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Abstract

Survival analysis is the problem of estimating
probability distributions for future event times,
which can be seen as a problem in uncertainty
quantification. Although there are fundamental
theories on strictly proper scoring rules for uncer-
tainty quantification, little is known about those
for survival analysis. In this paper, we investigate
extensions of four major strictly proper scoring
rules for survival analysis and we prove that these
extensions are proper under certain conditions,
which arise from the discretization of the estima-
tion of probability distributions. We also compare
the estimation performances of these extended
scoring rules by using real datasets, and the exten-
sions of the logarithmic score and the Brier score
performed the best.

1. Introduction
The theory of scoring rules is a fundamental theory in sta-
tistical analysis, and it is widely used in uncertainty quan-
tification (see, e.g., (Mura et al., 2008; Parmigiani & Inoue,
2009; Benedetti, 2010; Schlag et al., 2015)). Suppose that
there is a random variable Y whose cumulative distribution
function (CDF) is FY . Given an estimation F̂Y of FY and a
single sample y obtained from Y , a scoring rule S(F̂Y , y)
is a function that returns an evaluation score for F̂Y based
on y. Since F̂Y is a CDF and y is a single sample of Y ,
it is not straightforward to choose an appropriate scoring
rule S(F̂Y , y). The theory of scoring rules suggests how to
choose an appropriate one. This theory proves that a certain
class of scoring rules satisfies this natural property: the av-
erage evaluation score S(F̂Y , y) over y ∼ Y is minimized
only by the true CDF FY . A scoring rule that satisfies this
property is called strictly proper in this theory. Examples of
strictly proper scoring rules include the pinball loss, the log-
arithmic score, the Brier score, and the ranked probability
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score (see, e.g., (Gneiting & Raftery, 2007) for the defini-
tions of these scoring rules). In uncertainty quantification,
it is standard to use a strictly proper scoring rule both for a
loss function to train machine learning models and for an
evaluation metric to evaluate the models. Note that, if we
use a non-proper scoring rule S(F̂Y , y) as a loss function, a
prediction model (e.g., a neural network model) might find
an estimation F̂Y such that S(F̂Y , y) < S(FY , y) holds for
y ∼ Y on average and such F̂Y could be very different from
true FY .

Survival analysis, which is also known as time-to-event
analysis, can be seen as a problem in uncertainty quantifica-
tion. Despite the long history of research from the seminal
work (Cox, 1972) on survival analysis (see, e.g., (Wang
et al., 2019) for a comprehensive survey), little is known
about the strictly proper scoring rules for survival analysis.
Therefore, we investigate extensions of these strictly proper
scoring rules for survival analysis.

In survival analysis, the time between a well-defined start-
ing point and the occurrence of an event is called the sur-
vival time or event time, and the goal of survival analysis
is to estimate the probability distribution of event times. In
healthcare applications, an event usually corresponds to an
undesirable event for a patient (e.g., a death or the onset
of disease). Survival analysis has important applications in
many fields such as credit scoring (Dirick et al., 2017) and
fraud detection (Zheng et al., 2019) as well as healthcare.

Datasets for survival analysis are censored, which means
that events of interest might not be observed for a number of
data points. This may be due to either a limited observation
time window or missing traces caused by other irrelevant
events. In this paper, we consider only right censored data,
which is a widely studied problem setting in survival analy-
sis. The exact event time of a right censored data point is
unknown; we know only that the event had not happened
up to a certain time for the data point. The time between a
well-defined starting point and the last observation time of
a right censored data point is called the censoring time.

Many neural network models have been proposed for sur-
vival analysis (e.g., (Avati et al., 2019; Kamran & Wiens,
2021; Pearce et al., 2022)). A common problem with these
models is that they define their own custom loss functions,
and they use these loss functions without proving that they
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are strictly proper in terms of the theory of scoring rules.
Indeed, Rindt et al. (2022) show that the loss functions used
in (Avati et al., 2019; Kamran & Wiens, 2021) are not proper.
Moreover, survival models have been evaluated by custom
evaluation metrics without proving that these metrics are
proper in terms of the theory of scoring rules. Popular met-
rics used for survival analysis include the integrated Brier
score (Graf et al., 1999) and variants of C-index (Antolini
et al., 2005; Uno et al., 2011). However, all of them are
not proper (Blanche et al., 2018; Rindt et al., 2022). We
also note that Sonabend et al. (2022) discuss the problems
of using these variants of C-index as evaluation metrics in
survival analysis.

The only exception to the above argument is (Rindt et al.,
2022). This paper shows a rigorous proof that an exten-
sion of the logarithmic score for survival analysis is strictly
proper. Note that this paper is not the first one that uses
this extension of the logarithmic score (e.g., (Lee et al.,
2018; Ren et al., 2019; Tjandra et al., 2021)). However, it
is usually used in part of the loss functions of the proposed
models, and these loss functions are used without the proof
of properness.

Our contributions. We analyze survival analysis through
the lens of the theory of scoring rules. First, we prove that
Portnoy’s estimator (Portnoy, 2003), which is an extension
of the pinball loss for survival analysis, is proper under cer-
tain conditions. This is the first proof for the properness
for Portnoy’s estimator. In addition, we show such con-
ditions are due to the discretization of the estimation of a
probability distribution and we explain why such conditions
are required to be proper scoring rules for survival analysis.
Second, we show that the proof of strict properness of the
extension of the logarithmic score (Rindt et al., 2022) is
based on implicit assumptions by showing its alternative
proof. Third, we show two new proper scoring rules for
survival analysis under certain conditions by extending the
Brier score and the ranked probability score. These scor-
ing rules are the first scoring rules with rigorous proofs of
properness as extensions of the Brier score and the ranked
probability score. Finally, we compare these four extensions
of the scoring rules by using real datasets, and the results
show that the extensions of the logarithmic score and Brier
score performed the best.

2. Related Work
Survival analysis has been traditionally studied under the
proportional hazard assumption. Its seminal work is the
Cox model (Cox, 1972), and many other prediction models
have been proposed under this strong assumption. Since
outputs of these models are scalar values called hazard rates
and are not CDFs, we use different types of loss functions

and evaluation metrics in traditional survival analysis. One
of the popular evaluation metrics is the concordance index
(C-index) (Harrell et al., 1982), which is a generalization of
the Kendall rank correlation coefficient. See, e.g., (Wang
et al., 2019) for a comprehensive survey on survival analysis
based on this assumption. In this paper, we focus on survival
analysis without this assumption.

We note that there are many loss functions used in survival
models that can be seen as variants of known scoring rules.

• Pinball loss. Portnoy’s estimator (Portnoy, 2003),
which is an extension of the pinball loss, has been used
in quantile regression-based survival analysis (Port-
noy, 2003; Neocleous et al., 2006; Pearce et al., 2022).
It was unknown if this estimator is proper or not in
terms of the theory of scoring rules, and we are the first
to prove that this estimator is proper under a certain
condition.

