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Abstract
A significant challenge in the field of quantum ma-
chine learning (QML) is to establish applications
of quantum computation to accelerate common
tasks in machine learning such as those for neural
networks. Ridgelet transform has been a funda-
mental mathematical tool in the theoretical studies
of neural networks, but the practical applicability
of ridgelet transform to conducting learning tasks
was limited since its numerical implementation by
conventional classical computation requires an ex-
ponential runtime exp(O(D)) as data dimension
D increases. To address this problem, we develop
a quantum ridgelet transform (QRT), which im-
plements the ridgelet transform of a quantum state
within a linear runtime O(D) of quantum com-
putation. As an application, we also show that
one can use QRT as a fundamental subroutine
for QML to efficiently find a sparse trainable sub-
network of large shallow wide neural networks
without conducting large-scale optimization of
the original network. This application discovers
an efficient way in this regime to demonstrate the
lottery ticket hypothesis on finding such a sparse
trainable neural network. These results open an
avenue of QML for accelerating learning tasks
with commonly used classical neural networks.

1. Introduction
Quantum machine learning (QML) is an emerging field of re-
search to take advantage of quantum computation for accel-
erating machine-learning tasks (Biamonte et al., 2017; Cilib-
erto et al., 2018; Schuld & Petruccione, 2021). Quantum
computation can achieve significant speedups compared to
the best existing algorithms with conventional classical com-
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putation in solving various computational tasks (Nielsen &
Chuang, 2011; de Wolf, 2019), such as Shor’s algorithm for
integer factorization (Shor, 1997). QML indeed has advan-
tages in learning data obtained from quantum states (Sweke
et al., 2021; Huang et al., 2021; 2022; Chen et al., 2022a),
yet machine learning commonly deals with classical data
rather than quantum states. For a classical dataset con-
structed carefully so that its classification reduces to a vari-
ant of Shor’s algorithm, QML achieves the classification su-
perpolynomially faster than classical algorithms (Liu et al.,
2021); however, the applicability of such QML to practical
datasets has been unknown. Meanwhile, motivated by the
success of neural networks (Goodfellow et al., 2016), vari-
ous attempts have been made to apply quantum computation
to more practical tasks for neural networks. For example,
one widely studied approach in QML is to use parameter-
ized quantum circuits, often called “quantum neural net-
works”, as a potential substitute for conventional classical
neural networks; however, problematically, the parameter-
ized quantum circuits do not successfully emulate essential
components of the neural networks, e.g., perceptrons and
nonlinear activation functions, due to linearity of the trans-
formation implemented by the quantum circuits (Schuld &
Petruccione, 2021). Thus, a significant challenge in QML
has been to develop a novel technique to bridge the gap be-
tween quantum computation and classical neural networks,
so as to clarify what advantage QML could offer on top
of the empirically proven merit of the classical neural net-
works.

To address this challenge, we here develop a fundamental
quantum algorithm for making the tasks for classical neu-
ral networks more efficient, based on ridgelet transform.
Ridgelet transform, one of the well-studied integral trans-
forms in signal processing, is a fundamental mathematical
tool for studying neural networks in the over-parameterized
regime (Murata, 1996; Candes, 1998; Rubin, 1998; Starck
et al., 2010; Sonoda et al., 2021; 2022a;b). Let f : RD → R
denote a function with D-dimensional input, to be learned
with a neural network. For an activation function g : R→ R
such as the rectified linear unit (ReLU), a shallow feed-
forward neural network with a single hidden layer is rep-
resented by f(x) ≈

∑N
n=1 wng(a>nx − bn), where N is

the number of nodes in the hidden layer, and wn is the
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weight of the map g(a>nx− bn) parameterized by (an, bn)
at node n ∈ {1, . . . , N} (Goodfellow et al., 2016). In the
over-parameterized (continuous) limit N →∞, the repre-
sentation simplifies into an integral representation of the
neural network (Barron, 1993; Murata, 1996; Candes, 1998;
Sonoda & Murata, 2017), i.e.,

f(x) = S[w](x) :=

∫
RD×R

da dbw(a, b)g(a>x− b), (1)

where (a, b) runs over all possible parameters in the con-
tinuous space, and w : RD × R → R at each (a, b) cor-
responds to the weight wn at the node n with parameter
(an, bn) = (a, b). With a ridgelet function r : RD → R
that we appropriately choose corresponding to g, the D-
dimensional ridgelet transform R[f ] is defined as an in-
verse transform of S[w] in (1), characterizing a weight w to
represent f , given by

w(a, b) = R[f ](a, b) :=

∫
RD

dx f(x)r(a>x− b). (2)

A wide class of function f is known to be representable
as (1); moreover, if g and r satisfy a certain admissibility
condition, we can reconstruct f from the ridgelet transform
of f , i.e., f ∝ S[R[f ]], up to a normalization factor (Son-
oda & Murata, 2017). For theoretical analysis, an essential
benefit of the integral representation is to simplify the anal-
ysis by the linearity; that is, we can regard (1) as the linear
combination of an non-orthogonal over-complete basis of
functions, i.e., {g(a>x − b) : (a, b) ∈ RD × R}, with
weight w(a, b) given by the ridgelet transform of f .

Progressing beyond using the ridgelet transform for theoret-
ical analysis, our key idea is to study its use for conducting
tasks for neural networks. However, D-dimensional ridgelet
transform has been computationally hard to use in practice
since the existing algorithms for ridgelet transform with
conventional classical computation require exp(O(D)) run-
time as D increases (Do & Vetterli, 2003; Carre & Andres,
2004; Helbert et al., 2006; Sonoda & Murata, 2014). After
all, the D-dimensional ridgelet transform is a transform of
D-dimensional functions in an exp(O(D))-size space (see
Sec. 2 for detail), and classical algorithms for such trans-
forms conventionally need exp(O(D)) runtime; e.g., fast
Fourier transform may be a more established transform al-
gorithm but still needs O(n log(n)) = exp(O(D)) runtime
for the space of size n = exp(O(D)). To solve these prob-
lems, we discover that we can employ quantum computation.
Our results are as follows.

1. (Sec. 2) To make exact implementation of ridgelet
transform possible for computer with a finite number
of bits and quantum bits (qubits), we formulate a new
discretized version of ridgelet transform, which we
call discrete ridgelet transform. We prove that our

discretized ridgelet transform can be used for exactly
representing any function on the discretized domain.

2. (Sec. 3) We develop a quantum algorithm to apply the
D-dimensional discrete ridgelet transform to a quan-
tum state ofO(D) qubits, i.e., a state in an exp(O(D))-
dimensional space, only within linear runtime O(D).
We call this quantum algorithm quantum ridgelet
transform (QRT). QRT is exponentially faster in D
than the exp(O(D)) runtime of the best existing classi-
cal algorithm for ridgelet transform in the exp(O(D))-
size space, in the same spirit as quantum Fourier
transform (QFT) (Coppersmith, 1994) being exponen-
tially faster than the corresponding classical algorithm
of fast Fourier transform.

3. (Sec. 4) As an application, we demonstrate that we can
use QRT to learn a sparse representation of an unknown
function f by sampling a subnetwork of a shallow wide
neural network to approximate f well. We analytically
show the advantageous cases of our algorithm and also
conduct a numerical simulation to support the advan-
tage. This application is important as a demonstration
of the lottery ticket hypothesis (Frankle & Carbin,
2019), as explained in the following.

Contribution to QML with neural networks State-of-
the-art neural networks have billions of parameters to attain
high learning accuracy, but such large-scale networks may
be problematic for practical use, e.g., with mobile devices
and embedded systems. Pruning techniques for neural net-
works gain growing importance in learning with neural net-
works. The lottery ticket hypothesis by Frankle & Carbin
(2019) claims that, in such a large-scale neural network,
one can find a sparse trainable subnetwork. However, it is
computationally demanding to search for the appropriate
subnetwork in the large-scale neural network.

To apply QML to this pruning problem, our idea is to use
QRT for preparing a quantum state so that, by measuring
the state, we can sample the parameters of the important
nodes for the subnetwork with high probability. To make
this algorithm efficient, we never store all parameters of the
large original neural network in classical memory but repre-
sent them by the amplitude of the quantum state prepared
directly from given data. Conventionally, quantum computa-
tion can use QFT to achieve superpolynomial speedups over
classical computation for various search problems (Simon,
1994; Shor, 1997; Bernstein & Vazirani, 1997; Yamakawa
& Zhandry, 2022). By contrast, we make quantum computa-
tion applicable to searching in the parameter space of neural
networks, by developing QRT to be used in place of QFT.

Consequently, our results show that QRT can be used as a
fundamental subroutine for QML to accelerate the tasks for
the classical neural networks. A potential drawback may be
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that our current technique is designed simply for the shal-
low neural networks with a single hidden layer; however,
studies of shallow neural networks capture various essential
features of neural networks. We leave the generalization
to deep neural networks for future research, but our devel-
opment opens a promising route in this direction. More
specifically, if one develops, e.g., a theory to generalize
ridgelet transform to the analysis of deep neural networks,
our results are expected to offer fundamental techniques for
obtaining similar applications to deep neural networks. The
significance of our results is to bridge the gap between a the-
oretical development in analyzing neural networks based on
ridgelet transform and the algorithmic techniques in quan-
tum computation for accelerating the machine learning tasks
on top of the theoretical development. The essential bene-
fit of ridgelet transform is to provide a closed formula for
the weights of the nodes in the hidden layer of a shallow
neural network to represent the function to be learned in
the over-parameterized (continuous) limit. For deep neural
networks, such a closed formula may still be unknown at the
moment, but in recent years, significant theoretical progress
has been made in the analysis of deep neural networks in
the over-parameterized regime. Given such progress, our
contributions on the quantum side, if combined with further
development in the theoretical analysis of deep neural net-
works, open a fundamental way to explore the applications
in this direction.

2. Discrete Ridgelet Transform
2.1. Formulation of Discrete Ridgelet Transform

In this section, we formulate the discrete ridgelet trans-
form. Then, we also derive a Fourier slice theorem that
characterizes our discrete ridgelet transform using Fourier
transform. Although multiple definitions of discrete ver-
sions of ridgelet transform have been proposed, none of
them has such Fourier expression (Do & Vetterli, 2003;
Carre & Andres, 2004; Helbert et al., 2006). By contrast,
the significance of the Fourier slice theorem is that it makes
the ridgelet analysis tractable with the well-established tech-
niques for the Fourier transform, which we will use in Sec. 3
for constructing the quantum algorithm as well.

Our formulation assumes the following.

