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Abstract
Transformer-based models have delivered impres-
sive results on many tasks, particularly vision
and language tasks. In many model training
situations, conventional configurations are often
adopted. For example, we usually set the base
model with hidden size (i.e., model width) to be
768 and the number of transformer layers (i.e.,
model depth) to be 12. In this paper, we revisit
these conventional configurations by studying the
the relationship between transformer configura-
tion and training objective. We show that the
optimal transformer configuration is closely re-
lated to the training objective. Specifically, com-
pared with the simple classification objective, the
masked autoencoder is effective in alleviating the
over-smoothing issue in deep transformer training.
Based on this finding, we propose “Bamboo”, a
notion of using deeper and narrower transformer
configurations, for masked autoencoder training.
On ImageNet, with such a simple change in con-
figuration, the re-designed Base-level transformer
achieves 84.2% top-1 accuracy and outperforms
SoTA models like MAE by 0.9%. On language
tasks, re-designed model outperforms BERT with
the default setting by 1.1 points on average, on
GLUE benchmark with 8 datasets.

1. Introduction
Transformer-based language models have achieved promis-
ing results on natural language understanding tasks, e.g.,
Q&A (Qu et al., 2019; Yang et al., 2020), relation extrac-
tion (Xue et al., 2020; Zhou et al., 2020) and dialogue sys-
tem (Ni et al., 2021). Recently, on vision tasks, transform-
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ers (Dosovitskiy et al., 2020; Zhou et al., 2021a; Xue et al.,
2021; 2022) also outperform convolution-based models by
a large margin. With sufficient training data, transformer-
based models can be scaled to trillions of trainable parame-
ters (Fedus et al., 2021; Du et al., 2021). Through scaling
along the width (i.e., hidden dimension) and depth (i.e., num-
ber of transformer blocks), these huge transformers show
effectiveness across various tasks and even areas.

Where are the configurations from? When using trans-
former, we typically follow the existing work to set the same
width and depth for a “fair” comparison. For instance, we
usually set the width of transformer-base model as 768 and
the depth as 12. An interesting question here is: Why do we
select these hyper-parameters, even for problems in different
areas? To answer this question, we revisit the conventional
configurations from some representative studies. For vision
transformer (Dosovitskiy et al., 2020), authors set the base
ViT configuration according to those used in BERT (Devlin
et al., 2018). BERT selects such configuration following
OpenAI GPT (Radford et al., 2018). OpenAI also follows
the original transformer paper (Vaswani et al., 2017). In the
original transformer paper, Vaswani et al. (2017) conduct a
set of ablation studies on machine translation task to find
the optimal configurations. That is, for a good range of
tasks, we have largely followed the transformer configura-
tion based on an ablation study on machine translation task,
i.e., a sequence-to-sequence task.

Should we use the same configuration for different train-
ing objectives? Nowadays, transformer-based models can
be trained with various training objectives or strategies (Tay
et al., 2022a;b). Taking the vision transformer (Dosovit-
skiy et al., 2020) as an example, we can train transformer
from scratch with a supervised learning setting for image
classification. In this straightforward image classification
task, each image is modeled as a sequence of tokens, and
each token corresponds to a patch in the image. We use the
global information (from all tokens/patches of the image) to
predict a single label, the category of the image. Here, as
the training objective is to capture the global information
of an image, the differences between token representations
would not be considered directly. This image classification
task is quite different from machine translation task, which
requests for a strong understanding of a token sequence and
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generating another sequence. Hence, intuitively, it is natural
to assume that different optimal transformer configurations
exist for these two different tasks.

Over-smoothing issue of the simple classification train-
ing objective. Previous work has tried to train a deeper
transformer from scratch. However, as reported in (Zhou
et al., 2021a; Gong et al., 2021), training by classification
task (i.e., using the global signal of the input sequence) has
the over-smoothing problem. That means, at the deeper
transformer layers, all token representations tend to be iden-
tical (Brunner et al., 2020). Such issue harms the scalability
of training vision transformer, especially the scaling along
depth. When scaling to a larger model, we only get a slight
improvement or even poorer accuracy. Recently, Zhou et al.
(2021a); Gong et al. (2021) show that, when adding special-
designed regularization to avoid the “uniform tokens” (i.e.,
the over-smoothing problem), it is possible to train a deeper
transformer on the sequence (image) classification setting.

Masked autoencoder can scale to deeper and wider mod-
els without additional training data. Different from train-
ing from scratch above, the masked autoencoder is a two-
stage training framework, including pre-training and fine-
tuning. Given a partially masked input sequence, the pre-
training stage aims to recover the original unmasked se-
quence. The fine-tuning is similar to the aforementioned
training from scratch but requires much fewer training
epochs. With the masked autoencoder, recent studies (Bao
et al., 2021; He et al., 2021) successfully train large-scale
transformers, even without using additional training data
compared to supervised learning. This is counterintuitive
because we usually assume more available training data is
the key of self-supervised learning to improve effectiveness.
This result motivates us to rethink the reason behind it.