• Brier score. The IPCW Brier score (Graf et al., 1999)
and integrated Brier score (Graf et al., 1999) are widely
used in survival analysis (e.g., (Kvamme et al., 2019;
Haider et al., 2020; Han et al., 2021; Zhong et al.,
2021)) as variants of the Brier score. However, Rindt
et al. (2022) show that neither of them is proper in
terms of the theory of scoring rules.

• Ranked probability score. Variants of the ranked
probability score have been proposed in (Avati et al.,
2019; Kamran & Wiens, 2021), but Rindt et al. (2022)
show that they are not proper in terms of the theory of
scoring rules.

3. Preliminaries
Given a feature vector x ∈ X , let Tx and Cx be random
variables for the event time and censoring time of x, respec-
tively. Unless otherwise stated, we consider a fixed x, and
we denote them by T and C by omitting the subscript x
from Tx and Cx, respectively.

Let t ∼ T and c ∼ C be samples obtained from T and
C, respectively. We assume that t and c are positive real
values (i.e., t ∈ R+ and c ∈ R+). In survival analysis,
we can observe only the minimum z = min{t, c}, and we
use δ = 1(t ≤ c) to indicate whether z represents the
true event time (i.e., δ = 1 means z is uncensored and
z = t) or z represents the censoring time (i.e., δ = 0
means z is censored and z = c). In this paper, a pair of
samples (t, c) is often represented as a pair of values (z, δ)
to emphasize that we can observe only one of t and c. We
assume that we have prior knowledge that z is at most zmax

(i.e., 0 < z ≤ zmax holds for any z). Let F (t) be the
CDF of T , which is defined as F (t) = Pr(T ≤ t). By the
definition of F (t), we have F (0) = 0, and we can represent
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Figure 1. Two types of discretization of probability distribution
F̂ (t) with B = 5.

the probability that the true event time is between t1 and t2
as Pr(t1 < T ≤ t2) = F (t2)− F (t1).

Survival analysis is the problem of estimating the F̂ (t) of
the true CDF F (t). For simplicity, we assume that both F (t)
and F̂ (t) are monotonically increasing continuous functions.
This means that F (t1) < F (t2) holds if and only if 0 ≤
t1 < t2 < ∞. This assumption enables us to calculate
F (t) for any time 0 ≤ t <∞ and to calculate F−1(τ) for
any quantile level 0 ≤ τ ≤ 1. When we estimate F̂ (t)
by using a prediction model (e.g., a neural network), we
usually discretize p = F̂ (t) along the p-axis or the t-axis
as shown in Fig. 1. In quantile regression-based survival
analysis, p = F̂ (t) is discretized along the p-axis, F̂−1(τi)
is estimated for 0 = τ0 < τ1 < · · · < τB−1 < τB = 1,
and we assume that F̂−1(τ0) = 0 and F̂−1(τB) = zmax.
In distribution regression-based survival analysis, p = F̂ (t)
is discretized along the t-axis, F̂ (ζi) is estimated for 0 =
ζ0 < ζ1 < · · · < ζB−1 < ζB = zmax, and we assume that
F̂ (ζ0) = 0 and F̂ (ζB) = 1.

Throughout this paper, we assume that the censoring time
and the event time are independent of each other given a
feature vector x. This assumption is usually represented as
follows.

Assumption 3.1. T ⊥⊥ C|X .

This assumption is widely used in survival analysis (e.g.,
the classical Kaplan-Meier estimator (Kaplan & Meier,
1958) and the calibration metric D-calibration (Haider et al.,
2020)). We can find examples of the other stronger assump-
tions (e.g., unconditionally random right censoring) used in
survival analysis in (Peng, 2021).

4. Proper Scoring Rules for Survival Analysis
We briefly review the theory of scoring rules for uncertainty
quantification. Let Y be a random variable, and let FY (y)
be its CDF, which is defined as FY (y) = Pr(Y ≤ y). A
scoring rule is a function S(F̂Y , y) that returns a real value
(i.e., an evaluation score) for inputs F̂Y and y, where F̂Y
is an estimation of FY and y is a sample obtained from

Y . In this paper, we consider negatively-oriented scoring
rules, which means that a smaller score is better. We can
interpret the scoring rule S(F̂Y , y) as a penalty function for
the misestimation of F̂Y for a sample y.

The proper and strictly proper scoring rules are defined as
follows.

Definition 4.1. A scoring rule S(F̂Y , y) is proper if

E
y∼Y

[S(F̂Y , y)] ≥ E
y∼Y

[S(FY , y)].

Definition 4.2. A scoring rule S(F̂Y , y) is strictly proper if

E
y∼Y

[S(F̂Y , y)] ≥ E
y∼Y

[S(FY , y)]

holds and the equality holds only when F̂Y = FY .

These definitions are based on a natural property that any
scoring rule should satisfy. Definition 4.2 means that we can
recover the true FY by minimizing the average evaluation
score S(F̂Y , y) over y ∼ Y for a strictly proper scoring rule
S(·, ·).

We extend these definitions of the proper and strictly proper
scoring rules for survival analysis. We define the proper
and strictly proper scoring rules for survival analysis by
changing the inputs of a scoring rule S(F̂ , (z, δ)) from FY
and y to F and (z, δ).

Definition 4.3. A scoring rule S(F̂ , (z, δ)) is proper if

E
(t,c)∼(T,C)

[S(F̂ , (z, δ))] ≥ E
(t,c)∼(T,C)

[S(F, (z, δ))].

Definition 4.4. A scoring rule S(F̂ , (z, δ)) is strictly proper
if

E
(t,c)∼(T,C)

[S(F̂ , (z, δ))] ≥ E
(t,c)∼(T,C)

[S(F, (z, δ))]

holds and the equality holds only when F̂ = F .

Following the standard approach of using a strictly proper
scoring rule in uncertainty quantification (Bengs et al.,
2022), we explain how to use a scoring rule S(F̂ , (z, δ))
as a loss function in survival analysis. Given a training
dataset {(x(i), z(i), δ(i))}ni=1, we formulate survival analy-
sis as minimizing the empirical loss

n∑
i=1

S(F̂x(i) , (z(i), δ(i))),

where F̂x(i) is an estimation of the true CDF Fx(i) of random
variable Tx(i) for x(i) ∈ X . This formulation assumes that
each x(i) ∈ X has an underlying random variable Tx(i) for
event times, and our task is to find a good estimation F̂x(i)

for each x(i).
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In this paper, we investigate the extensions of the scoring
rules for survival analysis. In Sec. 4.1, we consider quantile
regression and survival analysis based on quantile regression.
In Secs. 4.2–4.4, we consider distribution regression and
survival analysis based on distribution regression.

4.1. Extension of Pinball Loss

We first review quantile regression (Koenker & Bassett,
1978; Koenker & Hallock, 2001). Let Y be a real-valued
random variable and FY be its CDF. In quantile regression,
we estimate the τ -th quantile of Y , which can be written as

F−1Y (τ) = inf{y | FY (y) ≥ τ}.

