicted normalized score function in the vanilla diffusion objective (Eq. (8)) re-parameterized as

fθ(x, σ) =
cskip(σ)x+ cout(σ)Fθ(cin(σ)x, cnoise(σ))− x

σ
≈ σ∇x log pσ(x)

cin(σ) = 1/
√
σ2 + σ2

data, cout(σ) = σ · σdata/
√
σ2 + σ2

data, cskip(σ) = σ2
data/(σ

2 + σ2
data), cnoise(σ) =

1
4 ln(σ), with σdata =

0.5. {cin(σ), cout(σ), cskip(σ), cdata, cnoise(σ)} are all the hyper-parameters in the preconditioning. The training distribution
p(σ) is the log-normal distribution with ln(σ) ∼ N (−1.2, 1.22), and the loss weighting λ(σ) = 1/cout(σ)

2.
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Recall that the hyper-parameter alignment rule r = σ
√
D can transfer the hyper-parameter from diffusion models (D→∞)

to finite Ds. Hence we can directly set σ = r/
√
D in those hyper-parameters for preconditioning. In addition, the training

distribution p(r) can be derived via the change-of-variable formula, i.e., p(r) = p(σ = r/
√
D)/

√
D. The final PFGM++

objective after incorporating these techniques into Eq. (6) is:

Er∼p(r)λ(r/
√
D)cout(r/

√
D)2Ep(y)Epr(x|y)

[∥∥∥Fθ(cin(r/
√
D) · x, cnoise(r/

√
D))− 1

cout(σ)
(y − cskip(r/

√
D) · x)

∥∥∥2
2

]
with the predicted normalized electric field in the vanilla PFGM++ objective (Eq. (6)) re-parameterized as

fθ(x̃) =
cskip(r/

√
D)x+ cout(r/

√
D)Fθ(cin(r/

√
D)x, cnoise(r/

√
D))− x

r/
√
D

≈
√
D
E(x̃)x
E(x̃)r

D.3. Sampling Details

For sampling, following EDM (Karras et al., 2022), we also use Heun’s 2nd method (improved Euler method) (Ascher &
Petzold, 1998) as the ODE solver for dx/dr = E(x̃)x/E(x̃)r = fθ(x̃)/

√
D.

We adopt the same parameterized scheme in EDM to determine the evaluation points during N -step ODE sampling:

ri = (rmax
1
ρ +

i

N − 1
(rmin

1
ρ − rmax

1
ρ ))ρ and rN = 0

where ρ controls the relative density of evaluation points in the near field. We set ρ = 7 as in EDM, and rmax = σmax
√
D =

80
√
D, rmin = σmin

√
D = 0.002

√
D (σmax, σmin are the hyper-parameters in EDM, controlling the starting/terminal

evaluation points) following the r = σ
√
D alignment rule.

D.4. Evaluation Details

For the evaluation, we compute the Fréchet distance between 50000 generated samples and the pre-computed statistics of
CIFAR-10 and FFHQ. On CIFAR-10, we follow the evaluation protocol in EDM (Karras et al., 2022), which repeats the
generation three times with different seeds for each checkpoint and reports the minimum FID score. However, we observe
that the FID score has a large fluctuation across checkpoints, and the minimum FID score of EDM in our re-run experiment
does not align with the original results reported in (Karras et al., 2022). Fig. 7(a) shows that the FID score could have a
variation of ±0.2 during the training of a total of 200 million images (Karras et al., 2022). To better evaluate the model
performance, Table 2 reports the average FID over the Top-3 checkpoints instead. In Fig. 7(b), we further demonstrate the
moving average of the FID score with a window of 10000K images. It shows that D = 2048 consistently outperforms other
baselines in the same training iterations, in agreement with the results in Table 2.

We further report the variation of FID scores in Table 5 for the best checkpoint across different D values, by repeating the
sampling process three times using different seeds. We observe that the standard deviation of FID is approximately in the
range of 0.5% ∼ 1% of the average FID, which is much smaller than the performance gain of D = 128/2048 in terms of
Min or Average FID. Additionally, in Table 1 and Table 2 in the main text, we can see that the median D = 128/2048
consistently improves over the baseline (D = ∞) when using the Top-3 Average FID of checkpoints as a metric.

