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Abstract

Standard MSE or MAE loss function is commonly
used in limited field-of-vision depth completion,
treating each pixel equally under a basic assump-
tion that all pixels have same contribution during
optimization. Recently, with the rapid rise of
panoramic photography, panoramic depth com-
pletion (PDC) has raised increasing attention in
3D computer vision. However, the assumption is
inapplicable to panoramic data due to its latitude-
wise distortion and high uncertainty nearby tex-
tures and edges. To handle these challenges, we
propose distortion and uncertainty aware loss
(DUL) that consists of a distortion-aware loss
and an uncertainty-aware loss. The distortion-
aware loss is designed to tackle the panoramic
distortion caused by equirectangular projection,
whose coordinate transformation relation is used
to adaptively calculate the weight of the latitude-
wise distortion, distributing uneven importance
instead of the equal treatment for each pixel. The
uncertainty-aware loss is presented to handle the
inaccuracy in non-smooth regions. Specifically,
we characterize uncertainty into PDC solutions
under Bayesian deep learning framework, where a
novel consistent uncertainty estimation constraint
is designed to learn the consistency between mul-
tiple uncertainty maps of a single panorama. This
consistency constraint allows model to produce
more precise uncertainty estimation that is robust
to feature deformation. Extensive experiments
show the superiority of our method over standard
loss functions, reaching the state of the art.
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1. Introduction
Depth completion aims to recover dense depth from the
sparse one and its corresponding perspective color image
with narrow field of vision (FoV). Plenty of works (Cheng
et al., 2020; Tang et al., 2020; Lin et al., 2022) have been
proposed to tackle this task. With the advent of panoramic
cameras, predicting depth from the 360◦ full-FoV color im-
age becomes a fashionable trend (Wang et al., 2020; Sun
et al., 2021).Recently, instead of directly estimating depth
from pure 360◦ full-FoV image, panoramic depth comple-
tion (PDC) task has been raised in M3PT (Yan et al., 2022)
where the sparse depth can be facilitated to generate much
more accurate prediction. Generally, to produce precise
depth estimations, most of these works employ MSE loss
to optimize their networks. However, it is well-known that
such loss distributes same weight to each pixel regardless
of their uneven importance in an image, which is especially
not appropriate for panoramic data in two aspects:

Latitude-wise distortion in panoramas. For panoramic
depth perception (Zioulis et al., 2018; Yan et al., 2022),
the most commonly used data format is the equirectangular
projection (ERP) image (Pintore et al., 2021; Zhuang et al.,
2022) from spherical coordinate to plane coordinate, which
is shown in Fig. 1(a). We observe that the area of grid is
gradually increasing from the poles to the equator. However,
ERP maps each grid to image plane with an equivalent area,
indicating that the closer the grid is to poles, the more pixels
are interpolated during the projection process. Hence, the
distortion of the ERP panoramic image gets severe step by
step from the equator to poles. Besides, most objects are
located mainly near the equator, i.e., the middle region of the
image, while the two poles primarily contain the ceiling and
floor. Therefore, traditional loss distributing same weight to
each pixel is no longer suitable for PDC.

High uncertainty nearby non-smooth regions. It is usu-
ally difficult for networks to predict accurate depth with
high uncertainty near edge, occlusion, blur, outlier, etc (El-
desokey et al., 2020; Park et al., 2020; Zhu et al., 2022;
Jin et al., 2020). Moreover, the panoramic data introduces
latitude-wise distortion which makes those regions more
irregular, negatively leading to even worse depth prediction.
Fig. 1(b) demonstrates that non-smooth regions (e.g., edges
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Figure 1. Illustrations of ERP and depth error. (a): φ ∈ [0, π] is the polar angle (latitude) and θ ∈ [0, 2π] is the azimuth angle (longitude).
For convenience, in the image plane we show only half of the whole. (b): We visualize the error map between ground-truth depth and
predicted depth reconstructed by M3PT (Yan et al., 2022) on Matterport3D (Albanis et al., 2021), all of which are cropped for visibility.

of wall and chair) are not estimated as well as smooth re-
gions (e.g., surfaces of floor, wall, and ceiling). The error
map in Fig. 1(b) further shows that depth in non-smooth
regions is harder to recover than smooth regions, i.e., the
importance distribution of different pixels is uneven. Con-
sequently, it is suggested to focus on learning those hard
pixels with high uncertainty adaptively.

