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Abstract

Off-policy evaluation (OPE) aims to estimate the
return of a target policy using some pre-collected
observational data generated by a potentially dif-
ferent behavior policy. In many cases, there exist
unmeasured variables that confound the action-
reward or action-next-state relationships, render-
ing many existing OPE approaches ineffective.
This paper develops an instrumental variable (IV)-
based method for consistent OPE in confounded
sequential decision making. Similar to single-
stage decision making, we show that IV enables
us to correctly identify the target policy’s value
in infinite horizon settings as well. Furthermore,
we propose a number of policy value estimators
and illustrate their effectiveness through extensive
simulations and real data analysis from a world-
leading short-video platform.

1. Introduction
Off-policy evaluation (OPE) estimates the discounted cu-
mulative reward following a given target policy with an
offline dataset collected from another (possibly unknown)
behavior policy. OPE is important in situations where it is
impractical or too costly to directly evaluate the target pol-
icy via online experimentation, including robotics (Quillen
et al., 2018), precision medicine (Murphy, 2003; Kosorok &
Laber, 2019; Tsiatis et al., 2019), economics (Chernozhukov
et al., 2018), quantitative social science (Abadie & Cattaneo,
2018), recommendation systems (Li et al., 2010; Kiyohara
et al., 2022), etc.

Despite a large body of literature on OPE (see Section 2
for detailed discussions), many of them rely on the assump-
tion of no unmeasured confounders (NUC), excluding the
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existence of unobserved variables that could potentially con-
found either the action-reward or action-next-state pair. This
assumption, however, can be violated in some real-world
applications such as healthcare and technological industries.

Our paper is partly motivated by the need to evaluate the
long-term treatment effects of certain app download ads
from a short-video platform. At each time, the platform
may bid with many other companies to show their own ads
to potential consumers. Unmeasured confounding poses a
significant challenge in this data generating process. This is
because other companies may win the auction and it remains
unknown which ad is ultimately shown to the consumer. In
addition, if the competitor’s ad is displayed, the consumer
may download their app instead. This lack of observability
violates the no unmeasured confounders assumption, mak-
ing it difficult to evaluate the effects of the ads consistently.

Recently, IV-based methods have stood out as a powerful
approach to account for unmeasured confounding and mea-
surement errors and have been applied in a range of studies
(Angrist et al., 1996; Aronow & Carnegie, 2013; Tchetgen &
Vansteelandt, 2013; Ogburn et al., 2015; Wang & Tchetgen,
2018; Qiu et al., 2021; Cui & Tchetgen Tchetgen, 2021).
However, these methods are typically used in a single-stage
setting and cannot be directly applied to general sequential
decision making which is commonly encountered in the RL
literature.

To fill in this gap, we propose an IV-based approach to OPE
in confounded sequential decision making. The advances
and contributions of our proposal are multi-fold.

First, to the best of our knowledge, this is one of the first
papers to systematically examine the use of IVs for policy
evaluation in infinite or long-horizon settings. Our pro-
posal covers a range of models, including Markov decision
processes with unmeasured confounders (MDPUCs), high-
order MDPs with unmeasured confounders and POMDPs,
allowing the Markov assumption to be potentially violated
at different levels. Existing IV-based RL approaches are
mainly designed for the purpose of policy optimization, not
policy evaluation. Moreover, related studies either rely on
the Markov assumption (Liao et al., 2021a; Li et al., 2021;
Fu et al., 2022) or finite horizon settings with a few decision
stages (Chen & Zhang, 2021). This narrows the scope of
their findings.
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Second, when specialized to MDPUCs, we develop a doubly
robust policy value estimator. This new estimator, as guar-
anteed by semiparametric theory (Tsiatis, 2006), achieves
the efficiency bound and thus provides the most robust and
efficient value estimate for OPE in confounded MDPs. Ex-
isting semiparametrically efficient estimators designed for
MDPs (Kallus & Uehara, 2022) are biased in our setting,
due to the existence of unmeasured confounders.

Finally, as illustrated in Section 7.2, our proposal offers
valuable insights in helping tech industries to make sequen-
tial decisions in online digital advertising to improve con-
sumers’ conversion rates.

2. Related Works
2.1. Off-policy Evaluation

Over the past decades, OPE has been thoroughly researched
in reinforcement learning (RL, see Uehara et al., 2022b, for
an overview). Current estimators can be roughly divided
into three categories. The first type is the direct method
estimator (DM) which directly constructs the policy value
estimator via an estimated Q- or value function (Lagoudakis
& Parr, 2003; Le et al., 2019; Feng et al., 2020; Luckett
et al., 2020; Hao et al., 2021; Liao et al., 2021b; Chen & Qi,
2022; Shi et al., 2022b). The second type is the importance
sampling (IS)-based estimator that uses the (marginal) IS
ratio to account for the distributional shift between the tar-
get and behavior policies (Thomas et al., 2015; Hallak &
Mannor, 2017; Hanna et al., 2017; Liu et al., 2018; Schlegel
et al., 2019; Xie et al., 2019; Dai et al., 2020; Zhang et al.,
2020). The last type combines DM and IS for robust OPE
(Jiang & Li, 2016; Thomas & Brunskill, 2016; Farajtabar
et al., 2018; Tang et al., 2020; Uehara et al., 2020; Cai et al.,
2021; Shi et al., 2021; Liao et al., 2022; Kallus & Uehara,
2022). However, none of the aforementioned methods can
handle unmeasured confounding.

2.2. Unmeasured Confounding

In observational studies, the no unmeasured confounders
(NUC) assumption is often violated due to the presence
of latent variables. Recently, there has been an increasing
focus on developing RL methods in confounded contex-
tual bandits and sequential decision to address this problem.
Some related references in confounded contextual bandits
include Bareinboim et al. (2015); Sen et al. (2017); Miao
et al. (2018); Shi et al. (2020b); Kallus et al. (2021); Xu et al.
(2021); Wang et al. (2022). In general sequential settings,
existing works can be broadly grouped into three categories.
The first category of work relies on the Markov assumption,
models the observed data via an MDP with unmeasured
confounders (MDPUC, Zhang & Bareinboim, 2016), and
utilizes optimal balancing or certain proxy variables to han-

dle the memoryless unobserved confounding (Bennett et al.,
2021; Liao et al., 2021a; Wang et al., 2021; Shi et al., 2022c;
Fu et al., 2022). The second category uses a confounded
partially observable MDP (POMDP) for problem formula-
tion, borrows the idea from proximal causal inference (see
e.g., Tchetgen et al., 2020, for an overview) and extends
the framework to sequential decision making (Tennenholtz
et al., 2020; Bennett & Kallus, 2021; Nair & Jiang, 2021;
Miao et al., 2022; Shi et al., 2022a). The last category de-
velops partial identification bounds for policy learning and
evaluation based on sensitivity analysis (Kallus & Zhou,
2020; Namkoong et al., 2020; Chen & Zhang, 2021).

2.3. POMDPs

Our work is also closely related to a line of works on policy
learning and evaluation in unconfounded POMDPs (Boots
et al., 2011; Anandkumar et al., 2014; Guo et al., 2016;
Azizzadenesheli et al., 2016; Jin et al., 2020; Hu & Wager,
2021; Kwon et al., 2021). However, all the aforementioned
methods are developed under settings without unmeasured
confounders and are not directly applicable to our problem.
Meanwhile, methods designed for confounded POMDPs re-
quire the action to be independent of the observation given
the latent state (see e.g., Tennenholtz et al., 2020; Shi et al.,
2022a), which are not applicable to settings when the behav-
ior policy depends on both the state and the observation.

3. Preliminaries
To illustrate the idea, we start by working with the MDPUC
setup where the Markov assumption is satisfied. Extensions
to non-Markov settings will be discussed in Section 6.

Consider a single data trajectory where (St, At, Rt) denotes
the state-action-reward triplet observed at time t. In the
context of online digital advertising, both the action and
the reward are binary variables. We denote At = 1 if
the ad is indeed exposed to the consumer at time t, and
Rt = 1 if the consumer is converted, i.e., downloaded
our app at time t. St is a vector which contains both the
consumer’s baseline information and the behavioral data
(e.g., the number of historical requests of consumers from
different media channels). Let Ut denote the unobserved
confounders at time t which may affect both the action and
reward/next state. In this example, Ut includes the bidding
strategies of other companies, as well as the information
about the ad that is displayed to the consumer when At = 0.
It is worth noting that although this example assumes Rt

to be binary, the entire framework is applicable to settings
where Rt ∈ R.

As we have mentioned in the introduction, the bidding strate-
gies of other companies can impact both the ad shown (At)
and the consumer’s conversion rate (Rt), resulting in a con-
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Figure 1. Causal diagram for IV-based MDPUC, where Ut denotes
the unmeasured confounders in between At → (Rt, St+1).

founded dataset. To address this problem, we leverage the
IV (denoted by Zt) to infer the long-term treatment effect
of ads exposure. Throughout this paper, we assume the
instrumental variable and action to be binary, where the
value of Zt depends on whether our company chooses to bid
(Zt = 1) at time t or not, and the value of At denotes the
true ads exposure status to consumers. We will illustrate in
Section 7.2 that Zt defined in this real application is indeed
a valid IV.

To summarize, the complete data under the IV-based MD-
PUC model is given by {(St, Zt, At, Rt, Ut)}Tt=0, where T
can be very large or infinite. A causal diagram depiciting
the resulting data generating process is given in Figure 1.
The observed data contains N i.i.d. trajectories, given by

Di = {(Si,t, Zi,t, Ai,t, Ri,t)}Tt=1, i = {1, . . . , N}. (1)

Let π : S × A 7→ [0, 1] denote the target policy we wish
to evaluate, i.e., π(a|s) = Pπ(At = a|St = s) for any
(s, a) ∈ S×A. Likewise, let b : S×U ×A 7→ [0, 1] denote
the behaviour policy that generates the data in (1). Due to
unmeasured confounding, the behavior policy is allowed to
depend on both the observed state S and the unobserved
confounders U , and thus differs from π.

For a given discounted factor 0 ≤ γ < 1, we define the
value function V π(s0) as the expected discounted sum of
rewards starting from some initial state s0 under policy π:

V π(s0) =

+∞∑
t=0

γtEπ(Rt|S0 = s0),

where the superscript π in Eπ denotes the expectation of
potential outcome of Rt under policy π. We next define the
aggregated value over the initial state distribution ν(s0) as

ηπ := ES0∼ν

[
V π(S0)

]
.

Our objective lies in inferring ηπ based on (1).

Directly applying existing OPE solutions in Section 2.1
will produce biased policy value estimators in the presence
of unmeasured confounders. This is because Eπ(Rt|S0)
is generally not equal to E(Rt|S0, Aj ∼ π, 0 ≤ j ≤ t).
The former corresponds to the potential outcome gener-
ated by the causal diagram in Figure 1 with the arrows

{Ut → At}0≤t≤T removed, whereas the latter corresponds
to the observed outcome generated under the original causal
diagram in Figure 1.

4. Identification
We show that the policy value can be consistently identified
by Theorem 4.1 below.

Theorem 4.1. (Identifiability)
Under Assumptions 1-2 detailed in Appendix A, V π(s0)
equals

∑
t,τt

γtrt

{ t∏
j=0

pr,s(rj , sj+1|aj , zj , sj)pa(aj |zj , sj)c(zj |sj)
}
,

(2)
where τt := {zj , aj , rj , sj+1}tj=0 denotes the collection of
all past (z, a, r, s′) tuples up to time t, and

c(zt|St) =


pA1 (St)− π(1|St)

pA1 (St)− pA0 (St)
, when zt = 0

π(1|St)− pA0 (St)

pA1 (St)− pA0 (St)
, when zt = 1

, (3)

where pA1 (St) := E[At|Zt = 1, St] and pA0 (St) :=
E[At|Zt = 0, St].

Remark 1. All the functions involved in (2) can be consis-
tently estimated from the observed data, which thus implies
the identifiability of V π(s0). By taking expectation with
respect to the initial state distribution, ηπ is also identifiable.

Remark 2. The ratio function c(z|s) in (3) measures the
discrepancy between the behavior policy and the target π.
In the special case where the target policy π equals the
behavior policy b, c(zt|St) is reduced to pz(zt|St), i.e. the
conditional probability density/mass function ofZt given St.
In this case, it is immediate to see this equation holds since
the product in the curly brackets of (2) corresponds to the
joint probability density/mass function of the data trajectory
up to time t. When π ̸= b, c(z|s) plays a similar role as the
important sampling ratio to account for distributional shift.

Remark 3. Assumption 1 consists of a set of IV-related
conditions, including IV dependence, IV relevance, exclu-
sion restriction, no additive U–A interactions, etc. Similar
assumptions are imposed in single-stage decision making as
well (Angrist & Imbens, 1995; Abadie, 2003; Wang & Tch-
etgen, 2018; Qiu et al., 2021). Assumption 2 is composed
of a set of conditional independence assumptions, which
require {Zt, Ut, At, Rt, St+1} to be independent of the past
data history given the current-stage information. Similar
assumptions are imposed in RL when NUC is satisfied (Erte-
faie, 2014; Sutton & Barto, 2018; Luckett et al., 2020). To
save space, we relegate the details to Appendix A.
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Remark 4. The main idea of the proof lies in first applying
the conditional independence assumptions (Assumption 2)
to decompose the cross-stage identification problem (i.e.,
Eπ[Rt|S0] for t ≥ 1) into a sequence of single-stage prob-
lems, and then employ the IV-related conditions (Assump-
tion 1) to replace the potential outcome distribution with the
observed data distribution. More details about the proof can
be found in Appendix E.

5. Estimation
In this section, we discuss how to efficiently estimate ηπ

under IV-based MDPUCs. We begin with introducing a
direct method estimator and a marginal importance sampling
estimator. Lastly, we present a doubly robust estimator in the
presence of model misspecifications, which can be proven
to be semiparametrically efficient.