Table 5. Min, Average and standard deviation of FID on CIFAR-10 using three different sets of random seeds for sampling
Min FID ↓ Average FID ↓ Standard deviation

D = 2048 1.92 1.94 0.02
D = 2048 1.91 1.92 0.01
D → ∞ (Karras et al., 2022) 1.98 2.00 0.02

D.5. Experiments for Robustness

Controlled experiments with α In the controlled noise setting, we inject noise into the intermediate point xr in each
of the 35 ODE steps by xr = xr + αϵr where ϵr ∼ N (0, r/

√
DI). Since pr has roughly the same phase as pσ=r/√D in

diffusion models, we pick r/
√
D standard deviation of ϵr when the intermediate step is r.
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Figure 7. FID score in the training course when varying D, (a) w/o and (b) w/ moving average.
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Post-training quantization In the post-training quantization experiments on CIFAR-10, we quantize the weights of
convolutional layers excluding the 32× 32 layers, as we empirically observe that these input/output layers are more critical
for sample quality.

E. Extra Experiments
E.1. Stable Target Field

Xu et al. (2023) propose a Stable Target Field objective for training the diffusion models:

∇x log pσ(x) ≈ Ey1∼p0|t(·|x)E{yi}n
i=2∼pn−1

[
n∑
k=1

pt|0(x|yk)∑
j pt|0(x|yj)

∇x log pt|0(x|yk)

]

where they sample a large batch of samples {yi}ni=2 from the data distribution to approximate the score function at x. They
show that the new target can enhance the stability of converged models in different runs/seeds. PFGM++ can be trained in a
similar fashion by replacing the target x−y

r/
√
D

in perturbation-based objective (Eq. (6)) with

1

r/
√
D

(
x−Ep0|r(y|x)

[y]
)
≈ 1

r/
√
D

(
x−Ey1∼p0|r(·|x)E{yi}n

i=2∼pn−1

[
n∑
k=1

1/(∥x− yk∥22 + r2)
N+D

2∑
j 1/(∥x− yj∥22 + r2)

N+D
2

yk

])
When n = 1, the new target reduces to the original target. Similar to (Xu et al., 2023), one can show that the bias of
the new target together with its trace-of-covariance shrinks to zero as we increase the size of the large batch. This new
target can alleviate the variations between random seeds. With the new STF-style target, Table 6 shows that when setting
D = 3072000 ≫ N = 3072, the model obtains the same FID score as the diffusion models (EDM (Karras et al., 2022)). It
aligns with the theoretical results in Sec 4, which states that PFGM++ recover the diffusion model when D → ∞.

Table 6. FID and NFE on CIFAR-10, using the Stable Target Field (Xu et al., 2023) in training objective.
FID ↓ NFE ↓

D = 3072000 1.90 35
D → ∞ (Karras et al., 2022) 1.90 35

E.2. Extended CIFAR-10 Samples when varying α

To see how the sample quality varies with α, we visualize the generative samples of models trained withD ∈ {64, 128, 2048}
and D → ∞. We pick α ∈ {0, 0.1, 0.2}. Fig. 8 shows that the smaller Ds produce better samples compared to larger D.
Diffusion models (D → ∞) generate noisy images that appear to be out of the data distribution when α = 0.2, in contrast
to the clean images by D = 64, 128.

E.3. Extended FFHQ Samples

In Fig. 9, we provide samples generated by the D = 128 case and EDM (the D → ∞ case).

F. Toy Dataset
In this section, we construct a 1000-dimensional toy dataset to systematically investigate the behaviors of models with
differentD values. We synthesize the data in three steps: first we randomly sample the data y from a 10-dimensional Gaussian
mixture 1

2N (1, 0.22 ∗I10×10)+
1
2N (−1, 0.22 ∗I10×10). Next, we map the 10-dimensional data to 1000-dimensional space

using a random matrix W ∈ R1000×10: ŷ = Wy. The entries in W are i.i.d sampled from standard normal distribution.
Finally, we perturbed the data with a small Gaussian noise: x = ŷ + ϵ, where ϵ ∼ N (1, 0.012 ∗ I1000×1000). The synthetic
dataset contains 2000 data points sampled using this procedures.