In this paper, we design new loss functions to address the
above issues. For latitude-wise distortion, we propose
distortion-aware loss to distribute different pixels with un-
even weights. Specifically, we calculate the weight coeffi-
cient for each pixel based on the fundamental of ERP, i.e.,
the mapping relationship from spherical coordinate to plane
coordinate, where the latitude plays a key role. In this way,
a latitude-wise weighted matrix is produced to redistribute
the importance of each pixel. As a result, the proposed
distortion-aware loss function mitigates the negative effects
of the latitude-wise distortion and the unbalanced distribu-
tion of objects in panoramas. For high uncertainty, we
present uncertainty-aware loss to facilitate depth recovery
near non-smooth regions. Concretely, we first introduce the
mean and variance Bayesian framework (Kendall & Gal,
2017; Choi et al., 2019; Eldesokey et al., 2020) into PDC,
which simultaneously predicts dense depth (mean) and un-
certainty (variance). Importantly and differently, we further
propose to learn the similarity of multiple uncertainty maps
of a single panorama, i.e., the consistency across different
uncertainty estimations from the same panorama. This con-
sistency constraint brings more precise uncertainty estima-
tion that is robust to feature deformation, while alleviating
its learning difficulty. Finally, we organically merge the
distortion-aware and uncertainty-aware loss functions to
boost the panoramic depth recovery and 3D reconstruction.
In summary, our main contributions are:

• Distortion-aware loss (DAL). We propose to learn
the weighted loss adaptively based on ERP principle,
which effectively mitigates the negative impacts of the
inherent distortion in panoramic data.

• Uncertainty-aware loss (UAL) with consistent uncer-
tainty estimation (CUE) constraint. Under Bayesian
deep learning framework which characterizes uncer-
tainty into PDC solutions, we present to estimate con-
sistent uncertainty that markedly boosts the model.

• Universality of DUL. The DAL and UAL, together
termed DUL, can be easily deployed in existing PDC
networks for improvement and hardly increase addi-
tional overhead. Experimental results show the superi-
ority of DUL than standard MSE or MAE loss function.

2. Related Work
2.1. Panoramic Depth Perception with Distortion

Panoramic depth perception mainly consists of panoramic
depth estimation (Zioulis et al., 2018) from RGB and
panoramic depth completion (Yan et al., 2022) from RGB-
D, in which ERP data is commonly used. Till now, there
have been many works (Tateno et al., 2018; Lee et al., 2020;
Pintore et al., 2021; Zhuang et al., 2022) focusing on the
inherent distortion in panoramic data caused by ERP. For
example, (Lee et al., 2019) and (Lee et al., 2020) develop a
new panoramic data format using icosahedral spherical poly-
hedron representation, which alleviates the distortion from
source data. In networks, (Pintore et al., 2021) and (Sun
et al., 2021) propose a pre-processing head and a post-
processing tail to reduce the negative effects of distortion,
respectively. (Tateno et al., 2018) and (Zhuang et al., 2022)
employ distortion-aware convolutions to adaptively encode
distortion. Since cubemap image dose not introduce dis-
tortion (but suffers from blurry edge), (Wang et al., 2020)
and (Jiang et al., 2021) present to predict cubic depth and
then project it into ERP depth for complementation. Besides,
(Eder et al., 2019) and (Jin et al., 2020) utilize geometric
structure to regularize distortion. Different from previous
methods, based on the principle of ERP we directly adjust
the loss weight of each pixel to balance distortion without
changing data format or adding extra complex modules.
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Figure 2. Overview of training PDC networks with LDU . We introduce mean and variance estimation under Bayesian framework to
formulate LUA, where LCUE is designed for more precise uncertainty. Then the distortion weight ω is based on the fundamental of ERP.

2.2. Perspective Depth Prediction with Uncertainty

Uncertainty estimation can trace back to (MacKay, 1992;
Welling & Teh, 2011) with Bayesian neural networks. After
that, it is very popular for deep learning networks to predict
uncertainty in many computer vision tasks, such as object
detection (He et al., 2019), image super-resolution (Ning
et al., 2021), optical flow estimation (Ilg et al., 2018; Yang &
Ramanan, 2019), and depth perception (Poggi et al., 2020;
Eldesokey et al., 2020; Zhu et al., 2022), which is the most
relevant to our research. Not coincidentally, they introduce
mean (depth) and variance (uncertainty) estimation for ro-
bustness. Moreover, (Van Gansbeke et al., 2019; Park et al.,
2020; Xu et al., 2019) present to estimate confidence which
is equivalent to uncertainty for perspective depth comple-
tion. Most recently, M3PT (Yan et al., 2022) proposes the
new panoramic depth completion task, based on which the
mean and variance system is applied in this paper. But dif-
ferently, we aim to learn precise and reasonable variance
from multiple uncertainty maps instead of single, based on
the fundamental that the uncertainty of one scene is definite
once its panoramic image is given.

3. Method
Our pipeline is shown in Fig. 2. We use x and y to denote
the panoramic sparse depth and ground-truth depth, δ and δ̄
to represent two uncertainty maps that correspond to a same
scenario. f(·) refers to an arbitrary PDC network.