5.1. Direct Method Estimator

We first introduce the DM estimator which constructs the
policy value estimator based on an estimated Q-function.
Toward that end, we define the Q-function in IV-based MD-
PUCs as

Qπ(s, z, a) = Eπ

[ ∞∑
k=0

γtRt+k|St = s, Zt = z,At = a

]
.

Different from the standard Q-function which is a function
of the state-action pair only, our Q-function additionally
depends on the IV to handle the unmeasured confounding.

Based on Theorem 4.1, it is immediate to see that the value
function can be represented as a weighted average of the
Q-function, i.e.,

V π(s) =
∑
z,a

c(z|s)pa(a|z, s)Qπ(s, z, a), (4)

where pa(a|z, s) := P(At = a|Zt = z, St = s). Aggregat-
ing (4) over the empirical initial state distribution yields the
DM estimator, which is given by

η̂πDM =
1

N

∑
i,z,a

ĉ(z|Si,0) · p̂a(a|z, Si,0)Q̂
π(Si,0, z, a),

where ĉ, p̂a and Q̂π denote certain consistent estimators for
c, pa and Qπ, respectively. The estimators ĉ and p̂a can be
computed via supervised learning, and Q̂π can be obtained
by solving a Bellman equation for IV-based MDPUCs. To
save space, we relegate the detailed estimation procedures
to Appendix B.

5.2. Marginal Importance Sampling Estimator

The second estimator is the marginal importance sampling
(MIS) estimator. The traditional sequential IS estimator,

constructed based on the product of individual importance
sampling ratios at each time, is known to suffer from the
curse of horizon (Liu et al., 2018) and becomes very ineffi-
cient in the long-horizon settings.

To break the curse of horizon, we borrow ideas from Liu
et al. (2018) and define the marginal importance sampling
ratio as below:

ωπ(s) = (1− γ)

∞∑
t=0

γt
pπt (s)

p∞(s)
,

where pπt denotes the probability density/mass function of
St when the system follows π, and p∞(s) to denote the
stationary distribution of the stochastic process {St}t≥0.
Thus, it follows from the change of measure theorem that

ηπ = (1− γ)−1ESt∼p∞ [ωπ(St)Eπ(Rt|St)].

By applying the IV-based importance sampling trick de-
tailed in Section 4.2 of Wang & Tchetgen (2018), we can
represent Eπ(Rt|St) with the observed data distribution and
obtain

ηπ =
1

1− γ
ESt∼p∞,Zt∼pz

[
ωπ(St)ρ(St, Zt)E[Rt|Zt, St]

]
,

where p∞ is the stationary distribution of St, pz denotes
the sampling distribution of Zt in observational data, and
ρ(s, z) = c(z|s)/pz(z|s). As such, an MIS estimator can
be constructed as below:

η̂MIS = (1− γ)−1 1∑
i Ti

∑
i,t

ω̂π(Si,t)ρ̂(Si,t, Zi,t)Ri,t,

(5)
where ρ̂ and ω̂π denote some consistent estimators of ρ and
ωπ, respectively. These estimators can be learned from the
observed data, as detailed in Appendix B.

In Formula (5), the expression for the IS estimator con-
sists of two ratios: ωπ(St) and ρ(St, Zt). The second ratio
ρ(St, Zt) relies on the function c which accounts for the
distributional shift, as we have discussed in Remark 2. In
the special case where π = b, we have ρ(s, z) = 1.

Finally, let us conclude this section by briefly discussing
the drawbacks of the DM and MIS estimators. Both estima-
tors may be seriously biased due to model misspecifications.
Specifically, the consistency of DM requires correct spec-
ification of c, pa and Qπ whereas the consistency of MIS
requires correct specification of the two ratio functions. In
the next section, we will develop a doubly robust (DR) esti-
mator that combines the strength of both estimators.

5.3. Our Proposal

We begin by deriving the efficient influence function (EIF)
for ηπ, which corresponds to the canonical gradient of a
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statistical estimand and plays a central role in constructing
doubly robust (DR) and semiparametrically efficient esti-
mators (Tsiatis, 2006). The idea of using EIF to develop
efficient estimators has been widely used in the statistics
and machine learning literature (see e.g., Wang & Tchetgen,
2018; Kallus & Uehara, 2022).

Theorem 5.1. (Efficient Influence Function)
The EIF for ηπ = ES0∼ν [V

π(S0)] is given by

EIFηπ = (1− γ)−1ωπ(St)

[
ρ(St, Zt)

{
Yt

− E
[
Yt
∣∣Zt, St

]
−
(
At − E

[
At

∣∣Zt, St

])
·∆(St)

}
+
∑
zt

c(zt|St) · E[Rt|zt, St]

]
− ηπ,

(6)

where ∆(St) is defined as the cumulative conditional Wald
estimand (cumulative CWE), where

∆(St) =
E
[
Yt
∣∣Zt = 1, St

]
− E

[
Yt
∣∣Zt = 0, St

]
E
[
At

∣∣Zt = 1, St

]
− E

[
At

∣∣Zt = 0, St

] ,
and Yt := Rt + γ · V π(St+1).

Remark 5. The classical CWE plays a key role in identify-
ing the conditional average treatment effect in single-stage
decision making. In MDPUCs, we extend the original defi-
nition by using Yt to account for the long-term offline causal
effect of executing policy π. When the discounted factor
γ = 0, cumulative CWE will degenerate to the classical
CWE.

Remark 6. We notice that a recent concurrent work by
Fu et al. (2022) also developed a DR estimator in IV-based
MDPUCs. However, their estimator is not constructed based
on the EIF, which is less efficient compared to our proposed
DR estimator that will be introduced below.

Define Dt = (St, Zt, At, Rt, St+1). Based on the result of
Theorem 5.1, we propose a DR estimator η̂DR for aggregated
value ηπ , given by

η̂DR = η̂πDM + (NT )−1
∑
i,t

ϕ̂(Di,t), (7)

where ϕ̂ denotes some plug-in estimator for the augmenta-
tion function ϕ:

ϕ(Dt) = (1− γ)−1ωπ(St)ρ(St, Zt)
{
Yt

− E
[
Yt
∣∣Zt, St

]
−
(
At − E

[
At

∣∣Zt, St

])
·∆(St)

}
.

(8)

According to (7), the proposed estimator is essentially the
sum of the DM estimator and an estimated augmentation
function ϕ̂ which offers additional protection to the final
estimator against potential model misspecifications of Qπ.

To compute ϕ̂, we need to estimate ωπ, ρ, E
[
Yt
∣∣Zt, St

]
,

pa and ∆, or equivalently, ωπ, pz , pa and Qπ. Since
E
[
Yt
∣∣Zt, St

]
=

∑
at
pa(at|St, Zt) ·Qπ(St, Zt, at), ∆ and

ρ can be determined by pz , pa and Qπ . We will discuss the
estimation details of these nuisance functions in Section B.

Our final estimator η̂DR, as shown in (7), enjoys the dou-
ble robustness property. Firstly, recall that the consistency
of η̂DM relies on the correct specification of pa and Qπ.
When both are correctly specified, so are E[Yt|Zt, St] and
E[At|Zt, St]. As such, it is immediate to see that the aug-
mentation term is mean zero regardless of whether the two
IS ratios are correctly specified or not. Therefore, the DR
estimator is consistent.

Secondly, when the two IS ratios and pa are correctly speci-
fied, it can be shown that no matter whether Qπ is correctly
specified or not, we have

E [η̂πDM] + (1− γ)−1E
[
ωπ(St) · ρ(St, Zt) ·

{
γV̂ π(St+1)

−
∑
at

pa(at|Zt, St)Q̂
π(St, Zt, at)

}]
= 0,

where V̂ π depends on Q̂π through (4). [See Equation (26)
in Appendix for details.] It follows that the DR estimator
becomes equivalent to the MIS estimator with correctly
specified IS ratios

(NT )−1
∑
i,t

(1− γ)−1ωπ(Si,t)ρ(Si,t, Zi,t) ·Ri,t,

and is thus consistent.

We empirically verify the doubly robustness property in
Figure 2. In particular, we apply the proposed method to a
toy numerical example detailed in Appendix C.1. It can be
seen that the relative absolute bias and MSE of the proposed
estimator are fairly small when one set of the models are
correctly specified. To the contrary, the resulting estimator is
seriously biased when both sets of models are misspecified.

The following theorem states that η̂DR is not only dou-
bly robust, but semiparametrically efficient as well (e.g.,
it achieves the minimum variance, i.e., efficiency bound,
among all regular and asymptotically linear estimators).
Theorem 5.2. Suppose that the nuisance function classes
are bounded and belong to VC type classes (Van Der Vaart
et al., 1996) with VC indices upper bounded by v = O(Nk)
for some 0 ≤ k < 1/2. Define two model classes as below:

M1: Qπ(s, z, a) is correctly specified.
M2: pz(z|s) and ωπ(s) are correctly specified.

Suppose pa(a|s, z) is always correctly specified. Then

(a) as long as either M1 or M2 holds, η̂DR is a consistent
estimator of ηπ;
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(b) when Q̂π, p̂a, p̂z and ω̂π converge in L2 norm (see
Appendix G.2 for the detailed definition) to their oracle
values at a rate of o(N−α) with α ≥ 1/4, we have

√
N(η̂DR − ηπ)

d→ N (0, σ2
T ),

where σ2
T is the efficiency bound of ηπ , given by

Var
{
V π(S0)

}
+

1

T 2

T∑
t=1

Var
{
ϕ(Dt)

}
. (9)

Remark 7. Theorem 5.2(a) proves the doubly robustness
property and (b) proves the semiparametric efficiency. In
addition, (b) also establishes the asymptotic normality of
η̂DR, based on which the following Wald-type confidence
interval (CI) can be constructed for ηπ ,[

η̂DR ± zα/2
σ̂T√
N

]
,

where σ̂2
T is a sampling variance estimator of σ2

T .

Remark 8. The rate conditions in Theorem 5.2(b) are rather
lenient. In fact, for most supervised learning algorithms that
exist, the convergence rate is typically (NT )−α for some
α ≤ 1/2. As a result, our condition is automatically met
when α > 1/4. Furthermore, even in cases where α ≤ 1/4,
this condition can be satisfied when T is relatively large
compared to N .

Remark 9. It can be seen from (9) that the semiparametric
efficiency bound σ2

T generally decays with T , as we have
more data for policy value estimation. In particular, as
T → ∞, the variance of the augmentation term will vanish,
resulting the variance bound to be reduced to Var[V π(S0)].

Corollary 5.3. Define another doubly robust estimator
η̂DR = η̂πDM + (NT )−1

∑
i,t ψ̂(Di,t) with a new augmenta-

tion term

ψ(Dt) = (1− γ)−1ωπ(St)ρ(St, Zt)
{
Yt − E

[
Yt
∣∣Zt, St

]}
.

After removing the assumption that pa is correctly speci-
fied while maintaining the other assumptions unchanged in
Theorem 5.2, all of the results in 5.2(a)-(b) remain valid.

In Equation (7), the only term that involves the estimation
of pa is

(
At − E

[
At

∣∣Zt, St

])
· ∆(St). If we do not esti-

mate pa (or E
[
At

∣∣Zt, St

]
) and replace it with its unbiased

observation At, this term will disappear. As such, the origi-
nal augmentation term ϕ(Dt) is reduced to ψ(Dt), which
does not explicitly rely on pa. However, the estimator in
Corollary 5.3 is no longer semiparametrically efficient. To
summarize, there exsits a trade-off between the estimation
of nuisance functions and the efficiency of the final esti-
mator. The proof, similar to Theorem 5.2, is omitted for
brevity.

Figure 2. The logarithmic relative MSEs (left panel) and relative
absolute biases (right panel) comparison under different model
specifications. Specifically, the blue solid line depicts the estimator
where the two set of models M1 and M2 are correctly specified.
The yellow dashed and green dash-dotted lines depict the estima-
tors where one set of the models is correctly specified and the other
set misspecified. The red dotted line depicts the estimator where
both set of models are misspecified. More details about the data
generating process are provided in Appendix C.1.

6. Extensions to Non-Markov Settings
Our proposal in Section 5.3 relies on the set of conditional
independence assumptions imposed in Assumption 2. In
particular, it requires the states to satisfy the Markov as-
sumption, yielding a memoryless unobserved confounding
condition (Kallus & Zhou, 2020). This assumption essen-
tially excludes the existence of directed edges from past
observed data or Ut−1 to Ut in Figure 1 and is likely to be
violated in practice. In this section, we discuss two potential
relaxations of Assumption 2 to accommodate non-Markov
settings. Throughout this section, we will use Ot (instead
of St) to denote the time-varying observation measured at
time t due to the violation of Markovianity.

6.1. High-order MDPs with Unmeasured Confounders

One approach to relax Markov assumption is to impose a
high-order memoryless unobserved confounding condition.
Specifically, a kth order memoryless unobserved confound-
ing assumption requires Ut to be conditionally indepen-
dent of the past data history (including {Uj}j<t) given Ot

and the observation-IV-action triplets collected from time
t − k + 1 to t − 1. When k = 1, high-order MDPs will
reduce to the memoryless unobserved confounding case.
When k ≥ 2, it allows for the conditional dependence of Ut

on the observed data history.

A key observation is that, under the kth order memoryless
unobserved confounding assumption, the system forms a
kth order MDP with unmeasured confounders. Specifically,
let St denote the union of Ot and the observation-IV-action
triplets collected from time t − k + 1 to t − 1. By doing
so, the newly-defined state satisfies the Markov assump-
tion, i.e., St is independent of the past data history given

6



An Instrumental Variable Approach to Confounded Off-Policy Evaluation

(St−1, Zt−1, At−1). As such, our proposal developed in
Section 5.3 can be directly applied here to address the kth
order MDPUC.