Masked autoencoder can alleviate the over-smoothing
issue. Intuitively, in masked autoencoder frameworks (e.g.,
BERT, BEiT), the target is to recover the masked tokens
based on the unmasked tokens. Compared to training trans-
former from scratch under supervised learning, whose tar-
get is a simple classification task, the masked autoencoder
framework adopts a sequence labeling target. We hypoth-
esize that the masked autoencoder training can alleviate
the over-smoothing issue, which is a possible reason why
the masked autoencoder can help to scale transformer up.
Specifically, the sequence labeling task requires the model
to learn semantic information from neighboring unmasked
tokens. Since different masked tokens have different un-
masked neighboring tokens, the unmasked token representa-
tions must carry their corresponding and sufficient semantics
for the accurate prediction of the masked tokens, which in
turn prevents the token representations to become identical
(or very similar to each other). In a word, we may infer
that the masked autoencoder’s training objective helps to

alleviate the over-smoothing problem by its regularization
on token differences. To justify the reasoning above, we
conduct an experimental investigation in Section 2.1. The
results show that the over-smoothing issue is indeed alle-
viated in the masked autoencoder. Compared to training
under masked autoencoder, training transformer by a simple
classification task (e.g., training vision transformer from
scratch) does not have such benefit.

Why and how masked autoencoder alleviates over-
smoothing? We further explore the reason behind this
phenomenon via Fourier domain analysis in Section 2.2.
First, self-attention layer in transformer will decay the high-
frequency component of input signal (Wang et al., 2022b).
When all high-frequency components are erased, all token
representations would be identical. We find the masked
autoencoder training objective can be seen as reconstruct-
ing the high-frequency components (HC) of input signal
from the HC of the noisy masked input signal. Therefore,
masked autoencoder can alleviate over-smoothing via learn-
ing a slower HC decay rate. Such ability is achieved by
training the weights in self-attention layer. To further verify
this finding, we conduct quantitative analysis in Section 2.3
and results show that, compared with the model trained
with simple classification objective, the trainable matrices
in model trained with masked autoencoder objective indeed
has slower HC decay.

Potential of masked autoencoder with deeper config-
urations. If the masked autoencoder alleviates the over-
smoothing issue (which is a challenge for scaling trans-
former along depth), does this mean the masked autoen-
coder can get more benefits from deep configurations? To
answer this question, we re-visit the configurations for dif-
ferent training objectives, especially for the masked autoen-
coder. Accordingly, we conduct experiments to investigate
the masked autoencoder configurations and propose our
idea, Bamboo1. When training transformer with masked
autoencoder, we suggest using deeper and narrower config-
urations with comparable computation budget as a typical
setting, to achieve better effectiveness. To evaluate our new
configurations, we conduct comprehensive experiments on
computer vision and natural language processing tasks. On
vision tasks, we evaluate our configuration on large-scale
vision transformer training. With Bamboo configuration, the
masked autoencoder outperforms baseline by a large margin.
For instance, on ImageNet, with a comparable number of
trainable parameters and computational cost, our narrower
and deeper base-scale masked autoencoder, Bamboo-B, out-
performs MAE-B by 0.9% in terms of top-1 accuracy. On
natural language processing tasks, we conduct experiments
on BERT. Results show that our configurations can improve

1The narrower and taller shape of the re-designed transformer
looks like bamboo.
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BERT-L by 1.1 points on GLUE datasets.

Contributions In summary, our main contributions are three
folds: 1) We first study the relationship between transformer
configuration and training objective, and then propose the in-
sight that the masked autoencoder helps transformer to han-
dle over-smoothing, although there can be other cofounders
like training stability. We show this finding by experimental
investigation, and more importantly, by theoretical reason-
ing on Fourier domain and verify our reasoning via quan-
titative analysis; 2) We argue that the existing transformer
configurations cannot fully use the strength of masked au-
toencoder. To this end, we propose Bamboo, an idea to scale
transformer along depth when training with masked autoen-
coder. We show that the narrower and deeper versions over-
perform existing configurations, in a plug-and-play manner;
3) We further verify our Bamboo configurations on larger
scale vision transformer pre-training and natural language
tasks. Results show that our Bamboo achieves state-of-the-
art top-1 accuracy on image classification, and outperforms
the original BERT configurations by 1.1 points on GLUE.