3.1. Distortion-Aware Loss (DAL)

ERP for Panoramic Data. ERP is a special case of cylin-
drical equidistant projection, from the surface of a sphere
(φ-θ) to a flat image (m-n), which is defined as

m = r (θ − θ0) cosφ1, n = r (φ− φ0) , (1)

where r is the radius of sphere, θ and θ0 denote longitude
and central meridian severally. φ, φ0, and φ1 refer to lat-
itude, central parallel, and standard parallel, respectively.

For panoramic data, r = 1, θ0 = 0, and φ0 = 0. In particu-
lar, when the standard parallel coincides with the equator,
taken as cosφ1 = 1, the cylindrical equidistant projection
degenerates into ERP, which is expressed as

m = θ, n = φ. (2)

We can find the mapping relationship of ERP is very simple,
i.e., the horizontal coordinate is simply longitude with 360◦

FoV, and the vertical coordinate is simply latitude with 180◦

FoV, with no transformation or scaling applied. It is the
main reason for existing panoramic photography to choose
ERP as the common storage format. However, ERP is nei-
ther equivalent nor conformal, and introduces considerable
distortion. Next, we focus on adjusting the loss weight to
alleviate the negative impact of the distortion in networks.

Perceiving Distortion in ERP. Proceeding from reality,
there are two factors that prevent standard loss functions
from better performance. (1) The area of spherical grid that
is composed of interlaced longitude and latitude progres-
sively increases from the poles to the equator, but ERP maps
them to image plane with same area. Consequently, more
inaccurate pixels are interpolated in a grid as it is closer to
poles. (2) Most objects are mainly distributed near middle
regions of panoramas instead of ceiling and floor. Hence,
we propose to distribute uneven importance instead of the
equal treatment to every pixel by calculating the weight of
latitude-wise distortion based on spherical surface integral.

For simplicity, as shown in Fig. 1(a), we move the plane
coordinate center to the top-left corner of image, and mod-
ify the intervals of φ and θ from [−π

2 ,
π
2 ], [−π, π] to [0, π],

[0, 2π], respectively. The weight of one pixel surface inte-
gral to the total area is formulated as

ω̄ (θ, φ) =
k

4πr2

∫ θ+∆θ

θ

rdθ

∫ φ+∆φ

φ

r sinφdφ

= µ [cosφ− cos (φ+∆φ)] ,

(3)

where µ = k∆θ
4π , k is a hyper parameter, and ∆φ can be 1◦

in practice. It is observed that the weight is not relevant to
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Figure 3. Visual comparisons of panoramic depth completion results based on M3PT (Yan et al., 2022) using different loss functions.

θ, indicating that the distortion occurs only along latitude
direction, which is the specific characteristic of ERP. As
illustrated in Fig. 1, assume i is one pixel of the image and
(a, b) is its coordinate, Iw and Ih are the image width and
height respectively. Then the transformation relationship
between spherical coordinate and plane coordinate is

θ =
a

Iw
2π, φ =

b

Ih
π. (4)

Substituting Eq. (4) into Eq. (3), we yield

ω̄i = ω̄ (a, b) = µ

[
cos

(
bπ

Ih

)
− cos

(
bπ

Ih
+∆φ

)]
. (5)

Based on ω̄, we employ two Multi-Layer Perceptrons (MLP,
denoted as m(·)) with residual connection to generate the
adaptive distortion-aware weight ω, obtaining

ωi = ω̄i +m (ω̄i) . (6)

After yielding ωi, we then multiply it by standard loss func-
tions. Taking MSE as an example, the DAL is defined as

LDA = ωL2 =
1

N

N∑
i=1

ωi (yi − f (xi))
2
, (7)

where N is the valid pixel set of the ground-truth depth y.

3.2. Uncertainty-Aware Loss (UAL)

Optimization with Mean and Variance. For PDC, exist-
ing deep learning networks (Yan et al., 2022) mainly devote
into predicting dense depth (mean) only, leading to not very
accurate results near non-smooth regions that are illustrated
in Fig. 1(b). To tackle this issue, we introduce uncertainty
(variance) estimation framework (Kendall & Gal, 2017) into
360◦ panoramas. As explored in the framework, Bayesian
deep learning tools make it possible that modeling uncer-
tainty in computer vision. In general, there are two major
kinds of uncertainty, namely aleatoric and epistemic. The
aleatoric uncertainty captures noise distributed in the ob-
servation data while the epistemic uncertainty depicts the

uncertainty in the model. As shown in the left of Fig. 2,
since the sparse depth x is generated by sensor scanning
with equal angles (Yan et al., 2022; Uhrig et al., 2017), re-
sulting in uneven depth distribution, we opt the aleatoric
uncertainty δ and apply it into a PDC network f(·). Then
we can formulate the observation model as

yi = f (xi) + τδi, (8)

where τ represents the Gaussian prior distribution with zero
mean and unit variance.