• Since computers using a finite number of bits and
qubits cannot exactly deal with real number, we use a
finite set ZP := {0, 1, . . . , P −1} in place of the set of
real number R, where P is a precision parameter rep-
resenting the cardinality of ZP . This is conventional
in data representation; e.g., for a gray scale image, we
may use 8 bits {0, 1, . . . , 28−1} to represent the inten-
sity of each pixel. In our setting, we can make P larger
to achieve better precision in the data representation;

e.g., for a more precise representation of the gray scale
image, we may use 16 bits {0, 1, . . . , 216− 1} in place
of the 8 bits for each pixel. For this improvement of
the precision, we may normalize the data by rescal-
ing while the intervals in the discretization are fixed
to 1 for simplicity of presentation. When we write a
sum, x, a, and u run over ZDP , and y, b, and v over
ZP unless specified otherwise. Let FD and F1 denote
the D-dimensional and 1-dimensional discrete Fourier
transforms on ZDP and ZP , respectively, i.e.,

FD[f ](u) := P−
D
2

∑
x

f(x)e
−2πiu>x

P , (3)

F1[g](v) := P−
1
2

∑
b

r(b)e
−2πivb
P . (4)

• We assume in the following that P is taken as a prime
number, considering ZP as a finite field. This is not a
restrictive assumption in achieving the better precision
since we can take an arbitrarily large prime number
as P . For example, the maximum of 32-bit signed
integers P = 231 − 1 can be used.

• An activation function g : R → R is assumed to be
normalized as∑

b

g(b) = 0, ‖g‖22 :=
∑
b

|g(b)|2 = 1. (5)

Indeed, any non-constant function, such as ReLU, can
be used as g with normalization by adding and multi-
plying appropriate constants.

• Corresponding to g, we choose a ridgelet function
r : R → R in such a way that g and r satisfy an
admissibility condition

Cg,r :=
∑
v

F1[g](v)F1[r](v) 6= 0, (6)

where · · · denotes the complex conjugate. We also
normalize r as ‖r‖22 = 1. Note that it is conventional to
choose r = g, leading to Cg,g = ‖F1[g]‖22 = ‖g‖22 =
1, while our setting allows any non-unique choice of r
satisfying (6) in general.

Then, by replacing the integral over R in S of (1) and R
of (2) with the finite sum over ZP , we correspondingly
define the discretized neural network and the discrete
ridgelet transform of f : RD → R as, respectively,

S[w](x) := P−
D
2

∑
a,b

w(a, b)g((a>x− b) mod P ), (7)

R[f ](a, b) := P−
D
2

∑
x

f(x)r((a>x− b) mod P ), (8)
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where P−
D
2 represents a normalization constant. Note that

the discretized neural network S[w](x) has discrete param-
eters (a, b) ∈ ZDP × ZP for nodes in the hidden layer, but
the weights w(a, b) ∈ R of the nodes are real numbers.

The following theorem, Fourier slice theorem, character-
izes the discrete ridgelet transform R[f ] in terms of Fourier
transforms of f and h. In the case of continuous ridgelet
transform, ridgelet analysis can be seen as a form of wavelet
analysis in the Radon domain, which combines wavelet and
Radon transforms (Fadili & Starck, 2012). The Fourier
slice theorem for the continuous ridgelet transform fol-
lows from that for continuous Radon transform. However,
problematically, discrete versions of the Radon transforms
are nonunique and usually more involved, not necessarily
having exact expression in terms of discrete Fourier trans-
form (Beylkin, 1987; Kelley & Madisetti, 1993; Götz &
Druckmüller, 1996; Brady, 1998; Boag et al., 2000; Brandt
et al., 2000; Press, 2006). As a result, the existing defi-
nitions of discrete versions of ridgelet transform have no
such Fourier expression either (Do & Vetterli, 2003; Carre
& Andres, 2004; Helbert et al., 2006). By contrast, we here
show that our formulation of the discrete ridgelet transform
R[f ] has the following exact characterization in the Fourier
transform. See Appendix A for proof.

Theorem 2.1 (Fourier slice theorem for discrete ridgelet
transform). For any function f : RD → R and any point
a ∈ ZDP , v ∈ ZP in the discretized space, it holds that

F1[R[f ](a, ·)](v) = FD[f ](va mod P ) F1[r](v). (9)

2.2. Exact Representation of Functions as Neural
Networks

Using the discrete ridgelet transform in Sec. 2.1, we here
show that any function f on the discretized domain has an
exact representation in terms of a shallow neural network
with a finite number of parameters in the discretized space.
In the continuous case, any square-integrable function f is
represented as the continuous limit of the shallow neural
networks, i.e., f = S[w] in (1), with the weight given by
the ridgelet transform w ∝ R[f ] (Sonoda & Murata, 2017).
With discretization, it is nontrivial to show such an exact
representation due to finite precision in discretizing the real
number. Nevertheless, we here show that any function f(x)
for x ∈ ZDP can be exactly represented as f(x) = S[w](x)
as well, with the weight given by our formulation of the
discrete ridgelet transform w ∝ R[f ], which we may call
exact representation as a discretized neural network.

In particular, the following theorem shows that any D-
dimensional real function f on the discrete domain can
be exactly represented as a linear combination of non-
orthogonal basis functions {g((a>x−b) mod P ) : (a, b) ∈
ZDP × ZP } with coefficients given by R[f ]. Due to the

non-orthogonality, the coefficients may not be unique, and
different choices of the ridgelet function r in (8) lead to dif-
ferentR[f ] while any of the choices can exactly reconstruct
f . The proof is based on the Fourier slice theorem in Theo-
rem 2.1, crucially using the existence of an inverse element
for each element of a finite field ZP ; thus, it is essential
to assume that P is a prime number. See Appendix B for
proof.

Theorem 2.2 (Exact representation of function as dis-
cretized neural network). For any function f : RD → R
and any point x ∈ ZDP in the discretized domain, we have

f(x) = C−1
g,r S[R[f ]](x), (10)

where Cg,r is a constant defined in (6).

3. Quantum Ridgelet Transform
In this section, we introduce quantum ridgelet transform
(QRT), an efficient quantum algorithm for implementing
the discrete ridgelet transform formulated in Sec. 2. In
various quantum algorithms, we may use quantum Fourier
transform (QFT) as a fundamental subroutine. In addition
to QFT, various discrete transforms can be efficiently imple-
mented with quantum computation, such as wavelet trans-
form (Hoyer, 1997; Fijany & Williams, 1998; Labunets
et al., 2001a; Argüello, 2009; Taha, 2016; Li et al., 2019;
2022), Radon transform (Ma et al., 2022), fractional Walsh
transform (Labunets et al., 2001b), Hartley transform (Tseng
& Hwang, 2004), and curvelet transform (Liu, 2009). How-
ever, the existing discrete versions of ridgelet transform (Do
& Vetterli, 2003; Carre & Andres, 2004; Helbert et al., 2006)
were lacking implementation by quantum computation. In
contrast, our QRT opens a way to use the discrete ridgelet
transform as a fundamental subroutine for QML to deal with
tasks for classical neural networks.

Basic notions and notations of quantum computation to
describe our quantum algorithms are summarized in Ap-
pendix C. In classical computation, we may use dlog2(P )e
bits for representing ZP , where dxe denotes the ceiling
function, i.e., the smallest integer that is not smaller than
x. The quantum algorithm uses a dlog2(P )e-qubit quantum
register for ZP . This quantum register for ZP is repre-
sented as a 2dlog2(P )e-dimensional complex vector space
HP := (C2)

⊗dlog2(P )e. Using the conventional bra-ket no-
tation, each state in the standard orthonormal basis of the
registers is written as a ket (i.e., a vector) |x〉 ∈ H⊗DP for
representing x ∈ ZDP and |a, b〉 := |a〉⊗ |b〉 ∈ H⊗DP ⊗HP
for (a, b) ∈ ZDP × ZP , respectively.

The task of QRT is to transform a given unknown
quantum state |ψ〉 =

∑
x ψ(x) |x〉 into R |ψ〉 =
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a,bR[ψ](a, b) |a, b〉, where R is a matrix given by

R := P−
D
2

∑
x,a,b

r((a>x− b) mod P ) |a, b〉 〈x| . (11)

Under the assumptions in Sec. 2.1, R becomes an isometry
matrix and can be implemented by a quantum circuit for
our quantum algorithm, as shown below. Along with the
assumptions in Sec. 2.1, we use the following assumption
to bound the runtime of our algorithm.

• We choose the ridgelet function r : R → R in such
a way that a quantum state representing r by its am-
plitude |r〉 :=

∑
y r(y) |y〉 can be prepared efficiently

in runtime O(polylog(P )). This assumption is not
restrictive since we can use the quantum algorithm
by Grover & Rudolph (2002) to meet the assumption
for representative choices of r that are integrable effi-
ciently, such as ReLU and tanh.

Algorithm 1 shows our quantum algorithm for QRT. We
construct the algorithm by implementing the discrete Fourier
transform in the Fourier slice theorem (Theorem 2.2) by
QFT. QFT applies a unitary matrix representing discrete
Fourier transform

FP :=
∑
v,b

P−
1
2 e
−2πivb
P |v〉 〈b| (12)

to a given quantum state of HP within runtime
O(polylog(P )) (Mosca & Zalka, 2004). The following
theorem shows that this speedup is also the case in QRT
compared to classical algorithms for computing ridgelet
transform. See Appendix C for proof.
Theorem 3.1 (Runtime of quantum ridgelet transform). The
runtime of QRT in Algorithm 1 is

O(D × polylog(P )). (13)

The advantage of QRT is its linear runtime O(D) in the
data dimension D, which is exponentially faster than the
best existing classical algorithm for ridgelet transform in
the exp(O(D))-size space requiring exp(O(D)) runtime.
This advantage is in the same spirit as the QFT being expo-
nentially faster than the corresponding classical algorithm
for fast Fourier transform in the spaces of the same size. In
Sec. 4, we will further clarify that QRT has an application
to accelerate the task of finding the winning ticket of neural
networks.

4. Application of Quantum Ridgelet
Transform to Lottery Ticket Hypothesis

4.1. Setting for Winning Ticket of Neural Networks

In this section, as an application of quantum ridgelet trans-
form (QRT) in Sec. 3, we propose an algorithm for finding

Algorithm 1 Quantum ridgelet transform (QRT).
Require: A given input state |ψ〉 =

∑
x ψ(x) |x〉, the

ridgelet function r satisfying the assumptions in Sec. 3.
Ensure: Output R |ψ〉 =

∑
a,bR[ψ](a, b) |a, b〉 in (11)

within runtime O(D × polylog(P )) as in Theorem 3.1.
1: Given |ψ〉, add an auxiliary register HP prepared in∑

b r(b) |b〉, to obtain
∑

x,b ψ(x) |x〉 ⊗ r(b) |b〉.
2: Apply D-dimentional QFT F⊗DP and 1-dimensional in-

verse QFT F †P to the first and second quantum registers,
respectively, to transform

∑
x,b ψ(x) |x〉⊗r(b) |b〉 into∑

a′∈ZDP

∑
v∈ZP

FD[ψ](a′) |a′〉 ⊗ F1[r](v) |v〉 . (14)

3: Perform arithmetics |a′〉 7→ |v−1a′ mod P 〉 on the
first register by controlled gates that are controlled by
the state |v〉 of the second, to obtain∑

v∈ZP \{0}

∑
a′∈ZDP

FD[ψ](a′)
∣∣v−1a′ mod P

〉
⊗F1[r](v) |v〉

=
∑
a,v

FD[ψ](va mod P )F1[r](v) |a〉 ⊗ |v〉 , (15)

where v−1 ∈ ZP is the inverse of v in the finite field
ZP , a := v−1a′, and modP for ZDP is taken element-
wise.