6.2. Partially Observable MDP

To further relax the high-order memoryless assumption,
the second approach is to adopt an IV-based POMDP
model M = ⟨S,O,Z,A,R⟩ for policy evaluation. Here,
S,O,Z,A,R denote the spaces of latent states, observed
features, IVs, actions and rewards, respectively. At a given
time, suppose the environment is in a state S ∈ S . Although
S is not directly observable, we have access to an observa-
tion O ∼ po(·|S) ∈ O. An IV Z ∼ pz(·|O) is generated
whose distribution is independent of S. Next, based on the
action A ∈ A of the agent, the environment responds by
providing an immediate reward R and transitioning to a new
state S′. Since A, R and S′ are all allowed to depend on S,
the dataset we observed is thus confounded. To proceed, we
further denote H and F as the multi-step history and future
observations, given by

H = (Ot−MH :t−1, At−MH :t−1)

F = (Ot:t+MF−1, At:t+MF−2),

where MH and MF are two positive integers denoting the
number of steps tracing back or forward.

As discussed in Section 2.3, several methods have been
developed in the literature to handle POMDPs. Here, we
extend the proposal developed by Uehara et al. (2022a) to
IV-based POMDPs to deal with confounders.

For illustration purpose, we will focus on evaluating memo-
ryless target policies π : O → A, but the entire framework
can easily be extended to accommodateM -memory policies
where the decision rule depends on the last M observations.

In IV-based POMDPs, the Q-function defined in Section 5.1
is not directly estimable since the state is not observable.
However, due to the temporal dependence, the multi-step
history and future observations contain rich information
to infer the latent state. These variables serve as proxies
for policy value identification. Toward that end, we define
a future-dependent Q-function gQ as the solution to the
following conditional moment equation:

E
{
R+ γ

∑
z,a

c(z|O′)pa(a|z,O′)gQ(F
′, z, a)

− gQ(F,Z,A)
∣∣H,Z,A} = 0,

where O′ and F ′ denote the next-step observation and the
next-step future, respectively. Intuitively, gQ can be viewed
as a projection of the Q-function onto the multi-step fu-
ture. This idea is similar to spectral learning in predictive
state representations (PSRs), in which future information is
employed to infer the latent state.

The following theorem shows that the policy value can be
consistently identified based on gQ.

Theorem 6.1. Suppose the following three conditions hold:

1. There exists a future-dependent Q function gQ.

2. Invertibility: for any g : S × Z × A → R, if
E[g(S,Z,A)|H,Z,A] = 0, then g(S,Z,A) = 0, a.s..

3. Overlap condition: |c(Z|O)| <∞, a.s..

Then for any gQ, we have

ηπ = EF∼νF

[∑
z,a

c(z|O)pa(a|z,O)gQ(F, z, a)
]
, (10)

where νF denotes the initial future distribution.

Remark 9. The first two conditions require the cardinality
of the future and the history to be at least greater than or
equal to the latent state, respectively. These conditions are
weaker than requiring the cardinality of the observation to
be greater than or equal to the latent state, which is needed
in confounded POMDPs without IVs (Nair & Jiang, 2021).

Next, we develop a minimax learning approach to estimate
ηπ from the observed data. According to the result of Theo-
rem 6.1, as long as we can learn gQ from the data, a direct
method estimator can be naturally constructed by Equation
(10). To address so, we consider the following loss function

L(q, ξ) :=
{
R+ γ

∑
z,a

c(z|O′)pa(a|z,O′)q(F ′, z, a)

− q(F,Z,A)
}
ξ(H,Z,A)

for any functions q and ξ. Given some prespecified function
classes q ∈ Q and ξ ∈ Ξ, we can solve the following
minimax problem to obtain an estimator for gQ:

ĝQ = argmin
q∈Q

max
ξ∈Ξ

ED

[
L(q, ξ)− 0.5λξ2(H)

]
+0.5α′∥q∥2Q − 0.5α∥ξ∥2Ξ,

where ∥ · ∥2Q and ∥ · ∥2Ξ are certain function norms defined
on the spaces of Q and Ξ, and λ, α and α′ are some positive
constants. Closed-form solutions are available when using
reproducing kernel Hilbert spaces or linear models to pa-
rameterize Q and Ξ (Uehara et al., 2020). Given ĝQ, ĉ and
p̂a, the resulting DM estimator under POMDP is given by

η̂π =
1

N

N∑
i=1

[∑
z,a

ĉ(z|Oi,0)p̂a(a|z,Oi,0)ĝQ(Fi,0, z, a)
]
.

(11)
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Algorithm 1 Model Selection for IV-based confounded OPE
Input: Data trajectories {Di}1≤i≤n, parameter K.
for k = 1 to K do

Apply forward-backward learning procedure in Algo-
rithm 1 of Shi et al. (2020a).
if H0 is not rejected then

Conclude the system follows a k-th order MDP.
Apply Section 6.1 and (7) to estimate ηπ; Break.

end if
end for
Conclude the system is most likely a POMDP.
Apply Section 6.2 and (11) to estimate ηπ .

6.3. Model Selection

So far, we have discussed two approaches to relax the mem-
oryless unobserved confounding assumption, one with the
high-order memoryless assumption and the other with the
POMDP formulation. These assumptions are not directly
testable, since they rely on the unmeasured confounders.
However, as commented in Section 6.1, under the kth or-
der memoryless assumption, the observed data satisfy a kth
order Markov assumption. When k = ∞, this data pro-
cess becomes a POMDP. This motivates us to apply the
sequential testing procedure developed by Shi et al. (2020a)
for model selection. Specifically, we consider a hypothesis
testing problem where

H0 : The system follows an MDP, v.s.
H1 : The system is a high-order MDP or POMDP.

By implementing the forward-backward learning procedure,
one can test the kth order MDP assumption for any given
k ∈ {1, . . . ,K}. We detail the testing procedure in Algo-
rithm 1.

7. Numerical Studies
In this section, we will conduct detailed comparisons be-
tween our estimator and other state-of-the-art methods for
OPE estimation under MDPs via synthetic data (Section 7.1)
and real-world data (Section 7.2). The source code is avail-
able on github: https://github.com/YangXU63/IVMDP.

7.1. Simulations

In this section, we compare the proposed estimator in Sec-
tion 5.3 (denoted by IVMDP) against several baseline meth-
ods that ignore the unmeasured confounding.

Data generating process. The observed data consists of
N = 1000 trajectories, each with T = 100 time points. We
consider a two-dimensional state variable St = (St,1, St,2)
whose initial distribution is given by N (02, I2) where I2
denotes a two-dimensional identity matrix. The unmeasured

Figure 3. Logarithmic relative MSE (left panel) and logarithmic
relative absolute bias (right panel) of various estimators with sam-
ple size on the x-axis. Notice that the yellow dashed line and the
red dotted line are largely overlapped due to the similar perfor-
mance between NUC-DM and NUC-DRL.

confounders {Ut}t follow i.i.d. Rademacher distributions.
Both the IV and the action are binary. At each time, they
satisfy P(Zt = 1|St) = sigmoid(St,1 + St,2) and P(At =
1|St, Zt, Ut) = sigmoid{St,1 + St,2 + 2Zt + 0.5Ut}, re-
spectively. Finally, the reward and next-state are generated
as follows: Rt = St,1 + St,2 + 2At + 2.5Ut, St+1,1 =
St1 +0.5Ut +At − 0.5, St+1,2 = St1 − 0.5Ut −At +0.5.

Competing methods. We consider three baseline methods,
corresponding to the DM estimator, the MIS estimator (Liu
et al., 2018) and the DRL estimator (Kallus & Uehara, 2022).
All the estimators are derived under the NUC assumption
without the use of IV, denoted by NUC-DM, NUC-MIS
and NUC-DRL, respectively. To ensure a fair comparison,
we also incorporate the IV in the state when implement-
ing the three baseline approaches. The detailed estimation
procedures are given in Appendix C.2.

Results. The results are shown in Figure 3. We can see
that our proposed estimator IVMDP achieves the smallest
MSE and bias in all cases. Its MSE generally decays with
an increase in the number of trajectories, demonstrating the
consistency of our proposal. In contrast, other estimators are
severely biased, highlighting the risk of ignoring unobserved
confounding. The biases of baseline methods dominate the
standard deviations, resulting in the MSEs to be relatively
constant despite the increase in the number of trajectories.

7.2. Real Data Analysis

In this section, we apply our method to a real dataset from a
world-leading technological company. The company con-
ducts advertising compaigns to attract consumers to down-
load their mobile app products. The advertisements are
delivered through multiple media channels, such as search,
display, social, mobile and video, provided by ads exchange
or mobile application stores. During the compaign, an indi-
vidual user is typically exposed to various advertisements
delivered through these channels. To improve the return on
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investment, it is crucial for the company to accurately evalu-
ate the long-term effects of different ads exposure policies.

The dataset is collected from a randomized advertising cam-
paign. That is, at each time, the company randomly decided
whether to bid against other firms or not to display their
ad to a target consumer. As such, the IV independence
assumption (see Assumption 1(a)) is automatically satis-
fied. In addition, if the company chooses to bid, it will
largely increase the chance that their ad is indeed displayed
to the consumer. This meets the IV relevance assumption
(see Assumption 1(b)). Finally, bidding can only affect the
conversion rate or the consumer behavior through the ad
exposure. This verifies the exclusion restriction assumption
(see Assumption 1(c) & (e)). The core IV assumptions are
thus satisfied in our example.

Due to privacy considerations, we generate a synthetic data
environment based on the real data and report the perfor-
mance of our proposal applied to this environment. Specifi-
cally, we adopt the IV-based MDPUC model to model the
data generating process and leverage the IV to estimate the
reward and next-state distributions in the presence of un-
measured confounding. See Appendix C.3 for more details.

The numerical results are reported in Figure 4. First, we can
see that our proposed estimator achieves the least bias and
MSE in all cases. In particular, the bias of IVMDP remains
close to zero, and its MSE decreases with an increase in the
number of trajectories. In contrast, other estimators signifi-
cantly underestimate the true value, and their MSEs do not
decay with the number of trajectories. This demonstrates
that our estimator is able to effectively handle unmeasured
confounding factors, while other estimators are considerably
biased.

8. Future Work
In this paper, we presented a systematic approach for us-
ing instrumental variables to perform off-policy evaluation
in infinite-horizon confounded MDPs. To the best of our
knowledge, this is the first work to derive the efficient in-
fluence function of the value function in an IV-based con-
founded MDP, high-order MDP and POMDP.

Our numerical results in simulation and real data analysis
both demonstrate the effectiveness of our method.

There are several potential avenues for future work that
could build on the advances presented in this paper. One
possibility is to extend the framework to handle discrete or
continuous action spaces, as has been done in previous work
such as (Heckman et al., 2008; Cai et al., 2021). Another
option is to further explore more efficient estimators, such as
IS, DR estimators under confounded POMDP by continuing
our discussion in Section 6.

Bias log(MSE)

250 500 750 1000 250 500 750 1000
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Number of trajectories

method NUC-DM NUC-DRL NUC-IVMDP MIS

Figure 4. Bias (left panel) and logarithmic MSE (right panel) and
as the sample size increases. The two dashed lines correspond to
the Monte Carol error bounds for the bias. As we can see from the
figure, only our approach is empirically unbiased and achieves the
smallest MSE.
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APPENDIX

A. Assumptions involved in Theorem 4.1
To introduce the technical assumptions in our identification theorem, we adopt a counterfactual outcome framework that is
commonly used in the IV literature. Let Āt = (A1, . . . , At) denote the action history up to time t, and Z̄t = (Z1, . . . , Zt)
denote the history of IVs up to time t. Define At(z̄t, āt−1) as the potential action assigned to a subject at time t if they were
exposed to Z̄t = {z̄t} and Āt−1 = {āt−1}, and Rt(z̄t, āt), St+1(z̄t, āt) as the potential reward and next state that would be
observed if the subject were to receive {z̄t} and {āt} in the past.

Assumption 1. (IV Assumptions)
For any time t ∈ {1, . . . , T}, we assume:
(a) IV Independence: Zt⊥⊥ Ut|St.
(b) IV Relevance: Zt ⊥̸⊥ At|St.
(c) Exclusion Restriction: For any z̄t, āt, Rt(z̄t, āt) = Rt(z̄t−1, āt).
(d) Rt(āt)⊥⊥ (At, Zt)|(St, Ut).
(e) Exclusion Restriction: For any z̄t, āt, St+1(z̄t, āt) = St+1(z̄t−1, āt).
(f) St+1(z̄t, āt)⊥⊥ (At, Zt)|(St, Ut).
(g) There is no additive U −A interaction in both E[Rt(z̄t, āt)|St, Ut] and E[St+1(z̄t, āt)|St, Ut]. That is,

E[Rt(z̄t, āt−1, at = 1)−Rt(z̄t, āt−1, at = 0)|St, Ut] = E[Rt(z̄t, āt−1, at = 1)−Rt(z̄t, āt−1, at = 0)|St],

and E[St+1(z̄t, āt−1, at = 1)− St+1(z̄t, āt−1, at = 0)|St, Ut] = E[St+1(z̄t, āt−1, at = 1)− St+1(z̄t, āt−1, at = 0)|St].

Assumption 1 (a)-(c) ensure the validity of IVs, which are commonly used in the single-stage model setup (Angrist &
Imbens, 1995; Abadie, 2003; Qiu et al., 2021). Assumption 1 (d), as discussed in (Wang & Tchetgen, 2018), allows for
common causes of Zt and At, and can be interpreted through d-separation. This assumption is mild in real-world settings,
as it allows for common causes of Zt and At, At and (Rt, St+1). Assumption 1 (e)-(f) are akin to (c)-(d), which ensures the
impact of the IV to be the same for both the current-stage reward and next-stage state variables. As shown in the causal
graph in Figure 1, Rt and St+1 have the same causal hierarchy, leading to similar IV-related assumptions.

Assumption 1 (g) guarantees that conditioning on covariates St, unmeasured confounders Ut only affect the causal effect of
At on the mean of current-state reward or next-state covariates in an additive way. This assumption is commonly used in
related papers to ensure the indentifiability of the final estimand (Wang & Tchetgen, 2018; Qiu et al., 2021). It is also worth
mentioning that instead of requiring the unmeasured confounder Ut to be conditionally independent to the reward function,
we only require it to be conditionally independent of the difference of the two reward functions.