Without the uncertainty δ, we hope the dense depth predic-
tion f(x) can infinitely approximate y in PDC networks,
whose procession can be described by maximizing the pos-
terior probability p(yi|xi). With the uncertainty δ, the joint
posterior probability is denoted as p(yi, δi|xi)

1.

LUA =
1

N

N∑
i=1

(yi − f (xi))
2

δi
2 + 2 log δi

2. (9)

This loss is similar with the aleatoric uncertainty loss pre-
sented in (Kendall & Gal, 2017). But differently, δi in our
model describes the uncertainty measure that encodes the
observed noise variance and the consistent uncertainty esti-
mation, while in (Kendall & Gal, 2017), it is the variance of
the noise. Fig. 3 shows that the LUA depth prediction pos-
sesses more reasonable visual effects than L2 depth result,
e.g., edges of bed and chair.

Consistent Uncertainty Estimation (CUE). Uncertainty
has been studied in many depth related works (Van Gans-
beke et al., 2019; Zhu et al., 2022), most of which employ
convolutions to predict a single uncertainty map. However,
as we know that the uncertainty map itself is hard to model
since it usually lies near edge, outlier, etc (Eldesokey et al.,

1p(yi, δi|xi) = p(δi|xi)p(yi|δi, xi), where we use Jeffrey’s
prior p(δi|xi) ≈ 1/δi (Figueiredo, 2001) to model the like-
lihood of p(δi|xi). p(yi|δi, xi) belongs to Gaussian distribu-
tion that can be formulated as a maximum likelihood problem
p(yi|δi, xi) = 1/

√
2πδi exp(−(yi − f(xi))

2/2δi
2). By com-

bining the p(δi|xi) prior and the p(yi|δi, xi) likelihood, then tak-
ing negative log operation, we obtain UAL in Eq. (9).
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2020; Jin et al., 2020). Considering a basic fact that the
uncertainty is relatively definite once a panorama is given,
i.e., edge and outlier in this known panoramic picture are
fixed. The uncertainty maps estimated by the same network
should be similar. As a result, different from previous meth-
ods, we present to learn the consistency between multiple
uncertainty maps of a single panorama.

Overall, as shown in Fig. 2, given an arbitrary PDC network,
we embed our lightweight CUE at its end as an overhead.
CUE outputs the uncertainty map δ which is combined
with the dense depth f(x) for joint optimization in Eq. (9).
Specifically, CUE first takes as input the output feature
base of the PDC network. Next, the base is fed into two
branches, both of which conduct subtraction between two
convolutions (Xu et al., 2020) followed by a ReLU activa-
tion function. In one branch, taking two uncertainty maps as
an example, the base is transformed by g(·) and the inverse
g−1(·), e.g., flipped horizontally twice to produce another
uncertainty map δ̄. During this process, we utilize subtrac-
tion of two convolutions with different receptive fields (e.g.,
K1 = 1, K2 = 3) to extract the high-frequency part, which
is proved effective (Xu et al., 2020; Yu et al., 2020). On the
other hand, it is widely known that uncertainty is difficult to
predict as it usually appears near edges. Therefore, besides
the hard constraint of Eq. 9, we also employ the subtraction
to highlight the uncertainty. Finally, we perform LCUE to
learn the consistency between δ and δ̄, urging the model
to acquire more precise uncertainty that is robust to fea-
ture deformation, and simultaneously alleviating its learning
difficulty. The LCUE

2 is formulated as

LCUE =
1

N

N∑
i=1

(
δi − δ̄i

)2
. (10)

As evidenced in Fig. 3, we discover that LCUE produces
more transparent uncertainty estimation. Obviously, there
are fewer uncertain regions in LCUE than LUA uncertainty,
contributing to more accurate depth recovery.

3.3. Distortion and Uncertainty Aware Loss (DUL)

We observe that LDA and LUA can be unified into a general
form, termed joint distortion and uncertainty aware loss,
which can be defined as

LDU = ω (LUA + ηLCUE)

=
1

N

N∑
i=1

ωi (yi − f (xi))
2

δi
2 + 2ωi log δi

2

+
1

N

N∑
i=1

ηωi

(
δi − δ̄i

)2
,

(11)

2Assume that there are M uncertainty maps, j denotes one of

them. Then we yield LCUE = 1
N(M−1)

M−1∑
j=1

N∑
i=1

(
δji − δj+1

i

)2
.

where η is a hyper parameter. The first term is data term and
the second term is its inherent regularizer, both of which
are inferred by the mean and variance estimation under
Bayesian framework. The third term is also a regularizer.