The pinball loss (Koenker & Bassett, 1978), which is also
known as the check function, is a widely used scoring rule.
The pinball loss for an estimation F̂Y of FY and a quantile
level τ ∈ [0, 1] is defined as

SPinball(F̂Y , y; τ)

= ρτ (F̂
−1
Y (τ), y)

=

{
(1− τ)(F̂−1Y (τ)− y) if F̂−1Y (τ) ≥ y,
τ(y − F̂−1Y (τ)) if F̂−1Y (τ) < y.

(1)

Note that the pinball loss with τ = 0.5 is equivalent to the
mean absolute error (MAE), and it can be used to estimate
the median (i.e., 0.5-th quantile) of Y . This means that the
pinball loss is a generalization of MAE for any quantile level
τ ∈ [0, 1]. Note also that we include the quantile level τ in
the notation SPinball(F̂

−1
Y , y; τ) to clarify that this scoring

rule receives τ as an input.

It is known that the pinball loss is strictly proper (see
e.g., (Gneiting & Raftery, 2007)), which means that we
have

E
y∼Y

[SPinball(F̂Y , y; τ)] ≥ E
y∼Y

[SPinball(FY , y; τ)],

and the equality holds only when F̂−1Y (τ) = F−1Y (τ) by
Definition 4.2. Therefore, it is standard to use the pinball
loss both for a loss function and an evaluation metric in
quantile regression.

Portnoy’s estimator (2003) is an extension of the pinball
loss for quantile regression-based survival analysis, which
is defined as

SPortnoy(F̂ , (z, δ);w, τ)

=


ρτ (F̂

−1(τ), z) if δ = 1,

wρτ (F̂
−1(τ), z)

+(1− w)ρτ (F̂−1(τ), z∞) if δ = 0,

(2)

where ρτ is the pinball loss defined in Eq. (1), w is a weight
parameter to control the balance between two pinball loss

terms, and z∞ is any constant such that z∞ > zmax. In
Portnoy’s estimator, we can set an arbitrary constant 0 ≤
w ≤ 1 for the parameter w if τc > τ , where τc = Pr(t ≤
c) = F (c), but we have to set w = Pr(F (c) < F (t) ≤
τ |t > c) = (τ − τc)/(1 − τc) otherwise (i.e., τc ≤ τ ).
Since we do not know the true value τc = F (c), we have to
resolve this problem to use this estimator. Before showing
how to resolve this problem, we prove that this estimator is
proper under the condition that w is correct. Note that this
is the first result for the quantile regression-based survival
analysis in terms of the theory of scoring rules.

Theorem 4.5. Portnoy’s estimator is proper under the con-
dition that w is correct.

Proof. We give a proof in Appendix A.1.

This theorem means that the crucial part of Portnoy’s esti-
mator is to set an appropriate value for w, and this theorem
ensures that we can recover the true probability distribution
F by minimizing Eq. (2) if w is correct.

Now, we emphasize that we cannot avoid the dependence
on unknown parameters such as F (c) in the definition of
any of the scoring rules for survival analysis due to the dis-
cretization of F̂ . In the case of Portnoy’s estimator, even
if we know the true value F−1(τi) for all {τi}Bi=0, we can-
not compute F (c) because c is not always contained in
{F−1(τi)}Bi=0. The best we can do is to find quantile lev-
els τi and τi+1 such that F−1(τi) < c ≤ F−1(τi+1) by
using the assumption that F is a monotonically increasing
function. This means that F (c) is between τi and τi+1.
Even if we could find such τi and τi+1, we would not
be able to calculate some important probabilities such as
Pr(c < t ≤ F−1(τi+1)) = τi+1 − F (c). Therefore, we
usually mitigate this problem by using a large B, which en-
ables us to assume, for example, F−1(τi+1)−F−1(τi) ≈ 0
for all i.

Even if we use a large B to assume that we can find
the quantile level τ ′c such that c ≈ F−1(τ ′c) for any c,
the problem that we do not know the true F−1 remains.
One of the approaches to tackling this problem is the
grid search algorithm (Portnoy, 2003; Neocleous et al.,
2006). In this algorithm, we use a sufficiently large B,
and we estimate F̂−1(τi) of F−1(τi) in the increasing or-
der of i = 0, 1, . . . , B. Suppose that we have estimated
{F̂−1(τi)}j−1i=0 and we are going to estimate F̂−1(τj). The
key idea of this algorithm is that we can find τ ′c ∈ {τi}

j−1
i=0

such that c ≈ F̂−1(τ ′c) if τc = F (c) < τj . If we can find
such τ ′c, we estimate w by using τ ′c ≈ τc. If we cannot
find such τ ′c, this algorithm assumes that τc > τj and we
use an arbitrary constant 0 ≤ w ≤ 1. Portnoy (2003) dis-
cusses that this algorithm is analogous to the Kaplan-Meier
estimator (Kaplan & Meier, 1958), and their theoretical
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analysis (Portnoy, 2003; Neocleous et al., 2006) proves that
the estimation model combining Portnoy’s estimator, linear
regression, and the grid search algorithm can recover the
true probability distribution F if there is a sufficient number
of data points.

As for another approach, Pearce et al. (2022) propose the
CQRNN algorithm, which we call an iterative reweighting
(IR) algorithm. Unlike the grid search algorithm, this al-
gorithm estimates {F̂−1(τi)}Bi=0 simultaneously by using
a neural network. This algorithm starts with an arbitrary
initial estimation F̂ , and it estimates ŵ of the true w by
using F̂ . Then, it updates F̂ by using ŵ, and it repeats this
iterative procedure of estimating F̂ and ŵ until these values
converge. This IR algorithm is similar to the expectation-
maximization (EM) algorithm, and the relationship between
this algorithm and the EM algorithm is discussed in (Pearce
et al., 2022). Note that this IR algorithm can be implemented
for “free” according to (Pearce et al., 2022), which means
that we can implement it easily in the computation of the
loss function of a neural network training algorithm, and we
do not need to construct two separate neural network mod-
els for estimating F̂ and ŵ. The experimental evaluation
in (Pearce et al., 2022) shows that the IR algorithm per-
forms the best among the quantile regression-based survival
analysis models.

4.2. Extension of Logarithmic Score

While we estimate {F̂−1Y (τi)}Bi=0 in quantile regression,
we consider distribution regression, in which we estimate
{F̂Y (ζi)}Bi=0. For distribution regression, the logarithmic
score (Good, 1952) is known as a strictly proper scoring
rule, and it is defined as

SLog(F̂Y , y; {ζi}Bi=0)

= −
B−1∑
i=0

1(ζi < y ≤ ζi+1) log(F̂Y (ζi+1)− F̂Y (ζi))

= −
B−1∑
i=0

1(ζi < y ≤ ζi+1) log f̂i, (3)

where f̂i = F̂Y (ζi+1)− F̂Y (ζi) for i = 0, 1, . . . , B − 1.

