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Abstract
Recent works have shown that tackling offline
reinforcement learning (RL) with a conditional
policy produces promising results. The Deci-
sion Transformer (DT) combines the conditional
policy approach and a transformer architecture,
showing competitive performance against several
benchmarks. However, DT lacks stitching ability
– one of the critical abilities for offline RL to learn
the optimal policy from sub-optimal trajectories.
This issue becomes particularly significant when
the offline dataset only contains sub-optimal tra-
jectories. On the other hand, the conventional
RL approaches based on Dynamic Programming
(such as Q-learning) do not have the same limita-
tion; however, they suffer from unstable learning
behaviours, especially when they rely on function
approximation in an off-policy learning setting.
In this paper, we propose the Q-learning Decision
Transformer (QDT) to address the shortcomings
of DT by leveraging the benefits of Dynamic Pro-
gramming (Q-learning). It utilises the Dynamic
Programming results to relabel the return-to-go
in the training data to then train the DT with the
relabelled data. Our approach efficiently exploits
the benefits of these two approaches and com-
pensates for each other’s shortcomings to achieve
better performance.

1. Introduction
The transformer architecture employs a self-attention mech-
anism to extract relevant information from high-dimensional
data. It achieves state-of-the-art performance in a vari-
ety of applications, including natural language process-
ing (NLP) (Vaswani et al., 2017; Radford et al., 2018;
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Devlin et al., 2018) or computer vision (Ramesh et al.,
2021). Its translation to the RL domain, the Decision trans-
former (DT) (Chen et al., 2021), successfully applies the
transformer architecture to offline reinforcement learning
tasks with good performance when shifting their focus on
the sequential modelling. It employs a goal conditioned pol-
icy which converts offline RL into a supervised learning task,
and it avoids the stability issues related to bootstrapping for
the long term credit assignment (Srivastava et al., 2019; Ku-
mar et al., 2019b; Ghosh et al., 2019). More specifically, DT
considers a sum of the future rewards – return-to-go (RTG),
as the goal and learns a policy conditioned on the RTG and
the state. It is categorised as a reward conditioning approach.
Although DT shows very competitive performance in the
offline reinforcement learning (RL) tasks, it fails to achieve
one of the desired properties of offline RL agents, stitching.
This property is an ability to combine parts of sub-optimal
trajectories and produce an optimal one (Fu et al., 2020).
We show a simple example of how DT (reward condition-
ing approaches) would fail to find the optimal path. To
demonstrate the limitation of the reward conditioning ap-
proaches (DT), consider a task to find the shortest path from
the left-most state to the rightmost state without going down
to the fail state in Fig. 1. We set the reward as −1 at every
time step and−10 for the action going down to the fail state.
The training data covers the optimal path, but none of the
training data trajectories has the entire optimal path. The
agent needs to combine these two trajectories and come up
with the optimal path. The reward conditioning approach
essentially finds a trajectory from the training data that gives
the ideal reward and takes the same action as the trajectory.
In this simple example, trajectory 2 has a meagre reward.
Hence, it always follows the path of trajectory 1 despite
trajectory 2 giving the optimal path for the first action.

In contrast to the reward conditioning approaches (DT),
Q-learning1 does not suffer from the issue and finds the op-
timal path quickly in this simple example. Q-learning takes
each time step separately and propagates the best future re-
wards backwards. Hence it can learn from the first optimal

1 In this paper, we will use the Q-learning and Dynamic Program-
ming interchangeably to indicate any RL algorithm relying on
the Bellman-backup operation.
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Figure 1. A simple example demonstrates the decision transformer approach’s issue (lack of stitching ability) – fails to find the shortest
path to the goal. In contrast, Q-learning finds the shortest path. The numbers on the arrows are rewards on the path and the numbers on
the states are RTGs.

Figure 2. Evaluation results for conservative Q-learning (CQL), Decision Transformer (DT) and Q-learning Decision Transformer (QDT).
The left two plots (simple and maze2d environments) show that the DT does not perform as it fails to stitch trajectories, and the right plot
shows that CQL fails to learn from a sparse reward scenario (delayed reward). In contrast, QDT achieves consistently good results across
all the environments.

action from trajectory 2. However, Q-learning has some
issues on a long time horizon and sparse reward scenarios.
It attempts propagating the value function backwards to its
initial state, often struggling to learn across long time hori-
zons and sparse reward tasks. This is especially true when
Q-learning uses function approximation in an off-policy
setting as discussed in Sec. 11.3 in (Sutton & Barto, 1998).

Here, we devise a method to address the issues above by
leveraging Q-learning to improve DT. Our approach differs
from other offline RL algorithms that often propose a new
single architecture of the agent and achieves better perfor-
mance. We propose a framework that improves the quality
of the offline dataset and obtains better performance from
the existing offline RL algorithms. Our approach exploits
the Q-learning estimates to relabel the RTG in the training
data for the DT agent. The motivation for this comes from
the fact that Q-learning learns RTG value for the optimal
policy. This suggests that relabelling the RTG in the training
data with the learned RTG should resolve the DT stitching is-
sue. However, Q-learning also struggles in situations where
the states require a large time step backward propagation.
In these cases, we argue that DT will help as it estimates
the sequence of states and actions without backward propa-
gation. Our proposal (QDT) exploits the strengths of each

of the two different approaches to compensate for other’s
weaknesses and achieve a more robust performance. Our
main evaluation results are summarised in Fig. 2. The left
two plots (simple and maze2d environments) show that DT
does not perform well as it fails to stitch trajectories, while
the right plot illustrates that CQL (Q-learning algorithm
for offline reinforcement learning) fails to learn in a sparse
reward scenario (delayed reward). These results indicate
that neither of these approaches works well for all environ-
ments, and we might have abysmal results by selecting the
wrong type of algorithms. In contrast, QDT performs con-
sistently well across all environments and shows robustness
against different environments. Through our evaluations,
we also find that some of the evaluation results in the prior
works may not be directly comparable, and it causes some
contradicting conclusions. We touch on the issue in Sec. 6.

2. Preliminaries
Offline Reinforcement Learning. The goal of RL is to
learn a policy maximising the expected sum of rewards in
a Markov decision process (MDP), which is a four-tuple
(S,A, p, r) where S is a set of states, A is a set of actions, p
is the state transition probabilities, and r is the reward.
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In the online or on-policy RL settings, an agent has access to
the target environment and collects a new set of trajectories
every time it updates its policy. The trajectory consists of
{st, at, rt}Tt=0 where st, at and rt are the state, action and
reward at time t respectively, and T is the episode time
horizon. In off-policy RL case, the agent also has access
to the environment to collect trajectories, but it can update
its policy with the trajectories collected with other policies.
Hence, it improves its sample efficiency as it can still make
use of past trajectories. Offline RL goes one step further than
off-policy RL. It learns its policy purely from a static dataset
that is previously collected with an unknown behaviour
policy (or policies). This paradigm can be precious in case
of the interaction with the environment being expensive or
high risk (e.g., safety critical applications).