Properties of DUL. (1) Degeneration. (i) Without distor-
tion, such that the distortion-aware weight meets ωi = 1,
indicating that the network treats every pixel equally. Conse-
quently, the joint loss function LDU will degenerate into the
uncertainty-aware loss LUA. (ii) Without uncertainty, such
that the two uncertainty representations satisfy δi = δ̄i = 1.
In this case, the model pays no additional attention to the
optimization near non-smooth regions. As a result, LDU

will degenerate into the distortion-aware loss LDA. (iii)
Without distortion and uncertainty, we yield ωi = 1 and
δi = δ̄i = 1, then LDU turns into the standard MSE loss
function. (2) Variation tendency. As discussed in Sec. 3.2,
panoramic data carries inherent noise caused by sensors.
Assume that the model has been well studied the real data
distribution ((yi − f(xi))

2 → 0) but always with a slight
error that can be treated as the noise. We try to counteract
the loss caused by this noise via (yi − f(xi))

2
/δi

2. How-
ever, for one thing, the model tends to predict an infinite
δi

2 to minimize the loss function. In consequence, the sec-
ond term is involved for balance. For another thing, the
δi

2 itself is hard to estimation but the better performance of
the model heavily depends on more accurate δi

2. Thus, we
introduce the third term to give δi

2 strong and meticulous
constraint. (3) Easy training. Upon baselines, only two
steps are needed for training. (i) Replacing the raw loss with
LDU . (ii) Adding the very lightweight CUE and MLP to
estimate uncertainty and distortion weight. Consequently,
our training and testing times are almost the same with the
baselines. In addition, the time-consuming variance esti-
mation in Bayesian learning for computer vision tasks is
mainly caused by the two-stage training strategy (Ning et al.,
2021; Zhu et al., 2022), i.e., estimating uncertainty first and
then predicting target. Differently, our method is trained
end-to-end in one-stage manner and thus it is time-saving.

4. Experiment
4.1. Experimental Settings

Datasets and Metrics. Following M3PT (Yan et al., 2022),
we train the model on Matterport3D (Albanis et al., 2021)
and 3D60 (Zioulis et al., 2019) datasets with 512 × 256
resolution. Matterport3D is composed of 7,907 RGB-D
panoramas, 5,636 for training and 1,527 for testing. For
3D60, there are 6,669 RGB-D pairs for training and 1,831
for testing. We use seven standard metrics for evaluation,
i.e., mean absolute error (MAE(mm)), root mean square
error of linear measures (RMSE (mm)), mean relative error
(MRE), root mean square error of log measures (Log), and
σt which denotes the percentage of predicted pixels whose
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Data Method
Error Metric ↓ Accuracy Metric ↑

Reference
RMSE MAE MRE Log σ1 σ2 σ3

M
at

te
rp

or
t3

D

UniFuse (Jiang et al., 2021) 229.1 95.2 0.0475 0.0381 0.9710 0.9924 0.9970 ICRA 2021
HoHo-R (Sun et al., 2021) 199.2 75.0 0.0355 0.0311 0.9806 0.9945 0.9977 CVPR 2021
HoHo-H (Sun et al., 2021) 215.5 85.7 0.0406 0.0337 0.9772 0.9938 0.9975 CVPR 2021

PENet (Hu et al., 2021) 248.0 91.5 0.0493 0.0350 0.9728 0.9935 0.9970 ICRA 2021
GuideNet (Tang et al., 2020) 192.9 87.2 0.0438 0.0327 0.9806 0.9948 0.9981 TIP 2021

360Depth (Rey-Area et al., 2021) 185.3 68.8 0.0302 0.0285 0.9833 0.9942 0.9980 CVPR 2022
M3PT (Yan et al., 2022) 138.9 36.2 0.0164 0.0193 0.9927 0.9976 0.9990 ECCV 2022

Ours 114.9 35.3 0.0162 0.0174 0.9947 0.9983 0.9993 –

3D
60

UniFuse (Jiang et al., 2021) 215.6 94.1 0.0446 0.0342 0.9749 0.9947 0.9984 ICRA 2021
HoHo-R (Sun et al., 2021) 196.9 75.6 0.0338 0.0294 0.9818 0.9954 0.9983 CVPR 2021
HoHo-H (Sun et al., 2021) 205.8 81.9 0.0376 0.0317 0.9788 0.9947 0.9981 CVPR 2021

PENet (Hu et al., 2021) 233.9 120.3 0.0680 0.0321 0.9743 0.9926 0.9980 ICRA 2021
GuideNet (Hu et al., 2021) 239.3 144.2 0.0689 0.0418 0.9711 0.9954 0.9987 TIP 2021

360Depth (Rey-Area et al., 2021) 225.4 93.7 0.0677 0.0315 0.9782 0.9936 0.9985 CVPR 2022
M3PT (Yan et al., 2022) 127.2 34.1 0.0144 0.0165 0.9944 0.9985 0.9995 ECCV 2022

Ours 102.8 31.9 0.0144 0.0142 0.9963 0.9991 0.9996 –

Table 1. Quantitative comparisons. HoHo-R/H: HoHoNet employs ResNet (He et al., 2016)/HardNet (Chao et al., 2019) as backbone.