We extend this logarithmic score for distribution regression-
based survival analysis as

SCen−log(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0)

= −
B−1∑
i=0

1(ζi < z ≤ ζi+1)g(i, δ, wi), (4)

where

g(i, δ, wi)

=

{
log f̂i if δ = 1,

wi log f̂i + (1− wi) log(1− F̂ (ζi+1)) if δ = 0,

1− F (c)

F (ζi+1)− F (c)

0 c ζi+1

1 F (t)

Time t

Figure 2. Illustration of computation of weight wi = (F (ζi+1)−
F (c))/(1− F (c)) for scoring rule SCen−log.

f̂i = F̂ (ζi+1) − F̂ (ζi), and wi = Pr(c < t ≤ ζi+1|t >
c) = (F (ζi+1)− F (c))/(1− F (c)). Note that this scoring
rule is equivalent to Eq. (3) if δ = 1. Similar to Portnoy’s
estimator, we cannot set the parameter wi of this scoring
rule because we do not know F (ζi+1) and F (c).

Even though we do not know the correct {wi}B−1i=0 , we
prove that this scoring rule is proper if the set of parameters
{wi}B−1i=0 is correct.

Theorem 4.6. SCen−Log(F̂ , (z, δ); {wi}B−1i=0 , {ζi}Bi=0) is a
proper scoring rule under the condition that wi is correct
for all i.

Proof. We give a proof in Appendix A.2.

Similar to Portnoy’s estimator, we can use both the grid-
search algorithm and the IR algorithm to estimate {wi}B−1i=0 .

In addition, we show another simpler approach by assuming
that wi ≈ 0 for all i if B is large. If B is large, 1− F (c) is
usually much larger than F (ζi+1)− F (c) (see Fig. 2), and
hence, we have wi = (F (ζi+1) − F (c))/(1 − F (c)) ≈ 0.
Therefore, we can obtain a simpler variant of SCen−log by
setting wi = 0 for all i:

SCen−log−simple(F̂ , (z, δ); {ζi}Bi=0)

= −
B−1∑
i=0

1(ζi < z ≤ ζi+1)g(i, δ, 0) (5)

= −δ
B−1∑
i=0

1(ζi < z ≤ ζi+1) log f̂i

−(1− δ)
B−1∑
i=0

1(ζi < z ≤ ζi+1) log(1− F̂ (ζi+1)).

Furthermore, by increasing B to infinity (i.e., B →∞), we
obtain the continuous version of this scoring rule:

SCen−cont−log(F̂ , (z, δ))

= −δ log dF̂
dt

(z)− (1− δ) log(1− F̂ (z)), (6)
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which is equal to the extension of the logarithmic score that
is proven to be strictly proper in (Rindt et al., 2022).

Remarks. This simplification clarifies that the proof
in (Rindt et al., 2022) implicitly assumes that B is suf-
ficiently large. This means that we should set B large
enough in practice. Moreover, strictly speaking, the relation
wi = (F (ζi+1) − F (c))/(1 − F (c)) ≈ 0 may not hold if
1−F (c) ≈ 0. Therefore, we recommend SCen−log (Eq. (4))
rather than SCen−log−simple (Eq. (5)) and SCen−cont−log
(Eq. (6)) whenever possible.

4.3. Extension of Brier Score

In distribution regression, the Brier score (Brier, 1950) is
also known as a strictly proper scoring rule, which is defined
as

SBrier(F̂Y , y; {ζi}Bi=0)

=

B−1∑
i=0

(1(ζi < y ≤ ζi+1)− f̂i)2, (7)

where f̂i = F̂Y (ζi+1)− F̂Y (ζi) for i = 0, 1, . . . , B − 1.

We extend this Brier score for distribution regression-based
survival analysis as

SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0)

=

B−1∑
i=0

(
wi(1− f̂i)2 + (1− wi)f̂2i

)
, (8)

where

wi =



0 if δ = 1 and ζi+1 < z = t,

1 if δ = 1 and ζi < z = t ≤ ζi+1,

0 if z ≤ ζi,
F (ζi+1)−F (c)

1−F (c) if δ = 0 and ζi < z = c ≤ ζi+1,
F (ζi+1)−F (ζi)

1−F (c) if δ = 0 and ζi+1 < z = c.

If δ = 1, it is easy to see that Eq. (8) is equivalent to Eq. (7).

We prove that this scoring rule is proper if the set of param-
eters {wi}B−1i=0 is correct.

Theorem 4.7. SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}Bi=0) is
a proper scoring rule under the condition that wi is correct
for all i.

Proof. We give a proof in Appendix A.3.

We can use the IR algorithm to estimate wi. However, un-
like Portnoy’s estimator and the extension of the logarithmic
score, we cannot use the grid-search algorithm in this exten-
sion of the Brier score because we need to estimate wi for
all i = 0, 1, . . . , B − 1.

Note that each wi in this scoring rule is close to zero if B is
large and δ = 0. However, since wis are designed to satisfy∑
i wi = 1, we cannot use the approximation wi ≈ 0 for

this scoring rule.

4.4. Extension of Ranked Probability Score

The ranked probability score (RPS) is also known as a
strictly proper scoring rule in distribution regression (see,
e.g., (Gneiting & Raftery, 2007)). It is defined as

SRPS(F̂Y , y) =

B−1∑
i=1

SBinary−Brier(F̂Y , y; ζi),

where SBinary−Brier is the binary version of SBrier (Eq. (7))
with a single threshold ζ:

SBinary−Brier(F̂Y , y; ζ) = (1(y ≤ ζ)− F̂Y (ζ))2.

We extend this scoring rule for survival analysis:

SCen−RPS(F̂ , (z, δ); {wi}B−1i=1 , {ζi}
B−1
i=1 )

=

B−1∑
i=1

SCen−Binary−Brier(F̂ , (z, δ);wi, ζi), (9)

where SCen−Binary−Brier is the binary version of
SCen−Brier (Eq. (8)) with a single threshold ζ:

SCen−Binary−Brier(F̂ , (z, δ);w, ζ)

=


F̂ (ζ)2 if z > ζ,

(1− F̂ (ζ))2 if δ = 1 and z = t ≤ ζ,
w(1− F̂ (ζ))2

+(1− w)F̂ (ζ)2 if δ = 0 and z = c ≤ ζ,

where w = (F (ζ)− F (c))/(1− F (c)).

Since this scoring rule is just the sum of the binary version
of Brier scores for survival analysis, it is straightforward to
prove this theorem.
Theorem 4.8. SCen−RPS(F̂ , (z, δ); {wi}B−1i=1 , {ζi}

B−1
i=1 ) is

a proper scoring rule under the condition that wi is correct
for all i.

Note that the scoring rule SCen−Binary−Brier is analogous
to Portnoy’s estimator. The scoring rule SCen−Binary−Brier

is designed to estimate F̂ (ζ), where ζ is an input, and we
use F (c) and ζ to set w, whereas Portnoy’s estimator is
designed to estimate F̂−1(τ), where τ is an input, and we
use F (c) and τ to set w. As these two scoring rules are
similar, we can use both the grid-search algorithm and the
IR algorithm for SCen−RPS.