Decision Transformers. DT architecture (Chen et al., 2021)
casts the RL problem as conditional sequence modelling.
Unlike the majority of prior RL approaches that estimate
value functions or compute policy gradients, DT outputs
desired future actions from the target sum of future rewards
RTGs, past states and actions.

τ = (Rt−K+1, st−K+1, at−K+1, · · · ,
Rt−1, st−1, at−1, Rt, st). (1)

Eq. 1 shows the input of a DT, where K is the context length,
R is RTGs (Rt =

∑T
t′=t rt′), s is states and a is actions.

Then DT outputs the next action (at). DT employs Trans-
former architecture (Vaswani et al., 2017), which consists
of stacked self-attention layers with residual connections. It
has been shown that the Transformer architecture success-
fully relates scattered information in long input sequences
and produces accurate outputs (Vaswani et al., 2017; Rad-
ford et al., 2018; Devlin et al., 2018; Ramesh et al., 2021).

Conservative Q learning. In this work, we use the
conservative Q learning (CQL) framework (Kumar et al.,
2020) for the Q-learning algorithm. CQL is an offline RL
framework that learns Q-functions that are lower-bounds
of the true values. It augments the standard Bellman er-
ror objective with a regulariser which reduces the value
function for the out-of-distribution state-action pair while
maintaining ones for state-action pairs in the distribution
of the training dataset. In practice, it uses the following
iterative update equation to learn the Q-function under a
learning policy µ(a|s).

Q̂k+1 ←
argmin

Q
α
(
Es∼D,a∼µ(a|s)[Q(s, a)]− Es,a∼D[Q(s, a)]

)
+
1

2
E s, a, s′ ∼ D
a′ ∼ µ(a′|s′)

[(
r(s, a) + γQ̂k(s′, a′)−Q(s, a)

)2
]
,

(2)

whereD is the training dataset and γ is a discount factor. Ku-
mar et al. (2020) showed that while the resulting Q-function,
Q̂µ := limk→∞ Q̂k may not be a point-wise lower-bound,
it is a lower bound of V (s), i.e. Eµ(a|s)[Q̂

µ(s, a)] ≤ V µ(s).

3. Method
We propose a method that leverages Dynamic Programming
approach (Q-learning) to compensate for the shortcomings
of the reward conditioning approach (DT) and build a robust
algorithm for the offline RL setting. Our proposal consists
of three steps. First, the value function is learned with
Q-learning. Second, the offline RL dataset is refined by
relabelling the RTG values with the result of Q-learning.
Finally, the DT is trained with the relabelled dataset. The
first and third steps do not require any modifications of the
existing algorithms.

The reward conditioning approach (DT) takes an entire tra-
jectory sequence and conditions on it using the sum of the
rewards for that given sequence. Such an approach struggles
on tasks requiring stitching (Fu et al., 2020) – the ability
to learn an optimal policy from sub-optimal trajectories by
combining them. In contrast, the Q-learning alternative
propagates the value function backwards for each time step
separately with the Bellman backup, and pools the infor-
mation for each state across trajectories. It therefore does
not have the same issue. Our proposal tackles the stitching
issue of the reward conditioning approach by relabelling
the RTG values with the learned Q-functions. With the rela-
belled dataset, the reward conditioning approach (DT) can
then utilize optimal sub-trajectories from their respective
sub-optimal trajectories.

We now discuss how to relabel the RTGs values with the
learned Q-functions. Replacing all of the RTGs values with
Q-functions is not adequate because not all the learned Q-
functions are accurate, especially in a long time horizon and
sparse reward case. Ideally, we would like to replace the
RTGs values where the learned Q-functions are accurate.

In this work, we employ the CQL framework for the offline
Q-learning algorithm, which learns the lower bound of the
value function. We replace the RTGs values when the RTG
in the trajectory is lower than the lower bound. With this
approach, our method substitutes the RTGs values where
the learned value function is indeed accurate (or closer to
the true values). We also replace all RTG values prior to
the replaced RTG along with the trajectory by using reward
recursion (Rt−1 = rt−1+Rt). This propagates the replaced
RTG values to all the time steps prior to the replaced point.

To apply this idea, we initialise the last state RTG to zero
(RT = 0), and then we start the following process from the
end of the trajectory to the initial state backwards in time.
First, the state value is computed for the current state with
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the learned value function V̂ (st) = Ea∼π(a|st)[Q̂(st, a)],
where the π is the learned policy. Next, the value function
is compared (V̂ (st)) against the RTG value for the current
state (Rt). If the value function is greater than that of the
RTG, the RTG for the previous time step is set from (Rt−1)
to rt−1 + V̂ (st), otherwise it is set to rt−1 +Rt. We repeat
this process until the initial state is reached. This process is
summarised in Algorithm 1.

The above relabelling process might introduce inconsis-
tencies between the reward and RTG within the DT in-
put sequence (Eq. 1). The RTG value is sum of the fu-
ture rewards, hence it must always be Rt = rt + Rt+1.
However, the relabelling process might break this rela-
tionship. To maintain this consistency within the input
sequence of DT, we regenerate the RTG for the input
sequence ({R̂t−K+1, · · · , R̂t−1, R̂t}) by copying the last
RTG (R̂t = Rt) and then repeatedly apply R̂t′ = r′t+R̂t′+1

backwards until t′ = t−K +1. We repeat this for each the
input sequences to maintain the consistency of the rewards
and RTGs. This process is summarised in Algorithm 2.

Algorithm 1 Relabelling return-to-go

Input: rewards r1:T , learned value function V̂ (s), trajec-
tory length T
Output: relabelled return to go R1:T

RT ← 0
τ ← T
while τ > 0 do
Rτ−1 ← rτ−1 +max(Rτ , V̂ (sτ ))
τ ← τ − 1

end while

Algorithm 2 Generating return-to-go for DT
Input: rewards rt−K+1:t, return to go for time t Rt,
context length K
Output: relabelled return to go for DT R̂1:T

R̂t ← Rt

τ ← t− 1
while τ > t−K do
R̂τ ← rτ + R̂τ+1

τ ← τ − 1
end while

Theoretical considerations of QDT. Q-learning Decision
Transformer (QDT) relies on DT as the agent algorithm,
which can be seen as a reward conditioning model. A
reward conditioning model takes the states and RTG as
inputs and outputs actions. If we assume the model is
trained with the state st and the optimal action at together
with the optimal state-action value function (Q∗(st, at)),
then we can guarantee that the model will output the opti-
mal action (argmaxa Q

∗(st, a)) for as long as it is given
st and maxa Q

∗(st, a) as inputs (Srivastava et al., 2019).

In practice, we do not know the optimal value function
Q∗(s, a), hence DT (and similarly other reward condition-
ing approaches) uses RTG instead. RTG is collected through
the behaviour policy (or policies) and often is not optimal
– with the majority of values being much lower than the
corresponding optimal value function (Q∗(s, a)). As QDT
uses CQL to learn the optimal conservative value function,
Th. 3.2 in Kumar et al. (2020) shows that the conservative
value function is a lower bound of the true value function.
Hence the QDT relabelling process moves the RTG in the
training dataset closer to the optimal value function (see
Appendix D).