Input UniFuse GTM3PT Ours
Figure 4. Qualitative comparisons of depth and 3D reconstruction with SoTA approaches on Matterport3D and 3D60.

relative error is <1.25t (t = 1, 2, 3).

Training Settings. The whole training process is imple-
mented on Pytorch with a single NVIDIA TITAN V GPU.
AdamW optimizer is used with β1 = 0.9, β2 = 0.999
and weight decay 0.05. We train the model for 80 epoches
with batch size 16 and initial learning rate 5× 10−4, which
drops by half every 20 epoches. Color jittering and random
horizontal flip are used. µ and η are 80 and 0.5 respectively.

4.2. Comparisons with SoTA Methods

Our approach is compared with the following three cate-
gories of SoTA methods: (i) Dynamic convolution based
GuideNet (Tang et al., 2020); (ii) Pre-training based
M3PT (Yan et al., 2022); (iii) multiple projections based Uni-
Fuse (Jiang et al., 2021), 360Depth (Rey-Area et al., 2021);

and regular models HoHoNet (Sun et al., 2021), PENet (Hu
et al., 2021). Tab. 1 and Fig. 4 present the quantitative and
qualitative results, respectively. From Tab. 1 we can observe
that, comparing with other complex solutions, our method
obtains the lowest errors and the highest accuracy among all
works on the two benchmarks, e.g., averagely surpassing the
best M3PT by 11.9% in Log and 18.2% in RMSE, which
is the primary metric for depth completion. It is worth not-
ing that, our very lightweight loss function can be easily
deployed with little extra overhead (see our Appendix C),
including training/testing time and GPU memory usage. As
demonstrated in Fig. 4, our approach can recover more clear
and sharper object edges than other methods. The 3D recon-
struction results further show the superiority of the proposed
loss functions. For example, shapes of wall, desk, and bed
are more complete and closer to the depth ground-truths.
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Baseline Loss
Matterport3D 3D60

RMSE MAE MRE Log σ1 RMSE MAE MRE Log σ1

M3PT (Yan et al., 2022)
raw 138.9 36.2 0.0164 0.0193 0.9927 127.2 34.1 0.0144 0.0165 0.9944
LDU 114.9 35.3 0.0162 0.0174 0.9947 102.8 31.9 0.0144 0.0142 0.9963

GuideNet (Tang et al., 2020)
raw 192.9 87.2 0.0438 0.0327 0.9806 239.3 144.2 0.0689 0.0418 0.9711
LDU 164.8 79.5 0.0370 0.0266 0.9886 192.3 121.0 0.0575 0.0363 0.9760

HoHo-R (Sun et al., 2021)
raw 199.2 75.0 0.0355 0.0311 0.9806 196.9 75.6 0.0338 0.0294 0.9818
LDU 168.8 70.1 0.0340 0.0293 0.9865 168.3 67.6 0.0322 0.0281 0.9876

Table 2. Ablations of the total loss function LDU using different baselines, including M3PT, GuideNet, and HoHo-R.
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Figure 5. Ablations of each component of LDU using the same baseline M3PT. Here our LCUE is deployed together with LUA.

Type of δ RMSE ∆ MAE ∆

C, − 129.6 0.0 36.0 0.0
C, HF 123.2 6.4 ↓ 35.8 0.2 ↓
C, VF 123.5 6.1 ↓ 35.9 0.1 ↓
HF, VF 124.7 4.9 ↓ 35.9 0.1 ↓

Table 3. Ablations of the type of the uncertainty map δ
in LCUE employing M3PT on Matterport3D.

Number of δ RMSE ∆ MAE ∆

1 (C) 129.6 0.0 36.0 0.0
2 (C, HF) 123.2 6.4 ↓ 35.8 0.2 ↓
3 (C, HF, VF) 123.0 6.6 ↓ 35.8 0.2 ↓
4 (C, HF, VF, R) 123.0 6.6 ↓ 35.7 0.3 ↓

Table 4. Ablations of the number of the uncertainty map δ in
LCUE employing M3PT on Matterport3D. R: rotation.

4.3. Ablation Studies

Since only M3PT (Yan et al., 2022) is specifically designed
for the panoramic depth completion task, we select two
other kinds of related works as baselines, i.e., SoTA perspec-
tive depth completion method GuideNet (Tang et al., 2020)
and SoTA panoramic depth estimation approach HoHo-
R (Sun et al., 2021). HoHo-R employs a single branch
with ResNet (He et al., 2016) as backbone, while GuideNet
conducts dual branches, based on which M3PT uses multi-
modal masked pre-training strategy to refine.