Next, let’s further impose the conditional independence assumptions that is commonly assumed in Markov decision
processes. Define W̄t as the set of all historical data up to stage t, where

W̄t(z̄t, āt) = {S0, U0, R0(z0, a0), . . . , St(z̄t−1, āt−1), Ut, Rt(z̄t, āt)}.

Assumption 2. (Conditional Independence Assumptions)
(a) (MA) Markov assumption: There exists a Markov transition kernel P such that for any t ≥ 0, z̄t ∈ [0, 1]t+1 and
āt ∈ [0, 1]t+1, we have

P(St+1(z̄t, āt) ∈ S|W̄t(z̄t, āt)) = P(S; zt, at, St(z̄t−1, āt−1), Ut).

(b) (CMIA) Conditional mean independence assumption: there exists a function r such that for any t ≥ 0, and āt ∈ [0, 1]t+1,
we have

E(Rt(z̄t, āt)|St(z̄t−1, āt−1), W̄t−1(z̄t−1, āt−1)) = r(zt, at, St(z̄t−1, āt−1), Ut).

(c) For any t ∈ {0, . . . , T}, the conditional distribution of Zt, At and Ut, given all historical data is only a function of the
current state information. Specifically,

E(Zt|St(z̄t−1, W̄t−1(z̄t−1, āt−1)) = E(Zt|St(z̄t−1)),

P(Ut|St(z̄t−1, W̄t−1(z̄t−1, āt−1)) = P(Ut|St(z̄t−1)),

E(At(z̄t, āt−1)|St(z̄t−1, āt−1), zt, Ut, W̄t−1(z̄t−1, āt−1)) = E(At(z̄t, āt−1)|St(z̄t−1, āt−1), zt, Ut).
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It is worth mentioning that under Assumption 1 (c) and (e), we can further omit term zt on the RHS of all equations in
Assumption 2. Moreover, when both Assumption 1 and 2 holds, the definition of W̄t(z̄t, āt) and the potential outcomes for
Rt and St+1 are a function of only āt, not z̄t. This result is easy to understand: Assumption 1 (c) restricts the effect of zt
on Rt, making the potential outcome of Rt independent of zt given the current-state action. Meanwhile, the conditional
independence assumption ensures that Rt won’t be affected by the historical IVs z̄t−1, yielding the potential outcome of
Rt to be entirely independent of z̄t given the action sequence āt. As such, one can relax some conditions in Assumption 1
without any loss of information. Details are provided in Proposition 1.

Proposition. Under Assumption 2, the exclusion restriction condition in Assumption 1 (c) is equivalent to assuming that
Rt(z̄t, āt) = Rt(āt) holds for any z̄t, āt. Meanwhile, Assumption 1 (e) is equivalent to assuming that St+1(z̄t, āt) =
St+1(āt) holds for any z̄t, āt.

The proof of Proposition 1 is straightforward. Under Assumption 2 (b),

Rt(Z̄t, Āt)⊥⊥ Z̄t−1|(St, Zt, At),

which means that Rt(z̄t, āt) = Rt(zt, āt) = Rt(āt). The first equality holds by CIMA in Assumption 2 (b), and the second
equality holds by the original exclusion restriction in Assumption 1 (c). Similarly, we can prove Assumption 1 (e) by only
assuming that St+1(z̄t, āt) = St+1(āt) holds for any z̄t, āt.

B. Estimation Details
In this section, we will summarize the estimation procedures for the models mentioned in Section 5. We will first briefly
summarize the estimation of some functions that can be easily modeled, and then discuss the estimation of Qπ , V π and ωπ

in the following two subsections.

Estimating pz , pa, and pr can be treated as standard regression or classification problems, depending on the type of covariates.
Any appropriate supervised learning methodology satisfying the convergence rate detailed in Theorem 5.2 can be used to
estimate these models. Additionally, since ρ(st, zt), c(zt|st) are both functions of pz , pa, pr and π, we can first estimate
these pdfs/pmfs and then use the resulting estimators to construct plug-in estimators for ρ and c.

B.1. The estimation of Qπ and V π

We first consider the estimation of Qπ(s, z, a) and V π(s). According to Formula (4), we can derive the Bellman equation
under this confounded MDP as

Qπ(St, Zt, At) = E
{
Rt + γ

∑
z,a

c(z|St+1)pa(a|z, St+1)Q
π(St+1, z, a)

∣∣∣St, Zt, At

}
.

Motivated by (Le et al., 2019), we employ fitted-Q evaluation method to iteratively solve the Q function until convergence.
Specifically, at the lth step, we update Ql+1 by

Qπ,l+1 = arg min
Qπ∈Q

∑
i,t

{
Ri,t + γV̂ π,l(Si,t+1)−Qπ(Si,t, Zi,t, Ai,t)

}2

,

where Q denotes some function class, and V̂ π,l(St+1) =
∑

z,a ĉ(z|St+1)p̂a(a|z, St+1)Q̂
π,l(St+1, z, a) is the value function

calculated from the Q function at the previous step. The algorithm terminates when the maximum number of iterations is
reached or a convergence criterion is met. We use the Q function and value function from the final iteration as our estimates
of Qπ and V π .

To summarize, the key distinction between this estimation procedure and the original fitted-Q evaluation algorithm described
in (Le et al., 2019) is the specific relationship between V π and Qπ . In the where unmeasured confounders exist, the function
c(z|s) plays an important role in iteratively updating the value function, thereby ensuring the consistency of estimators for
both V π and Qπ .

B.2. The estimation of ωπ

Then, let’s consider the estimation of ωπ(s). Define

L(ω, f) = γ · E(s,a,s′)∼pπ
t
[∆(ω; s, a, s′) · f(s′)] + (1− γ) · Es0∼ν0(s) [(1− ω(s)) · f(s)] ,
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where s′ denotes the next-state covariates, ∆(ω; s, a, s′) := ω(s) · ρ(s, z)− ω(s′). In confounded MDPs, we can further
derive L(ω, f) as

L(ω, f) = (1− γ)
∑
s

f(s)ν(s)− Eω(Si,t)

{
f(Si,t)− γ · ρ(Si,t, Zi,t) · f(Si,t+1)

}
. (12)

According to Theorem 4 in (Liu et al., 2018), ωπ(s) is the solution to L(ω, f) = 0 for any discriminator function f .
Therefore, ωπ can be learned by solving the mini-max problem for the quadratic form of the loss function L(ω, f).
Specifically, we aim to find the solution to argminω∈Ω supf∈F L

2(ω, f) for some function class Ω and F .

For the ease of illustrations, let’s consider linear bases for Ω and F . Suppose ωπ(s) = ξT (s)β where ξT (s) denotes the
basis function. By Formula (12), β can be estimated by

β̂ =

[ N∑
i=1

T−1∑
t=0

ξ(Si,t)
{
ξT (Si,t)− γρ̂(Si,t, Zi,t)ξ

T (Si,t+1)
}]−1

× (1− γ)NT ·
∑
s

ξ(s)ν(s).

Therefore, we can derive the final estimator for ωπ as ω̂π = ξT (s) · β̂.

C. More on Simulation and Real Data Analysis
C.1. The Data Generating Process in Illustrating Double Robustness

In this section, we detail the data generating process used in simulation section to prove the double robustness property
of our final estimator η̂π. For the sake of computational cost, we let T = 100 and the number of data trajectories
N = {100, 200, . . . , 1000}. The initial state distribution is generated by a Bernoulli distribution with p = 0.5, i.e.
S0 ∼ Ber(1, p). We define the unmeasured confounder at each stage as Ut as another Bernoulli random variable with
p = 0.5. The instrumental variable Zt, action At, reward Rt and next state St+1 all follow Bernoulli distributions
with the corresponding success rates P(Zt = 1) = sigmoid(St + δt − 2) with P(δt = 0.25) = P(δt = 0) = 0.5,
P(At = 1) = sigmoid(St + 2Zt + 0.5Ut − 2), and P(Rt = 10) = P(St+1 = 1) = sigmoid(St + At + Ut − 2). In this
simulation, we set U ′

t = 0 for simplicity, which avoids the confounding between Zt and At. However, the confounder
between At and (Rt, St+1) does exists, which is given by Ut.

In order to evaluate the doubly robust property of our estimator, we use Monte Carlo method to approximate the true models
for all functions, and then deliberately introduce shifts that can lead to model misspecification. Specifically, to misspecify
ωπ, we let ωπ

shifted(s0 = 1) = ωπ
true(s0 = 1)/2, and ωπ

shifted(s0 = 0) = 2ωπ
true(s0 = 0). To misspecify pz , we define a shift

parameter α ∈ [0, 1], and denote pz,shifted(z = 1|s) = α · pz,true(z = 1|s) + (1 − α) · pz,true(z = 0|s). To misspecify
the Q function Qπ, we define another shift parameter β ∈ R, and let Qπ

shifted(s, z, a) = Qπ
true(s, z, a) + β(s, z, a). In our

simulation setup, we fix α = 0.55, and set β(s, z, a) ∼ N (5, 4).

C.2. The Estimation Details of Three Baseline Approaches under NUC Assumption

In this section, we detail three baseline approaches used for comparison in Section 7.

The first competing method is a direct estimator (NUC-DM), which is represented by the yellow dashed line in Figure 3.
When NUC assumption holds, the Bellman equation becomes

E
{
Rt + γ ·

∑
a

π(a|St+1) ·Qπ(St+1, a)
∣∣∣St, At

}
= Qπ(St, At).

Thus, we can conduct fitted Q evaluation to repeatedly estimate Qπ(s, a) and V π(s) until convergence:

Qπ,l+1 = arg min
Qπ∈Q

∑
i,t

{
Ri,t + γV̂ π,l(Si,t+1)−Qπ(Si,t, Ai,t)

}2

,

where Q is some function class, and V̂ π,l(St+1) =
∑

a π(a|St+1) · Q̂π,l(St+1, a) is the value function calculated from the
Q function at the lth step. As such, the final NUC-DM estimator is given by

η̂πNUC-DM =
∑
a,s0

π(a|s0) · Q̂π(s0, a) · ν(s0).
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The second estimator is an MIS estimator (NUC-MIS), which is represented by the green dash-dotted line in Figure 3.
According to (Liu et al., 2018), we can calculate the NUC-MIS estimator by

η̂πNUC-MIS = (1− γ)−1 1∑
i Ti

∑
i,t

ω̂π(Si,t) · β̂π/π0
(a, s) ·Ri,t,

where βπ/π0
(a, s) = π(a|s)/π0(a|s) and ω̂π(St) can be obtained from the method provided in the original paper. Details

are omitted here.

The third estimator is the double reinforcement learning estimator (NUC-DRL), which is represented by the red dotted line
in Figure 3. DRL combines the NUC-DM and NUC-MIS estimators to provide a more robust estimator under the NUC
assumption (Kallus & Uehara, 2022). The final estimator is given by

η̂πNUC-DRL = η̂πNUC-DM + ϕ̂NUC-aug =
∑
a,s0

π(a|s0) · Q̂π,l(s0, a) · ν(s0)+

(1− γ)−1 1∑
i Ti

∑
i,t

ω̂π(Si,t)β̂π/π0
(a, s)

{
Ri,t + γV̂ π(Si,t+1)− Q̂π(Si,t, Ai,t)

}
.

C.3. Estimating Transition Functions for Real Data

Specifically, the conditional distribution of reward Rt given St, Zt, At is modeled by a logistic regression, i.e.
p̂r(Rt = 1|St, Zt, At) = σ((1, ST

t , Zt, At)
Tβr) where σ(x) = 1

1+exp(−x) is the sigmoid function. Similarly, we es-
timate E(St+1|St, Zt, At) by fitting a multivariate linear model T (St, Zt, At) with response {Si,t+1} and covariates
{(Si,t, Zi,t, Ai,t)}. Then, the transition model of St+1|St, Zt, At is characterized by N(T (St, Zt, At), diag{σ2

1 , . . . , σ
2
6})

where σ2
i (i = 1, . . . , 6) are estimated by the residual of the linear model for Si. For the transition from St, Zt to At, we

model it with a logistic regression, which is denoted as p̂a(At = 1|St, Zt) = σ((1, ST
t , Zt)

Tβa). Finally, since Zt is
independent to St, we simply model it by a binomial random variable with probability p in which p is estimated by empirical
frequency.

We depict the procedure for computing the true policy value of target policy: π(1|St) = σ((1, ST
t ,E(Zt))

⊤β). Motivated
by our identification result in Theorem 4.1, we can use Monte Carlo method to estimate ηπ. More precisely, we draw N ′

trajectories with length T from the fitted MDP, and thus, attain the transition tuple {Si,t, Zi,t, Ai,t, Ri,t}N
′,T

i=1,t=1; then we
can compute

ηMC =
1

N ′

N ′∑
i=1

T∑
t=j

Ri,t

t∏
j=0

c(Zi,j |Zi,j)

pz(Zi,j |Si,j)

that can be treated as the estimator for ηπ. To guarantees the accuracy of ηMC, we set N ′ = 108 to overcome the large
variance of

∏t
j=0

c(Zi,j |Si,j)
pz(Zi,j |Si,j)

.

D. More on Simulation Study
To test the performance of IVMDP when either the instrumental variable (IV) or the unmeasured confounder is weak, we
conducte ablation studies in five groups of simulation settings.

Same as our main paper, we compare the performance of our approach, IVMDP, with three existing baselines under NUC
assumptions. We denote them as NUC-DM, NUC-MIS, and NUC-DRL.