4. Related Work
Offline reinforcement learning. The offline RL learns
its policy purely from a static dataset that was previously
collected with an unknown behaviour policy (or policies).
As the learned policy might differ from the behaviour pol-
icy, the offline algorithms must mitigate the effect of the
distributional shift (Agarwal et al., 2020; Prudencio et al.,
2022). One of the most straightforward approaches to ad-
dress the issue is by constraining the learned policy to the
behaviour policy (Fujimoto et al., 2019; Kumar et al., 2019a;
Wu et al., 2019). Other methods constrain the learned policy
by making conservative estimates of future rewards (Ku-
mar et al., 2020; Yu et al., 2021; Fujimoto & Gu, 2021).
Some model-based methods estimate the model’s uncer-
tainty and penalize the actions whose consequences are
highly uncertain (Janner et al., 2019; Kidambi et al., 2020).
Some approaches address the distributional shift without
restricting the learned policy. One such approach group is
weighted imitation learning (Wang et al., 2018; Peng et al.,
2019; Wang et al., 2020; Nair et al., 2020; Chen et al., 2020;
Siegel et al., 2020; Brandfonbrener et al., 2021), which
carries out imitation learning by putting higher weights on
the good state-action pairs. It usually uses an estimated
advantage function as the weight. As this approach imitates
the selected parts of the behaviour policy, and it naturally
restricts the learned policy within the behaviour policy. The
other group of the approaches without restricting the learn-
ing policy is conditional sequence modelling, which learns
a policy conditioned with a particular metric for the future
trajectories. Some examples of the metrics are sum of the
future rewards (Srivastava et al., 2019; Chen et al., 2021), a
certain state (sub goal) (Codevilla et al., 2018; Ghosh et al.,
2019; Lynch et al., 2020) and even learned features from
the future trajectory (Furuta et al., 2021).

Our approach does not belong to any of these groups but is
related to the approach of learning pessimistic value func-
tion, the conditional sequence modelling and weighted im-
itation learning approaches. Essentially, our method is a
conditional sequence modelling approach as it learns the
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following action conditioned on the current state and the
sum of the future rewards, but the training data is augmented
by the result of the learned pessimistic value function. Also,
the overall high-level structure is somewhat similar to the
weighted imitation learning, which learns the value func-
tion and uses it to weight the training data in the following
imitation learning stage. However, each component is very
different from ours, and it uses the value function to weight
the training data, whereas our approach relabels the RTG
values by tracing back the trajectory with the learned value
function as well as the trajectory itself where the learned
value function is not reliable. Also, in our approach, the pol-
icy is learned with conditional sequence modelling, whereas
they use non-conditional non-sequential models. We can
apply our relabelling approach to the weighted imitation
learning algorithms, which is an exciting future avenue.

Data centric approach. Andrew Ng recently spoke about
the importance of the training data to achieve good per-
formance from a machine learning model and suggests
we should spend more of our effort on data than on the
model (Data-centric Approach) (Press, 2021). He said, ”In
the Data-centric Approach, the consistency of the data is
paramount and using tools to improve the data quality that
will allow multiple existing models to do well.” Our method
can be seen as Data-centric Approach for offline RL, as we
focus on improving the training data and using the existing
models. Our method provides a tool to improve data quality.

5. Evaluation
We investigate the performance of QDT relative to the of-
fline RL algorithm with the Dynamic Programming based
approach as well as the reward conditioning approach. As
QDT utilises the result of CQL and it is considered as the
state-of-art offline RL method, we pick CQL as the bench-
mark for the Dynamic Programming based approach and
DT for the reward conditioning approach for the same rea-
son. From the evaluations in this section, we would like to
demonstrate the benefits and weaknesses of the Dynamic
Programming approach and reward conditioning approach
and how (QDT) mitigates their weaknesses. We start our
investigation with a simple environment with sub-optimal
trajectories. As it is a simple environment, a Dynamic Pro-
gramming approach (CQL) should work well, and as it
uses sub-optimal trajectories, the reward conditioning ap-
proach (DT) will struggle. It is interesting to see how much
QDT helps in the circumstance. We also evaluate them on
Maze2D environments designed to test the stitching abil-
ity with different levels of complexity. We expect that DT
struggle whereas CQL and QDT performs well on them.
Then, we evaluate the algorithms on complex control tasks –
Open AI Gym MuJoCo environments with delayed (sparse)
reward as per Chen et al. (2021). They have zero rewards

at all the non-terminal states and put the total reward at the
terminal state. It should make the Dynamic Programming
approach (CQL) learning harder as it requires propagating
the reward from the terminal state all way to the initial
state. Finally, we show the evaluation results for Open AI
Gym MuJoCo environments with the original dense reward
setting for the reference.

Simple environment. To highlight the benefit of QDT, we
evaluate our method in a simple environment, which has
6-by-6 discrete states and eight discrete actions. The goal
of the task is to find the shortest path from the start to the
goal state. We prepare an offline RL dataset with a hundred
episodes from a uniformly random policy and then remove
an episode that achieves close to the optimal total reward to
make sure it only contains sub-optimal trajectories. Refer
to Appendix B for details of the environment and dataset.

Table 1. Simple Environment Evaluation Results. Average and
standard deviation scores are reported over 10 seeds.

CQL DT QDT
Total Reward 40.0± 0.0 15.9± 4.4 42.2± 6.3

Table 1 shows the summary of the evaluation results. We
also evaluate the performance of CQL, which is used for
relabeling. It shows vanilla DT fails badly, which indi-
cates DT struggles to learn from sub-optimal trajectories,
whereas CQL performs well as it employs a Dynamic Pro-
gramming approach, which can pool information across
trajectories and successfully figure out the near-optimal pol-
icy. It shows QDT performs similar to CQL, which indicates
that although QDT uses the conditional policy approach, it
overcomes its limitation and learns the near-optimal policy
from the sub-optimal data. Further details in Appendix B.

Maze2D environments. Maze2D domain is a navigation
task requiring an agent to reach a fixed goal location. The
tasks are designed to provide tests of the ability of offline RL
algorithms to be able to stitch together parts of different tra-
jectories (Fu et al., 2020). It has four kinds of environments
– open, umaze, medium and large, and they are getting more
complex mazes in the order (Fig. 3) 2. Also, it has two
kinds of reward functions – normal and dense. The nor-
mal gives a positive reward only when the agent reaches
the goal, whereas the dense gives the rewards at every step
exponentially proportional to the negative distance between
the agent and the goal. For the model, we use the DT source
code provided by the authors 3 and d3rlpy 4 (Imai & Seno,
2021) – offline RL library for CQL, then build QDT by
replacing the return-to-go in the DT before its training.
Table 2 shows the summary of the results. We report the
normalised total reward (score) such that 100 represents

2 https://github.com/rail-berkeley/d4rl/wiki/Tasks
3 https://github.com/kzl/decision-transformer
4 https://github.com/takuseno/d3rlpy
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Table 2. Maze2D Evaluation Results. Average and standard deviation scores are reported over 5 seeds. The result for each seed is obtained
by evaluating the last learned model on the target environment. The best average values are marked in bold.