4: Apply inverse QFT F †P to the second quantum register,
which yields R |ψ〉 due to Theorem 2.1.

5: Return R |ψ〉.

a sparse subnetwork approximating a large neural network
efficiently by quantum computation, based on the lottery
ticket hypothesis on neural networks. The lottery ticket hy-
pothesis by Frankle & Carbin (2019) claims that a randomly-
initialized fully-connected neural network contains a sub-
network that is initialized in such a way that, when trained
in isolation, it can match the accuracy of the original net-
work after training for at most the same number of iterations.
This hypothesis has been confirmed numerically in various
settings. The theoretical analysis of deep neural networks
is inevitably hard in general, and studies of shallow neural
networks are also important for capturing essences of neural
networks, which we here consider in a setting of regression
from given data as described in the following.

For D ∈ {1, 2, . . .} with a fixed prime number P , we con-
sider a family of problems to approximate an unknown
function f (D) : RD → R by a shallow neural network, i.e.,

f̂ (D)(x) :=

N∑
n=1

wng((a>nx− bn) mod P ). (16)

Let p(D)
data be a probability mass function for the input
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data, which is assumed to be supported on ZDP . Sup-
pose that we are given M input-output pairs of examples
(x1, y1 = f(x1)), . . . , (xM , yM = f(xM )) ∈ ZDP × R.
Let p̂(D)

data denote the empirical distribution of x1, . . . ,xM .
Given ε > 0, we will analyze empirical risk minimiza-
tion (Bach, 2021), i.e., minimization of the empirical risk∑

x p̂
(D)
data(x)|f (D)(x)− f̂ (D)(x)|2 to O(ε). If obvious, we

may omit D in superscripts; e.g., we may write f (D) as f .

The setting of our analysis, along with the assumptions in
Sec. 3, is as follows. Based on the exact representation
of f(x) in terms of the neural network S[w](x) in Theo-
rem 2.2, we can approximate f by a neural network

f(x)≈S[w∗λ](x)=
∑
a,b

P−
D
2 w∗λ(a, b)g((a>x−b) mod P ),

(17)
where w∗λ is the optimal solution of the ridge regression
with the empirical distribution, i.e.,

w∗λ(a, b) := arg min
w
{J̃(w)}, (18)

J̃(w) := J(w) + λΩ(w), J(w) :=
∑

x p̂data(x)|f(x) −
S[w](x)|2, Ω(w) := ‖P−D2 w‖22 =

∑
a,b |P−

D
2 w(a, b)|2,

and λ > 0 is a hyperparameter for regularization. Learning
a general class of function f (D) on ZDP would be inevitably
demanding as its representation would require exp(O(D))
parameters to specify the values f (D)(x) for all x ∈ ZDP in
the worst case. We have shown such a general representation
in Theorem 2.2. By contrast, our goal here is to achieve the
approximation feasibly with much fewer parameters, using
a subnetwork of the large original network S[w∗λ](x).

To this goal, recall that it is conventional in statistical
learning theory to consider a reasonably restricted class of
functions, e.g., those with bounded norms (Bach, 2021);
correspondingly, we work on a setting where the norm
‖P−D2 w∗λ‖1 :=

∑
a,b |P−

D
2 w∗λ(a, b)| of the weights for

representing f (D) should be bounded even on the large
scales D → ∞. In particular, let ((aj , bj) ∈ ZDP × ZP :
j ∈ {1, . . . , PD+1}) denote a sequence of parameters of
all nodes in the hidden layer of S[w∗λ](x) aligned in the de-
scending order of w∗λ, i.e., |w∗λ(a1, b1)| = |w∗λ(a2, b2)| =
· · · . These nodes of S[w∗λ] are ordered in the same way; i.e.,
the weight of the jth node is w∗λ(aj , bj). Then, we assume
the following.

• Following the convention of assumptions in the pre-
vious works by, e.g., Donoho (1993); Hayakawa &
Suzuki (2020), we assume that there exist constants
α, β > 0 such that it holds uniformly for any D and j
that

|P−D2 w∗λ(aj , bj)| 5 αj−(1+β), (19)

which specifies the decay rate for large j, leading to
‖P−D2 w∗λ‖1 5

∑∞
j=1 αj

−(1+β) 5 α+
∫∞

1
α

x1+β dx =

α+ α
β <∞. We also write the L2 norm as

γ := ‖P−D2 w∗λ‖22, (20)

which is upper bounded by γ 5
∑∞
j=1 α

2j−2(1+β) 5

α2 +
∫∞

1
α2

x2(1+β) dx = α2 + α2

1+2β . Functions (f (D) :

D = 1, 2, . . .) satisfying (19) are called (α, β)-class
functions, which are to be learned in our setting.

For given ε > 0, our analysis focuses on the task of finding
a sparse representation f̂ to approximate S[w∗λ] up to ε, i.e.,∑

x

p̂data(x)|S[w∗λ](x)− f̂(x)|2 = O(ε), (21)

with keeping the number of nodes N in the hidden layer of
f̂ in (16) as small as possible. Following the conventional
prescription in the statistical learning theory (Bach, 2021),
we assume that we appropriately choose

λ ≈ poly(ε), (22)

so that (21) leads to
∑

x p̂data(x)|f(x) − f̂(x)|2 = O(ε),
achieving the empirical risk minimization with f̂ . Note that
if we fix D, then for any f , we may be able to find suffi-
ciently large α and small β to meet (19), but our analysis
will show that assuming smaller α and larger β guarantees
smaller N to achieve (21) for the (α, β)-class functions for
arbitrary D.

4.2. Quantum Algorithm for Sampling from Optimized
Probability Distribution

We here construct a quantum algorithm for sampling from
an optimized probability distribution (defined later as
p∗λ,∆(a, b) in (23)) of parameters of nodes in the hidden
layer of the large original network S[w∗λ] in (17), which
we can use for efficiently finding a sparse subnetwork of
S[w∗λ] to approximate f well. The original network S[w∗λ]
has exp(O(D)) nodes to represent any function f , as with
Theorem 2.2. By contrast, studies on the lottery ticket hy-
pothesis provide numerical evidences that f in practice can
usually be approximated by a sparse subnetwork with much
fewer parameters. One existing way to find such a subnet-
work is to train the overall large network and then perform
masking to eliminate the low-weight nodes while keeping
those with higher weights (Frankle & Carbin, 2019). How-
ever, this approach is inefficient since one needs large-scale
optimization to train the large original network before the
pruning. Then, more recent studies by Lee et al. (2019);
Zhou et al. (2019); Ramanujan et al. (2020); Malach et al.
(2020); Orseau et al. (2020); Pensia et al. (2020); Tanaka
et al. (2020); Wortsman et al. (2020); Wang et al. (2020a;b);
Frankle et al. (2021); Chen et al. (2022b) have suggested that
one should be able to find the subnetwork only by pruning
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the initial network directly, even without the optimization
for training. Still, to perform this pruning appropriately, one
needs to perform a large-scale search for the subnetwork
within the parameter space of the large original neural net-
work. As D increases, it would become infeasible to deal
with the large original network for training or searching
as long as we use the existing methods based on classical
computation.

To address this problem, our key idea is to represent the
weights of the exp(O(D)) nodes in the hidden layer of the
neural network S[w∗λ] efficiently as the amplitude of quan-
tum state of only O(D) qubits. Roughly speaking, as in
Theorem 2.2, these weights can be given by the discrete
ridgelet transformR[f ] of f , which is implementable effi-
ciently by QRT. In particular, if we initially have a quantum
state |f〉 =

∑
x f(x) |x〉, then QRT of |f〉 can prepare

R |f〉 =
∑

a,bR[f ](a, b) |a, b〉 in time Õ(D) as shown

in Theorem 3.1, where Õ may ignore polylogarithmic fac-
tors. A measurement of this quantum state R |f〉 in basis
{|a, b〉} provides a measurement outcome (a, b) sampled
from a probability distribution proportional to the square of
the amplitude, i.e., |R[f ](a, b)|2. In this way, we can find
parameter (a, b) for a node with large |R[f ](a, b)|2 with
high probability, in runtime Õ(D) per sampling. The state is
corrupted by the measurement, and to perform the sampling
N times, we repeat the preparation and measurement N
times. To sample (a, b) for all high-weight nodes with high
probability in a theoretically guaranteed way, for ∆ > 0,
we introduce an optimized probability distribution

p∗λ,∆(a, b) :=
1

Z

|P−D2 w∗λ(a, b)|2

|P−D2 w∗λ(a, b)|2 + ∆
, (23)

where Z is a constant for normalization
∑

a,b p
∗
λ,∆(a, b) =

1. Appropriate ∆ for our task in (21) will be specified later
in Theorem 4.2. To sample from p∗λ,∆, we prepare

|p∗λ,∆〉 :=
1√
Z

∑
a,b

P−
D
2 w∗λ(a, b)√

|P−D2 w∗λ(a, b)|2 + ∆
|a, b〉 , (24)

followed by performing the measurement of |p∗λ,∆〉 in the
same way as described above.

To apply the above idea to practical tasks of machine learn-
ing, it is important to deal with a conventional situation
where the data (e.g., examples of input-output pairs of f )
are given by classical bit strings rather than quantum states;
thus, a critical issue for our algorithm should be how to give
such a quantum state from classical data. To achieve the
overall task using QRT, we first need to input the classical
data by converting the data into a quantum state, then apply
QRT to the quantum state, and finally perform a measure-
ment to obtain a classical output from the quantum state.

We also remark that, in some other proposals of QML, some
“quantum” data may be assumed to be given by quantum
states, e.g., as a result of another quantum algorithm or
physical process, and QRT is also potentially useful in such
a quantum setting. But significantly, our algorithm here
avoids such an assumption by explicitly clarifying how to
prepare an input quantum state from the given classical ex-
amples in the task of finding the winning ticket of neural
networks, as shown below.

In particular, we explicitly construct an input model for our
quantum algorithm by quantum circuit as follows.

• As an input, our algorithm uses quantum circuits to
prepare |p̂data〉 =

∑
x

√
p̂data(x) |x〉 and |ψin〉 ∝∑

x p̂data(x)f(x) |x〉. Regarding |p̂data〉, if we pre-
pare |p̂data〉 and measure it in basis {|x〉}, we can
randomly sample x according to the empirical distribu-
tion p̂data(x). For a classical algorithm, sampling from
p̂data can be easily realized in time O(D polylog(M))
over M examples of D-dimensional input, by sam-
pling m ∈ {1, . . . ,M} from the uniform distribu-
tion over O(log(M)) bits and outputting xm ∈ ZDP
out of x1, . . . ,xM stored in random access memory
(RAM). As for the quantum algorithm, the prepara-
tion of |p̂data〉with maintaining quantum superposition
may be more technical. But we show that this prepara-
tion is also implementable in time O(D polylog(M)),
by storing the M examples upon collecting them
in a sparse binary-tree data structure (Kerenidis &
Prakash, 2017) with quantum RAM (QRAM) (Gio-
vannetti et al., 2008a;b), where QRAM is implemented
explicitly as a parallelized quantum circuit of depth
O(polylog(M)) (Matteo et al., 2020; Hann et al.,
2021). Using the same data structure, we also show
that the preparation of |ψin〉 is implemented within the
same runtime O(D polylog(M)). As a whole, our as-
sumption is to store theM examples in these data struc-
tures upon collecting them, so that each preparation
of |p̂data〉 and |ψin〉 has runtime O(D polylog(M)) =

Õ(D). See Appendix D for detail.