TL;DR for Practitioners In this paper, the most important
thing we want to highlight is, not to underestimate the train-
ing objective before tuning model configuration. Usually,
for a fair comparison, we simply adopt the previous config-
urations. However, sometimes, one training objective may
look decent if it wins the “configuration lottery”2. However,
for a different objective, the effectiveness would be underes-
timated without a configuration sweep. We may then miss
a good training objective for the community. Therefore, to
know about the potential of each novel training objective
design, we strongly suggest practitioners analyze the induc-
tive bias and customize configurations. Our paper shows
one example of such analysis on MAE.

The following sections are organized based on the analysis
process of this work. In Section 2, we briefly review the over-
smoothing problem in transformer and show the strength of
masked autoencoder in handling this issue. We then con-
duct experiments to investigate scaling masked autoencoder
along the depth in Section 3. Based on the consistent sweet
depth across scales, we suggest the Bamboo idea, using
narrower and deeper configurations in masked autoencoder
training. Then, we adapt the new configurations to a larger
scale, and conduct evaluations across different areas, vision
tasks in Section 4 and NLP tasks in Section 5. Finally, we
discuss the difference between this work and the related
work in Section 6.

2The previous used configuration matches well with the new
training objective.

2. Over-smoothing under Different Training
Objectives

The over-smoothing issue is well noted in graph neural net-
works. When we stack many graph convolution networks,
the node representations tend to be identical (Chen et al.,
2020). Recent studies show that transformer has a similar
problem, known as “uniform tokens” (Shi et al., 2021). In
deep transformer, each token representation can be seen as a
node in a graph, and each attention score is an edge. Differ-
ent token representations tend to be identical when we scale
transformer across depth. In this work, we mainly focus on
the over-smoothing problem under different training objec-
tives, i.e., sequence-level supervised learning, and masked
antoencoder-based self-supervised learning. To compare
these two objectives, we use supervised vision transformer
(ViT) (Dosovitskiy et al., 2020) and vision masked autoen-
coder (MAE) (He et al., 2021) as two representative plat-
forms to show our insights.

2.1. Experimental Investigation

Standard deviation. We first conduct two sets of quantita-
tive analysis to study the over-smoothing behaviour under
the two training objectives. For the first set of quantita-
tive analysis, we focus on the standard deviation of token
representations at different transformer blocks. Formally,
transformer block’s output (i.e., token representations) can
be written as h = {h0, h1, ..., hT−1}, where ht ∈ Rd, d is
the hidden dimension, T is the number of tokens at different
transformer blocks. Usually, T is fixed across transformer
blocks. For the token representations after the lth trans-
former block, we denote the token representations as hl.
To compare the over-smoothing issue between supervised
learning and masked autoencoder, we calculate the mean
standard deviation of the token representations at different
transformer layers:

msi =

√√√√ 1

T − 1

T−1∑
t=0

(
hi
t − h̄i

)2
(1)

where h̄i = 1
T−1

T−1∑
t=0

hi
t is the mean vector of token repre-

sentations at the ith transformer block. We use a deeper
version (48 layers) of ViT-L and MAE-L as platform3 to val-
idate our analysis above. Specifically, the ViT-L is trained
on the supervised learning setting and treats image classi-
fication as a simple classification task, by average pooling
prediction head. The MAE-L is trained on the masked au-
toencoder setting, which means the pre-training target is
close to a sequence labeling task. We then fine-tune the

3The default configuration of ViT-L and MAE-L includes
only 24 layers. We use deeper configuration to expose the over-
smoothing issue more clearly.
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Figure 1: Over-smoothing analysis of ViT and MAE with
the same configuration (48 layers). We calculate the average
standard deviation and average patch cosine similarity at
every layer to compare the over-smoothing level.

pre-trained model for image classification. We set the width
as 768 and the depth as 48. The total number of trainable
parameters and FLOPs is comparable to the original con-
figuration (i.e., width is 1024, depth is 24). The the mean
standard deviation of the token representations is shown in
Figure 1(a).

Observe that the mean standard deviations of ViT-L and
MAE-L both increase along depth. Intuitively, this con-
tradicts with our expectation as the over-smoothing leads
to similar token representations. As stated in (Dong et al.,
2021), residual connection within transformer indeed al-
leviates over-smoothing (to some extent). Nevertheless,
the over-smoothing issue still exists even if we have resid-
ual connection (Dong et al., 2021; Shi et al., 2021). We
can observe that the mean standard deviation increasing
on MAE-L is much faster than that on ViT-L. That means
the deeper transformer blocks can learn different semantics
for different token representations in MAE. In other words,

the over-smoothing issue is much less pronounced in the
transformer model pre-trained with the masked autoencoder
setting.