Ablations of the total loss function LDU using differ-
ent baselines. As reported in Tab. 2, LDU dramatically
improves all three baselines. For example, the RMSE of
HoHo-R-LDU is 30.1mm lower than that of HoHo-R-raw.
In addition, based on M3PT, we discover that LDU performs
not very well in MRE. We conclude that, L2 in M3PT is
more sensitive to large depth values than to the small. Hence,
long-range depth error can be better optimized. However,
MRE is sensitive to close-range depth error. As a result,
variations on L2 can not markedly reduce MRE.

Ablations of each component of LDU using the same
baseline. Based on M3PT, from Fig. 5 we can observe (1)
LDA partly improves the baseline, e.g., the RMSE is re-
duced by 5.9mm and 8.4mm on two datasets respectively.
(2) LUA slightly performs better than LDA and further re-
duces the errors and increase the accuracy. (3) Based on

LUA, we introduce LCUE to learn more precise uncertainty
maps. Evidently, it is superior to LUA in all metrics and
significantly benefits the model. For example, it severally
reduces RMSE by 15.7mm and 19.4mm on Matterport3D
and 3D60. Fig. 3 demonstrates that the LCUE uncertainty
map is more exact. (4) Finally, we organically combine the
three loss functions termed LDU . Notably, LDU promotes
the baseline by a large margin, e.g., successively decreasing
RMSE by 23.9mm and 24.1mm on two datasets severally.

Ablations of the type and the number of the uncertainty
map δ in LCUE . In Tab. 3, different types of the uncertainty
map δ in LCUE are generated by the pure convolution (C),
horizontal flip (HF), and vertical flip (VF). It is observed
that the combination of “C, HF” (default setting) slightly
outperforms others. In Tab. 4, we predict different numbers
of the uncertainty map δ in LCUE to see their influences.
Notably, the model achieves the best performance when the
number is 4. For simplicity however, we select “Num.=2” as
the default. As shown in the second and the third columns
of Fig. 6, uncertainty maps of the same panorama upon
pure convolutions with and without flip, are very blurry and
are quite distinct from each other. It does not conform to
the common sense that a given scene has relatively definite
uncertainty. By introducing our CUE (Num.=2), as shown
in the last column of Fig. 6, the uncertainty estimation is ap-
parently unambiguous and contains fewer uncertain regions,
contributing to more accurate 3D reconstruction results.
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Num.=1 w/ flip rgb Num.=1 Num.=2
Figure 6. Visual comparisons of different uncertainty maps on Matterport3D. We employ convolution and flip to generate uncertainty
maps. Common PDC baselines only estimate one uncertainty map (Num.=1) while our CUE produces two (Num.=2).

Method RMSE MAE MRE Log

BiFuse (Wang et al., 2020) 0.6259 0.3470 0.2048 0.1134
UniFuse (Jiang et al., 2021) 0.4941 0.2814 0.1063 0.0701
HoHo-R (Sun et al., 2021) 0.5138 0.2862 0.1488 0.0871
SliceNet (Pintore et al., 2021) 0.6133 0.3296 0.1764 0.1045
Sphere (Coors et al., 2018) 0.5212 0.3167 0.1258 0.0778
ACDNet (Zhuang et al., 2022) 0.4629 0.2670 0.1010 0.0646
Ours 0.4307 0.2538 0.0926 0.0562

Table 5. Quantitative comparisons of panoramic depth estimation
on Matterport3D, whose input is a single panoramic color image.

Method RMSE MAE iRMSE iMAE
SConv (Uhrig et al., 2017) 1601.33 481.27 4.94 1.78
ADNN (Chodosh et al., 2018) 1325.37 439.48 - -
NCNN (Eldesokey et al., 2018) 1268.22 360.28 4.67 1.52
S2D (Ma et al., 2019) 954.36 288.64 3.21 1.35
NConv (Eldesokey et al., 2020) 954.34 258.68 3.40 1.17
Ours 943.48 256.46 3.27 1.13

Table 6. Quantitative comparisons of perspective depth completion
on KITTI (Uhrig et al., 2017) benchmark.

4.4. Generalization Capabilities

Double-modal to single-modal: panoramic depth esti-
mation. The panoramic depth completion task focuses on
RGB-D double-modal data, whilst the panoramic depth esti-
mation task pays attention to RGB single-modal data. Since
panoramic RGB images also suffer from distortion and un-
certainty, we employ the proposed distortion and uncertainty
aware loss LDU to see its generalization capability on the
panoramic depth estimation task. The results are listed in
Tab. 5 and the baseline is ACDNet (Zhuang et al., 2022).
Note that the dataset used in Tab. 5 is the same with that
in ACDNet. From the table we can observe that, our LDU

consistently improves the baseline, achieving superior or
competitive performance on Matterport3D dataset. For ex-
ample, our LDA and LUA averagely reduce RMSE and Log
by 6.96% and 13.00%, respectively.