Dataset CQL DT QDT

Sp
ar

se
R

ew
ar

d maze2d-open-v0 216.7± 80.7 196.4± 39.6 190.1± 37.8
maze2d-umaze-v1 94.7± 23.1 31.0± 21.3 57.3± 8.2
maze2d-medium-v1 41.8± 13.6 8.2± 4.4 13.3± 5.6
maze2d-large-v1 49.6± 8.4 2.3± 0.9 31.0± 19.8

D
en

se
R

ew
ar

d maze2d-open-dense-v0 307.6± 43.5 346.2± 14.3 325.7± 61.4
maze2d-umaze-dense-v1 72.7± 10.1 −6.8± 10.9 58.6± 3.3
maze2d-medium-dense-v1 70.9± 9.2 31.5± 3.7 42.3± 7.1
maze2d-large-dense-v1 90.9± 19.4 45.3± 11.2 62.2± 9.9

Figure 3. Four Maze2D environment layouts (from left to right:
open, umaze, medium and large).

an expert policy (Fu et al., 2020). CQL works well, espe-
cially with the dense rewards. DT struggles in many cases
due to the lack of stitching ability. (These environments
are designed to test the stitching ability.) QDT clearly im-
proves DT performance, especially where CQL works well.
It indicates that QDT brings the stitching capability to DT
approach. We discuss the performance gap between CQL
and QDT in Sec. 6.

Open AI Gym MuJoCo environments with delayed
(sparse) reward. We also evaluate our approach (QDT)
on complex control tasks – Open AI gym MuJoCo envi-
ronments with the D4RL offline RL datasets (Fu et al.,
2020). The Open AI gym MuJoCo environments consist of
three tasks Hopper, HalfCheetah and Walker2d. We test on
medium and medium-replay v2 datasets. To demonstrate the
shortcoming of the Dynamic Programing approach (CQL),
we follow Chen et al. (2021) and evaluate the algorithms
with a delayed (sparse) reward scenario in which the agent
does not receive any reward along the trajectory and receives
the sum of the rewards at the final time step. Again we use
the DT and CQL models from the existing source code for
the MuJoCo Gym environments without any modifications
and add extra code for the relabelling of the RTG values.
Table 3 shows the simulation results (scores) for the delayed
reward case. We also copy the simulation results from Chen
et al. (2021) for DT and CQL for the reference. All of the
numbers in the table are the normalised total reward (score)
such that 100 represents an expert policy (Fu et al., 2020).
As expected, CQL struggles to learn a good policy, whereas
the DT shows good performance. Also, QDT performs sim-
ilar to DT even though they are using the results of CQL

that performs badly. It indicates that QDT successfully use
the information from CQL where it is useful. One excep-
tion is the medium-replay-walker2d result. QDT performs
worse than DT here. Through some investigations, we found
that the CQL algorithm overestimates the value function in
the majority of the states in the medium-replay-walker2d
dataset. We touch the issue in the discussion section.

Open AI Gym MuJoCo environments. We also evaluate
our approach (QDT) on Open AI gym MuJoCo environ-
ments with the original dense reward for the reference. As
they have dense rewards and contain reasonably good trajec-
tories, both CQL and DT would work well. Table 4 shows
the summary of our simulation results for CQL, DT and
QDT. We also copy the simulation results from Chen et al.
(2021) for DT and Emmons et al. (2021) for CQL for the
reference. Firstly, we can see that our simulation results are
aligned with the references except for the medium-replay-
hopper result. Because it has a relatively high variance, it is
probably due to the small number of samples (five random
seeds). Secondly, CQL performs equal or better than DT
and QDT in this evaluation. It is understandable as they
have dense rewards (they do not require propagating value
function in the trajectory). Finally, from the comparison
between DT and QDT, QDT performs the same as DT.

6. Discussion
Our experiments show that QDT is the only algorithm per-
forming well across all environments. Although CQL is
very successful in many environments, it completely fails in
the delayed reward MuJoCo cases. Similarly, DT performs
well on the delayed reward MuJoCo environments and fails
in Maze2D environments. QDT, on the other hand, shows
a higher level of robustness across types of environments.
This Section elaborates and reflects on the most relevant
findings and properties of the QDT framework.

Stitching ability. To demonstrate the stitching ability, we
evaluate the performance of each algorithm with varying de-
grees of the sub-optimal dataset. We pick the medium-replay
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Table 3. Open AI Gym MuJoCo with Delayed Reward Evaluation Results. Average and standard deviation scores are reported over 5
seeds. Our simulation results are in the Results columns, best average boldfaced. Ref.∗2 are the results copied from Chen et al. (2021).
We are not sure which version of dataset the authors used for Ref.∗2, and only Hopper results are available in the paper.

CQL DT QDT
Dataset Results Ref.∗2 Results Ref.∗2 Results

M
ed

iu
m Hopper-v2 23.3± 1.0 5.2 57.3± 2.4 60.7± 4.5 50.7± 5.0

HalfCheetah-v2 1.0± 1.0 − 42.2± 0.2 − 42.4± 0.5
Walker2d-v2 0.0± 0.4 − 69.9± 2.0 − 63.7± 6.4

M
ed

iu
m

R
ep

la
y Hopper-v2 7.7± 5.9 2.0 50.8±14.3 78.5± 3.7 38.7±26.7

HalfCheetah-v2 7.8± 6.9 − 33.0± 4.8 − 32.8± 7.3
Walker2d-v2 3.2± 1.7 − 51.6±24.6 − 29.6±15.5

Table 4. Open AI Gym MuJoCo Evaluation Results. Average and standard deviation scores are reported over 5 seeds. Our simulation
results are in Results columns. The best average values are marked in bold. Ref.∗1 is the results copied from Emmons et al. (2021). Ref.∗2

is the results copied from Chen et al. (2021).
CQL DT QDT

Dataset Results Ref.∗1 Results Ref.∗2 Results

M
ed

iu
m Hopper-v2 69.4±13.1 64.6 60.3± 5.5 67.6± 1.0 66.5± 6.3

HalfCheetah-v2 49.2± 0.5 49.1 42.1± 0.5 42.1± 0.1 42.3± 0.4

Walker2d-v2 83.0± 0.6 82.9 73.3± 2.5 74.0± 1.4 67.1± 3.2

M
ed

iu
m

R
ep

la
y Hopper-v2 96.2± 7.9 97.8 63.7±12.2 82.7± 7.0 52.1±20.3

HalfCheetah-v2 49.8± 0.5 47.3 34.1± 1.1 36.6± 0.8 35.6± 0.5

Walker2d-v2 76.5±21.1 86.1 60.2±13.9 66.6± 3.0 58.2± 5.1

dataset for the MuJoCo Gym environment as it contains tra-
jectories generated by various agent levels and removes the
best X% of the trajectories. As X is increased, more good
trajectories are removed from the dataset. Thereby moving
further away from the optimal setup. Fig. 4 shows the CQL,
DT and QDT results as well as the best trajectory return
in the dataset. It shows that CQL offers better results than
the best trajectory within the dataset except X = 0, where
the trajectory contains the best score; hence it can not be
better than that. In contrast, DT fails to exceed the best
trajectory, which indicates DT fails to stitch the sub-optimal
trajectories. QDT performs better than DT and becomes
close to the CQL results at X = 40 and 50 (in the regime
with 60− 50% bottom trajectories).