The following theorem shows that we have a quantum algo-
rithm that can prepare and measure |p∗λ,∆〉 to sample from
p∗λ,∆ within a linear runtime Õ( D

λ∆ ). Our algorithm is based
on the analytical formula for the solution of ridge regression
in (18); in particular, with r = g, the formula leads to

|p∗λ,∆〉 ∝
(
Wλ +

∆

γ
I
)− 1

2(
RP̂dataR

> + λI
)−1

R |ψin〉 ,
(25)

where Wλ := γ−1
∑

a,b |P−
D
2 w∗λ(a, b)|2 |a, b〉 〈a, b| and

P̂data :=
∑

x p̂data(x) |x〉 〈x|. The algorithm is also ex-
plicitly presented as Algorithm 2 in Appendix D. See Ap-
pendix D for proof of its runtime as well.
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Theorem 4.1 (Runtime of quantum algorithm for sampling
from optimized probability distribution). Given λ,∆ > 0,
for any D, a quantum algorithm can prepare and mea-
sure |p∗λ,∆〉 to sample from p∗λ,∆(a, b) within runtime

Õ
(
D
λ∆ × γ

)
per sampling, where γ is a constant in (20).

Remarkably, our construction of the quantum algorithm for
Theorem 4.1 is based on two significant technical contri-
butions. First, estimation of classical description of |p∗λ,∆〉
would need exp(O(D)) runtime and may cancel out the
advantage of QML (Aaronson, 2015), but we avoid such
slowdown. In particular, our quantum algorithm prepares
|p∗λ,∆〉 directly from the M examples and then measure it
to obtain parameter (a, b) for a high-weight node of S[w∗λ]
per single preparation and measurement. In this way, we cir-
cumvent the costly process of expectation-value estimation
throughout our algorithm. Second, we develop a technique
for implementing the inverses of exp(O(D))× exp(O(D))
matrices in (25) with quantum computation efficiently, yet
without imposing restrictive assumptions. In particular, the
inverses of exp(O(D))× exp(O(D)) matrices are hard to
compute in classical computation, and conventional tech-
niques in QML have required sparsity or low-rankness of
the matrices to implement matrix inversion with large quan-
tum speedups (Gilyén et al., 2019). More recent quantum-
inspired classical algorithms also require the low-rank as-
sumption (Tang, 2019). However, the matrices to be inverted
in our algorithm are not necessarily sparse or low-rank, and
thus imposing such assumptions would limit the applica-
bility of QML. By contrast, we avoid imposing these as-
sumptions by directly clarifying the quantum circuits for
implementing these matrices efficiently with QRT. In the
existing research, this type of technique for avoiding the
sparsity and low-rankness assumptions in QML was estab-
lished only for Fourier transform (Yamasaki et al., 2020;
Yamasaki & Sonoda, 2021). Our development discovers
wide applicability of such techniques even to a broader class
of transforms including ridgelet transform.

4.3. Quantum Algorithm for Finding Winning Ticket of
Neural Networks and Performance Analysis

Using the quantum algorithm for sampling from p∗λ,∆(a, b)
in Theorem 4.1, we describe an algorithm for finding a
winning ticket, i.e., a sparse trainable subnetwork of the
large original network S[w∗λ] in (17) for approximating f .
We also analyze its performance with theoretical guarantee.

We here describe our algorithm for finding a winning ticket,
which is also explicitly presented as Algorithm 3 in Ap-
pendix E. In our algorithm, we repeat the sampling from
p∗λ,∆(a, b) in total N times by the quantum algorithm in
Theorem 4.1, where N is given later in (28). Letting Ŵ
denote the set of sampled parameters in these N repetitions,

we approximate S[w∗λ] by the subnetwork

S[w∗λ]≈ f̂(x)=
∑

(a,b)∈Ŵ

ŵ∗(a, b)g((a>x− b) mod P ), (26)

where we write ŵ∗ := (ŵ∗(a, b) ∈ R : (a, b) ∈ Ŵ). Each
sampling provides parameter (a, b) ∈ Ŵ of each node in
the hidden layer of this subnetwork but not the value of
ŵ∗(a, b). Once we fix {g((a>x − b) mod P ) : (a, b) ∈
Ŵ} of the subnetwork, we then train ŵ∗ efficiently by the
established classical algorithms for convex optimization
such as stochastic gradient descent (SGD) (Harvey et al.,
2019), using the M examples. Thus, the quantum speedup
is not cancelled out throughout the learning including the
training of ŵ∗. In this way, we achieve our task (21) with
trainability.

The following theorem guarantees ∆ and N required for
achieving our task (21). By combining Theorems 4.1
and 4.2 with (22) in our setting, the overall runtime of our
algorithm is

Õ
(
N × D

λ∆
γ
)

= Õ
( D

λε1+2/β

)
= Õ

(
D × poly

(1

ε

))
,

(27)
dominated by the N repetitions of the sampling in Theo-
rem 4.1. A comparison with classical algorithms analogous
to our sampling-based approach is made in Sec. 4.4. See
Appendix E for proof.

Theorem 4.2 (Bounds for finding winning ticket of neural
networks). Given ε, δ > 0, there exist ∆ and N satisfying

∆ = Ω
(
ε1+ 1

β

)
, N = O

(
ε−

1
2β log

(
ε−1δ−1

))
, (28)

such that the algorithm described above returns a subnet-
work f̂ of the neural network S[w∗λ] with the number of
nodes in the hidden layer of f̂ smaller than N , and f̂
achieves the task of approximating S[w∗λ] to O(ε) in (21)
with high probability greater than 1− δ.

4.4. Advantage of Using Quantum Ridgelet Transform

We numerically demonstrate the advantage of our algo-
rithm for winning the lottery ticket of the neural net-
work in Theorem 4.2. For fair comparison between our
algorithm and a similar approach for classical algorithms,
recall that the essential idea of our algorithm is to avoid
computationally hard optimization of the initial neural net-
work by sampling the nodes in its hidden layer to decide
the basis functions {g((a>x − b) mod P ) : (a, b) ∈ Ŵ}
in (26), followed by efficiently training their coefficients
ŵ∗ via convex optimization. This idea can be regarded as
a generalized form of random features by Rahimi & Recht
(2008; 2009), where one randomly samples feature maps,
i.e., {g((a>x−b) mod P )}, and then find their coefficients
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Figure 1. The empirical risks achievable with the subnetworks of
the large original neural network found by N repetitions of sam-
pling from the optimized distribution p∗λ,∆(a, b) in (23) via our
algorithm in Theorem 4.2 (blue thick line), and that from the uni-
form distribution via random features (red dashed line). Each line
represents the average over 20 executions of the algorithms, while
each error bar represents the unbiased estimation of the standard
deviation for these executions. The advantage of using our algo-
rithm over the simple application of the random features can be
order of magnitude in terms of the empirical risk in this regime.

by convex optimization. The difference is that we use the
optimized distribution p∗λ,∆(a, b) depending on f and p̂data,
but the random features conventionally performs sampling
from a distribution independent of f and p̂data, e.g., a uni-
form distribution puniform(a, b) := 1

PD+1 . Note that a more
recent work by Bach (2017) has proposed to sample opti-
mized random features depending on the data distribution
(but still not on f itself), and this sampling is also efficiently
achievable with a quantum algorithm shown by Yamasaki
et al. (2020); Yamasaki & Sonoda (2021); however, without
QRT in this work, it would not be straightforward to apply
such techniques to neural networks. Despite this difference,
a quantitative advantage of our algorithm over the random
features would be still unclear without numerical simula-
tion, due to the non-orthogonality of the basis functions
{g((a>x− b) mod P )} used for the neural network.

We numerically show that our algorithm can find a subnet-
work achieving a significantly better empirical risk than
that obtained from the random features, as illustrated in
Fig. 1. In our numerical experiment, choosing D = 1 and
P = 127, we set the function f to be learned as a sine
function, the empirical distribution as the uniform distribu-
tion p̂data(x) = 1

PD
, and the activation function g and the

ridgelet function r as ReLU. The sampling from p∗λ,∆ was
classically simulated via rejection sampling, and convex
optimization of ŵ∗ was solved by MOSEK (ApS, 2022) and
YALMIP (Löfberg, 2004). For N 5 120, we plotted the
achievable empirical risk withN repetitions of the sampling
from p∗λ,∆ and that from puniform. The advantage of our
algorithm in finding a sparse trainable subnetwork over the
random features can be order of magnitude in terms of the
empirical risk achievable by the subnetwork. We also note

that a similar advantage can also be obtained in the case
where we choose the activation function as a sigmoid func-
tion (tanh) rather than ReLU, which supports our results
further. See Appendix F for detail.

We emphasize that our classical simulation using rejection
sampling of p∗λ,∆ is not scalable as D increases; by con-
trast, our results make it possible to take the advantage in
higher dimension D � 1 if we can use quantum computa-
tion for accelerating the task. Our main contributions are
the development of algorithmic techniques for QML and
the derivation of the bounds on the performances of our
algorithms with theoretical guarantees, which are not heuris-
tic. We may be able to perform the numerical experiment
only for small D at the moment because the numerical ex-
periment for higher dimensions is computationally hard as
long as we use classical computation to simulate quantum
computation. However, together with our theoretical analy-
sis, the overall results lay a solid foundation for developing
fault-tolerant quantum computers to demonstrate the advan-
tage of our algorithms for the higher dimensions in quantum
experiments in the future.

5. Conclusion
We have formulated the discrete ridgelet transform that can
be characterized via Fourier slice theorem and can represent
any function exactly in the discretized domain. Furthermore,
as a fundamental subroutine for quantum machine learning
(QML), we have constructed quantum ridgelet transform
(QRT), a quantum algorithm for applying D-dimensional
discrete ridgelet transform to a quantum state efficiently in
linear time Õ(D). We have also clarified an application of
QRT for finding a sparse trainable subnetwork of a large-
scale neural network to approximate a function to be learned,
opening an efficient way to demonstrate lottery ticket hy-
pothesis. These results discover a promising use of QML to
accelerate the tasks for classical neural networks. Also from
a broader perspective, our quantum algorithms may need
a fault-tolerant quantum computer that is actively under
development, and our achievement lays a solid theoretical
foundation for further hardware development and social
implementation toward realizing quantum computation.
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Argüello, F. Quantum wavelet transforms of any order.
Quantum Info. Comput., 9(5):414–422, may 2009. ISSN
1533-7146. URL https://dl.acm.org/doi/a
bs/10.5555/2011791.2011796.

Bach, F. On the equivalence between kernel quadrature
rules and random feature expansions. Journal of Machine
Learning Research, 18(21):1–38, 2017. URL http:
//jmlr.org/papers/v18/15-178.html.

Bach, F. Learning Theory from First Principles. 2021. URL
https://www.di.ens.fr/%7Efbach/ltfp b
ook.pdf.