Patch-pair cosine similarity. We further verify that the
over-smoothing issue can be alleviated in masked autoen-
coder. Following Gong et al. (2021), we compare the
patch-pair cosine similarity between ViT-L and MAE-L
with deeper and narrower configuration. If there is an over-
smoothing issue in the model, we should observe that the
patch-pair cosine similarity increases along depth. The more
serious the over-smoothing issue is, the faster the cosine
similarity increases. To remove the impact from input repre-
sentations (residual connection), we use the zero-centered
token representations h̃i = hi − h̄i for evaluation. The re-
sults are shown in Figure 1(b). Generally, the cosine similar-
ity of ViT increases along the depth due to over-smoothing.
However, for the model pre-trained by the masked autoen-
coder framework, the cosine similarity keeps constant along
depth. This comparison is interesting, as we can barely
observe the over-smoothing issue on the model pre-trained
by the masked autoencoder, even if we are using a deeper
model than usual.

2.2. Theoretical Analysis

The reason why over-smoothing happens in Transformer has
been well-studied (Dong et al., 2021; Wang et al., 2022b).
Conceptually, each token representation can be seen as node
in a directed graph and each attention score is a weighted
edge. Recent study (Wang et al., 2022b) proposes to under-
stand the transformer over-smoothing issue via the Fourier
domain analysis by giving a closer examination of model
architecture. However, existing work ignores that training
objective also has relation with over-smoothing. This pa-
per adapts their theorem as basis to reason why MAE can
alleviate over-smoothing.

Given a Discrete Fourier Transform (DFT) F : RN →
CN , the Inverse Discrete Fourier Transform (IDFT) F−1:
CN → RN , and input signal x ∈ RN , let z = Fx be
the spectrum of x. zDC ∈ C and zHC ∈ CN−1 take
the first element and the rest elements of z, respectively.
The DFT here can be implemented by left multiplying a
pre-defined DFT matrix whose kth row is Fourier basis
fk = [e2πj(k−1)·0, . . . , e2πj(k−1)·(N−1)]T /

√
N , where j

denotes the imaginary unit and k denotes the k-th row of
DFT matrix. Therefore, for signal x, we have the Direct-
Current (DC) component DC[x] = f1x and the complemen-
tary high-frequency component HC[x] = [f2, . . . , fN ]x.

Based on the definition above, given input token sequence
X ∈ RN×d, its i-th channel xi ∈ RN , and radius of a ball
γ > 0, assuming ||xi||2 ≤ γ2, Wang et al. (2022b) proposes
and proves:
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||HC[SA(X)]||F ≤ τ ||HC[X]||F (2)

τ =

√
ne2α

e2α + n− 1
||WV ||2 (3)

α ≤ γ2||WQWK
T ||2√

d
(4)

where SA(·) denotes self-attention (Vaswani et al., 2017),
WQ, WK , WV are query, key and value trainable matrices.
When τ < 1, HC[SA(X)] will decay to zero exponentially.
As a comparison, the DC component would not be affected
by the attention scores. After applying a number of attention
layers, which is exactly what we do in Transformer, the DC
component would dominate the hidden representations and
thus over-smoothing happens.

Then, our first question is, can we understand the reason
why MAE can alleviate the over-smoothing with Fourier
analysis? For MAE, we mask parts of the ground truth X
as Xm. We define the mask function as Xm = M(X).
The masked parts in Xm are filled with the DC Compo-
nent as what we usually do in popular MAE (e.g., BERT).
We usually use Xm as the model input. During train-
ing, model is minimizing the distance between Xm

L and
X, where Xm

L is the hidden representation after L trans-
former layers. If we transform X, Xm and Xm

L to Fourier
domain like Z = FX, Zm = FXm, and Zm

L = FXm
L ,

the learning objective is minimizing the distance between
||HC[Z]||F and ||HC[Zm

L ]||F . In M(·), we replace the orig-
inal signal including both DC and HC components with the
constant mask signal with the DC component only, so we
can assume ||HC[Zm]||F < ||HC[Z]||F . Then, we obtain
||HC[Zm

L ]||F < ||HC[Zm]||F < ||HC[Z]||F . Obviously,
the learning objective of MAE is pushing ||HC[Zm

L ]||F ≈
||HC[Z]||F and that would make the ||HC[Zm

L ]|| closer to its
upper bound (i.e., ||HC[Z]||F ) during MAE training, which
means the smoothing rate τ in Eq. 2 would be pushed to-
wards greater implicitly to avoid the decay of high-frequency
information. As a comparison, the model trained via sim-
ple classification target can still finish the task using totally
identical token representations with DC component only.
The reason is that the high-frequency information decay is
not regularized by training objective.