Performance gap between QDT and CQL. Although QDT
improves DT on the sub-optimal dataset scenario (Table 2),
QDT does not perform as well as CQL. The results from
Emmons et al. (2021) indicate that DT can perform as
well as CQL when plenty of good trajectories are avail-
able (medium-expert dataset). It implies that there is still
room for improvements for DT and QDT approaches with
datasets that contain far from optimal trajectories. As a mat-
ter of fact, our experiment in the following subsection shows
QDT can perform as well as CQL on the Maze2D environ-
ments in a certain condition. We believe it shows the QDT
approach has a good potential for further improvements.

The role of the discount factor. Our experiments use the

discount factor γ = 0.99 for CQL as per the original paper.
The relatively large discount (small γ value) helps CQL
learning stability, and the value function estimation con-
verges quickly to the correct value. Also, it makes the value
function learn the discounted value – the value function be-
comes less than the RTG value, especially where the states
are far from those giving positive rewards. The discounted
value function can both positively and negatively affect the
performance of the QDT. Because the RTGs relabelling
happens only when the value function gives a higher value
than the RTG, the discounted value function is less likely to
be used. As a result, QDT may fail to exploit all information
from Q-learning (CQL). Introducing the discount factor into
the RTG computation is the most straightforward approach
to prevent this effect, by using Eq. 3 in the relabelling,

Rτ−1 ← rτ−1 + γmax(Rτ , V̂ (sτ ))

R̂τ ← rτ + γR̂τ+1

(3)

To confirm this idea, we evaluated QDT with the discounted
relabelling on maze2d-umaze-v1, -medium-v1 and -large-
v1 datasets. The results (Table 5) are with γ = 0.99 for
maze2d-umaze-v1 and -medium-v1 dataset and γ = 0.999
for maze2d-large-v1 dataset. In this way, all of them achieve
the performance of CQL. Although we can improve QDT
results, this requires using different discount factors. We
observe that a small γ helps the convergence of Q-learning
as it shortens the time horizon to consider. However, it
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Table 5. Experimental Maze2D Evaluation Results. QDT with discounted RTGs results are obtained with γ = 0.99 for maze2d-umaze
and -medium, γ = 0.999 for maze2d-large. The best average values are marked in bold.

Dataset CQL DT QDT QDT with discounted RTGs

maze2d-umaze-v1 94.7± 23.1 31.0± 21.3 57.3± 8.2 82.9± 8.8

maze2d-medium-v1 41.8± 13.6 8.2± 4.4 13.3± 5.6 48.5± 9.4

maze2d-large-v1 49.6± 8.4 2.3± 0.9 31.0± 19.8 62.0± 13.4

becomes a disadvantage for long-time horizon environments.
On the other hand, a large γ helps maintain the rewards in
a long-time horizon. However, this makes the convergence
of Q-learning harder. Hence, a small γ (0.99) works well
for short-time horizon tasks (umaze and medium), while
a large γ (0.999) is suitable for long-time horizon tasks
(large). To resolve this issue, we need modifications to the
existing (or an altogegher new) Q-learning (CQL) algorithm.
Using a value function for the QDT relabelling requires an
accurate estimate of values. However, traditional Q-learning
algorithms tend to prioritise the advantage function, which
represents the difference between the values of different
actions over the actual value in the value function. It is
crucial to employ a Q-learning algorithm that prioritises
accurate value function estimation, as it will enhance the
effectiveness of QDT by providing more precise values for
the relabeling process.

Conservative weight. CQL has a hyperparameter called
conservative weight, denoted by α in Eq. 2. It weights the
regulariser term, where the higher value, the more conserva-
tive are the value function estimations. Ideally, we would
like to set it as small as possible so that the estimated value
function becomes a tighter lower bound; however, too small
conservative weight might break the lower bound guarantee,
and the learned value function might give a higher value
than the true value (Kumar et al., 2021). Empirically, we dis-
covered that this is exactly what happens in our delayed re-
ward experiment (Table 3) for the medium-replay-waker2d
dataset example. The value function learned by CQL in the
dataset has higher values than the corresponding true value
in many states, and it causes the wrong relabelling of RTG
and, subsequently, a worse QDT performance. We evalu-
ated it with higher α values – increased from 5.0 to 100.
Though this improves the QDT result from 29.6± 15.5 to
46.9± 13.8, it is still worse than DT. This is left for future
work for further investigation. In this paper, we assume we
have access to the environment in order to optimise the hy-
perparameters. However, this should be done purely offline
for a proper offline RL setting. Although there are some
proposals (Paine et al., 2020; Fu et al., 2021; Emmons et al.,
2021), this is still an active research area.

Alternative approaches. QDT introduces the stitching ca-
pability to DT and achieves competitive performance across
various environments. Concurrently to our work, Hepburn

Figure 4. Results for hopper-medium-replay-v2 dataset removed
top X% trajectories with one standard deviation. Maximum score
in the dataset as a reference. CQL results are generally better than
the maximum score, which indicates CQL successfully stitches
sub-optimal trajectories, whereas DT fails to do so. QDT improves
DT through relabelling, being better than the maximum score on
the right-hand side of the plot.

& Montana (2022) proposes a method to stitch trajectories
using a learned state transition model and value function,
and produces near the optimal trajectories. This is a model-
based approach and requires a dedicated mechanism for the
stitching operation, whereas ours is model-free and employs
an existing well-studied method (e.g. Q-learning) to stitch
the trajectories.

Another alternative to achieve robust performance across
all environments is to improve Q-learning (Dynamic Pro-
gramming) for delayed reward scenarios, for example, using
the CQL agent with eligibility traces (Precup, 2000; Geist
et al., 2014; Daley et al., 2023), multi-step temporal differ-
ence (Munos et al., 2016; De Asis et al., 2018; Hernandez-
Garcia & Sutton, 2019), or Monte Carlo returns (Wright
et al., 2013; Wilcox et al., 2022). To the best of our knowl-
edge, these have been extensively studied in off-policy set-
tings but are yet to be studied in offline settings. Also,
Q-learning (Dynamic Programming) assumes the reward
function to hold the Markov property, i.e. it must be a func-
tion of the current state and action while DT and QDT do
not require such property.
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Reproducing results for benchmarking. There have been
many attempts to establish a benchmark for the offline RL
approaches by building datasets (Fu et al., 2020; Agarwal
et al., 2020), sharing their source code, as well as produc-
ing a library focusing on offline RL (Imai & Seno, 2021).
However, we still found some conflicting results between
papers. The leading cause of the issue is the requiring a vast
amount of effort and computational power to reproduce the
other researcher’s results. As a result, most authors have no
choice but to re-use the original results from state-of-the-art
papers in the literature to establish a comparison. How-
ever, this leads to conflicting results due to the difficulties
of reproducing all the details involved in these very diverse
experimental setups. For example, many offline RL papers
use D4RL MuJoCo datasets to evaluate their algorithms
and compare them against other approaches. In this case,
the datasets have three versions – namely, v0, v1 and v2.
While not always clearly stated, most papers use version v0.
However, some use version v2, which causes some of the
conflicting results. For example, Chen et al. (2021) appears
to evaluate their model with the v2 dataset while referencing
other papers’ results that use v0. A second issue with bench-
marking the results in this manner is the usual insufficient
number of simulations. As the simulations require large
processing power, it is not feasible to run a large number
of simulations. Most authors evaluate only 3 random seeds,
which is often insufficient to compare the results. In this
paper, we emphasise and analyse carefully the results from
the simple environment, as it helps demonstrate the charac-
teristics of the algorithm. Complex environments are still
helpful; however, the estimated variance suggest that results
should be handled with care when extracting conclusions.