Unlike SCen−log defined in Eq. (4), the parameter w of
the scoring rule SCen−Binary−Brier is usually not close to
zero because ζ and c are usually not close to each other as
shown in Fig. 3. We note that the parameter w of Portnoy’s
estimator is also not close to zero for a similar reason.
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1− F (c) F (ζ)− F (c)

0 c ζ

1 F (t)

Time t

Figure 3. Illustration of computations of weight wi = (F (ζ) −
F (c))/(1− F (c)) for scoring rule SCen−Binary−Brier.

5. Evaluation Metrics for Survival Analysis
While we have discussed the extensions of the scoring rules
as loss functions, we should use strictly proper scoring rules
also for evaluation metrics. However, among the exten-
sions of the scoring rules for survival analysis, we can use
only SCen−log−simple (Eq. (5)) as an evaluation metric be-
cause the other scoring rules depend on the parameter w
or {wi}B−1i=0 . Note that we can use SCen−log−simple only
when B is sufficiently large. In Appendix B, we conducted
experiments on choosing an appropriate B, and the results
suggested using B > 16.

While we can use SCen−log−simple as a discrimination met-
ric for survival analysis, we note that there is a calibration
metric, D-calibration (Haider et al., 2020), for survival anal-
ysis. D-calibration is widely used in survival analysis, but
we propose another calibration metric, KM-calibration. Let
κ(t) be the survival function estimated by the Kaplan-Meier
estimator (Kaplan & Meier, 1958). This function κ(t) rep-
resents the survival rate (i.e., the probability that the event
time is less than t) over the entire dataset rather than indi-
vidual feature vector x. By definition, κ(0) = 1 and κ(t) is
a monotonically decreasing function. Assuming that κ(t) is
correct, κ(t) = 1− F̂avg(t) must hold, where F̂avg(t) is the
average of F̂ (t) over all data points in the test dataset. There-
fore, we define our KM-calibration as the Kullback-Leibler
divergence between κ(t) and 1− F̂avg(t):

dKM−cal(κ, F̂avg) = dKL(κ||1− F̂avg)

=

B−1∑
i=0

(pi log pi − pi log qi),

where pi = κ(ζi+1) − κ(ζi), qi = (1 − F̂avg(ζi+1)) −
(1 − F̂avg(ζi)), and we assume here that κ(ζB) = 0. This
metric is based on the observation that the model’s predicted
number of events within any time interval should be similar
to the observed number (Goldstein et al., 2020). We note
that there is another calibration metric (Chapfuwa et al.,
2020) based on the Kaplan-Meier estimator. Whereas this

calibration metric uses the absolute difference, our KM-
calibration uses the Kullback-Leibler divergence.

6. Experiments
In our experiments, we compared practical prediction perfor-
mances of various loss functions on real datasets. We used
three datasets for the survival analysis from the packages
in R (R Core Team, 2016): the flchain dataset (Dispen-
zieri et al., 2012), which was obtained from the “survival”
package and contains 7874 data points (69.9% of which are
censored), the prostateSurvival dataset (Lu-Yao et al., 2009),
which was obtained from the “asaur” package and contains
14294 data points (71.7% of which are censored), and the
support dataset (Knaus et al., 1995), which was obtained
from the “casebase” package and contains 9104 data points
(31.9% of which are censored). For each dataset, we di-
vided the time interval [0, zmax + ε), where ε = 10−3, into
B equal-length intervals to get the thresholds {ζi}Bi=0 for
distribution regression-based survival analysis, and we di-
vided the unit interval [0, 1] into B equal-length intervals to
get the quantile levels {τi}Bi=0 for quantile regression-based
survival analysis. Unless otherwise stated, we set B = 32.

All our experiments were conducted on a virtual machine
with an Intel Xeon CPU (3.30 GHz) processor without any
GPU and 64 GB of memory running Red Hat Enterprise
Linux Server 7.6. We used Python 3.7.4 and PyTorch 1.7.1
for the implementation.

We estimated F̂ (t) by combining a multi-layer perceptron
(MLP) and the IR algorithm (see Sec. 4.1) to estimate w
or {wi}B−1i=0 . The MLP consists of three hidden layers con-
taining 128 neurons, and the number of outputs was B.
The type of activation function after the hidden layer was
the rectified linear unit (ReLU), and the activation func-
tion at the output node was softmax. The softmax func-
tion is used to satisfy the assumption that F̂ (t) is a mono-
tonically increasing continuous function. In distribution
regression-based survival analysis, each output of MLP es-
timates f̂i = F̂ (ζi+1)− F̂ (ζi) for i = 0, 1, . . . , B − 1. By
using these outputs {f̂i}B−1i=0 , we can calculate {F̂ (ζi)}Bi=0

and we can represent the function F̂ (t) as a piecewise linear
function connecting the values {F̂ (ζi)}Bi=0. Since f̂i > 0

holds for all i, F̂ (t) estimated in this way is a monotoni-
cally increasing continuous function. We can estimate F̂
for quantile regression-based survival analysis by using a
similar way.

For the training of the neural network, we used the Adam
optimizer (Kingma & Ba, 2015) with the learning rate 0.001,
and the other parameters were set to their default values. We
ran training for 300 epochs for our neural network models.
Our implementation of the scoring rules are available at
https://github.com/IBM/dqs.

7



Proper Scoring Rules for Survival Analysis

0.0 0.5 1.0 1.5 2.0

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log

(a) SCen−log−simple on flchain

0.0 0.5 1.0 1.5

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log

(b) SCen−log−simple on prostateSurvival

0.0 0.5 1.0 1.5 2.0 2.5

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log

(c) SCen−log−simple on support

0.000 0.002 0.004 0.006 0.008 0.010

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log
Kaplan-Meier

(d) D-calibration on flchain

0.000 0.002 0.004 0.006 0.008 0.010

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log
Kaplan-Meier

(e) D-calibration on prostateSurvival

0.000 0.005 0.010 0.015 0.020 0.025

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log
Kaplan-Meier

(f) D-calibration on support

0.0 0.1 0.2 0.3 0.4

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log
Kaplan-Meier

(g) KM-calibration on flchain

0.0 0.2 0.4 0.6 0.8 1.0

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log
Kaplan-Meier

(h) KM-calibration on prostateSurvival

0.0 0.2 0.4 0.6

IPCW BS(t)
S-CRPS

DRSA
DeepHit
Portnoy

Cen-RPS
Cen-Brier

Cen-log
Kaplan-Meier

(i) KM-calibration on support

Figure 4. Prediction performance (lower is better) comparison on three datasets with SCen−log−simple, KM-calibration, and D-calibration.