The next question is whether τ can be trained towards
greater. The answer is yes. First, τ is positive related with
||WV ||2. At the same time, α in Eq. 3 has an upper bound
in Eq. 4. When model tends to provide more upside poten-
tial for α, it has to increase ||WQW

T
K ||2 or at least ensure

||WQW
T
K ||2 would not decay during training. Formally,

let n > 2, we can easily find ∂τ
∂α > 0 and ∂τ

∂||WV ||2 > 0.
According to Eq. 4, we can increase the upper-bound of
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Figure 2: Quantitative verification of our theoretical rea-
soning. beta > 1.0 means the MAE is alleviating the over-
smoothing issue at this layer.

α via increasing ||WQW
T
K ||2. Therefore, MAE can im-

plicitly amplify the smoothing rate by increasing the value
of ||WQW

T
K ||2 and ||WV ||2, and then alleviate the over-

smoothing of Transformer.

2.3. Quantitative Verification

We conduct quantitative verification to check our reasoning
that MAE can implicitly maximize the smoothing rate. We
initialize two large scale Transformer models (ViT-L/16
and MAE-L/16) with the same initializer but train them
with ViT training objective and MAE pre-training objective,
respectively. If our reasoning is correct, we can expect the
model trained with MAE objective has greater ||WQW

T
K ||2

and ||WV ||2 than model trained with simple classification
objective.

We define βQK =
||WMAE

Q WMAE
K

T ||2
||WViT

Q WViT
K

T ||2
and βV =

||WMAE
V ||2

||WViT
V ||2

.

β > 1 means MAE tends to obtain larger smoothing rate
than simple supervised learning. In that case, the MAE
training objective is alleviating over-smoothing implicitly.
We visualize the β value of different layers. The comparison
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Figure 3: Over-smoothing analysis of CLIP and OPT.

is shown in Figure 2. We found that, even if we initialize
ViT and MAE with the same initializer, both βQK and βV

are significantly greater than 1.0 (green line) for most layers
after training, which matches well with our expectation.

2.4. Over-smoothing on Different Objectives

Based on the analysis presented above, we can conclude
that token-level training objectives, such as next-token pre-
diction in Language Modeling, exhibit a less severe over-
smoothing issue. On the other hand, sequence-level objec-
tives, like contrastive image pre-training, are more prone to
over-smoothing. To validate this conclusion, we conducted
cosine similarity experiments using CLIP (Radford et al.,
2021) and OPT (Zhang et al., 2022). Figure 3(a) presents
the results of the CLIP model, demonstrating a similar over-
smoothing behavior to Vanilla ViT (Vision Transformer).
This observation aligns with our expectations. Furthermore,
to investigate whether the over-smoothing issue can be mit-
igated by next token prediction, a widely employed LLM
pre-training objective, we evaluated OPT and found that it
effectively addresses over-smoothing. This finding is sig-
nificant as it helps to elucidate why LLM models exhibit
greater scalability compared to numerous vision models.
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(b) Scaling MAE along depth

Figure 4: Scaling ViT and MAE with comparable number
of parameters and computation cost. For deeper model, we
compress the width to ensure a fair comparison.

3. Bamboo
Our analysis above shows that the masked autoencoder helps
to alleviate the over-smoothing issue, which is a main chal-
lenge in scaling transformer along depth (Zhou et al., 2021a;
Dong et al., 2021). To realize this potential, we suggest
that we may obtain better performance by adapting deeper
and narrower model configuration when training with MAE
objective. We name this idea as Bamboo in this paper due
to the shape of new transformer configuration. Certainly,
infinite deeper and narrower configurations do not always
improve performance, as there are a few other reasons hin-
dering scaling transformer along depth. In this section, we
devote to find a sweet point following the Bamboo idea, to
achieve effective masked autoencoder by experiments.

To validate our reasoning above, we conduct experiments
on training transformer on ILSVRC-2012 ImageNet (Deng
et al., 2009) (ImageNet-1K), and report the top-1 accuracy.
We use the original ViT trained by supervised learning and
MAE pre-trained masked image modeling as the test plat-
form. For a fair comparison with the original transformer
configurations, when we scale transformer to deeper, we
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Table 1: The configurations we used to scale transformer along depth. For a fair comparison, we keep a comparable
computation cost with the original transformer configurations (i.e., depth=12 for Base, depth=24 for Large).

Scale Base Large

Depth 12 24 48 96 24 48 60 96
Width 768 512 384 256 1024 768 640 512
#Attention Heads 12 8 6 4 16 12 10 8
FLOPs 1× 0.9× 1× 0.9× 1× 1.1× 1× 1×

also reduce the width to keep comparable number of train-
able parameters and computation cost. The configurations
we used are summarized in Table 1.

For supervised learning models (i.e., ViT), we train base
scale models for 300 epochs and large scale models for
200 epochs following He et al. (2021). We use Ran-
dAugment (Cubuk et al., 2020), drop path (Huang et al.,
2016), mixup, cutmix (Yun et al., 2019), label smooth-
ing (Szegedy et al., 2016) for data augmentation. Detailed
hyper-parameters are summarized in Appendix A. For the
masked autoencoder, we pre-train the base scale models for
1600 epochs and fine-tune for 100 epochs. For large models,
we pre-train for 800 epochs and fine-tune for 50 epochs.