7. Conclusions
We proposed Q-learning Decision Transformers, bringing
the benefits of Dynamic Programming (Q-learning) ap-
proaches to reward conditioning sequence modelling meth-
ods to address some of their well-known weaknesses. Our
approach provides a novel framework for improving offline
reinforcement learning algorithms. In this paper, to illustrate
the approach, we use existing state-of-the-art algorithms for
both Dynamic Programming (CQL) and reward condition-
ing modelling (DT). Our evaluation shows the benefits of
our approach over existing offline algorithms in line with
the expected behaviour. Although the results are encourag-
ing, there is room for improvement. For example, the QDT
results for Maze2D (Table 2) are better than DT but still
not as good as CQL. On the other hand, the QDT results
for Gym MuJoCo delayed reward (Table 3) are significantly
better than CQL but not as good as DT in the walker2d. As
we show in the discussion section, we can resolve these
issues in certain situations. However, we further work is
needed to resolve them for all environments.

Possible negative societal impact. Reinforcement learning
algorithms (such as QDT) have a risk of being applied to
potentially controversial fields with high impact in human
lives – e.g. military applications. These issues are inherited
in all works in improving any autonomous systems.
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A. Simple environment example trajectory data and its computation
This section describes the trajectory data and some computation details for the simple example shown in Fig. 1. We bring
the figure here and added the state IDs in the circle (Fig. 5). The two trajectories of training data are:

Figure 5. A simple example demonstrates the decision transformer approach’s issue (lack of stitching ability) – fails to find the shortest
path to the goal. In contrast, Q-learning finds the shortest path.

trajectory1 = [s0=S, a0=up, r0=−1,
s1=1, a1=down, r1=−1,
s2=2, a2=right, r2=−1,
s3=G, a3=N/A, r3=0]

trajectory2 = [s0=S, a0=right, r0=−11,
s1=2, a1=down, r1=−10,
s2=F, a2=N/A, r2=0].

(4)

We compute the return-to-go (RTG) from the reward rt as Eq. 5.

Rt =

T∑
τ=0

rτ , (5)

where Rt is RTG at time step t and T is the episode length. The trajectories with the RTGs becomes as follows:

trajectory1 = [s0=S, a0=up, r0=−1, R0=−3,
s1=1, a1=down, r1=−1, R1=−2,
s2=2, a2=right, r2=−1, R2=−1,
s3=G, a3=N/A, r3=0, R3=0]

trajectory2 = [s0=S, a0=right, r0=−1, R0=−11,
s1=2, a1=down, r1=−10, R1=−10,
s2=F, a2=N/A, r2=0, R2=0].

(6)

DT (the reward-conditioned approach) is trained to predict actions from the state and RTG, so it takes [st, Rt] as the input
and outputs at. (Here, we assume the context length K = 1 for DT for simplicity.) For example, in the t = 0 case, the
DT agent is trained to predict a = up from [s=S,R=−3] (trajectory 1) and a = right from [s=S,R=−11] (trajectory 2).
For the evaluation, we set the RTG the best value (−2 in this case) at t = 0, and then the agent predicts the action from
[s=S,R=−2]. Because the input [s=S,R=−2] is closer to [s=S,R=−3] (trajectory 1) than [s=S,R=−11] (trajectory 2),
the agent predict a = up (trajectory 1) despite the optimal action is a = right (trajectory 2).

B. Simple environment evaluation details
B.1. Environment

The environment has 6-by-6 discrete states and eight discrete actions as shown in Fig. 6. The goal of the task is to find the
shortest path from the start to the goal state. Each time step gives -10 reward and +100 reward at the goal. The optimal
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policy gives +50 total reward (= 100− 10 ∗ 5). We also remap the action so that the same action index is not always optimal.
The mapping differs for each state but is fixed across the episodes.

Figure 6. A simple 2D maze environment, which has 6-by-6 grid world and eight actions for moving eight directions. -10 reward at
each time step and +100 reward for the goal. The optimal trajectory keeps moving up-right to the goal, which has total reward +50
(= 100− 10 ∗ 5). The action is remapped so that the same action index is not always the optimal action. The mapping differs for each
state, but fixed across the episodes.

B.2. Dataset

We prepare an offline RL dataset with a hundred episodes from a uniformly random policy and then remove an episode
that achieves a positive total reward to make sure it only contains sub-optimal trajectories. As a result, the dataset used in
this evaluation has one hundred episodes and 4,454 time steps. The maximum return of the hundred episodes is -10.0, the
minimum return is -490 as we terminate the episode at 50 time step, and the average return is -415.5.

B.3. CQL model details

We build the CQL model for the simple environment based on Double Q-learning (Hasselt, 2010) and employ an embedding
lookup table module to convert the discrete state to continuous high dimensional embedding space. The detailed model
parameters are in Table 6.

Table 6. Simple Enviornment CQL Model Parameters

Parameter Value

State embedding dimension 32

DQN type fully connected

DQN number of layers 2

DQN number of units 32

Optimizer Adam

Optimizer betas 0.9, 0.999

Optimizer learning rate 5.0e-4

Target network update rate 1.0e-2

Batch size 128

Number of training steps 1000 updates

Conservative weight (α) 0.5

B.4. DT and QDT model details

Our DT and QDT model for the simple environment is constructed based on minGPT open-source code5. The detailed
model parameters are in Table 7.

5 https://github.com/karpathy/minGPT
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Table 7. Simple Environment DT/QDT Model Parameters

Parameter Value

Number of layers 4

Number of attention heads 4

Embedding dimension 64

Nonlinearity function ReLU

Batch size 64

Context length K 2

return-to-go conditioning 50

Dropout 0.1

Learning rate 4.0e-4

B.5. Further evaluation results for simple environment

The following tables have the simple environment results for all ten seeds. Table 8 shows the reward for the highest value
during the training period. Table 9 shows the reward with the model at the end of training. DT and QDT have more
significant differences between these two tables than the CQL results, which indicates that DT and QDT have overfitting
issues and unstable learning behaviour.

Table 8. Simple Environment Full Results (Best). The results from the best performing model during the training.