We compared the prediction performances of various scor-
ing rules (i.e., loss functions), and Fig. 4 shows the results.
In these experiments, we split the data points into train-
ing (60%), validation (20%), and test (20%), and each bar
shows the mean of the measurements on the test data of
five random splits together with the error bar, which rep-
resents the standard deviation. We used SCen−log−simple

(Eq. (5)) as a metric for discrimination performance and
D-calibration (Haider et al., 2020) and KM-calibration (see
Sec. 5) as calibration metrics, where we used 20 bins of
equal length for D-calibration. For the calibration metrics,
we added the mean D-calibration and mean KM-calibration
of the Kaplan-Meier estimator (Kaplan & Meier, 1958) as
a red line in each graph. Since the Kaplan-Meier estimator
is calibrated in theory, the values of the D-calibration and
the KM-calibration of this estimator should be regarded as
close to zeros. In this figure, the four scoring rules Cen-
log (SCen−log defined in Eq. (4)), Cen-Brier (SCen−Brier

defined in Eq. (8)), Cen-RPS (SCen−RPS defined in Eq. (9)),
and Portnoy (SPortnoy defined in Eq. (2)) are proved to be
conditionally proper in this paper. Note that Cen-log is
similar to the scoring rule (Eq. (6)) that is proved to be
strictly proper in (Rindt et al., 2022) and Portnoy is pro-
posed in (Portnoy, 2003). This figure also contains the
results for other scoring rules in the state-of-the-art models
for survival analysis: DeepHit (Lee et al., 2018) with pa-

rameter α = 1, DRSA (Ren et al., 2019) with parameter
α = 0.25, S-CRPS (Avati et al., 2019), and IPCW BS(t)
game model (Han et al., 2021). These four scoring rules are
not proved to be proper.

Figure 4 shows that the prediction performances of the four
extended scoring rules (Cen-log, Cen-Brier, Cen-RPS, and
Portnoy) were not similar, even though we prove that these
four scoring rules are conditionally proper and the outputs
are expected to be similar if the parameters ŵ and {ŵi}B−1i=0

are correct. The scoring rules Cen-log and Cen-Brier out-
performed the scoring rules Cen-RPS and Portnoy in dis-
crimination performance SCen−log−simple. These results
indicate that the accuracy of the estimated parameters ŵ
and {ŵi}B−1i=0 by the IR algorithm are important when we
use these scoring rules in practice. The major difference be-
tween these scoring rules are that, whereas the set of param-
eters {wi}B−1i=0 in Cen-log and Cen-Brier usually satisfies
wi ≈ 0 or wi = 1, the set of parameters {wi}Bi=0 in Cen-
RPS can take an arbitrary value 0 ≤ wi ≤ 1. The parameter
w in Portnoy can also take an arbitrary value 0 ≤ w ≤ 1.
Therefore, Cen-log and Cen-Brier seem less sensitive to the
accuracy of the parameters than Cen-RPS and Portnoy. This
figure also shows that the other four scoring rules (DeepHit,
DRSA, S-CRPS, and IPCW BS(t)) performed worse than
Cen-log and Cen-Brier. Note that IPCW BS(t) model is
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Table 1. Prediction performances of DeepHit (lower is better) with various α for B = 32.
Metric Model flchain prostateSurvival support

SCen−log−simple DeepHit (α = 0) 1.5059± 0.0513 1.3609± 0.0301 1.8296± 0.0446
DeepHit (α = 0.1) 1.5200± 0.0398 1.3644± 0.0293 1.8481± 0.0453
DeepHit (α = 1) 1.5858± 0.0495 1.3813± 0.0318 1.9996± 0.0525
DeepHit (α = 10) 2.0313± 0.1648 1.5688± 0.0823 2.3657± 0.0441

D-calibration DeepHit (α = 0) 0.0003± 0.0001 0.0001± 0.0000 0.0062± 0.0012
DeepHit (α = 0.1) 0.0005± 0.0002 0.0001± 0.0000 0.0056± 0.0009
DeepHit (α = 1) 0.0008± 0.0003 0.0003± 0.0001 0.0062± 0.0010
DeepHit (α = 10) 0.0138± 0.0046 0.0064± 0.0035 0.0179± 0.0053

KM-calibration DeepHit (α = 0) 0.0213± 0.0049 0.0343± 0.0102 0.0288± 0.0127
DeepHit (α = 0.1) 0.0264± 0.0071 0.0418± 0.0139 0.0249± 0.0067
DeepHit (α = 1) 0.0362± 0.0084 0.0599± 0.0341 0.0545± 0.0110
DeepHit (α = 10) 0.2077± 0.0543 0.4937± 0.1772 0.4273± 0.1188

similar to the IR algorithm in that both of the algorithms are
used to estimate unknown parameters, but the loss function
of IPCW BS(t) model is not proved to be proper in terms of
the theory of scoring rules. With respect to the calibration
metrics, Cen-log and Cen-Brier showed comparable perfor-
mance with the Kaplan-Meier estimator. However, the other
scoring rules showed worse calibration performances for at
least one of D-calibration and KM-calibration.

Regarding the parameter α of DeepHit (Lee et al., 2018), we
conducted additional experiments by changing this parame-
ter. The loss function of DeepHit consists of two terms. The
first term is equal to the extension of the logarithmic score
SCen−log−simple, and the second term is used to improve a
ranking metric (i.e., a variant of C-index). The parameter
α is used to control the balance between these two terms,
and the weight for the second term is increased by using a
large α. Note that the scoring rule SCen−log−simple is equiv-
alent to DeepHit with α = 0. Table 1 shows the results for
α ∈ {0, 0.1, 1, 10}. This table shows that the prediction per-
formances of DeepHit became worse as α increases. This
means that we should set α = 0 when we use DeepHit.

7. Conclusion
We discussed extensions of four scoring rules for survival
analysis, and we proved that these extensions are proper
if the parameter w or {wi}B−1i=0 is correct. These proofs
reduce the problem of estimating F̂ to the problem of esti-
mating the parameter w or {wi}B−1i=0 in proper scoring rules.
We also demonstrated that the models with SCen−log and
SCen−Brier as loss functions performed the best in our exper-
iments. These results indicate that it is better to use a proper
scoring rule that has low sensitivity on the parameter. In
addition, we clarified the hidden assumption in the proof of
the properness for SCen−cont−log (Rindt et al., 2022). This
suggests us to use a sufficiently large B when we use it, and

we demonstrated that suchB can be found by comparing the
prediction performances of SCen−log−simple and SCen−log
with various B.
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A. Proofs of Theorems
We give proofs of the theorems, which are omitted from the main body of this paper.

A.1. Portnoy’s Estimator

We show a proof of Theorem 4.5.

Proof. We consider a fixed c ∼ C, and we prove

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)] (10)

for these four cases separately.

• Case 1: c ≤ min{F−1(τ), F̂−1(τ)}.

• Case 2: max{F−1(τ), F̂−1(τ)} < c.

• Case 3: F−1(τ) < c ≤ F̂−1(τ).

• Case 4: F̂−1(τ) < c ≤ F−1(τ).

Note that, if Inequality (10) holds for any c ∼ C, we can marginalize the inequality with respect to C, and we have

E
t∼T,c∼C

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T,c∼C

[SPortnoy(F, (z, δ);w, τ)],

which means that SPortnoy(F̂ , (z, δ);w, τ) is proper. Therefore, we prove Inequality (10) for the four cases.

Case 1. We prove the case for c ≤ min{F−1(τ), F̂−1(τ)}. This means that τc ≤ τ and w = (τ − τc)/(1− τc). Hence,
we have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
τ−τc
1−τc (1− τ)(F̂

−1(τ)− c) + 1−τ
1−τc τ(z∞ − F̂

−1(τ)) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
−τc(1−τ)

1−τc F̂−1(τ)− (τ−τc)(1−τ)
1−τc c+ (1−τ)τ

1−τc z∞ if t > c.