The results of scaling to deeper transformers are summarized
in Figure 4. For both the base-scale and large-scale mod-
els, we report the top-1 accuracy on ImageNet-1K dataset.
We can observe the models that are trained by supervised
image classification directly (i.e., ViT-B and ViT-L) can-
not improve accuracy when we use deeper architectures.
For ViT-B, the top-1 accuracy on ImageNet-1K remains the
same when the depth is smaller than 50, but after that, there
is a significant drop on accuracy. For ViT-L, the accuracy
decreases even faster than the ViT-B. There is a significant
drop on accuracy when we use the narrower and deeper
models. However, for masked autoencoders, we observe
totally different patterns. Even if we keep the comparable
trainable parameters and computation cost, with such a sim-
ple modification, the masked autoencoders gain significant
improvements. More importantly, when we scale to 48 lay-
ers, both MAE-B and MAE-L reach sweet spots. When
scaling to 96 layers, we observe the training is unstable
compared with shallower models. This result matches well
with our observation in Figure 1(b). At around 40th layer,
the over-smoothing issue starts to happen slightly in masked
autoencoder, which is much later than the ViT model. We
suggest another reason of the unstable deep model training
is the too-large model updates (Wang et al., 2022a). In this
work, we focus on the over-smoothing issue of deep trans-
former training instead. The large model updates in deeper
layers are out-of-scope. We leave that as our future work.

According to the experimental results above, we find that
masked autoencoder can indeed scale transformer well along
depth. Even if we keep comparable trainable parameters
and computation cost with the original transformer, the

model achieves better accuracy. Another observation is,
both transformer-base and transformer-large reach their
sweet spots at around 50 layers. We thus recommend a
new set of transformer configurations in Table 2 following
our Bamboo idea, which are deeper and narrower than the
original transformer configurations.

4. Evaluation on Vision Tasks
4.1. Settings

We further evaluate our deeper and narrower configurations
on vision task. We train different models with more training
epochs and compare with SoTA vision models. We conduct
experiments on ImageNet-1K and compare with recent su-
pervised vision models e.g., DeepViT (Zhou et al., 2021a)
and DeiT (Touvron et al., 2021), and self-supervised vision
models e.g., DINO (Caron et al., 2021), MoCo v3 (Chen
et al., 2021), BEiT (Bao et al., 2021) and MAE (He et al.,
2021). Compared with the MAE, the only difference is the
configurations. That is, MAE uses original transformer con-
figurations and we use our Bamboo configurations. The
experiments are to verify that such a simple modification
can improve model effectiveness and show the potential of
more reasonable configurations.

We evaluate the models on three different scales, i.e., base,
large, and huge. The data augmentation setting is exactly
the same as MAE for a fair comparison. Again, the only dif-
ference is that we use the Bamboo configurations instead of
the original transformer configurations. During fine-tuning,
we use the same script with training ViT from scratch. We
fine-tune base models for 100 epochs. For large and huge
models, we fine-tune them for 50 epochs following existing
work (Bao et al., 2021; He et al., 2021).

4.2. Results

Results on ImageNet-1K are reported in Table 3. For train-
ing ViT from scratch, we report the original results (Dosovit-
skiy et al., 2020) and the results with strong data augmenta-
tion (He et al., 2021). A few recent work (Zhou et al., 2021a;
Touvron et al., 2021) focusing on training ViT from scratch
on ImageNet-1K are also included. In general, we can
find the models pre-trained by self-supervised learning (e.g.,
DINO, MoCO v3, MAE) perform much better than train-
ing from scratch. If we only consider the self-supervised
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Table 2: Re-designed configurations under Bamboo idea. The computation cost denotes the FLOPs compared with the
original configuration.

Scale Base Large Huge

Original Bamboo Original Bamboo Original Bamboo

Depth 12 48 24 48 32 64
Width 768 384 1024 768 1280 896
#Attention Heads 12 6 16 12 16 14
Computation cost 1× 1× 1× 1.1× 1× 1×

Table 3: Top-1 accuracy on ImageNet-1K. We report two versions of ViT training from scratch. The first one is from
original ViT paper (Dosovitskiy et al., 2020), and the second one is from He et al. (2021)’s re-implementation with strong
data augmentation. For MAE-B, we reproduce the results by running the official code and obtain a slightly different result
(denoted by 83.3*). The original result is 83.6.