D.1. Data Generating Process

In our paper, Figure 3 was obtained under the following data generating process:

At ∼ Ber(1, sigmoid(St1 + St2 + 2Zt + 0.5Ut))

Rt ∼ Ber(1, sigmoid(St1 + St2 + 2At + 2.5Ut))

To weaken the effect of IV, we adjust the coefficient of Zt in the expression of At as below:
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1. Medium strength IV: At ∼ Ber(1, sigmoid(St1 + St2 + Zt + 0.5Ut))

2. Weak IV: At ∼ Ber(1, sigmoid(St1 + St2 + 0.5Zt + 0.5Ut))

To weaken the effect of unmeasured confounders, we adjust the coefficient of Ut in the expression of Rt as below:

1. Medium strength confounders: Rt ∼ Ber(1, sigmoid(St1 + St2 + 2At + 1.5Ut))

2. Weak confounders: Rt ∼ Ber(1, sigmoid(St1 + St2 + 2At + 0.5Ut))

D.2. Result Comparison

Combining the above four cases with the original setting in the paper, we obtained five scenarios in total for comparison.
Same as the main paper, all of the figures below are obtained under 100 times of replications.

Figure 5. The figure in the main paper

Figure 6. Medium strength IV

As we can see from Figure 5-9, the variance of IVMDP indeed increased when the effect of instrumental variables or
confounders is weak. Despite so, the estimation bias of IVMDP is (almost) always the smallest in all settings. Moreover,
although the MSE of IVMDP is relatively unstable compared with other approaches under NUC assumption, IVMDP has
a potential to perform better than baseline methods when the number of trajectories increases, even in the case when IV
or the unmeasured confounder is very weak. However, if the real data indicates either weak signals on the instrumental
variable (IV) or unmeasured confounders, we recommend employing IVMDP only when a sufficient number of data points
is available.
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Figure 7. Weak IV

Figure 8. Medium strength confounders

Figure 9. Weak confounders
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E. Proof of Theorem 4.1
Theorem 1 states the identifiability of the value function, i.e. V π(s0) can be entirely estimated from the observed data.

Since the value function is defined as V π(s0) =
∑∞

t=0 γ
tEπ [Rt|S0 = s0], it suffice to identify Eπ [Rt|S0 = s0] under each

stage t. This expression, under Assumption 2, can be further decomposed as

Eπ [Rt|S0 = s0] =

∫
Rt(π) ·

{
P(Rt(π)|St = st) · P(St(π)|St−1 = st−1) · · ·P(S1(π)|S0 = s0)

}
ds0 · · · dst. (13)

where Rt(π) is defined as the potential reward one would observe under target policy π.

Before we proceed, let’s define some short-hand notations that will be widely used in the following sections. First, we define

pA1 (St) = E[At|Zt = 1, St], pA0 (St) = E[At|Zt = 0, St], δA(St) = pA1 (St)− pA0 (St),

where the subscript in pA1 (St) and pA0 (St) indicates the value of Zt that At is conditioning on. Let Yt = Rt + γV π(St+1),
which accounts for the reward at current stage and beyond. We’ll see in later sections that instead of using Rt, Yt will be
frequently used in our identification and estimation process. Akin to At, one can similarly define

pY1 (St) = E[Yt|Zt = 1, St], pY0 (St) = E[Yt|Zt = 0, St], δY (St) = pY1 (St)− pY0 (St).

pS1 (St) = E[St+1|Zt = 1, St], pS0 (St) = E[St+1|Zt = 0, St].

Finally, we let pr(rt|at, St) = Pr(Rt = rt|At = at, St), pa(at|zt, St) = Pa(At = at|Zt = zt, St), and pz(zt|St) =
P(Zt = zt|St) denote the probability density function for Rt, At and Zt respectively.

According to (13), the identification procedure of V π(s0) can be conducted stage-by-stage. In the following steps, we will
first focus on the identifiability of each term on the right hand side of Formula (13), and summarize our identification results
in Step 3.

Step 1. Identifiability of E [Rt(π)|St].

First, suppose a ∈ [0, 1] is a constant, and we define C(z) := 2az + 1 − z − a as a function of z. For the simplicity
of notations, we will drop St = st whenever calculating a conditional expectation, and omit āt−1 in Rt(1, āt−1) and
St+1(1, āt−1).

aE[Rt|Zt = 1] + (1− a)E[Rt|Zt = 0]

=
∑

zt=0,1

C(zt) · E[Rt|Zt = zt]
A1(a)
==

∑
zt=0,1

C(zt)EUt

[
E[Rt|Zt = zt, Ut]

]
=

∑
z=0,1

C(zt)EUt

[
E[RtAt|Zt = zt, Ut] + E[Rt(1−At)|Zt = zt, Ut]

]
A1(d)
== EUt

∑
zt=0,1

C(zt)
{
E[Rt(1)|Zt = zt, Ut]P(At = 1|Zt = zt, Ut) + E[Rt(0)|Zt = zt, Ut]P(At = 0|Zt = zt, Ut)

}
A1(d)
== EUt

∑
zt=0,1

C(zt)
{
E[Rt(1)|Ut]P(At = 1|Zt = zt, Ut) + E[Rt(0)|Ut]P(At = 0|Zt = zt, Ut)

}
= EUt

{
E[Rt(0)|Ut] + (E[Rt(1)−Rt(0)|Ut])(aE[At|Zt = 1, Ut] + (1− a)E[At|Zt = 0, Ut])

}
A1(g)
== E[Rt(0)] + E[Rt(1)−Rt(0)] · {aE[At|Zt = 1] + (1− a)E[At|Zt = 0]} .

When a = 1, we have

E[Rt|Zt = 1] = EUt

{
P(At = 0|Zt = 1, Ut) · E[Rt(0)|Ut] + P(At = 1|Zt = 1, Ut) · E[Rt(1)|Ut]

}
A1(g)
== EUt

{
P(At = 0|Zt = 1) · E[Rt(0)|Ut] + P(At = 1|Zt = 1) · E[Rt(1)|Ut]

}
= P(At = 0|Zt = 1) · E[Rt(0)] + P(At = 1|Zt = 1) · E[Rt(1)]

(14)

19



An Instrumental Variable Approach to Confounded Off-Policy Evaluation

Similarly, when a = 0,

E[Rt|Zt = 0] = EUt

{
P(At = 0|Zt = 0, Ut) · E[Rt(0)|Ut] + P(At = 1|Zt = 0, Ut) · E[Rt(1)|Ut]

}
A1(g)
== EUt

{
P(At = 0|Zt = 0) · E[Rt(0)|Ut] + P(At = 1|Zt = 0) · E[Rt(1)|Ut]

}
= P(At = 0|Zt = 0) · E[Rt(0)] + P(At = 1|Zt = 0) · E[Rt(1)]

(15)

By solving for Equation (14) and (15), one can obtain that

E[Rt(0)|St] =
E[Rt|Zt = 0, St] · P(At = 1|Zt = 1, St)− E[Rt|Zt = 1, St] · P(At = 1|Zt = 0, St)

P(At = 1|Zt = 1, St)− P(At = 1|Zt = 0, St)
,

E[Rt(1)|St] =
E[Rt|Zt = 1, St] · P(At = 0|Zt = 0, St)− E[Rt|Zt = 0, St] · P(At = 0|Zt = 1, St)

P(At = 1|Zt = 1, St)− P(At = 1|Zt = 0, St)
.

Notice that all of the terms on the RHS of the expression above can be estimated from the observed data. Specifically,
E[Rt|Z = 1, St] can be further written as

E[Rt|Zt = 1, St] =
∑
at,rt

rt · Pr(Rt = rt|Zt = 1, At = at, St) · Pa(At = at|Zt = 1, St)

which is also estimable. To sum up, the identification result of E [Rt(π)|St] is given by

E [Rt(π)|St] = π(1|St) · E [Rt(1)|St] + (1− π(1|St)) · E [Rt(0)|St]

=
E[Rt|Zt = 0, St] · {pA1 (St)− π(1|St)} − E[Rt|Zt = 1, St] · {pA0 (St)− π(1|St)}

δAt(St)
.

(16)

Therefore, E [Rt(πt)|St] is identifiable.

Step 2: Identifiability of P[St(π)|St−1 = st−1].

Under the potential outcome’s framework, it holds for P(St(π)|St−1) that

P(St(π)|St−1) = π(St−1) · P(St(1)|St−1) + (1− π(St−1)) · P(St(0)|St−1).

In order to indentify P(St(π)|St−1), it suffice to derive the identification result for both P(St(1)|St−1) and P(St(0)|St−1).
Akin to what we did in Step 1, under Assumption 1 (a), (b), (f) and (g), we can show that

P[St(0)|St−1] =
P[St|Zt−1 = 0, St−1] · pAt

1 (St−1)− P[St|Zt−1 = 1, St−1] · pAt
0 (St−1)

δAt(St−1)

P[St(1)|St−1] =
P[St|Zt−1 = 1, St−1] · (1− pAt

0 (St−1))− P[St|Zt−1 = 0, St−1] · (1− pAt
1 (St−1))

δAt(St−1)
.

Thus, the identification result of P(St(π)|St−1 = st−1) is given by

P(St(π)|St−1 = st−1) = π(St−1) · P [St(1)|St−1] + (1− π(St−1)) · P [St(0)|St−1]

=
pS0 (st−1) · {pA1 (St−1)− π(St−1)} − pS1 (st−1) · {pA0 (St−1)− π(St−1)}

δA(St−1)
.

(17)

Step 3: By repeating the procedure in Step 2, it’s easy to show that all of the terms on the RHS of (13) are identifiable.

Define a weighted function c(z|s) as

c(zt|St) =


E[At|Zt = 1, St]− π(1|St)

E[At|Zt = 1, St]− E[At|Zt = 0, St]
, when zt = 0

π(1|St)− E[At|Zt = 0, St]

E[At|Zt = 1, St]− E[At|Zt = 0, St]
, when zt = 1

.
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Therefore, we can rewrite (16) and (17) as

E [Rt(π)|St] =
∑
at,rt

rt ·
{
c(Zt = 0|St) · pr(rt|at, Zt = 0, St) · pa(at|Zt = 0, St)

+ c(Zt = 1|St) · pr(rt|at, Zt = 1, St) · pa(at|Zt = 1, St)
}

=
∑

zt,at,rt

rt · pr(rt|at, zt, St) · pa(at|zt, St) · c(zt|St)

=
∑

zt,at,rt,st+1

rt · pr,s(rt, st+1|at, zt, St) · pa(at|zt, St) · c(zt|St),

and similarly,

P [St(π)|St−1] =
∑

at−1,st

{
c(Zt−1 = 0|St−1) · ps(st|at−1, Zt−1 = 0, St−1) · pa(at−1|Zt−1 = 0, St−1)

+ c(Zt−1 = 1|St−1) · ps(st|at−1, Zt−1 = 1, St−1) · pa(at−1|Zt−1 = 1, St−1)
}

=
∑

zt−1,at−1,st

ps(st|at−1, zt−1, St−1) · pa(at−1|zt−1, St−1) · c(zt−1|St−1)

=
∑

zt−1,at−1,rt−1,st

pr,s(rt−1, st|at−1, zt−1, St−1) · pa(at−1|zt−1, St−1) · c(zt−1|St−1).

Repeating this process until t = 1, we have

Eπ [Rt|S0 = s0] =

∫
Rt(π) ·

{
P(Rt(π)|St = st) · P(St(π)|St−1 = st−1) · · ·P(S1(π)|S0 = s0)

}
ds0 · · · dst.

=
∑

{zj ,aj ,rj ,sj+1}t
j=0

rt ·
{ t∏

j=0

pr,s(rj , sj+1|aj , zj , sj) · pa(aj |zj , sj) · c(zj |sj)
}

Therefore, the value function V π(s0) can be written as

V π(s0) =

∞∑
t=0

γtEπ [Rt|S0 = s0]

=

T∑
t=0

∑
{zj ,aj ,rj ,sj+1}t

j=0

γtrt ·
{ t∏

j=0

pr,s(rj , sj+1|aj , zj , sj) · pa(aj |zj , sj) · c(zj |sj)
}
,

where the RHS is purely constructed from the observed data. Furthermore, the identification result of ηπ can be obtained by
taking the expectation of V π(s0) w.r.t. the initial state distribution ν(s0), which is given by

ηπ =
∑
s0

ν(s0) ·

[
T∑

t=0

∑
{zj ,aj ,rj ,sj+1}tj=0

γtrt ·
{ t∏

j=0

pr,s(rj , sj+1|aj , zj , sj) · pa(aj |zj , sj) · c(zj |sj)
}]

. (18)

Therefore, V π(s0) and ηπ are identifiable.

F. Proof of Theorem 5.1
Define M as the collection of all models involved in estimating ps, pr, pa, pz , Qπ, ωπ and ν. Specifically, we suppose
that there exists a parameter θ0 such that ps,θ0 , pr,θ0 , pa,θ0 , pz,θ0 , Qπ

θ0
, ωπ

θ0
and νθ0 correspond to the true models. As

such, the aggregated value ηπ can also be written as a function of θ, where we denote it as ηπθ . Furthermore, we define
pD(s) = 1

T

∑T−1
t=0 pbt(s) as the mixture distribution of the observed data. When the stochastic process is stationary,

pD(s) = p∞(s).
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To find the efficient influence function (EIF) for ηπ, we first need to derive the canonical gradient in the nonparametric
model M. In our proof, we focus on deriving the explicit expression of the Gateaux derivative, which we find the easiest to
start with. Specifically, the EIF is calculated as the unique mean zero function ϕ(Dt) whose inner product (or covariance)
with the score function S(Dt) := ∂l({Dt}; θ)/∂θ0 equals the pathwise derivative ∂ηπθ /∂θ0.

The proof of this theorem consists of five steps. Step 1 establishes the overall structure of the proof, while Steps 2 to 4 focus
on deriving the Gateaux derivative in detail for each subpart identified in Step 1. Lastly, in Step 5, we provide a summary
where the final efficient influence function is obtained.

Step 1. By definition, the Cramer-Rao Lower Bound of ηπθ is given by

CR(M) =

(
∂ηπθ
∂θ0

)(
E
[
∂l({Dt}; θ)

∂θ0

∂T l({Dt}; θ)
∂θ0

])−1 (
∂ηπθ
∂θ0

)T

,

where l({Dt}; θ) denotes the log-likelihood function of the observed data, which can be expressed as

l({Dt}; θ) =
T−1∑
t=0

log ps,r,θ(St+1, Rj |At, Zt, St) +

T−1∑
t=0

log pa,θ(At|Zt, St) +

T−1∑
t=0

log pz,θ(Zt|St) + log νθ(S0).