By Assumption 3.1, we have Pr(t ≤ c|C = c) = Pr(t ≤ c) = τc and Pr(t > c|C = c) = 1− τc. Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] = Pr(t ≤ c|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

−Pr(t > c|C = c)
τc(1− τ)
1− τc

F̂−1(τ)− (τ − τc)(1− τ)
1− τc

c+
(1− τ)τ
1− τc

z∞

= −(1− τ) E
t∼T |C=c,t≤c

[t]− (τ − τc)(1− τ)
1− τc

c+
(1− τ)τ
1− τc

z∞.

Since this value is the same for SPortnoy(F̂ , (z, δ);w, τ) and SPortnoy(F, (z, δ);w, τ), we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] = E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)].

12
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Case 2. We prove the case for max{F−1(τ), F̂−1(τ)} < c.

If F−1(τ) ≤ F̂−1(τ) < c, then we have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− z∞) if t > c,

≥


(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ c,
−τF̂−1(τ) + wτc+ (1− w)z∞ if t > c,

where we used −τ(F̂−1(τ)− t) ≤ (1− τ)(F̂−1(τ)− t) when F−1(τ) < t ≤ F̂−1(τ) for the inequality.

If F̂−1(τ) ≤ F−1(τ) < c, then we have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− z∞) if t > c,

>


(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ c,
−τF̂−1(τ) + wτc+ (1− w)z∞ if t > c,

where we used −τ(F̂−1(τ)− t) > (1− τ)(F̂−1(τ)− t) when F̂−1(τ) < t ≤ F−1(τ) for the inequality.

By Assumption 3.1, we have Pr(t ≤ F−1(τ)|C = c) = Pr(t ≤ F−1(τ)) = τ , Pr(F−1(τ) < t|C = c) = 1 − τ , and
Pr(c < t|C = c) = 1− τc. Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ Pr(t ≤ F−1(τ)|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤F−1(τ)

[t]

−Pr(F−1(τ) < t|C = c)τF̂−1(τ)

+Pr(c < t|C = c)(wτc+ (1− w)z∞)

= −(1− τ) E
t∼T |C=c,t≤F−1(τ)

[t] + (1− τc)(wτc+ (1− w)z∞).

By using a similar argument, we have

E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)] = −(1− τ) E
t∼T |C=c,t≤F−1(τ)

[t] + (1− τc)(wτc+ (1− w)z∞).

Note that this equation holds with equality.

Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)].

Case 3. We prove the case for F−1(τ) < c ≤ F̂−1(τ).

13
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We have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
w(1− τ)(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− z∞) if t > c,

≥


(1− τ)(F̂−1(τ)− t) if t ≤ F−1(τ),
−τ(F̂−1(τ)− t) if F−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− z∞) if t > c,

where we used (1 − τ)(F̂−1(τ) − t) ≥ −τ(F̂−1(τ) − t) when F−1(τ) < t ≤ c and w(1 − τ)(F̂−1(τ) − c) ≥
−wτ(F̂−1(τ)− c) when t > c.

By using a similar argument, we have

SPortnoy(F, (z, δ);w, τ) =

{
ρτ (F

−1(τ), t) if t ≤ c,
wρτ (F

−1(τ), c) + (1− w)ρτ (F−1(τ), z∞) if t > c,

=


(1− τ)(F−1(τ)− t) if t ≤ F−1(τ),
−τ(F−1(τ)− t) if F−1(τ) < t ≤ c,
−wτ(F−1(τ)− c)− (1− w)τ(F−1(τ)− z∞) if t > c,

Note that this equation holds with equality.

Hence, we have
E

t∼T |C=c
[SPortnoy(F̂ , (z, δ);w, τ)] ≥ E

t∼T |C=c
[SPortnoy(F, (z, δ);w, τ)].

Case 4. We prove the case for F̂−1(τ) < c ≤ F−1(τ).

Regarding F̂ , we have

SPortnoy(F̂ , (z, δ);w, τ) =

{
ρτ (F̂

−1(τ), t) if t ≤ c,
wρτ (F̂

−1(τ), c) + (1− w)ρτ (F̂−1(τ), z∞) if t > c,

=


(1− τ)(F̂−1(τ)− t) if t ≤ F̂−1(τ),
−τ(F̂−1(τ)− t) if F̂−1(τ) < t ≤ c,
−wτ(F̂−1(τ)− c)− (1− w)τ(F̂−1(τ)− z∞) if t > c,

>

{
(1− τ)(F̂−1(τ)− t) if t ≤ c,
−τF̂−1(τ) + wτc+ (1− w)τz∞ if t > c,

where we used −τ(F̂−1(τ)− t) > (1− τ)(F̂−1(τ)− t) when F̂−1(τ) < t ≤ c for the inequality. By Assumption 3.1, we
have Pr(t ≤ c|C = c) = Pr(t ≤ c) = τc and Pr(t > c|C = c) = 1− τc. Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] > Pr(t ≤ c|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

+Pr(t > c|C = c)(−τF̂−1(τ) + wτc+ (1− w)τz∞)

> τc(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

−(1− τc)τF̂−1(τ) + (1− τc)(wτc+ (1− w)τz∞)

> (τc − τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t] + (1− τc)(wτc+ (1− w)τz∞).

14
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Regarding F , since w = (τ − τc)/(1− τc), we have

SPortnoy(F, (z, δ);w, τ) =

{
ρτ (F

−1(τ), t) if t ≤ c,
wρτ (F

−1(τ), c) + (1− w)ρτ (F−1(τ), z∞) if t > c,

=

{
(1− τ)(F−1(τ)− t) if t ≤ c,
w(1− τ)(F−1(τ)− c)− (1− w)τ(F−1(τ)− z∞) if t > c,

=

{
(1− τ)(F−1(τ)− t) if t ≤ c,
− τc(1−τ)1−τc F−1(τ)− w(1− τ)c+ (1− w)τz∞ if t > c,

By Assumption 3.1, we have Pr(t ≤ c|C = c) = Pr(t ≤ c) = τc and Pr(t > c|C = c) = 1− τc. Hence, we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)] = Pr(t ≤ c|C = c)(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

+Pr(t > c|C = c)(−τc(1− τ)
1− τc

F−1(τ)− w(1− τ)c+ (1− w)τz∞)

= τc(1− τ)F̂−1(τ)− (1− τ) E
t∼T |C=c,t≤c

[t]

−τc(1− τ)F̂−1(τ) + (1− τc)(−w(1− τ)c+ (1− w)τz∞)

= −(1− τ) E
t∼T |C=c,t≤c

[t] + (1− τc)(−w(1− τ)c+ (1− w)τz∞).

Therefore, since τc ≤ τ and w = (τ − τc)/(1− τc), we have

E
t∼T |C=c

[SPortnoy(F̂ , (z, δ);w, τ)]− E
t∼T |C=c

[SPortnoy(F, (z, δ);w, τ)]

> ((τc − τ)F̂−1(τ) + (1− τc)wτc) + (1− τc)w(1− τ)c
= (τc − τ)(F̂−1(τ)− c)
≥ 0.