Method Pre-train Data Base Large Huge

ViT from scratch (Dosovitskiy et al., 2020) - 77.9 76.5 -
DeepViT (Zhou et al., 2021a) - 80.9 - -
DeiT (Touvron et al., 2021) - 81.8 - -
ViT from scratch (He et al., 2021) - 82.1 81.5 80.9

DINO (Caron et al., 2021) IN1K 82.8 - -
MoCo v3 (Chen et al., 2021) IN1K 83.2 84.1 -

BEiT (Bao et al., 2021) IN1K + DALL-E 83.2 85.2 -
MaskFeat (Wei et al., 2021) IN1K 84.0 85.7 -
IBOT (Zhou et al., 2021b) IN1K 84.0 84.8 -

MAE (He et al., 2021) (Direct baseline) IN1K 83.3* 85.9 86.9
Bamboo (Ours) IN1K 84.2 86.3 87.1

learning approaches, masked image modeling-based meth-
ods (e.g., BEiT, MaskFeat, IBOT, MAE) outperform the
contrastive learning-based methods (e.g., DINO, MoCo v3)
significantly, especially on larger scale.

Since we are focusing on the scalability of training trans-
former with masked autoencoder, we choose MAE as our
direct baseline. We train MAE with Bamboo configurations
and report the results in Table 3. Observe that our Bamboo
achieves the best top-1 accuracy on all scales. On the base
scale, Bamboo achieves state-of-the-art performance, 84.2
top-1 accuracy, which is 0.9 (0.6) points higher than MAE-B.
When we scale the model up to large scale and huge scale,
Bamboo remains the best performer and achieves 86.3 and
87.1 top-1 accuracy respectively. Note that, compared to
other scales, the improvement is not so significant on the
huge scale. One reason is, the original huge configuration
has been deep (i.e., 32 layers), which is close to the sweet
point. Similarly, this can also explain why the configurations
designed under Bamboo can improve MAE-B significantly.
Since the real run time may be influenced by many other
factors (e.g., GPU or TPU utilization), we report the real
throughput in the Appendix B.

5. Evaluation on Language Tasks
We further evaluate our Bamboo configurations on language
tasks. We select BERT (Devlin et al., 2018) as the plat-
form to evaluate our Bamboo configuration because it is
widely used on many language tasks. Note that BERT is a
post-layer normalization transformer model. Better perfor-
mance on BERT means our design can generalize to other
architectures. We follow the BERT paper to use Wikipedia
and bookscorpus to pre-train. During pre-training, we use
LAMB optimizer and set batch size and learning rate as
4096 and 1.76e-3, respectively, following You et al. (2019).

During fine-tuning, we conduct experiments on General
Language Understanding Evaluation (GLUE) benchmark.
The GLUE benchmark (Wang et al., 2018) is widely used
in natural language understanding tasks, which include 8
tasks, i.e., CoLA, MNLI, MRPC, QNLI, QQP, RTE, SST-2
and STS-B. We set the learning rate as 1e-5 or 2e-5. Batch
size is fixed as 32. For small datasets, i.e., CoLA, MRPC,
RTE and STS-B, we fine-tune for 10 epochs. For larger
datasets, i.e., MNLI, QNLI, QQP and SST-2, we fine-tune
for 3 epochs. Matthew’s correlation is used as metric for
CoLA. For MNLI, we report the average accuracy on MNLI-
m and MNLI-mm. QNLI and RTE also adapt the accuracy
as metric. The results on MRPC and QQP are reported
with the average of F1 and accuracy. We use Spearman
correlation on STS-B. We run the code 5 times and report
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Table 4: Results of fine-tuning on GLUE benchmark.
Method CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg

BERT-B 59.6 83.7 88.0 90.4 88.8 68.6 91.5 89.4 82.5
Bamboo-B 60.5 84.3 88.4 90.5 89.0 70.0 92.2 89.5 83.1

BERT-L 60.9 86.2 89.3 92.3 89.6 73.1 92.5 90.4 84.3
Bamboo-L 62.9 87.1 89.8 92.4 89.4 77.3 93.8 90.6 85.4

the median for fine-tuning.

The results on language tasks are reported in Table 4. Un-
der the same pre-training and fine-tuning settings, models
with Bamboo configurations outperform BERT significantly.
Bamboo-L achieves the best performance in Table 4. Com-
pared with BERT-L, our Bamboo-L wins on 7 out of 8
datasets, and surpassed BERT-L by 1.1 points on average.
It is also notable Bamboo can outperform baselines on both
large datasets (e.g., MNLI) and small datasets (e.g., CoLA).