Barron, A. Universal approximation bounds for super-
positions of a sigmoidal function. IEEE Transactions
on Information Theory, 39(3):930–945, 1993. doi:
10.1109/18.256500. URL https://ieeexplo
re.ieee.org/document/256500/.

Bernstein, E. and Vazirani, U. Quantum complexity theory.
SIAM Journal on Computing, 26(5):1411–1473, 1997.
doi: 10.1137/S0097539796300921. URL https:
//epubs.siam.org/doi/10.1137/S009753
9796300921.

Beylkin, G. Discrete radon transform. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 35(2):162–
172, 1987. doi: 10.1109/TASSP.1987.1165108. URL
https://ieeexplore.ieee.org/document
/1165108.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe,
N., and Lloyd, S. Quantum machine learning. Nature,
549(7671):195, 2017. URL https://www.nature
.com/articles/nature23474.

Boag, A., Bresler, Y., and Michielssen, E. A multilevel
domain decomposition algorithm for fast o(n/sup 2/logn)
reprojection of tomographic images. IEEE Transactions
on Image Processing, 9(9):1573–1582, 2000. doi: 10.1
109/83.862638. URL https://ieeexplore.iee
e.org/document/862638.

Brady, M. L. A fast discrete approximation algorithm for
the radon transform. SIAM Journal on Computing, 27(1):
107–119, 1998. doi: 10.1137/S0097539793256673. URL
https://epubs.siam.org/doi/10.1137/S
0097539793256673.

Brandt, A., Mann, J., Brodski, M., and Galun, M. A fast
and accurate multilevel inversion of the radon transform.
SIAM Journal on Applied Mathematics, 60(2):437–462,
2000. doi: 10.1137/S003613999732425X. URL https:
//epubs.siam.org/doi/10.1137/S003613
999732425X.

Candes, E. J. Ridgelets : theory and applications. PhD
thesis, Stanford University, 1998. URL https://se
archworks.stanford.edu/view/9949708.

Carre, P. and Andres, E. Discrete analytical ridgelet trans-
form. Signal Processing, 84(11):2165–2173, 2004. ISSN
0165-1684. doi: https://doi.org/10.1016/j.sigpro.2004.07
.009. URL https://www.sciencedirect.com/
science/article/pii/S0165168404001689.
Special Section Signal Processing in Communications.

Chakraborty, S., Gilyén, A., and Jeffery, S. The Power
of Block-Encoded Matrix Powers: Improved Regres-
sion Techniques via Faster Hamiltonian Simulation.
In Baier, C., Chatzigiannakis, I., Flocchini, P., and
Leonardi, S. (eds.), 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019),
volume 132 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 33:1–33:14, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. ISBN 978-3-95977-109-2. doi: 10.4230/LIPI
cs.ICALP.2019.33. URL http://drops.dagstu
hl.de/opus/volltexte/2019/10609.

Chen, S., Cotler, J., Huang, H., and Li, J. Exponential
separations between learning with and without quantum
memory. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 574–585,
Los Alamitos, CA, USA, feb 2022a. IEEE Computer
Society. doi: 10.1109/FOCS52979.2021.00063. URL
https://doi.ieeecomputersociety.org/
10.1109/FOCS52979.2021.00063.

Chen, X., Zhang, J., and Wang, Z. Peek-a-boo: What (more)
is disguised in a randomly weighted neural network, and
how to find it efficiently. In International Conference on

10

https://www.nature.com/articles/nphys3272
https://www.nature.com/articles/nphys3272
http://drops.dagstuhl.de/opus/volltexte/2012/3426
http://drops.dagstuhl.de/opus/volltexte/2012/3426
http://docs.mosek.com/9.3/toolbox/index.html
http://docs.mosek.com/9.3/toolbox/index.html
https://dl.acm.org/doi/abs/10.5555/2011791.2011796
https://dl.acm.org/doi/abs/10.5555/2011791.2011796
http://jmlr.org/papers/v18/15-178.html
http://jmlr.org/papers/v18/15-178.html
https://www.di.ens.fr/%7Efbach/ltfp_book.pdf
https://www.di.ens.fr/%7Efbach/ltfp_book.pdf
https://ieeexplore.ieee.org/document/256500/
https://ieeexplore.ieee.org/document/256500/
https://epubs.siam.org/doi/10.1137/S0097539796300921
https://epubs.siam.org/doi/10.1137/S0097539796300921
https://epubs.siam.org/doi/10.1137/S0097539796300921
https://ieeexplore.ieee.org/document/1165108
https://ieeexplore.ieee.org/document/1165108
https://www.nature.com/articles/nature23474
https://www.nature.com/articles/nature23474
https://ieeexplore.ieee.org/document/862638
https://ieeexplore.ieee.org/document/862638
https://epubs.siam.org/doi/10.1137/S0097539793256673
https://epubs.siam.org/doi/10.1137/S0097539793256673
https://epubs.siam.org/doi/10.1137/S003613999732425X
https://epubs.siam.org/doi/10.1137/S003613999732425X
https://epubs.siam.org/doi/10.1137/S003613999732425X
https://searchworks.stanford.edu/view/9949708
https://searchworks.stanford.edu/view/9949708
https://www.sciencedirect.com/science/article/pii/S0165168404001689
https://www.sciencedirect.com/science/article/pii/S0165168404001689
http://drops.dagstuhl.de/opus/volltexte/2019/10609
http://drops.dagstuhl.de/opus/volltexte/2019/10609
https://doi.ieeecomputersociety.org/10.1109/FOCS52979.2021.00063
https://doi.ieeecomputersociety.org/10.1109/FOCS52979.2021.00063


Quantum Ridgelet Transform: Winning Lottery Ticket of Neural Networks with Quantum Computation

Learning Representations, 2022b. URL https://op
enreview.net/forum?id=moHCzz6D5H3.

Childs, A. M., Kothari, R., and Somma, R. D. Quan-
tum algorithm for systems of linear equations with ex-
ponentially improved dependence on precision. SIAM
Journal on Computing, 46(6):1920–1950, 2017. doi:
10.1137/16M1087072. URL https://epubs.siam
.org/doi/10.1137/16M1087072.

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M.,
Rocchetto, A., Severini, S., and Wossnig, L. Quan-
tum machine learning: a classical perspective. Pro-
ceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, 474(2209):20170551,
2018. doi: 10.1098/rspa.2017.0551. URL https:
//royalsocietypublishing.org/doi/abs
/10.1098/rspa.2017.0551.

Cleve, R. and Watrous, J. Fast parallel circuits for the
quantum fourier transform. In Proceedings 41st Annual
Symposium on Foundations of Computer Science, pp. 526–
536, 2000. doi: 10.1109/SFCS.2000.892140. URL
https://ieeexplore.ieee.org/document
/892140.

Coppersmith, D. An approximate fourier transform useful in
quantum factoring. IBM Research Report, pp. RC–19642,
1994. URL https://dominoweb.draco.res.
ibm.com/reports/8472.ps.gz.

de Wolf, R. Quantum computing: Lecture notes, 2019. URL
https://arxiv.org/abs/1907.09415.

Do, M. and Vetterli, M. The finite ridgelet transform for im-
age representation. IEEE Transactions on Image Process-
ing, 12(1):16–28, 2003. doi: 10.1109/TIP.2002.806252.
URL https://ieeexplore.ieee.org/docu
ment/1187351.

Donoho, D. L. Unconditional bases are optimal bases for
data compression and for statistical estimation. Applied
and Computational Harmonic Analysis, 1(1):100–115,
1993. ISSN 1063-5203. doi: https://doi.org/10.1006/ac
ha.1993.1008. URL https://www.sciencedirec
t.com/science/article/pii/S106352038
3710080.

Fadili, J. and Starck, J.-L. Curvelets and Ridgelets, pp. 754–
773. Springer New York, New York, NY, 2012. ISBN 978-
1-4614-1800-9. doi: 10.1007/978-1-4614-1800-9 48.
URL https://link.springer.com/refere
nceworkentry/10.1007/978-1-4614-1800
-9 48.

Fijany, A. and Williams, C. P. Quantum wavelet transforms:
Fast algorithms and complete circuits. In Selected Papers

from the First NASA International Conference on Quan-
tum Computing and Quantum Communications, QCQC
’98, pp. 10–33, Berlin, Heidelberg, 1998. Springer-Verlag.
ISBN 354065514X. URL https://dl.acm.org/d
oi/abs/10.5555/645812.670803.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=
rJl-b3RcF7.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Prun-
ing neural networks at initialization: Why are we missing
the mark? In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.n
et/forum?id=Ig-VyQc-MLK.

Gilyén, A., Su, Y., Low, G. H., and Wiebe, N. Quantum sin-
gular value transformation and beyond: Exponential im-
provements for quantum matrix arithmetics. In Proceed-
ings of the 51st Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2019, pp. 193–204, New York,
NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450367059. doi: 10.1145/3313276.3316366.
URL https://dl.acm.org/doi/10.1145/3
313276.3316366.

Giovannetti, V., Lloyd, S., and Maccone, L. Architectures
for a quantum random access memory. Phys. Rev. A, 78:
052310, Nov 2008a. doi: 10.1103/PhysRevA.78.052310.
URL https://link.aps.org/doi/10.1103
/PhysRevA.78.052310.

Giovannetti, V., Lloyd, S., and Maccone, L. Quantum ran-
dom access memory. Phys. Rev. Lett., 100:160501, Apr
2008b. doi: 10.1103/PhysRevLett.100.160501. URL
https://link.aps.org/doi/10.1103/Phy
sRevLett.100.160501.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016. URL http://www.deeplearni
ngbook.org.

Grover, L. and Rudolph, T. Creating superpositions that cor-
respond to efficiently integrable probability distributions,
2002. URL https://arxiv.org/abs/quant-
ph/0208112.
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Appendices
Appendices are organized as follows. In Appendix A, we provide a proof of Theorem 2.1 in Sec. 2.1. In Appendix B, we
provide a proof of Theorem 2.2 in Sec. 2.2. In Appendix C, we summarize basic notions of quantum computation required
for the analysis and then provide a proof of Theorem 3.1 in Sec. 3. In Appendix D, we clarify the explicit implementation
and the runtime of the input model for our quantum algorithm for Theorem 4.1 in Sec. 4.2 and then provide the proof of
Theorem 4.1. In Appendix E, we provide the proof of Theorem 4.2 in Sec. 4.3. In Appendix F, we describe the detail of the
parameters chosen for the numerical experiment in Sec. 4.4.

A. Proof on Fourier Slice Theorem for Discrete Ridgelet Transform
We provide a proof of Theorem 2.1 in Sec. 2.1.

Proof of Theorem 2.1. It holds that

R[f ](a, b) (29)

= P−
D
2

∑
x

f(x)r((a>x− b) mod P ) (30)

= P−
D
2

∑
x

f(x)r((a>x− b) mod P ) (31)

= P−
D
2

∑
x

f(x)P−
1
2

∑
v

F1[r](v)e
2πiv(a>x−b)

P (32)

= P−
1
2

∑
v∈ZP

(
P−

D
2

∑
x

f(x)e
−2πiva>x

P

)
F1[r](v)e

2πivb
P (33)

= P−
1
2

∑
v∈ZP

FD[f ](va mod P ) F1[r](v) e
2πivb
P . (34)

Therefore, the discrete Fourier transform for b leads to

F1[R[f ](a, ·)] = FD[f ](va mod P ) F1[r](v), (35)

which yields the conclusion.