Panoramic to perspective: perspective depth completion.
Different from panoramic data, perspective data does not
contain distortion. Hence, we perform the uncertainty-aware
loss LUA with consistent uncertainty estimation (CUE) mod-
ule, to capture more precise uncertainty representation to
benefit the perspective depth completion task. The results
are reported in Tab. 6 and the baseline is NConv (Eldesokey
et al., 2020). We can find that, our LUA with CUE con-
gruously improves the baseline on KITTI depth completion

benchmark, e.g., the RMSE is reduced from 954.34mm to
943.48mm, about 11mm improvement. Those numerical
results indicate that our DUL generalizes well.

5. Conclusion
In this paper, we proposed the joint distortion and uncer-
tainty loss (DUL) for panoramic depth completion task,
which suffered from the inherent distortion and the high
uncertainty all along. DUL could be specialized into the
distortion-aware loss (DAL) and the uncertainty-aware loss
(UAL), where DAL encouraged to distribute each pixel with
uneven importance to mitigate the negative effect of the
inherent distortion, and UAL enabled networks to predict
precise depth via modeling uncertainty. Furthermore, based
on UAL we presented to learn the consistency between
different uncertainty maps of the same panorama by intro-
ducing the consistent uncertainty estimation (CUE) module,
aiming to acquire more accurate uncertainty representation.
Extensive experiments validated the effectiveness of DUL.

Limitation discussion: (1) In Eqs. 5 and 6, the distortion-
aware weight is learned based on the mapping relationship
between spherical and planer coordinates via MLP layers.
Our initial goal of employing MLP is to build a residual
connection and then fine-tune the fixed weight. However,
the explainability of the MLP is not very clear. What we
want to do next is to learn a prior, which simultaneously con-
siders the mapping relationship and object distribution, to
enhance the explainability whilst balancing the contribution
of each pixel. (2) We hope our DUL design could provide
some inspiration for other related research areas. Thus, in
future we will test the effectiveness of our method on the
most popular monocular perspective depth estimation task.
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A. Overview
This document provides additional technical details. Specifically, we first introduce the standard metrics in Section B. Then
we conduct more ablation studies in Sections C and D.

B. Metrics
iRMSE and iMAE are calculated based on RMSE and MAE by replacing y and f(x) with the inverse. The standard metrics
are defined as:

– MRE : 1
N

∑∣∣∣ y−f(x)
y

∣∣∣
– MAE : 1

N

∑
|y − f(x)|

– RMSE :
√

1
N

∑
(y − f(x))2

– σt : 1
N

∣∣∣max
(

y
f(x)

,
f(x)
y

)
< 1.25t

∣∣∣
– RMSElog :

√
1
N

∑
(log y − log f(x))2

C. Ablation on Complexity
Our distortion and uncertainty aware loss LDU introduces the very lightweight Multi-Layer Perceptron (MLP) and consistent
uncertainty estimation (CUE) module to redeploy baselines when training. Here we show their complexity based on
GuideNet (Tang et al., 2020). As reported in Tab. 7, the parameter with LDU only increases from 73.536M to 73.539M,
the training time is changeless, and the inference speed is only 0.0225ms slower. These facts give strong evidence that the
proposed LDU is lightweight enough.

Method Parameter (M) Train (h) Test (ms)

GuideNet (Tang et al., 2020) 73.536 9.4 17.3627
+LDU 73.539 9.4 17.3852

Table 7. Complexity analysis based on GuideNet.

D. Ablation on Hyper Parameters
Ablations of µ in LDA, and η in LCUE . We severally set five values for hyper parameters µ and η in Tab. 8 and Tab. 9.
Tab. 8 indicates that the model with LDA achieves best performance when µ = 80, which is the default value. Tab. 9 shows
that the baseline using LCUE performs better when η = 0.1 or 0.5. For the trade-off between RMSE and MAE, we select
η = 0.5 as the default.

µ (LDA) RMSE ∆ MAE ∆

20 138.5 0.0 36.2 0.0
40 136.8 1.7 ↓ 36.2 0.0
80 132.8 5.7 ↓ 36.0 0.2 ↓
120 133.3 5.2 ↓ 36.0 0.2 ↓
160 134.6 3.9 ↓ 36.1 0.1 ↓

Table 8. Ablations of µ in LDA employing M3PT.

η (LCUE ) RMSE ∆ MAE ∆

0.01 128.9 0.0 36.3 0.0
0.1 123.1 5.8 ↓ 36.0 0.3 ↓
0.5 123.2 5.7 ↓ 35.8 0.5 ↓
1 125.9 4.0 ↓ 35.9 0.2 ↓
2 127.4 1.5 ↓ 36.2 0.1 ↓

Table 9. Ablations of η in LCUE employing M3PT.
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