We design a four-layer UNet architecture, with widths corresponding to data dimension—latent dimension—latent dimen-
sion—latent dimension—data dimension. The latent dimension directly controls the capacity of the neural network. We also
incorporate the residual connection, time-embedding and preconditioning techniques in EDM (Karras et al., 2022).
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(a) D=64, α = 0 (FID=1.96) (b) D=64, α = 0.1 (FID=1.97) (c) D=64, α = 0.2 (FID=2.07)

(d) D=128, α = 0 (FID=1.92) (e) D=128, α = 0.1 (FID=1.95) (f) D=128, α = 0.2 (FID=2.19)

(g) D=2048, α = 0 (FID=1.92) (h) D=2048, α = 0.1 (FID=1.95) (i) D=2048, α = 0.2 (FID=2.19)

(j) D → ∞, α = 0 (FID=1.98) (k) D → ∞, α = 0.1 (FID=9.27) (l) D → ∞, α = 0.2 (FID=92.41)

Figure 8. Generated samples on CIFAR-10 with varied hyper-parameter for noise injection (α). Images from top to bottom rows are
produced by models trained with D = 64/128/2048/∞. We use the same random seeds for finite Ds during image generation.
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(a) D = 128 (FID=2.43) (b) EDM (D → ∞) (FID=2.53)

Figure 9. Generated images on FFHQ 64× 64 dataset, by (left) D = 128 and (right) EDM (D → ∞).

We examine the generated samples when varying D and the latent dimension. We visualize the first two coordinates
(x0,x1) of the true data (Fig. 10) and generated data (Fig. 11) for illustration. In Fig. 11, we show that when the latent
dimension is set to 4, both the D = 100 and D = ∞ (diffusion model) fail to recover the data distribution, while model with
intermediate D = 1000 well captures the underlying data distribution. On weaker architecture (smaller latent dimension),
the non-robustness of large D and the non-rigidity of small D would be amplified. It corroborates the arguments that median
Ds better balance the robustness and rigidity. As we enlarge the neural network capacity by increasing the latent dimension
to 32, all the models with different Ds faithfully recover the data distribution. For quantitative comparison, in Table 7 we
report the maximum mean discrepancy between the generated data and the true data for different models. We exclude the
D = 1 case (PFGM) since the the perturbation kernel is extremely heavy-tailed in 1000-dimensional space, preventing the
use of the perturbation-based objective.

Figure 10. Visualization of the first two coordinates (x0,x1) for the 1000-dimensional synthetic data.
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(a) Latent dimension = 4

(b) Latent dimension = 8

(c) Latent dimension = 32

Figure 11. Visualization of the first two coordinates (x0,x1) for the generated data (blue) versus true data (orange). From the top row to
the bottom row: the latent dimension of the neural network is set to 4 (a), 8 (b), and 32 (c).

Table 7. Maximum mean discrepancy between the generated data and the true data.

D = 100 D = 1000 D = 10000 D = ∞
Latent Dimension = 4 1.75 0.17 0.79 1.82
Latent Dimension = 8 0.33 0.16 0.43 1.46
Latent Dimension = 32 0.12 0.01 0.14 0.07
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G. Potential Negative Social Impact
The deep generative model is a burgeoning field and has significant potential for shaping our society. Our work presents a
novel family of generative models, the PFGM++, which subsume previous high-performing models and provide greater
flexibility. The PFGM++ have many potential applications, particularly in areas that require both robustness and high-quality
output. However, it is important to note that the usage of these models can have both positive and negative implications,
depending on the specific application. For instance, the PFGM++ can be used to create realistic image and audio samples,
but it can also contribute to the development of deepfake technology and potentially lead to social scams. Additionally, the
data-collecting process for generative models may infringe upon intellectual property rights. To address these concerns,
further research is needed to provide robustness guarantees for generative models and to foster collaborations with experts
in socio-technical fields.
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