B. Proof on Exact Representation of Function by Discretized Neural Network
We provide a proof of Theorem 2.2 in Sec. 2.2.

Proof of Theorem 2.2. In this proof, we write w = R[f ] for simplicity of notation. By (7), we have

S[w](x) = P−
D
2

∑
a

[w(a, ·) ∗ g(·)](a>x) (36)

= P−
D
2

∑
a

∑
v

F1[w(a, ·)](v) F1[g](v) e
2πiva>x

P , (37)

where we use
f ∗ g(y) :=

∑
b

f(b)g(y − b) =
∑
v

F1[f ](v)F1[g](v)e
2πivy
P . (38)

Then, applying Theorem 2.1 to w = R[f ], we have

(37) = P−
D
2

∑
a

∑
v

FD[f ](va mod P ) F1[r](v) F1[g](v) e
2πiva>x

G . (39)
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To evaluate the right-hand side, we use the fact that P is a prime. In this case, for any v 6= 0, the set ZP = {0, 1, . . . , P − 1}
is identical to {0, v, . . . , (P − 1)v}. Thus, recalling F1[g](0) =

∑
b g(b) = 0 as in (5) and letting a′ ∈ ZDP denote the

unique vector satisfying a′ = va mod P ∈ ZDP , we obtain

(39) = P
−D/2

∑
v∈ZP

∑
a′∈ZDP

FD[f ](a′) F1[r](v) F1[g](v) e
2πia′>x

P (40)

=

(∑
v

F1[g](v)F1[r](v)

)
×

(
P
−D/2

∑
a′

FD[f ](a′)e
2πia′>x

P

)
(41)

= Cg,rf(x). (42)

Therefore, it holds that

f(x) =
1

Cg,r
S[w](x), (43)

which yields the conclusion.

C. Proof on Runtime of Quantum Ridgelet Transform
In this section, we summarize basic notions of quantum computation; for more detial, see the textbooks and the lecture notes
by, e.g., Nielsen & Chuang (2011); de Wolf (2019). Then, we provide a proof of Theorem 3.1 in Sec. 3.

Analogously to a bit {0, 1} in classical computation, the unit of quantum computation is a quantum bit (qubit), mathematically
represented by C2, i.e., a 2-dimensional complex Hilbert space. A fixed orthonormal basis of a qubit C2 is denoted by
{|0〉 := ( 1

0 ) , |1〉 := ( 0
1 )}. Similar to a bit taking a state b ∈ {0, 1}, a qubit takes a quantum state |ψ〉 = α0 |0〉+ α1 |1〉 =

( α0
α1

) ∈ C2. While a register of m bits takes values in {0, 1}m, a quantum register of m qubits is represented by the
tensor-product space

(
C2
)⊗m ∼= C2m , i.e., a 2m-dimensional Hilbert space. We may use = rather than ∼= to represent

isomorphism for brevity. We let H denote a finite-dimensional Hilbert space representing a quantum register; that is, an
m-qubit register is H = C2m . A fixed orthonormal basis {|x〉 : x ∈ {0, . . . , 2m − 1}} labeled by m-bit strings, or the
corresponding integers, is called the standard basis ofH. A state ofH can be denoted by |ψ〉 =

∑2m−1
x=0 αx |x〉 ∈ H. Note

that any quantum state |ψ〉 requires an L2 normalization condition ‖|ψ〉‖2 = 1, and for any θ ∈ R, |ψ〉 is identified with
eiθ |ψ〉.

In the bra-ket notation, the conjugate transpose of the column vector |ψ〉 is a row vector denoted by 〈ψ|, where 〈ψ| and |ψ〉
may be called a bra and a ket, respectively. The inner product of |ψ〉 and |φ〉 is denoted by 〈ψ |φ〉, while their outer product
|ψ〉 〈φ| is a matrix. The conjugate transpose of a matrix A is denoted by A†, and the transpose of A with respect to the
standard basis is denoted by A>.

A measurement of a quantum state |ψ〉 is a sampling process that returns a randomly chosen bit string from the quantum
state. An m-qubit state |ψ〉 =

∑2m−1
x=0 αx |x〉 is said to be in a superposition of the basis states |x〉s. A measurement of |ψ〉

in the standard basis {|x〉} provides a random m-bit integer x ∈ {0, . . . , 2m−1} as outcome, with probability p(x) = |αx|2.
After the measurement, the state changes from |ψ〉 to |x〉 corresponding to the obtained outcome x, and loses the randomness
in |ψ〉; that is, to iterate the same sampling as this measurement, we need to prepare |ψ〉 repeatedly for each iteration. For
two registers HA ⊗ HB and their state |φ〉AB =

∑
x,x αx,x′ |x〉

A ⊗ |x′〉B ∈ HA ⊗ HB , a measurement of the register

HB for |φ〉AB in the standard basis {|x′〉B} of HB yields an outcome x′ with probability p(x′) =
∑
x p(x, x

′), where
p(x, x′) = |αx,x′ |2. The superscripts of a state or an operator represent which register the state or the operator belongs to,
while we may omit the superscripts if it is clear from the context.

A quantum algorithm starts by initializing m qubits in a fixed state |0〉⊗m, which we may write as |0〉 if m is clear from the
context. Then, we apply a 2m-dimensional unitary operator U to |0〉⊗m, to prepare a state U |0〉⊗m. Finally, a measurement
of U |0〉⊗m is performed to sample an m-bit integer from a probability distribution given by U |0〉⊗m. Analogously to
classical logic-gate circuits, U is represented by a quantum circuit composed of sequential applications of unitaries acting at
most two qubits at a time. Each of these unitaries is called an elementary quantum gate. The runtime of a quantum algorithm
represented by a quantum circuit is determined by the number of applications of elementary quantum gates in the circuit.

Using these notions, the proof of Theorem 3.1 in Sec. 3 is shown as follows.
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Algorithm 2 Quantum algorithm for sampling from optimized probability distribution for winning ticket of neural networks.
Require: λ,∆ > 0, assumptions in Sec. 4.1, the input model described in Sec. 4.2.
Ensure: Parameters (a, b) sampled from the optimized probability distribution p∗λ,∆(a, b) in (23).

1: Prepare a quantum state |ψin〉 ∝
∑

x p̂data(x)f(x) |x〉.
2: Apply QRT to obtain a state R |ψin〉.
3: Apply (RP̂dataR

> + λI)
−1

by quantum singular value transformation (QSVT) to obtain

1
√
γ

∑
a,b

P−
D
2 w∗λ(a, b) |a, b〉 ∝ (RP̂dataR

> + λI)
−1

R |ψin〉 . (44)

4: Apply (Wλ + ∆
γ I)

− 1
2 by QSVT to obtain

|p∗λ,∆〉 ∝
(
Wλ +

∆

γ
I
)− 1

2

(RP̂dataR
> + λI)

−1
R |ψin〉 . (45)

5: Perform a measurement in the standard basis {|a, b〉} to sample (a, b) as the outcome according to the probability
distribution p∗λ,∆(a, b).

6: Return (a, b).

Proof of Theorem 3.1. The runtime of Algorithm 1 is domianated by Step 2 as shown in the following.

Step 1 is performed within runtime O(polylog(P )) due to our assumption that |r〉 =
∑
b r(b) |b〉 can be prepared in time

O(polylog(P )).

Step 2 is dominated by the runtime of F⊗DP , which is O(D × polylog(P )) since the runtime of FP is O(polylog(P )) as
shown in (12). The inverse F †P has the same runtime as FP since F †P is implemented by applying the inverse of each
gate in the quantum circuit for FP in the reverse order. A techinical remark is that, for simplicity of presentation, we
write our statement and the proof based on the exact implementation of FP by Mosca & Zalka (2004) to avoid writing the
polylogarithmic error factors that may arise in approximate implementations of FP such as those by Kitaev (1995); Hales &
Hallgren (2000). Even if one uses these approximate implementations of FP , our theorem follows from the same argument
with the polylogarithmic error factors multiplied. We also note that some of the other implementations of QFT such as those
by Coppersmith (1994); Cleve & Watrous (2000) are targeted at P = 2n for n = 1, 2, . . ., and our algorithm does not use
these implementations since P is a prime number in our setting.

Step 3 is performed within runtime O(polylog(P )) by arithmetics on O(log(P )) qubits. This is implemented by writing
the classical computation of the arithmetic in a reversible way as a classical circuit and replacing each Toffoli gate in the
classical circuit with the quantum Toffoli gate to obtain the quantum circuit for the arithmetics part.

Step 4 has the runtime of O(polylog(P )) for F †P as discussed in Step 2 as well.

Consequently, the overall runtime is dominated by that of Step 2, i.e., O(D × polylog(P )).

D. Proof on Runtime of Quantum Algorithm for Sampling from Optimized Probability
Distribution

In this section, we clarify the explicit implementation and the runtime of the input model for our algorithm of Theorem 4.1
in Sec. 4.2. Then, We provide the proof of Theorem 4.1. Our algorithm for Theorem 4.1 is shown in Algorithm 2. See also
Appendix C for the notations on quantum computation.

As an input model, Algorithm 2 uses preparation of quantum states

|p̂data〉 :=
∑
x

√
p̂data(x) |x〉 , (46)

|ψin〉 :=

∑
x p̂data(x)f(x) |x〉√∑

x |p̂data(x)f(x)|2
, (47)
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where p̂data is the empirical distribution of x1, . . . ,xM for the M input-output pairs of examples
(x1, f(x1)), . . . , (xM , f(xM )) ∈ ZDP × R. We will explain the implementation of the input model by quantum
circuit, so as to show that the runtime of the input model in terms of the circuit depth can be bounded by O(D polylog(M))
including the runtime of quantum random access memory (QRAM) (Giovannetti et al., 2008a;b) used for the implementation.
In summary, upon collecting the M examples, we will construct an O(M)-size sparse data structure shown by Kerenidis &
Prakash (2017), and the state preparation can be efficiently conducted with the algorithm by Grover & Rudolph (2002) using
this data structure combined with QRAM; in addition, it is known that QRAM used for this input model is implementable
explicitly as a parallelized quantum circuit of a O(polylog(M)) depth using at most O(M) qubits as shown, e.g., by Matteo
et al. (2020); Hann et al. (2021). In the following, we explain the detail of these facts to avoid any potential confusion about
feasibly of the input model for Algorithm 2 in our setting.