To finish the proof of this theorem, it suffice to show that σ2
T = supM CR(M). If we can show that

∂ηπθ
∂θ0

= E

 ∑
z,a,S0

c(z|S0) · pa(a|z, S0) ·Qπ(S0, z, a) +
1

T

T−1∑
t=0

ϕ(Dt)

 ∂l({Dt}; θ)
∂θ0

 , (19)

where ϕ(Dt) is defined in Equation (8), then

∂ηπθ
∂θ0

= E

 ∑
z,a,S0

c(z|S0) · pa(a|z, S0) ·Qπ(S0, z, a) +
1

T

T−1∑
t=0

ϕ(Dt)− ηπθ

 ∂l({Dt}; θ)
∂θ0

 ,
since ηπθ · E

[
∂l({Dt};θ)

∂θ0

]
= 0 according to the property of score function. Furthermore, by Cauchy-Schwarz Inequality,

σ2
T ≤ sup

M
CR(M) ≤ E

 ∑
z,a,S0

c(z|S0) · pa(a|z, S0) ·Qπ(S0, z, a) +
1

T

T−1∑
t=0

ϕ(Dt)− ηπθ


2

= σ2
T ,

which implies σ2
T = supM CR(M) = CR(M0). (See Lemma 20 of (Kallus & Uehara, 2022) for details.)

Therefore, it remains to show that equation (19) holds. That is,

∂ηπθ
∂θ0

= E

 ∑
z,a,S0

c(z|S0) · pa(a|z, S0) ·Qπ(S0, z, a) +
1

T

T−1∑
t=0

ϕ(Dt)

 ∂l({Dt}; θ)
∂θ0

 .
Notice that in Theorem 1, we’ve proved that

ηπθ0 =
∑
s0

+∞∑
t=0

γt
∑

τt,st+1

rt

{ t∏
j=0

pθ0(sj+1, rj , aj , zj |sj)
}
· νθ0(s0)

 ,
where pθ is the probability of a trajectory that follows target policy π. That is,

pθ0(sj+1, rj , aj , zj |sj) = c(zj |sj) · pa(aj |zj , sj) · pr,s(sj+1, rj |aj , zj , sj).

Since ∇θpθ = pθ∇θ log(pθ), we can decompose ∇θη
π
θ0

as

∇θη
π
θ0 =

∑
s0

+∞∑
t=0

γt
∑

τt,st+1

rt

{ t∏
j=0

pθ0(sj+1, rj , aj , zj |sj)
}
·
{ t∑

j=0

∇θ log pθ0(sj+1, rj , aj , zj |sj)
}
· νθ0(s0)


+
∑
s0

+∞∑
t=0

γt
∑

τt,st+1

rt

{ t∏
j=0

pθ0(sj+1, rj , aj , zj |sj)
}
· νθ0(s0) · ∇θ log νθ0(s0)

 := L1 + L2.

(20)
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The first line of the equation above can be further derived as

L1 =
∑
s0

+∞∑
j=0

{
+∞∑
t=j

γt
∑

τt,st+1

[ t∏
k=0

pθ0(sk+1, rk, ak, zk|sk)
]}

· ∇θ log pθ0(sj+1, rj , aj , zj |sj)
}
· νθ0(s0)

=
∑
s0

+∞∑
j=0

γj ·
∑

τt,st+1

[ j∏
k=0

pθ0(sk+1, rk, ak, zk|sk)
]
·

{
rj +

∞∑
t=j+1

γt−j
∑

τt/j ,st+1

rt·

[ t∏
k=j+1

pθ0(sk+1, rk, ak, zk|sk)
]}

· ∇θ log pθ0(sj+1, rj , aj , zj |sj) · νθ0(s0)

=
∑
s0

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(Sj+1)

}
·
[ j∏
k=0

pθ0(sk+1, rk, ak, zk|sk)
]
·

∇θ log pθ0(sj+1, rj , aj , zj |sj) · νθ0(s0).

Notice that ∑
s0

[ j∏
k=0

pθ0(sk+1, rk, ak, zk|sk)
]
· νθ(s0) = pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj)

= pr,s(sj+1, rj |aj , zj , sj) · pa(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj),

then by plugging in this expression to L1, we have

L1 =

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(Sj+1)

}
· pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj) · ∇θ log pθ0(sj+1, rj , aj , zj |sj)

=

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(Sj+1)

}
· pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj) · ∇θ log ps,r,θ0(sj+1, rj |, aj , zj , sj)

+

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(Sj+1)

}
· pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj)

+

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(Sj+1)

}
· pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj) · ∇θ log c(zj |sj)

:= (1.1) + (1.2) + (1.3),

where the last three lines corresponds to (1.1), (1.2) and (1.3), respectively. We will deal with the detailed expression of
these three terms in the next few steps.

Finally, let’s focus on the second line of Formula (20). This part, according to our identification result in Theorem 4.1, is
equivalent to E[V π(S0)∇θ log νθ0(S0)]. Still, by using the fact that the expectation of a score function is 0, we have

L2 =
∑
s0

+∞∑
t=0

γt
∑

τt,st+1

rt

{ t∏
j=0

pθ0(sj+1, rj , aj , zj |sj)
}
· νθ0(s0) · ∇θ log νθ0(s0)


= E[V π(S0)∇θ log νθ0(S0)] = E

[(
V π(S0)− ηπθ0

)
∇θ log νθ0(S0)

]
= E

[(
V π(S0)− ηπθ0

)
S(ŌT−1)

]
,

where S(s′, r, a, z|s) denotes the conditional score function of (St+1, Rt, At, Zt)|St, and we use ŌT−1 to denote all
observed data up to stage T − 1.

The rest of the proof are organized as follows. In Step 2 to Step 4, we will derive the expression for (1.1), (1.2) and (1.3)
respectively. In Step 5, we will focus back on Formula (20) to finish the proof of the whole theorem.
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Step 2: Derivation of (1.1).
Using the similar trick in deriving L2, we have

(1.1) =

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(sj+1)

}
· pr,s(sj+1, rj |aj , zj , sj) · pa(aj |zj , sj) · c(zj |sj) · pπj,θ0(sj)

· ∇θ log ps,r,θ0(sj+1, rj |, aj , zj , sj)

=

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(sj+1)−Qπ(sj , zj , aj)

}
· pr,s(sj+1, rj |aj , zj , sj) · pa(aj |zj , sj)

· c(zj |sj) · pπj,θ0(sj) · ∇θ log ps,r,θ0(sj+1, rj |, aj , zj , sj)

=

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(sj+1)−Qπ(sj , zj , aj)

}
· pr,s(sj+1, rj |aj , zj , sj) · pa(aj |zj , sj)

· c(zj |sj) · pπj,θ0(sj) · ∇θ log pθ0(sj+1, rj , aj , zj |sj)

=

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(sj+1)−Qπ(sj , zj , aj)

} c(zj |sj)
pz(zj |sj)

· pr,s(sj+1, rj |aj , zj , sj)

· pa(aj |zj , sj) · pz(zj |sj) · pπj,θ0(sj) · ∇θ log pθ0(sj+1, rj , aj , zj |sj)

=

+∞∑
j=0

γjE
[{
Rj + γ · V π(Sj+1)−Qπ(Sj , Zj , Aj)

} c(Zj |Sj)

pz(Zj |Sj)
·
pπj,θ0(Sj)

pD(Sj)
· S(Sj+1, Rj , Aj , Zj)

]
.

Recall that

ωπ(s) = (1− γ) ·
+∞∑
t=0

γt
pπt (s)

pD(s)
, ρ(z, s) =

c(z|s)
pz(z|s)

.

Then by Markov property, we have

(1.1) = (1− γ)−1E
[{
R+ γ · V π(S′)−Qπ(S,Z,A)

}
ρ(S,Z) · ωπ(S) · S(ŌT−1)

]
:= E

{[ 1
T

∑
t

ϕ1(Dt)
]
S(ŌT−1)

}
,

where we define

ϕ1(Dt) = (1− γ)−1
{
Rt + γ · V π(St+1)−Qπ(St, Zt, At)

}
· ρ(St, Zt) · ωπ(St). (21)

Step 3: Derivation of (1.2).

(1.2) =

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(sj+1)

}
· pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

E
{[
Rj + γ · V π(Sj+1)

]
|aj , zj , sj

}
· pa,θ0(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj).
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Notice that

+∞∑
j=0

γj
∑

aj ,zj ,sj

{∑
a∗
j

Qπ(sj , zj , a
∗
j ) · pa,θ0(a∗j |zj , sj)

}
· pa,θ0(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj)

=

+∞∑
j=0

γj
∑
zj ,sj

{∑
a∗
j

Qπ(sj , zj , a
∗
j ) · pa,θ0(a∗j |zj , sj)

}
· c(zj |sj) · pπt,θ0(sj) ·

∑
aj

pa,θ0(aj |zj , sj) · ∇θ log pa,θ0(aj |zj , sj)

= 0,

where the last equality holds since the score function has a zero mean.

Combining the formula above with (1.2), we have

(1.2) =

+∞∑
j=0

γj
∑

aj ,zj ,sj

{
Qπ(sj , zj , aj)−

∑
a∗
j

Qπ(sj , zj , a
∗
j ) · pa,θ0(a∗j |zj , sj)

}
· pa,θ0(aj |zj , sj) · c(zj |sj)

· pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

{
Qπ(sj , zj , aj)−

∑
a∗
j

Qπ(sj , zj , a
∗
j ) · pa,θ0(a∗j |zj , sj)

}
· c(zj |sj)
pz(zj |sj)

· pa,θ0(aj |zj , sj) · pz(zj |sj) · pπt,θ0(sj) · ∇θ log pa,θ0(aj |zj , sj)

=

+∞∑
j=0

γj
∑

sj+1,rj ,aj ,zj ,sj

{
Qπ(sj , zj , aj)−

∑
a∗
j

Qπ(sj , zj , a
∗
j ) · pa,θ0(a∗j |zj , sj)

}
· ρ(zj , sj) · ps,r,θ0(sj+1, rj |zj , sj) · pa,θ0(aj |zj , sj) · pz(zj |sj) · pπt,θ0(sj) · ∇θ log ps,r,a,z,θ0(sj+1, rj , aj , zj |sj)

=

+∞∑
j=0

γjE

[{
Qπ(S,Z,A)−

∑
a∗

Qπ(S,Z, a∗) · pa,θ0(a∗|Z, S)
}
· ρ(S,Z) ·

pπt,θ0(S)

pD(S)
· S(S′, R,A, Z|S)

]

= (1− γ)−1 · E

[
ωπ(S)ρ(S,Z)

{
Qπ(S,Z,A)−

∑
a∗

Qπ(S,Z, a∗) · pa,θ0(a∗|Z, S)
}
· S(S′, R,A, Z|S)

]

: = E

[{
1

T

∑
t

ϕ2(Dt)

}
· S(ŌT−1)

]
,

where we define

ϕ2(O) = (1− γ)−1 · ωπ(S) · ρ(S,Z) ·
{
Qπ(S,Z,A)−

∑
a

Qπ(S,Z, a) · pa(a|Z, S)
}
. (22)

Step 4: Derivation of (1.3).

(1.3) =

+∞∑
j=0

γj
∑

τj ,sj+1

{
rj + γ · V π(Sj+1)

}
· pθ0(sj+1, rj , aj , zj |sj) · pπt,θ0(sj) · ∇θ log c(zj |sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

E
{[
Rj + γ · V π(Sj+1)

]
|aj , zj , sj

}
· pa,θ0(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj) · ∇θ log c(zj |sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj) · ∇θ log c(zj |sj).
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Before we proceed, let’s calculate ∇θ log c(zj |sj) first. According to the definition of c(z|s),

c(zt|St) =


pA1 (St)− π(1|St)

δA(St)
, when zt = 0

π(1|St)− pA0 (St)

δA(St)
, when zt = 1

.

Therefore,

∇θc(zt|St) =


∇θp

A
1 (St)δ

A(St)− (pA1 (St)− π(1|St))∇θδ
A(St)

[δA(St)]2
, when zt = 0

−∇θp
A
0 (St)δ

A(St)− (π(1|St)− pA0 (St))∇θδ
A(St)

[δA(St)]2
, when zt = 1

.

According to (Wang & Tchetgen, 2018),

∇θp
At
z (St) = ∇θE [At|Zt = z, St] = E

[
(At − pAz (St)) · S(At, Zt = z|St)

]
,

and thus

∇θδ
A(St) = E

[
2Zt − 1

pz(Zt|St)
(At − E[At|Zt, St]) · S(At, Zt|St)

∣∣∣St

]
= E

[(
At − pAt

1 (St)
)
· S(At, Zt = 1|St)−

(
At − pAt

0 (St)
)
· S(At, Zt = 0|St)

∣∣∣St

]
.

Therefore, when zt = 0, ∇θc(zt|St) can be further derived as

∇θc(Zt = 0|St) =
1

δA(St)

{
∇θp

A
1 (St)−

pA1 (St)− π(1|St)

δA(St)
· ∇θδ

A(St)
}

=
1

δA(St)

{
E
[
(At − pA1 (St)) · S(At, Zt = 1|St)− c(Zt = 0|St) · (At − pA1 (St)) · S(At, Zt = 1|St)

+ c(Zt = 0|St)(At − pA0 (St)) · S(At, Zt = 0|St)
]}

=
1

δA(St)

{
E
[
c(Zt = 1|St) · (At − pA1 (St)) · S(At, Zt = 1|St) + c(Zt = 0|St)(At − pA0 (St)) · S(At, Zt = 0|St)

]}
=

1

δA(St)

{
E
[ c(Zt|St)

pz(Zt|St)
· (At − pAt

Zt
(St)) · S(At, Zt|St)

]}
=

1

δA(St)

{
E
[
ρ(St, Zt) · (At − pAt

Zt
(St)) · S(At, Zt|St)

]}
.