6. Discussion
Compared with simply scaling along depth, this work
maintains a comparable computation cost and the number
of trainable parameters. When scaling along depth, we also
make the deep transformer narrower. Under such setting,
the deeper and narrower configurations re-designed under
the Bamboo idea can still outperform the baseline config-
urations, suggesting that we should consider narrower and
deeper transformer when training by masked autoencoder.
One related work is (Tay et al., 2021), an empirical study
of practical scaling of transformer, which has a similar ob-
servation, deeper and narrower can improve accuracy. On
this basis, our finding is consistent with that in (Tay et al.,
2021). However, we are not simply comparing different con-
figurations (Tay et al., 2021) or training objectives (Voita
et al., 2019). We are actually bridging the gap and study the
relation between configurations and the training objective.
Another related work (Levine et al., 2020) investigates the
optimal depth-to-width ratio for different scales. However,
they do not tackle the impact of training objectives.

Compared with brute-force hyper-parameter tuning, we
provide both theoretical reasoning and quantitative analysis
to justify our insight, i.e., masked autoencoder alleviates
over-smoothing issue in transformer. Motivated by this,
we suggest using deeper and narrower model for masked
autoencoder. There is no guarantee to ensure the configura-
tions are always optimal. We believe it is impossible in deep
learning to know the optimal configurations before experi-
ments. However, we argue that the masked autoencoder gets
more benefits from deeper configurations. Our insight may
instruct future work to consider configurations according to
the training objectives.

Instead of proposing a new approach or a new set of con-
figuration, this work focuses on an existing but neglected

problem. After revisiting, we find configurations should be
re-designed for different training objectives. We highlight
this is important as following the conventional configura-
tion is not the real “fair” comparison. If we keep do this in
the future, we will always pick the training objective that
wins the “configuration lottery”, and that would miss some
real effective objective with great potential. The analysis
sections in this paper can be seen as an example of how to
design configurations for different objectives. After simply
re-designing a set of configurations for masked autoencoder,
we can see a significant improvement on both vision and
language tasks. On vision tasks, we even achieve SoTA top-
1 accuracy on ImageNet. However, note that we highlight
our main contribution is an insight instead of a SoTA model,
and it is orthogonal to the future transformer modifications.

7. Conclusion
In this work, we first study the relationship between trans-
former configuration and the training objective. Compared
with supervised learning, training transformer with MAE
can alleviate over-smoothing. We then explore the reason
behind this finding through theoretical reasoning and quan-
titative verification via Fourier domain analysis. Under this
insight, we rethink the widely used configurations in vision
and language tasks, and suggest deeper and narrower con-
figurations when training with MAE. To further verify the
effectiveness of our configuration, we conduct comprehen-
sive experiments on both large-scale vision and language
tasks and achieve significant improvement with such a sim-
ple modification. More importantly, we argue that using a
configuration for a fair comparison may not be really fair.
That may underestimate the potential of a new training ob-
jective who does not win the “configuration lottery”. We
suggest analyzing the inductive bias of each objective and
sweeping the configuration following the analysis.
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A. Fine-tuning Hyper-parameters

Table 5: Hyper-parameters on ImageNet fine-tuning

Parameter Base Large Huge

Epoch 100 50 50
Warmup Epochs 5
Batch Size 1024
Learning rate 2e-3
Layer-wise learning rate decay 0.65 0.75 0.75
Weight Decay 0.05
DropPath 0.1 0.2 0.2
Label smoothing 0.1
Erasing prob. 0.25
RandAug 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0

B. Throughput Comparison

Table 6: Throughput comparison of re-designed configurations under Bamboo idea. The throughput here means the image
precessed per second by one TPU core. is measured during MAE pre-training. For base and large-level models, we use 128
TPUv3 cores in parallel. For the huge models, we use 256 TPUv3 cores.

Scale Base Large Huge

Original Bamboo Original Bamboo Original Bamboo

Computation Cost 1× 1× 1× 1.1× 1× 1×
Throughput 1× 0.9× 1× 0.9× 1× 0.9×

From Table 6, we can see the deeper configurations are slightly slower, although they have comparable computation cost.
However, we highlight that is fine. There is a trade-off instead of a limitation when using narrow configuration. During
inference, we can actually do the inference layer by layer and only load one transformer layer into memory. After using, we
can offload the layer and load the next one in. Such a design can be found in Figure 5 of SE-MoE paper (Shen et al., 2022).
Since our single layer is narrower and includes fewer parameters, our model is more memory-efficient during inference.
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C. More Figures
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(a) ImageNet Top-1 Accuracy improvement when scaling ViT-
B and MAE-B across depth.
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(b) Average standard deviation gap when scaling ViT-B and
MAE-B across depth.
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(c) ImageNet Top-1 Accuracy improvement when scaling ViT-
L and MAE-L across depth.
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(d) Average standard deviation gap when scaling ViT-L and
MAE-L across depth.

Figure 5: We compare the ImageNet Top-1 accuracy and average standard deviation of ViT and MAE models with different
configurations. A larger average standard deviation gap means that MAE training objective alleviates more over-smoothing
issue.
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