We explain how to construct the sparse data structure shown by Kerenidis & Prakash (2017) in our setting. In the following,
we describe the data structure for |p̂data〉 in detail, and then clarify the difference between |p̂data〉 and |ψin〉. For the
preparation of |p̂data〉, along with collecting (xm, f(xm)) one by one for each m ∈ {1, . . . ,M}, we are to perform a
preprocessing to count the number of examples and store the empirical distribution in a sparse data structure proposed
by Kerenidis & Prakash (2017). To describe this sparse data structure, we first explain the underlying dense binary tree
(which we introduce for explanation but never store in the memory), and then clarify a sparse version of the binary tree
to be stored in the memory. Each leaf of the underlying dense binary tree represents a set {x} for each x ∈ ZDP ; i.e., the
underlying dense binary tree has O(PD) leaves. Each parent in this dense binary tree represents the sum of the two sets
represented by its two children; thus, the root of the tree represents ZDP . With this definition, each node in the dense binary
tree aims at storing the number of examples in the set represented by the node; e.g., a leaf representing {x} stores the
cardinality of {m ∈ {1, . . . ,M} : xm = x}. As for the sparse version of this binary tree, each leaf for {x} counts and
stores the number of examples satisfying xm = x in the same way, but the sparse data structure does not store leaves
with zero example. Each parent in the sparse data structure stores the sum of the counts for its children in the tree in the
same way, but the sparse data structure does not store branches with zero example. As a whole, the root should store the
number of all the examples, i.e., M . In this sparse data structure, the number of nodes at each depth of the tree is at most
M , and the height of the tree is O(D log(P )). To construct this sparse data structure for |p̂data〉, we initialize the counts
in all the nodes as 0, and for each xm of the M examples, we increment the count in the leaf for {xm} and those in the
corresponding ascendants of this leaf, where the increment for each example can be performed within poly-logarithmic time
O(polylog(M)) as shown by Kerenidis & Prakash (2017). Therefore, the runtime of this preprocessing for all M examples
is Õ(M), where Õ ignores the poly-logarithmic factors; that is, this runtime has the same scaling as just collecting the M
examples up to the poly-logarithmic factors. The sparse data structure for |ψin〉 is based on the same underlying dense
binary tree, but a leaf for each {x} stores p̂data(x)f(x) instead of p̂data(x), and each parent store the sum of those at its
children in the same way; to construct this data structure, instead of incrementing the counts stored in the nodes by +1 for
each xm, we add f(xm) to the number stored in a leaf {xm} and update the numbers stored in the ascendants of this leaf
correspondingly.

We use this sparse data structure with QRAM to prepare the states |p̂data〉 and |ψin〉. In particular, the preparation of these
states is achieved by a parallelized quantum circuit of depth O(D log(P )) to run a quantum algorithm of Grover & Rudolph
(2002), where each O(1)-depth part of the circuit processes each depth of the O(D log(P ))-height tree, and the QRAM is
queried once for each of these parts, in total O(D log(P )) times (Kerenidis & Prakash, 2017). Each of the queries to the
QRAM is implementable within runtime O(polylog(M)). In particular, the QRAM is an architecture for using classical
data in a quantum algorithm without destroying superposition, defined as (1) in the work by Giovannetti et al. (2008b). In
our setting, the sparse data structure has at most M nodes as leaves, and the number of nodes at each depth of the tree has
at most 1, 2, 4, 8, . . . ,M nodes, respectively. Each query to the QRAM performs a quantum circuit depending on one of
the collections of these 1, 2, 4, 8, . . . ,M nodes at each depth of the tree. The number of nodes to be used in each query
is smaller than M . Then, the QRAM for these O(M) nodes is implementable by a O(polylog(M))-depth parallelized
quantum circuit on O(M) qubits per query, e.g., by a circuit given in Fig. 10 of the work by Hann et al. (2021), which
is queried for each depth of the tree for our sparse data structure. Importantly, the QRAM never measures and reads out
classical bit values stored in the O(M) nodes at each depth, but just performs an O(polylog(M))-depth sequence of unitary
gates in parallel to maintain quantum superposition. As a whole, given the data structure and QRAM, the overall runtime
per preparation of |p̂data〉 and |ψin〉 is bounded by

O(D log(P )× polylog(M)) = Õ(D). (48)

To summarize, this runtime is achievable because of the following facts;
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• the M examples are stored in the sparse data structure representing the binary tree of height O(D log(P ));

• each depth of the O(D log(P ))-height tree is processed by a constant-depth quantum circuit with one query to the
QRAM;

• a single query to the QRAM for processing the O(M) nodes at each depth of the tree is implemented by the
O(polylog(M))-depth quantum circuit.

With this input model, we provide the proof of Theorem 4.1 on the runtime of Algorithm 2.

Proof. In Algorithm 2, by steps 1, 2, and 3, we prepare a quantum state proportional to∑
a,b

P−
D
2 w∗λ(a, b) |a, b〉 = (RP̂dataR

> + λI)
−1

R
∑
x

p̂data(x)f(x) |x〉 , (49)

which is the analytical formula for the solution of ridge regression in (18). Then, by step 4 to apply (Wλ + ∆
γ I)

− 1
2 to this

state, we obtain a quantum state

|p∗λ,∆〉 =

∑
a,b P

−D2 w∗λ(a, b) |a, b〉√∑
a,b |P−

D
2 w∗λ(a, b)|2 + ∆

. (50)

The runtime of Algorithm 2 is dominated by step 4 requiring

Õ

(
D

λ

1
∆/γ

)
, (51)

as we will show step by step in the following.

Step 1 for preparing the state |ψin〉 is performed within runtime

Õ(D), (52)

due to (48).

Step 2 for performing QRT is performed by Algorithm 1 within runtime shown in Theorem 3.1, i.e.,

Õ(D). (53)

Step 3 for applying (RP̂dataR
> + λI)

−1
is performed within runtime Õ(D/λ), as shown in the following. To explain

Step 3, we follow a unified framework for describing a general class of quantum algorithms based on quantum singular
value transform (QSVT) developed by Gilyén et al. (2019); in particular, we construct a block encoding of RP̂dataR

>+λI

and implement (RP̂dataR
> + λI)

−1
by applying QSVT to this block encoding. Our construction of the block encoding

of RP̂dataR
> + λI is based on linear combination of block-encoded matrices RP̂dataR

> and I (Gilyén et al., 2019).
The block encoding of I is a trivial unitary operator I , and thus we here show the block encoding of RP̂dataR

>. For
RP̂dataR

>, we use a block encoding of a density operator ρ = RP̂dataR
>; in particular, if we have a quantum circuit U

for preparing a purification of ρ from |0〉, then we can construct a block encoding of ρ using U and U† a constant number of
times (Gilyén et al., 2019). We here prepare the purification of ρ as follows. First, we prepare∑

x

√
p̂data(x) |x〉 (54)

within runtime
Õ(D), (55)

due to (48). Then, we add the same number of auxiliary qubits initialized in |0〉 as those for the state (54), and apply CNOT
gates on the auxiliary qubits controlled by this state to obtain∑

x

√
p̂data(x) |x〉 ⊗ |x〉 , (56)
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which requires runtime
Õ(D) (57)

since the number of qubits is Õ(D). Then, we apply QRT to the first register to obtain(
R
∑
x

√
p̂data(x) |x〉

)
⊗ |x〉 (58)

within runtime shown in Theorem 3.1, i.e.,
Õ(D). (59)

By tracing out the auxiliary qubits, the reduced state of the obtained state is ρ = RP̂dataR
>, and the runtime of this block

encoding is Õ(D). As a result, using the block encodings of RP̂dataR
> and I a constant number of times, the procedure

for linear combination of the block encoded matrices RP̂dataR
> and I yields the block encoding of RP̂dataR

> + λI ,
which has the runtime

Õ(D) (60)

dominated by that of RP̂dataR
>.

To apply (RP̂dataR
> + λI)

−1
in Step 3 to the state prepared by Step 2, we use QSVT of the block encoding of RP̂dataR

>+
λI . As shown by Gilyén et al. (2019), given any state |ψ〉 and a circuit U for a block encoding of A, we can prepare a
state proportional to A−1 |ψ〉 by querying U and U † in total Õ(κ) times using the technique of variable-time amplitude
amplification (Ambainis, 2012; Childs et al., 2017; Chakraborty et al., 2019; Gilyén et al., 2019), where κ is the condition
number of A, and the runtime includes that for amplitude amplification. In our case, the condition number of A =
RP̂dataR

> + λI is

κ 5
1 + λ

λ
= O

( 1

λ

)
, (61)

since the largest eigenvalue ‖A‖∞ of this A is upper bounded by

‖A‖∞ 5 ‖R‖∞‖P̂data‖∞‖R>‖∞ + ‖λI‖∞ 5 1 + λ, (62)

and the smallest eigenvalue is lower bounded by λ due to the term λI . The runtime of each circuit U for this block encoding
is Õ(D) as shown in (60). As a whole, the runtime by the end of Step 3 is dominated by

Õ(κ)× Õ(D) = Õ
(D
λ

)
. (63)

Step 4 for applying (Wλ + ∆
γ I)

− 1
2 is performed within runtime Õ

(
D
λ ×

1
∆/γ

)
, as shown in the following. As in the

above explanation, using the framework of QSVT, we here construct a block encoding of Wλ + ∆
γ I and implement(

Wλ + ∆
γ I
)− 1

2

by applying QSVT to this block encoding. Our construction of the block encoding of Wλ + ∆
γ I is based

on linear combination of block-encoded matrices Wλ and I . The block encoding of I is a trivial unitary operator, and
noticing that Wλ is a density operator by definition (i.e., Wλ = 0 and Tr[Wλ] = 1), we show the block encoding of Wλ

using the block encoding of the density operator similar to the above. In particular, by the end of Step 3, we have constructed
a circuit for preparing

1
√
γ

∑
a,b

P−
D
2 w∗(a, b) |a, b〉 ∝ (RP̂dataR

> + λI)
−1

R
∑
x

√
p̂data(x) |x〉 , (64)

which runs within time Õ(Dλ ) due to (63). Then, in the same way as (56), we add the same number of auxiliary qubits
initialized in |0〉 as those for this state, and apply CNOT gates on the auxiliary qubits controlled by the above state to obtain

1
√
γ

∑
a,b

P−
D
2 w∗(a, b) |a, b〉 ⊗ |a, b〉 , (65)
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Algorithm 3 Quantum algorithm for finding a winning ticket for the original neural network S[w∗λ].
Require: ε, δ, λ > 0, assumptions in Sec. 4.1, M examples stored in data structure in Sec 4.2, ∆ and N bounded by

Theorem 4.2.
Ensure: A subnetwork f̂ of S[w∗λ] achieving (21) and characterized as (26) by the set of parameters Ŵ ⊂ ZDP × ZP and

the weights ŵ∗ for the nodes in the hidden layer.
1: Initialize Ŵ = ∅.
2: for N times do
3: Sample (a, b) ∈ ZDP × ZP from p∗λ,∆(a, b) in (23) by the quantum algorithm in Theorem 4.1.
4: Add the sampled parameter (a, b) to Ŵ.
5: end for
6: Train the weight w(a, b) of the sampled subnetwork

∑
(a,b)∈Ŵ w(a, b)g((a>x− b) mod P ) by convex optimization

using the given M examples, to obtain ŵ∗ as a solution of minimizing J̃(w) in (18). {This convex optimization can be
performed by classical algorithms such as stochastic gradient descent (SGD) (Harvey et al., 2019).}

7: Return Ŵ and ŵ∗.

which requires Õ(D) runtime since the number of qubits is Õ(D). By tracing out the auxiliary qubits, the reduced state
becomes

Wλ =
∑
a,b

|P−D2 w∗(a, b)|2

γ
|a, b〉 〈a, b| , (66)

and the runtime of this block encoding is Õ(D/λ) dominated by the state-preparation circuit by the end of Step 3. Then,
using the block encodings of Wλ and I a constant number of times, the linear combination of the block encoded matrices
Wλ and I yields the block encoding of Wλ + ∆

γ I , which has the runtime

Õ
(D
λ

)
. (67)

To apply (Wλ + ∆
γ )I

− 1
2 in Step 4, we use QSVT of the block encoding of Wλ + ∆

γ I . In the same way as applying
A−1 explained above, given any state |ψ〉 and a circuit U for a block encoding of A, using the technique of variable-time
amplitude amplification, we can prepare a state proportional to A−

1
2 |ψ〉 by querying U and U † in total Õ(κ) times (Gilyén

et al., 2019). In the same way as the analysis of Step 3 with replacing λ with ∆
γ , the condition number of Wλ + ∆

γ I is
O( 1

∆/γ ). As a whole, the runtime by the end of Step 4 is dominated by

Õ
( 1

∆/γ

)
× Õ

(D
λ

)
. (68)

Consequently, the overall runtime of Algorithm 2 is bounded by (68) in Step 4, i.e.,

Õ

(
D

λ

1
∆/γ

)
= Õ

(
D

λ∆
× γ
)
, (69)

which yields the conclusion.