Likewise, when zt = 1,

∇θc(Zt = 1|St) =
−1

δA(St)

{
∇θp

A
0 (St) +

π(1|St)− pA0 (St)

δA(St)
· ∇θδ

A(St)
}

=
−1

δA(St)

{
E
[
(At − pA0 (St)) · S(At, Zt = 0|St) + c(Zt = 1|St) · (At − pA1 (St)) · S(At, Zt = 1|St)

− c(Zt = 1|St)(At − pA0 (St)) · S(At, Zt = 0|St)
]}

=
−1

δA(St)

{
E
[
c(Zt = 1|St) · (At − pA1 (St)) · S(At, Zt = 1|St) + c(Zt = 0|St)(At − pA0 (St)) · S(At, Zt = 0|St)

]}
=

−1

δA(St)

{
E
[
ρ(St, Zt) · (At − pAt

Zt
(St)) · S(At, Zt|St)

]}
.

Combining the results for both zt = 0 and zt = 1, we can express ∇θc(zt|St) as

∇θc(zt|St) =
(−1)zt

δA(St)
· E

[
ρ(St, Zt) · (At − pAt

Zt
(St)) · S(At, Zt|St)

]
.
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Therefore,

(1.3) =

+∞∑
j=0

γj
∑

aj ,zj ,sj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) · c(zj |sj) · pπt,θ0(sj) · ∇θ log c(zj |sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) · pπt,θ0(sj) · ∇θc(zj |sj)

=

+∞∑
j=0

γj
∑

aj ,zj ,sj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) · pπt,θ0(sj) ·
(−1)zj

δA(sj)
· E

[
ρ(S,Z) · (A− pAZ(S)) · S(A,Z|S)

∣∣∣S = sj

]
.

Notice that ∑
aj ,zj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) ·
(−1)zj

δA(sj)
= −∆(sj).

Thus, by replacing this part in the expression of (1.3), we can obtain

(1.3) =

+∞∑
j=0

γj
∑

aj ,zj ,sj

Qπ(sj , zj , aj) · pa,θ0(aj |zj , sj) · pπt,θ0(sj) ·
(−1)zj

δA(sj)
· E

[
ρ(S,Z) · (A− pAZ(S)) · S(A,Z|S)

∣∣∣S = sj

]

= −
+∞∑
j=0

γj
∑
sj

pπt,θ0(sj) ·∆(sj) · E
[
ρ(S,Z) · (A− pAZ(S)) · S(A,Z|S)

∣∣∣S = sj

]

= −(1− γ)−1E
[
ωπ(S) · ρ(S,Z) · (A− pAZ(S)) ·∆(S) · S(A,Z|S)

]
= −(1− γ)−1E

[
ωπ(S) · ρ(S,Z) · (A− pAZ(S)) ·∆(S) · S(S′, R,A, Z|S)

]
: = E

[{
1

T

∑
t

ϕ3(Dt)

}
· S(ŌT−1)

]
,

where

ϕ3(Dt) = −(1− γ)−1 · ωπ(St) · ρ(St, Zt) · (At − E[At|St, Zt]) ·∆(St). (23)

Step 5: Summary.
By change of measure theorem, we can obtain that

V π(S0) =

∞∑
t=0

γtEπ[Rt|S0] = ESt∼pπ
t (s)

[ ∞∑
t=0

γt · Eπ[Rt|St]

]

= ESt∼p∞(s)

[ ∞∑
t=0

γt · p
π
t (St)

p∞(St)
· Eπ[Rt|St]

]
= (1− γ)−1ESt∼p∞(s)

[
ωπ(St) · Eπ[Rt|St]

]

= (1− γ)−1ESt∼p∞(s)

[∑
zt

ωπ(St) · c(zt|St) · E[Rt|Zt = zt, St]

]
.

(24)

Therefore, we can further write L2 as

L2 = E
[(
V π(S0)− ηπθ0

)
S(ŌT−1)

]
= E

[{
(1− γ)−1

∑
zt

ωπ(St)c(zt|St)E[Rt|Zt = zt, St]− ηπ
}
· S(ŌT−1)

]
.

(25)
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Then, by combining the results in Formula (21), (22), (23) and (25), we have

∇θη
π
θ0 = E

[{ 3∑
j=1

ϕ(Dt) +
∑
zt

ωπ(St)c(zt|St)E[Rt|Zt = zt, St]− ηπ
}
S(ŌT−1)

]

= E
[{

(1− γ)−1 · ωπ(St) ·
[
ρ(St, Zt) ·

{
Rt + γ · V π(St+1)− E

[
Rt + γ · V π(St+1)

∣∣Zt, St

]
−
(
At − E

[
At

∣∣Zt, St

])
·∆(St)

}
+

∑
zt

c(zt|St) · E[Rt|zt, St]

]
− ηπ

}
S(ŌT−1)

]
.

It is not surprising to see that augmentation term ϕ(Dt) defined in Equation (8) is just the summation of ϕ1, ϕ2 and ϕ3
derived in Formula (21), (22), and (23). The canonical gradient contributed by Formula (25) serves as a direct estimator in
the final formula of the efficient influence function.

Therefore, the EIF of ηπ is given by

EIFηπ =(1− γ)−1 · ωπ(St) ·
[
ρ(St, Zt) ·

{
Rt + γ · V π(St+1)− E

[
Rt + γ · V π(St+1)

∣∣Zt, St

]
−
(
At − E

[
At

∣∣Zt, St

])
·∆(St)

}
+

∑
zt

c(zt|St) · E[Rt|zt, St]

]
− ηπ.

The proof of Theorem 2 is thus complete.

G. Proof of Theorem 5.2
We divide the proof of Theorem 3 into two parts. In Section G.1, we mainly discuss the consistency of η̂DR under model M1

or M2. In Section G.2, we will prove that η̂DR is asymptotically normal with variance σ2
T , which attains the semiparametric

lower bound.

G.1. Consistency

Scenario 1: Suppose the models in M1 and pa are correctly specified.

In this case, c(z|s), V π(St+1) and ∆(St) are all correctly specified, since they can all be estimated from Qπ(s, z, a) and
pa(a|s, z). Therefore,

E [η̂∗] = E

η̂πDM + (NT )−1
∑
i,t

ϕ̂(Di,t)

 = η̂πDM + E
[
ϕ̂(Dt)

]

Now we only need to prove that η̂πDM is consistent to ηπ . Since ĉ(z|s), p̂a(a|z, s) and Q̂π are correctly specified,

Es∼p̂0(s)

[
ĉ(z|s) · p̂a(a|z, s) · Q̂π(s, z, a)

]
− Es∼p̂0(s) [c(z|s) · pa(a|z, s) ·Q

π(s, z, a)] = op(1)

Also, notice that p̂0(s) was set as the estimated initial state distribution. As the sample size goes to infinity, according to
WLLN,

Es∼p̂0(s) [c(z|s) · pa(a|z, s) ·Q
π(s, z, a)]− Es∼p0(s) [c(z|s) · pa(a|z, s) ·Q

π(s, z, a)] = op(1).

Therefore,

η̂πDM
P→ Es∼p0(s) [c(z|s) · pa(a|z, s) ·Q

π(s, z, a)] = Es∼p0(s)

[
V π(St)

]
= ηπ.

28



An Instrumental Variable Approach to Confounded Off-Policy Evaluation

Now it remains to show that E
[
ϕ̂(Dt)

]
= 0. Since Qπ(s, z, a), pa(a|s, z) are correctly specified,

E
[
ϕ̂(Dt)

]
= (1− γ)−1 · E

[
ω̂π(St) · ρ̂(St, Zt) ·

{
Rt + γ · V π(St+1)− E

[
Rt + γ · V π(St+1)

∣∣Zt, St

]
−
(
At − E

[
At

∣∣Zt, St

])
·∆(St)

}]
= (1− γ)−1 · E

[
ω̂π(St) · ρ̂(St, Zt) · E

{
Rt + γ · V π(St+1)− E

[
Rt + γ · V π(St+1)

∣∣Zt, St

]
−
(
At − E

[
At

∣∣Zt, St

])
·∆(St)

∣∣Zt, St

}∣∣∣St, Zt

]
= (1− γ)−1 · E

[
ω̂π(St) · ρ̂(St, Zt) ·

{
E
[
Rt + γ · V π(St+1)

∣∣Zt, St

]
−E

[
Rt + γ · V π(St+1)

∣∣Zt, St

]
−
(
E
[
At

∣∣Zt, St

]
− E

[
At

∣∣Zt, St

])
·∆(St)

}]
= (1− γ)−1 · E

[
ω̂π(St) · ρ̂(St, Zt) ·

{
0− 0 ·∆(St)

}]
= 0.

Scenario 2: Suppose the models in M2 and pa are correctly specified.

In this case, c(zt|St) is also correctly specified as a function of pa and π. Then

E [η̂πDM] = Es∼p0(s)

[∑
z,a

c(z|s) · pa(a|s, z) · Q̂π(s, z, a)

]

= ES∼pπ
∞(s),Z∼pz

[
c(Z|S)
pz(Z|S)

· p
π
0 (S)

pπ∞(S)
·
∑
a

pa(a|Z, S) · Q̂π(S,Z, a)

]

= ES∼pπ
∞(s)

[
pπ0 (S)

pπ∞(S)
· V̂ π(S)

]
.

The augmentation terms satisfies

E
[
ϕ̂(Dt)

]
= (1− γ)−1 · E

[
ωπ(St) · ρ(St, Zt) ·

{
Rt + γ · V̂ π(St+1)−

∑
at

pa(at|Zt, St) · Q̂π(St, Zt, at)

−
(
At − E

[
At

∣∣Zt, St

])
· ∆̂(St)

}]
= (1− γ)−1 · E

[
ωπ(St) ·

c(Zt|St)

pz(Zt|St)
·
{
Rt + γ · V̂ π(St+1)−

∑
at

pa(at|Zt, St) · Q̂π(St, Zt, at)

−
(
E
[
At

∣∣Zt, St

]
− E

[
At

∣∣Zt, St

])
· ∆̂(St)

}]
= (1− γ)−1 · E

[
ωπ(St) ·

c(Zt|St)

pz(Zt|St)
·
{
Rt + γ · V̂ π(St+1)−

∑
at

pa(at|Zt, St) · Q̂π(St, Zt, at)
}]

= (1− γ)−1 · E
[
ωπ(St) ·

c(Zt|St)

pz(Zt|St)
·Rt

]
+ (1− γ)−1 · E

[
ωπ(St) ·

c(Zt|St)

pz(Zt|St)
·
{
γ · V̂ π(St+1)−

∑
at

pa(at|Zt, St) · Q̂π(St, Zt, at)
}]

.

Now it remains to show that

E [η̂πDM] + (1− γ)−1 · E

[
ωπ(St) ·

c(Zt|St)

pz(Zt|St)
·
{
γ · V̂ π(St+1)−

∑
at

pa(at|Zt, St) · Q̂π(St, Zt, at)
}]

= 0. (26)
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Since

(1− γ)−1E

[
ωπ(St)

c(Zt|St)

pz(Zt|St)

{
γV̂ π(St+1)−

∑
at

pa(at|Zt, St)Q̂
π(St, Zt, at)

}]

=(1− γ)−1E

[
ωπ(St)

c(Zt|St)

pz(Zt|St)

{
γV̂ π(St+1)−

∑
at

pa(at|Zt, St)Q̂
π(St, Zt, at)

}]

=(1− γ)−1ES∼p∞

[
ωπ(S)

c(Z|S)
pz(Z|S)

γV̂ π(S∗)

]
− (1− γ)−1ES∼p∞

[
ωπ(S)

c(Z|S)
pz(Z|S)

∑
a

pa(a|Z, S)Q̂π(S,Z, a)

]

=(1− γ)−1 · ES∼p∞

[
ωπ(S)

c(Z|S)
pz(Z|S)

γV̂ π(S∗)

]
− (1− γ)−1ES∼p∞

[
ωπ(S)

∑
a,z

c(z|S)pa(a|z, S)Q̂π(S, z, a)

]

=(1− γ)−1 · ES∼p∞

[
ωπ(S) · c(Z|S)

pz(Z|S)
· γV̂ π(S∗)

]
− (1− γ)−1 · ES∼p∞

[
ωπ(S) · V̂ π(S)

]
,

by plugging in the definition for ωπ(s), we have

(1− γ)−1 · ES∼p∞

[
ωπ(S) · c(Z|S)

pz(Z|S)
· γ · V̂ π(S∗)

]
− (1− γ)−1 · ES∼p∞

[
ωπ(S) · V̂ π(S)

]
=ES∼p∞

[ ∞∑
t=0

γt
pπt (S)

p∞(S)

c(Z|S)
pz(Z|S)

γV̂ π(S∗)

]
− (1− γ)−1ES∗∼p∞

[
ωπ(S∗)V̂ π(S∗)

]
=ES∼p∞

[ ∞∑
t=0

γt+1 p
π
t (S)

p∞(S)

c(Z|S)
pz(Z|S)

V̂ π(S∗)

]
− ES∗∼p∞

[ ∞∑
t=0

γt
pπt (S

∗)

p∞(S∗)
V̂ π(S∗)

]

=ES∼p∞

[ ∞∑
t=0

γt+1 p
π
t (S)

p∞(S)

c(Z|S)
pz(Z|S)

V̂ π(S∗)

]
− ES∗∼p∞

[ ∞∑
t=1

γt
pπt (S

∗)

p∞(S∗)
V̂ π(S∗)

]
− ES∗∼p∞

[
pπ0 (S

∗)

p∞(S∗)
V̂ π(S∗)

]

=ES∼p∞

[ ∞∑
t=0

γt+1 ·
{
pπt (S)

p∞(S)
· c(Z|S)
pz(Z|S)

−
pπt+1(S

∗)

p∞(S∗)

}
· V̂ π(S∗)

]
− ES∗∼p∞

[
pπ0 (S

∗)

p∞(S∗)
· V̂ π(S∗)

]
.