CQL DT QDT

re
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en
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nd

om
se

ed
s

40.0 18.2 43.6

40.0 20.4 42.0

40.0 11.2 49.2

40.0 13.8 42.6

40.0 12.6 39.2

40.0 8.4 27.8

40.0 19.6 47.2

40.0 21.2 47.4

40.0 14.4 37.4

40.0 18.8 46.0

mean 40.0 15.9 42.2

std. 0.0 4.4 6.3

C. Open AI Gym MuJoCo and Maze2D evaluation details
C.1. CQL model details

For MuJoCo Gym CQL evaluation, we use d3rlpy library (Imai & Seno, 2021). It provides a script to run the evaluation
(d3rlpy/reproduce/offline/cql.py), and it uses the same hyperparameters as Kumar et al. (2020). For Mazed2d simulations,
we re-use the same d3rlpy script with the same hyperparameter settings.
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Table 9. Simple Environment Full Results (Last). The results from the model at the end of the training.

CQL DT QDT
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40.0 -39.2 13.8

40.0 8.6 35.8

40.0 -25.4 46.6

40.0 -20.8 16.6

30.0 -50.2 29.2

40.0 -26.0 19.6

40.0 9.4 44.0

30.0 -35.0 47.4

40.0 -10.2 23.2

40.0 7.8 35.0

mean 38.0 -18.1 31.1

std. 4.2 21.3 12.5

C.2. DT and QDT model details

For DT simulations, we use the code provided by the original paper authros6 for both MuJoCo Gym and Maze2D
environments. For QDT simulations, we added extra code to relabelling the return-to-go to the DT script (decision-
transformer/gym/experiment.py). The relabelling code is described in Algorithm 1 and 2.

C.3. Evaluation Process

CQL We train the CQL model with five random seeds for 500,000 updates with 256 batch size, then evaluate the model at
the end of the training with 10 episode roll-outs. We inherit these CQL settings from d3rlpy offline RL library (Imai & Seno,
2021).

DT We train the DT model with five random seeds for 100,000 updates with 64 batch size, then evaluate the model at the
end of the training with 100 episode roll-outs. We inherit these DT settings from the source code provided by the DT paper
authors7 (Chen et al., 2021).

QDT We train the QDT model with five random seeds, each of them employing its own trained CQL model to relabel the
dataset. QDT model is trained for 100,000 updates for MuJoCo Gym and 150,000 updates for maze2d with 64 batch size,
then evaluate the model at the end of the training with 100 episode roll-outs – same as DT.

C.4. Hyper parameter search

We use the same hyper-parameter settings as the original papers (Kumar et al., 2020; Chen et al., 2021). However, we did
some hyper-parameter searches for the conservative weight (α). It is because the optimal conservative weight value could be
different for CQL and QDT.

For MuJoCo Gym environments, we start with α = 10.0 for medium dataset and α = 5.0 for medium-replay dataset.
We take these values from the CQL paper. Then, reduce these values to see if the performance of CQL and QDT varies.
Table 10 and Table 11 shows CQL and QDT results respectively. These results show that α = 10.0 for medium dataset and
α = 5.0 for medium-replay dataset perform well for QDT and do not degrade performance significantly for CQL. Also,
they are the same values as the original paper, so we decide to keep them the same as the paper.

For maze2d environment, we start with α = 10.0 which is the value used in the CQL paper for MuJoCo Gym environments

6 https://github.com/kzl/decision-transformer
7 https://github.com/kzl/decision-transformer
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Table 10. CQL results for Open AI Gym MuJoCo with conservative weight parameter (α) sweep. Average and standard deviation scores
are reported over three seeds.

CQL
Dataset α = 10.0 α = 5.0 α = 2.5 α = 1.25

M
ed

iu
m Hopper-v2 68.7± 16.4 72.5± 9.5 83.6± 3.8

HalfCheetah-v2 48.9± 2.4 51.8± 2.4 57.0± 1.1

Walker2d-v2 83.3± 0.5 86.2± 0.5 43.5± 43.6

M
ed

iu
m

R
ep

la
y Hopper-v2 95.4± 11.6 87.5± 24.7 90.7± 14.5

HalfCheetah-v2 49.9± 2.9 51.8± 2.7 54.3± 0.2

Walker2d-v2 88.9± 3.7 50.6± 36.3 16.8± 14.2

Table 11. QDT results for Open AI Gym MuJoCo with conservative weight parameter (α) sweep. Average and standard deviation scores
are reported over three seeds.

QDT
Dataset α = 10.0 α = 5.0 α = 2.5 α = 1.25

M
ed

iu
m Hopper-v2 68.6± 7.5 65.3± 1.3 57.5± 6.6

HalfCheetah-v2 42.2± 0.5 42.2± 0.05 42.1± 0.4

Walker2d-v2 65.9± 3.6 70.1± 2.4 68.8± 6.9

M
ed

iu
m

R
ep

la
y Hopper-v2 55.3± 28.0 40.2± 5.9 64.0± 22.9

HalfCheetah-v2 35.7± 0.6 35.5± 0.4 33.0± 0.5

Walker2d-v2 59.1± 2.8 64.3± 5.9 45.2± 39.5

medium datasets. Then, reducing these values to see if the performance of CQL varies. Table 12 shows the simulation
results. We pick α = 1.0 as it performs the best. It is possible that even lower values might perform better. We see QDT
shows good improvement over DT with α = 1.0, so we use the value for this paper. We would like to try further optimisation
in the future.

Table 12. CQL results for Maze2D with conservative weight parameter (α) sweep. Average and standard deviation scores are reported
over three seeds.

CQL
Dataset α = 10.0 α = 2.0 α = 1.0

maze2d-umaze-v1 27.3± 12.2 66.1± 9.8 96.0± 32.2

maze2d-medium-v1 −3.5± 1.3 36.6± 3.7 35.9± 15.3

maze2d-large-v1 −2.5± 0.0 40.8± 6.0 53.2± 7.0

D. Justification of replacing RTG with the learned value function
Define the optimal state value function as V ∗(st), the learned lower bound of the value function as V̂ (st) and the
corresponding return-to-go value as Rt. We show that when V̂ (st) > Rt, the error in V̂ (st) is smaller than the error in Rt.
We start from the condition,

V̂ (st) > Rt

V ∗(st)− V̂ (st) < V ∗(st)−Rt.
(7)

As V̂ (st) is the lower bound of V ∗(st), V ∗(st) ≥ V̂ (st). Hence both sides of the above equation are non-negative. We can
take the absolute of both terms, and we get,

|V ∗(st)− V̂ (st)| < |V ∗(st)−Rt|. (8)

This indicates that the error in V̂ (st) is smaller than the error in Rt.
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E. Further Discussions
E.1. Why CQL outperforms DT/QDT on Maze2D, but fails on MuJoCo Gym delayed reward?

It is because maze2d are simpler environments and have shorter episodes than the MuJoCo control tasks. Table 13 shows
that the action dimension, the state (observation) dimension and the episode length averaged over the top 5% returns in the
dataset. It can be seen that MuJoCo tasks have higher action/state dimensions and longer episode lengths than Maze2d.
Also, the evaluation results for the Sparse maze2d-medium and -large show some notable performance loss against the
Dense counterparts, which is aligned with the fact that their episode lengths are longer than the maze2d-open and -umaze.

Table 13. MuJoCo Gym and Maze2D environments comparison. The table shows that the action dimension, the state (observation)
dimension and the episode length averaged over the top 5% returns in the dataset.