E. Proof on Bounds for Finding Winning Ticket of Neural Networks
We provide the proof of Theorem 4.2 in Sec. 4.3. Our algorithm for Theorem 4.2 is shown in Algorithm 3.

Proof of Theorem 4.2. With writing

Nε :=
( α

β
√
ε

) 1
β

, (70)

we set ∆ and N as

∆ = (α(Nε + 1)
−(1+β)

)
2

= Ω(ε1+ 1
β ), (71)
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N =

⌈
2

(
dNεe+

1

1 + 2β

(Nε + 1)
2+2β

N1+2β
ε

)
ln
(dNεe

δ

)⌉
= O

(
Nε log

(Nε
δ

))
= O

(
1

ε
1

2β

log
( 1

εδ

))
. (72)

Note that we can set ∆ and N flexibly up to changing α and β in the constant factors of (71) and (72), as long as the function
f to be learned remains in the set of (α, β)-class functions. The parameter Nε is chosen in such a way that we have

∞∑
j=dNεe+1

αj−(1+β) 5
∫ ∞
Nε

αx−(1+β)dx =
α

βNβ
ε

=
√
ε. (73)

For the analysis, let Wλ,∆ denote a set of parameters (a, b) for high-weight nodes in the hidden layer of S[w∗λ], given by

Wλ,∆ := {(aj , bj) ∈ ZDP × ZP : |P−D2 w∗λ(aj , bj)|2 = ∆, j ∈ {1, . . . , PD+1}}. (74)

Then, due to the assumption on the (α, β)-class functions

|P−D2 w∗λ(aj , bj)| 5 αj−(1+β), (75)

we have by construction
|Wλ,∆| 5 dNεe. (76)

For any (a, b) ∈Wλ,∆, we have

Pr{(a, b) 6∈ Ŵ} (77)

= (1− p∗λ,∆(a, b))
N (78)

=
(

1− 1

Z

|P−D2 w∗λ(a, b)|2

|P−D2 w∗λ(a, b)|2 + ∆

)N
(79)

5
(

1− 1

|Wλ,∆|+ 1
1+2β

(Nε+1)2+2β

N1+2β
ε

∆

∆ + ∆

)N
(80)

5 exp

− N

2
(
|Wλ,∆|+ 1

1+2β
(Nε+1)2+2β

N1+2β
ε

)
 , (81)

where the first inequality follows from

Z =
∑

(a,b)∈Wλ,∆

|P−D2 w∗λ(a, b)|2

|P−D2 w∗λ(a, b)|2 + ∆
+

∑
(a,b)∈ZDP×ZP \Wλ,∆

|P−D2 w∗λ(a, b)|2

|P−D2 w∗λ(a, b)|2 + ∆
(82)

5 |Wλ,∆|+
1

∆

∞∑
j=dNεe+1

|αj−(1+β)|
2

(83)

= |Wλ,∆|+
1

∆

∞∑
j=dNεe+1

α2j−2(1+β) (84)

5 |Wλ,∆|+
1

∆

∫ ∞
Nε

α2

x−2(1+β)
dx (85)

= |Wλ,∆|+
1

∆

α2

(1 + 2β)N1+2β
ε

(86)

= |Wλ,∆|+
1

1 + 2β

(Nε + 1)
2+2β

N1+2β
ε

, (87)

and the second inequality follows from 1− x 5 e−x for x ∈ R. Thus, due to the union bound, it follows from (72) and (76)
that

Pr{Wλ,∆ 6j Ŵ} (88)
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5 |Wλ,∆| exp

− N

2
(
|Wλ,∆|+ 1

1+2β
(Nε+1)2+2β

N1+2β
ε

)
 (89)

5 δ
|Wλ,∆|
dNεe

exp

− 2
(
dNεe+ 1

1+2β
(Nε+1)2+2β

N1+2β
ε

)
2
(
|Wλ,∆|+ 1

1+2β
(Nε+1)2+2β

N1+2β
ε

)
 (90)

5 δ. (91)

Therefore, with the choice of N in (72), we have Wλ,∆ j Ŵ with high probability greater than 1 − δ. Then for any Ŵ
satisfying Wλ,∆ j Ŵ, the subnetwork with nodes in the hidden layer parameterized by (a, b) ∈ Ŵ approximates the
original network S[w∗λ] as

inf
w


∑
x

p̂data(x)

∣∣∣∣∣∣S[w∗λ](x)−
∑

(a,b)∈Ŵ

P−
D
2 w(a, b)g((a>x− b) mod P )

∣∣∣∣∣∣
2
 (92)

5
∑
x

p̂data(x)

∣∣∣∣∣∣S[w∗λ](x)−
∑

(a,b)∈Wλ,∆

P−
D
2 w∗λ(a, b)g((a>x− b) mod P )

∣∣∣∣∣∣
2

(93)

=
∑
x

p̂data(x)

∣∣∣∣∣∣
∑

(a,b)∈ZDP×ZP

P−
D
2 w∗λ(a, b)g((a>x− b) mod P )−

∑
(a,b)∈Wλ,∆

P−
D
2 w∗λ(a, b)g((a>x− b) mod P )

∣∣∣∣∣∣
2

(94)

=
∑
x

p̂data(x)

∣∣∣∣∣∣
∑

(a,b)∈ZDP×ZP \Wλ,∆

P−
D
2 w∗λ(a, b)g((a>x− b) mod P )

∣∣∣∣∣∣
2

(95)

5
∑
x

p̂data(x)

 ∑
(a,b)∈ZDP×ZP \Wλ,∆

∣∣∣P−D2 w∗λ(a, b)
∣∣∣ ∣∣g((a>x− b) mod P )

∣∣2

(96)

5
∑
x

p̂data(x)

 ∑
(a,b)∈ZDP×ZP \Wλ,∆

∣∣∣P−D2 w∗λ(a, b)
∣∣∣
2

(97)

=

 ∑
(a,b)∈ZDP×ZP \Wλ,∆

∣∣∣P−D2 w∗λ(a, b)
∣∣∣
2

(98)

5

 ∞∑
j=dNεe+1

αj−(1+β)

2

(99)

5 ε, (100)

which yield the conclusion.

F. Detail of Numerical Experiment on Advantage of Using Quantum Ridgelet Transform
We describe the detail of the parameters chosen for the numerical experiment in Sec. 4.4.

In our numerical experiment, we fixed

P = 127, (101)
D = 1. (102)
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Figure 2. The function f to be learned and the activation function g chosen as ReLU, where the ridgelet function r is also chosen as r = g
in our numerical experiment.

Figure 3. The discrete ridgelet transform R[f ](a, b) of f in Fig. 2 on the left, and the optimized probability distribution p∗λ,∆(a, b) on the
right.
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In the current case of D = 1, we may write x and a as x and a, respectively. Up to normalization, we chose

f(x) ∝ sin

(
4πx

P

)
, (103)

g(x) = r(x) ∝

{
x mod P 0 5 (x mod P ) 5 P−1

2 ,

0 P+1
2 5 (x mod P ) 5 P − 1,

(104)

which are shown in Fig. 2 with normalization. The empirical distribution was chosen as the uniform distribution

p̂data(x) =
1

P
. (105)

The parameters in our setting were chosen as

ε = 5× 10−2, (106)

λ = 1× 10−4, (107)

α = 4× 1021, (108)
β = 5, (109)

which leads to
γ ≈ 9.8× 10−1. (110)

According to (70), (71), and (72), it suffices to set

Nε ≈ 2.0× 104, (111)

∆ ≈ 5.5× 10−5, (112)

N ≈ 5.9× 105. (113)

With the above choice of parameters, the discrete ridgelet transform R[f ](a, b) of f and the optimized probability
distribution p∗λ,∆(a, b) are calculated and illustrated in Fig. 3. In our numerical experiment, the sampling from p∗λ,∆
is classically simulated by rejection sampling using the calculated value of p∗λ,∆(a, b) for each a and b. The uni-
form distribution puniform(a, b) = 1

PD+1 is used for sampling the random features. After performing the sampling
N times for N = 4, 8, . . . , 120, we optimize ŵ∗(a, b) in (26) by minimizing the empirical risk

∑
x p̂data(x)|f(x) −∑

(a,b)∈Ŵ P−
D
2 ŵ∗(a, b)g((ax − b) mod P )|2. This convex optimization was solved by MOSEK (ApS, 2022) and

YALMIP (Löfberg, 2004). The result of this numerical experiment is presented in Fig. 1 of Sec. 4.4 in the main text.

To support our results further, we also performed numerical simulation in the case of choosing g (= r) as a sigmoid function
rather than ReLU used in Fig. 1; in particular, in this additional numerical simulation, with the same f as (103), we chose,
up to normalization,

g(x) = r(x) ∝ tanh

(
10x

P

)
, (114)

which are shown at the top of Fig. 4 with normalization. Setting the other parameters the same as Fig. 1, we also present the
result of this additional numerical experiment at the bottom of Fig. 4.

These numerical results show that the actual performance of empirical risk minimization in our numerical experiments can
be much better than the theoretically guaranteed upper bound on N in Theorem 4.2, implying even more actual advantage
of our algorithm than the theoretically guaranteed bound in our setting.
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Figure 4. The numerical experiment performed in addition to the one presented in Fig. 1 of the main text. In this additional numerical
experiment, as shown at the top of the figure, the function f to be learned is the same as the one in Fig. 2, whereas the activation function
g and the ridgelet function r are chosen as a sigmoid function (tanh) as shown in the figure, rather than ReLU in Fig. 2. Setting the other
parameters the same as the numerical experiment in Fig. 1, at the bottom of the figure, we plot the empirical risks achieved by sampling
from the optimized distribution via our algorithm (blue thick line) and that from the uniform distribution via random features (red dashed
line), which support our results further in the same way as Fig. 1.
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