Since E [η̂πDM] = ES∼pπ
∞(s),Z∼pz

[
pπ
0 (S)

pπ
∞(S) · V̂

π(S)
]
can be cancelled with the second term of the last expression, all we need

to prove is that

ES∼p∞

[{
pπt (S)

p∞(S)
· c(Z|S)
pz(Z|S)

−
pπt+1(S

∗)

p∞(S∗)

}
· V̂ π(S∗)

]
= 0, for any t ∈ N.

This statement holds naturally because, for any t,

ES∼p∞

[
pπt (S)

p∞(S)
· c(Z|S)
pz(Z|S)

· V̂ π(S∗)

]
= ES∼pπ

t (S)

[
c(Z|S)
pz(Z|S)

· V̂ π(S∗)

]
= ES∼pπ

t (S)

[∑
z

c(z|S) · V̂ π(S∗)

]
= ES∼pπ

t (S)

[
(c(z = 1|S) + c(z = 0|S)) · V̂ π(S∗)

]
= ES∼pπ

t (S)

[
V̂ π(S∗)

]
= ES∗∼pπ

t+1(S
∗)

[
V̂ π(S∗)

]
= ES∼p∞

[
pπt+1(S

∗)

p∞(S∗)
· V̂ π(S∗)

]
.

Therefore, under M2, i.e. when pa, pz, ωπ are correctly specified, η̂DR is consistent to ηπ .

Based on the results in both scenarios, the double robustness of our estimator η̂DR thus holds.

G.2. Asymptotic Normality

For the simplicity of notations, we drop the subscript and denote our final DR estimator as η̂. First, let’s define the oracle
estimator η̂∗ as

η̂∗ := η∗DM + (NT )−1
∑
i,t

ϕ∗(Di,t),
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where we use the star sign in superscript to indicate that all of the models in ηDM and ϕ are substituted by their ground truth.
To be more clear, we define η∗DM := ηπDM(pa, Q

π), and ϕ∗(Di,t) := ϕ(Di,t, pa, Q
π, pz, ω

π). Similarly, to emphasize the
dependence of η̂πDM and ϕ̂ on nuisance functions, we denote η̂πDM := ηπDM(p̂a, Q̂

π), and ϕ̂(Di,t) := ϕ(Di,t, p̂a, Q̂
π, p̂z, ω̂

π).

The proof of Section G.2 is decomposed to two steps. In Step 1, we will show that our DR estimator, η̂, is asymptotically
equivalent to the oracle estimator η̂∗ by proving ∥η̂− η̂∗∥ = op(N

− 1
2 ). In Step 2, we will illustrate the asymptotic normality

of our oracle estimator η̂∗, and prove that the asymptotic variance indeed reaches the semiparametric efficiency bound.

Step 1: show that ∥η̂ − η̂∗∥ = op(N
− 1

2 ).

According to the assumptions in Theorem 2, all of the nuisance functions, i.e. p̂z , p̂a, Q̂π and ω̂π , converge in L2-norm to
their oracle values with rates no smaller than 1/4. That is, there exist a constant α ≥ 1/4, such that√

Es∼p∞E
∣∣p̂z(z|s)− pz(z|s)

∣∣2 = Op(N
−α),

√
Es∼p∞E

∣∣p̂a(a|z, s)− pa(a|z, s)
∣∣2 = Op(N

−α),√
Es∼p∞E

∣∣Q̂π(s, z, a)−Qπ(s, z, a)
∣∣2 = Op(N

−α),

√
Es∼p∞E

∣∣ω̂π(s)− ωπ(s)
∣∣2 = Op(N

−α).

Based on definition of oracle estimator, we can decompose the difference between η̂ and η̂∗ as

η̂ − η̂∗ =
[
ηπDM(p̂a, Q̂

π)− ηπDM(pa, Q
π)
]
+

1

NT

∑
i,t

[
ϕ(Di,t, p̂a, Q̂

π, p̂z, ω̂
π)− ϕ(Di,t, pa, Q

π, pz, ω
π)
]

: = ∆(1) +∆(2) +∆(3),

where we define

∆(1) =
[
ηπDM(pa, Q̂

π)− ηπDM(pa, Q
π)
]
+

1

NT

∑
i,t

[
ϕ(Di,t, pa, Q̂

π, pz, ω
π)− ϕ(Di,t, pa, Q

π, pz, ω
π)
]
,

∆(2) =
[
ηπDM(p̂a, Q̂

π)− ηπDM(pa, Q̂
π)
]
+

1

NT

∑
i,t

[
ϕ(Di,t, p̂a, Q̂

π, pz, ω
π)− ϕ(Di,t, pa, Q̂

π, pz, ω
π)
]
,

∆(3) =
1

NT

∑
i,t

[
ϕ(Di,t, p̂a, Q̂

π, p̂z, ω̂
π)− ϕ(Di,t, p̂a, Q̂

π, pz, ω
π)
]
.

(27)

To finish the proof of this step, it suffice to show that the three terms in (27) are all op(N−1/2) for any p̂z , p̂a, Q̂π and ω̂π in
a neighborhood of their true values.

For the brevity of content, we will only give a sketch of the proof and detail on just one term for illustration purpose.

Let’s first consider ∆(1). According to the double robustness property that will be proved in Theorem 5.2, for any Q̂π

that may be misspecified in ∆(1), we have E[∆(1)] = 0. Define Qπ as a neighborhood of Qπ. We construct an empirical
operator GN as

GN (Q̂π) =
√
N
{
∆(1)(pa, Q̂

π, pz, ω
π)− E

[
∆(1)(pa, Q̂

π, pz, ω
π)
]}
,

Define a function class FQ =
{
ηDR(pa, Q̂

π, pz, ω
π) − ηDR(pa, Q

π, pz, ω
π) : Q̂π ∈ Qπ

}
with ηDR(pa, Q

π, pz, ω
π) =∑

z0,a0
c(z0|S0)pa(a0|z0, S0)Q

π(S0, z0, a0) +
1
T

∑T
t=1 ϕ(Dt, pa, Q

π, pz, ω
π). It can be proved that FQ is a VC-type

class. By applying the Maximal Inequality specialized to VC type classes (Chernozhukov et al., 2014), one can show that
supQ̂π∈Qπ ∥GN (Q̂π)∥ = op(1), which further indicates that

sup
Q̂π∈Qπ

∥∥∥∆(1)(pa, Q̂
π, pz, ω

π)
∥∥∥ = sup

Q̂π∈Qπ

∥∥∥∆(1)(pa, Q̂
π, pz, ω

π)− E
[
∆(1)(pa, Q̂

π, pz, ω
π)
]∥∥∥ = op(N

−1/2).

Therefore, as long as Q̂π converges in L2 norm to its oracle value with rate α > 1/4, we have ∆(1) = op(N
−1/2). [See

(Van Der Vaart et al., 1996) for details.]
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Next, let’s consider ∆(2). This term can be further decomposed as

∆(2) =
[
ηπ

DM(p̂a, Q̂
π)− ηπ

DM(pa, Q̂
π)− ηπ

DM(p̂a, Q
π) + η̂π

DM(pa, Q
π)
]

+
1

NT

∑
i,t

[
ϕ(Di,t, p̂a, Q̂

π, pz, ω
π)− ϕ(Di,t, pa, Q̂

π, pz, ω
π)− ϕ(Di,t, p̂a, Q

π, pz, ω
π) + ϕ(Di,t, pa, Q

π, pz, ω
π)
]

+
[
ηπ

DM(p̂a, Q
π)− η̂π

DM(pa, Q
π)
]
+

1

NT

∑
i,t

[
ϕ(Di,t, p̂a, Q

π, pz, ω
π)− ϕ̂(Di,t, pa, Q

π, pz, ω
π)
]
.

The last line of the equation above, akin to ∆(1), can be proved to be op(N−1/2) under the L2 convergence assumption of
Q̂π . The first two lines, after some manipulations, can be bounded by the product of two nuisance function error terms.

To be more specific, let’s consider the first line and prove that it is bound with order op(N−1/2).

∣∣∣ηπDM(p̂a, Q̂
π)− ηπDM(pa, Q̂

π)− ηπDM(p̂a, Q
π) + η̂πDM(pa, Q

π)
∣∣∣

=

∣∣∣∣ 1N
N∑
i=1

∑
z,a

{
ĉ(z|Si,0)p̂a(a|z, Si,0)Q̂

π(Si,0, z, a)− c(z|Si,0)pa(a|z, Si,0)Q̂
π(Si,0, z, a)

}

− 1

N

N∑
i=1

∑
z,a

{
ĉ(z|Si,0)p̂a(a|z, Si,0)Q

π(Si,0, z, a)− c(z|Si,0)pa(a|z, Si,0)Q
π(Si,0, z, a)

}∣∣∣∣
=

∣∣∣∣ 1N
N∑
i=1

∑
z,a

{[
ĉ(z|Si,0)p̂a(a|z, Si,0)− c(z|Si,0)pa(a|z, Si,0)

]
·
[
Q̂π(Si,0, z, a)−Qπ(Si,0, z, a)

]}∣∣∣∣
≤ 1

N

N∑
i=1

∑
z,a

∣∣∣ĉ(z|Si,0)p̂a(a|z, Si,0)− c(z|Si,0)pa(a|z, Si,0)
∣∣∣ · ∣∣∣Q̂π(Si,0, z, a)−Qπ(Si,0, z, a)

∣∣∣
= op(N

−1/4) · op(N−1/4) = op(N
−1/2),

where the second last equality is derived from the L2 convergence of p̂a and Q̂π with rate α ≥ 1/4.

The proof of ∆(3) is also similar to other terms, which is thus omitted. A similar proof can be found in (Shi et al., 2022c).
Therefore, ∥η̂ − η̂∗∥ = op(N

− 1
2 ).

Step 2: show that
√
N(η̂∗ − ηπ)

d→ N (0, σ2
T ), where σ2

T is the efficiency bound.
Since η̂∗ is the average of N i.i.d. data trajectories, by standard CLT, the oracle estimator η̂∗ is asymptotically normal with
variance

σ2
T = Var

{∑
z,a

c(z|S0) · pa(a|z, S0) ·Qπ(S0, z, a) +
1

T

T∑
t=1

ϕ(Dt)

}

= Var
{
V π(S0) +

1

T

T∑
t=1

ϕ(Dt)

}
= Var

{
V π(S0)

}
+

1

T 2

T∑
t=1

Var
{
ϕ(Dt)

}
,

where the second equality is due to (4) and the last equality is due to the Markov and conditional mean independence
assumptions. It follows directly from the proof of Theorem 2 that σ2

T = CR(M).

Therefore, by combining the claims in Step 1 and Step 2, we have

√
N(η̂DR − ηπ)

d→ N (0, σ2
T ).

The proof of Theorem 3 is thus complete.

32



An Instrumental Variable Approach to Confounded Off-Policy Evaluation

H. Proof of Theorem 6.1
In this section, we detail the identification proof under confounded POMDP. For any gQ ∈ GQ,

0 = E
{
R+ γ

∑
z,a

c(z|O′) · pa(a|z,O′) · gQ(F ′, z, a)− gQ(F, z, a)
∣∣∣H,Z,A}

= E
{
E
[
R+ γ

∑
z,a

c(z|O′) · pa(a|z,O′) · gQ(F ′, z, a)− gQ(F, z, a)
∣∣S,H,Z,A]∣∣∣H,Z,A},

where the first equality holds by the definition of learnable future-dependent Q function, and the second equality holds by
the law of total expectation.

Since H⊥⊥ F ′|(S,Z,A), we have

0 = E
{
E
[
R+ γ

∑
z,a

c(z|O′) · pa(a|z,O′) · gQ(F ′, z, a)− gQ(F, z, a)
∣∣S,Z,A]∣∣∣H,Z,A}.

Then by the invertibility assumption, it holds almost surely that

E
[
R+ γ

∑
z,a

c(z|O′) · pa(a|z,O′) · gQ(F ′, z, a)− gQ(F, z, a)
∣∣S,Z,A] = 0.

According to the derivation details of importance sampling estimator in Formula (24), the aggregated value ηπ can be written
as

ηπ = (1− γ)−1ES∼p∞

[
ωπ(S) · E

{
ρ(Z,O) ·R|S

}]
.

In Formula (26), since Q̂ is misspecified, one can substitute Q̂ to gQ and the equality still holds. That is,

0 = Ef∼νF

[∑
z,a

c(z|o)pa(a|z, o)gQ(f, z, a)
]
+ (1− γ)−1E

[
ωπ(S) · ρ(Z,O)·

{
γ ·

∑
z,a

c(z|O′)pa(a|z,O′)gQ(F
′, z, a)−

∑
a

pa(a|Z,O) · gQ(F,Z, a)
}]
.

(28)

Therefore, by plugging in the expression in (28), we have

ηπ − Ef∼νF

[∑
z,a

c(z|o)pa(a|z, o)gQ(f, z, a)
]

=(1− γ)−1Es∼p∞

[
ωπ(s) · E

{
ρ(Z,O) ·R|S = s

}]
− Ef∼νF

[∑
z,a

c(z|o)pa(a|z, o)gQ(f, z, a)
]

=(1− γ)−1E
[
ωπ(S)ρ(Z,O)

{
R+ γ

∑
z,a

c(z|O′)pa(a|z,O′)gQ(F
′, z, a)−

∑
a

pa(a|Z,O) · gQ(F,Z, a)
}]

=(1− γ)−1E
[
ωπ(S)ρ(Z,O)

{
R+ γ

∑
z,a

c(z|O′)pa(a|z,O′)gQ(F
′, z, a)− gQ(F,Z,A)

}]
= 0,

where the last equality holds by the overlap condition and the definition of learnable future-dependent Q function. Therefore,
ηπ can be written as a function of the observed data, which is indeed identifiable. The identification expression for ηπ is
given by

ηπ = Ef∼νF

[∑
z,a

c(z|o)pa(a|z, o)gQ(f, z, a)
]
.

The proof of this theorem is thus complete.
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