Environment Action
Dimension

State
Dimension

Good Episode
Average Length

hopper 3 11 708.2
halfcheetah 6 17 1000.0
walker2d 6 17 996.7
maze2d-open 2 4 49.8
maze2d-umanze 2 4 128.6
maze2d-medium 2 4 224.1
maze2d-large 2 4 314.6

E.2. Why QDT outperforms DT on Maze2D whereas it does not on Gym despite both having dense rewards?

It is due to the difference in the training data. maze2d dataset is designed to test the stitching ability; hence it only has
sub-optimal trajectories, whereas the MuJoCo Gym dataset has some optimal trajectories. If the dataset has some optimal
trajectories, DT will perform well. On the other hand, if the dataset has only suboptimal trajectories, DT will struggle, and
QDT improves such cases by utilising the information in CQL.

As maze2d only has suboptimal trajectories, DT struggles with them, and QDT can perform better than DT. For MuJoCo
Gym cases, the dataset has some optimal trajectories; hence DT performs well, and so as QDT.

Strictly speaking, there are some exceptions. MuJoCo halfcheetah-medium and halfcheetah-medium-replay dataset does
not have an optimal trajectory, still QDT performs similarly to DT. It is because even CQL struggles to achieve good
performance on these datasets. (CQL only performs similarly to DT even though CQL can stitch the suboptimal trajectories.)
As CQL struggled, QDT could not get much help from CQL.

The other exception is maze2d-open and maze2d-open-dense. These datasets have good trajectories. It is actually aligned
with our evaluation results. The results for maze2d-open and maze2d-open-dense show good performance with DT.

Table 14 shows the maximum, 95 percentile and 90 percentile values of the normalised returns (score) in the dataset. As we
discussed above, Maze2d has suboptimal trajectories (except open and open-dense), and MuJoCo Gym has (near) optimal
trajectories – a score close to 100 (except halfcheetah).

E.3. Why QDT performs close to DT, not CQL in Fig. 4 (Gym hopper)?

The main reason is that QDT employs DT as its agent algorithm. The difference lays in its training data. If the environ-
ment/dataset has specific characteristics that work against DT approach, those also work against QDT. Some of these
properties, such as dataset sub-optimality, are fixed/mitigated by QDT. However, there may be other elements that are
against DT and QDT, e.g., the environment having a few critical states (Kumar et al., 2022). If this is also behind the gap
between CQL and DT, then it is possible QDT performs close/the same as DT.

Kumar et al. (2022) studied the Dynamic Programming approach and the imitation learning approach and compared the
upper bounds of their sub-optimality (the difference between the return from the optimal policy and the learned policy).
They show that the Dynamic Programming approach is preferred over imitation learning when the environment has a few
critical states – the return of the episode mostly depends upon the actions in these states. The results in Kumar et al. (2022)
are based on theoretical analysis (sub-optimality upper bounds). Hence, it is possible that the imitation learning approach
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Table 14. Scores in MuJoCo Gym and Maze2D datasets. This table shows that maximum score, 95 percentile score and 90 percentile
score values for each dataset.

Dataset max. score 95 pct. score 90 pct. score
maze2d-open-v0 232.4 130.7 116.2
maze2d-open-dense-v0 188.9 128.4 117.4
maze2d-umaze-v1 21.1 13.2 10.3
maze2d-umaze-dense-v1 -1.4 -11.7 -18.3
maze2d-medium-v1 12.8 6.8 4.9
maze2d-medium-dense-v1 8.9 4.0 0.3
maze2d-large-v1 16.9 6.5 -2.5
maze2d-large-dense-v1 14.6 7.9 -2.4
hopper-medium-v2 99.5 63.2 57.0
hopper-medium-replay-v2 98.6 46.4 31.5
halfcheetah-medium-v2 45.0 43.0 42.5
halfcheetah-medium-replay-v2 42.4 39.9 39.2
walker2d-medium-v2 92.0 83.4 82.4
walker2d-medium-replay-v2 89.9 66.6 42.5

(DT and QDT) can perform as well as or better than Dynamic Programming approaches (such as CQL) in practice. Kumar
et al. (2022) empirically shows that the goal-conditioned approach remains competitive by selecting the right level of model
capacity and the goal. There are still many open and ongoing discussions regarding the comparison.

E.4. Extra results for removing top X%

We run the same experiment as the Stitching ability subsection in Section 6 on the other two MuJoCo Gym environments.
The results (Fig. 7) do not show a clear benefit of QDT over DT. We think it is because the cause of the gap between CQL
and DT is not just the sub-optimality in the dataset (still the sub-optimality can be the cause of the difference, but it is not
the only cause in these cases.)

Figure 7. Evaluation results (scores) for CQL, DT and QDT with the halfcheetah-medium-replay-v2 and walker2d-medium-replay-v2
dataset removed top X% trajectories. The shaded area shows one standard deviation range of the results. It also has the maximum score in
the dataset as a reference.

E.5. Consistency relabelling ablation experiment

We have tried the ablation experiment for the consistency relabelling (Algorithm 2) on a subset of environments. The
results are summarised it in Table 15. We run ten random seeds for Simple Environment and three for others. The Simple
Environment result shows some benefits of using Algorithm 2 in its average value, although it is not significant. For the
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other more complex environments, we do not see clear benefits of Algorithm2. We think this is because the changes applied
by Algorithm2 are relatively minor compared to the original RTG variations. We think it is better to keep Algorithm 2, at
least for now because the training data could have non-realistic (inconsistent) samples without the algorithm.

Table 15. Scores in Simple Environment, MuJoCo Gym and Maze2D datasets. This table shows QDT results and QDT without the
consistency relabelling (Algorithm 2).

Dataset QDT QDT w/o
Alg.2

Simple Environment 42.2± 6.3 29.7± 13.8

hopper-medium-v2 65.3± 2.0 65.7± 3.9

halfcheetah-medium-v2 42.2± 2.3 42.4± 0.1

walker2d-medium-v2 71.3± 2.4 80.2± 10.8

maze2d-large-v1 35.0± 24.2 23.0± 5.0

E.6. Aggregated evaluation results

We compute the aggregated evaluation results for each group of environments (maze2d, MuJoCo Gym delayed reward and
MuJoCo Gym) with three different metrics – median, Interquantile mean (IQM) and mean (Fig. 8). It uses 95% stratified
bootstrapped confidence interval (Agarwal et al., 2021).

The results support our conclusions 1) DT struggles in maze2d, but QDT improves DT performance by getting help from
CQL. 2) CQL fails in MuJoCo Gym delayed reward. 3) DT and QDT perform similarly in MuJoCo Gym. Note that QDT
has never failed in any of these groups of environments.

Figure 8. Aggregated evaluation results (scores) for each group of environments (maze2d, MuJoCo Gym delayed reward and MuJoCo
Gym) with three different metrics – median, Interquantile mean (IQM) and mean. The results support our conclusions 1) DT struggles in
maze2d, but QDT improves DT by getting help from CQL. 2) CQL fails in MuJoCo Gym delayed reward. 3) DT and QDT perform
similarly in MuJoCo Gym.
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