A.2. Extension of Logarithmic Score

We show a proof of Theorem 4.6.

Proof. We consider a fixed c ∼ C, and let t be a sample obtained from T . Let i be the index such that ζi ≤ c < ζi+1. Since
Assumption 3.1 holds, we have Pr(ζj < t ≤ ζj+1|C = c) = Pr(ζj < t ≤ ζj+1) = F (ζj+1)− F (ζj) = fj for any j < i,
Pr(ζi < t ≤ c|C = c) = F (c)− F (ζi), and Pr(c < t|C = c) = Pr(c < t) = 1− F (c). Hence, we have

E
t∼T |C=c

[SCen−log(F̂ , (z, δ); {wk}B−1k=0 , {ζk}
B
k=0)] = −

∑
j<i

Pr(ζj < t ≤ ζj+1|C = c) log f̂j

−Pr(ζi < t ≤ c|C = c) log f̂i

−Pr(c < t|C = c)
(
wi log f̂i + (1− wi) log(1− F̂ (ζi+1))

)
= −

∑
j<i

fj log f̂j

−(F (c)− F (ζi)) log f̂i
−(1− F (c))

(
wi log f̂i + (1− wi) log(1− F̂ (ζi+1))

)
= −

∑
j≤i

fj log f̂j − (1− F (ζi+1)) log(1− F̂ (ζi+1)),
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where we used wi = (F (ζi+1)− F (c))/(1− F (c)) for the last equality.

Hence, we have

E
t∼T |C=c

[SCen−log(F̂ , (z, δ); {wk}B−1k=0 , {ζk}
B
k=0)]− E

t∼T |C=c
[SCen−log(F, (z, δ); {wk}B−1k=0 , {ζk}

B
k=0)]

= −
∑
j≤i

fj(log f̂j − log fj)− (1− F (ζi+1))(log(1− F̂ (ζi+1))− log(1− F (ζi+1)))

≥ 0, (11)

where we used the fact that the Kullback-Leibler divergence between two probability distributions is non-negative for the
inequality. This means that the inequality

−
∑
k

pk(log p̂k − log pk) ≥ 0

holds for any two probability distributions pk and p̂k and the equality holds only if pk = p̂k for all k. Here, we use an
(i+ 2)-dimensional vector p = (p0, p1, . . . , pi+1); we set pk = fk for all k ≤ i and we set pi+1 = 1− F (ζi+1). Note that
the vectors p and p̂ constructed in this way are a probability distribution (i.e.,

∑
k pk = 1).

Since Inequality (11) holds for any c ∼ C, we marginalize the inequality with respect to C, and we have

E
t∼T,c∼C

[SCen−log(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0)] ≥ E

t∼T,c∼C
[SCen−log(F, (z, δ); {wi}B−1i=0 , {ζi}

B
i=0)],

which means that SCen−log(F̂ , (z, δ); {wi}B−1i=0 , {ζi}Bi=0) is proper.

A.3. Extension of Brier Score

We show a proof of Theorem 4.7.

Proof. We consider a fixed c ∼ C, and let t be a sample obtained from T . Let j be the index such that ζj < c ≤ ζj+1.
Since Assumption 3.1 holds, we have Pr(ζi < t ≤ ζi+1|C = c) = Pr(ζi < t ≤ ζi+1) = F (ζi+1) − F (ζi) = fi for any
i < j, Pr(ζj < t ≤ c|C = c) = F (c)− F (ζj), and Pr(c < t|C = c) = Pr(c < t) = 1− F (c). Hence, we have

E
t∼T |C=c

[SCen−Brier(F̂ , (z, δ); {wk}B−1k=0 , {ζk}
B
k=0)]

=
∑
i<j

Pr(ζi < t ≤ ζi+1|C = c)

(1− f̂i)2 +
∑
k 6=i

f̂2k


+Pr(ζj < t ≤ c|C = c)

(1− f̂j)2 +
∑
k 6=j

f̂2k


+Pr(c < t|C = c)

wj(1− f̂j)2 + (1− wj)f̂2j +
∑
i<j

f̂2i +
∑
i>j

(
wi(1− f̂i)2 + (1− wi)f̂2i

)
=

∑
i<j

fi

(1− f̂i)2 +
∑
k 6=i

f̂2k

+ (F (c)− F (ζj))

(1− f̂j)2 +
∑
k 6=j

f̂2k


+(1− F (c))

wj(1− f̂j)2 + (1− wj)f̂2j +
∑
i<j

f̂2i +
∑
i>j

(
wi(1− f̂i)2 + (1− wi)f̂2i

)
=

∑
i

(
fi(1− f̂i)2 + (1− fi)f̂2i

)
=

∑
i

(f̂2i − 2fif̂i + fi),
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where we used

wi =


0 if δ = 1 and ζi+1 < z = t,

1 if δ = 1 and ζi < z = t ≤ ζi+1,

0 if z ≤ ζi
for the first equality and

wi =

{
(F (ζi+1)− F (c))/(1− F (c)) if δ = 0 and i = j,

fi/(1− F (c)) if δ = 0 and i > j

for the last equality.

Hence we have

E
t∼T |C=c

[SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0)]− E

t∼T |C=c
[SCen−Brier(F, (z, δ); {wi}B−1i=0 , {ζi}

B
i=0)]

=
∑
i

(f̂2i − f2i − 2fi(f̂i − fi))

=
∑
i

(f̂i − fi)2

≥ 0. (12)

Note that the equality holds only if f̂i = fi holds for all i.

Since Inequality (12) holds for any c ∼ C, we have

E
t∼T,c∼C

[SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}
B
i=0)] ≥ E

t∼T,c∼C
[SCen−Brier(F, (z, δ); {wi}B−1i=0 , {ζi}

B
i=0)],

which means that SCen−Brier(F̂ , (z, δ); {wi}B−1i=0 , {ζi}Bi=0) is proper.

B. Additional Experiments
We investigated the differences of the prediction performances between SCen−log (defined in Eq. (4)) and SCen−log−simple

(defined in Eq. (5)) by using SCen−log−simple, D-calibration, and KM-calibration as metrics to determine the parameter B.
Tables 2– 4 show the results for B = 8, 16, 32, respectively, where each number shows the mean and variance of the values
obtained by five random runs and the bold numbers were used to emphasize the difference between two scoring rules. These
results show that the prediction performances of these two scoring rules were similar for the prostateSurvival and support
datasets even for B = 8. However, they showed different prediction performances for the flchain dataset for B = 8 and
B = 16, but the performance difference was negligible for B = 32. Therefore, we used B = 32 in the other experiments in
this paper.
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Table 2. Comparison between two extensions of logarithmic score for B = 8.
Metric Loss Function flchain prostateSurvival support

SCen−log−simple SCen−log 6.4618± 0.1204 1.3460± 0.0476 1.5422± 0.0704
SCen−log−simple 6.4176± 0.1266 1.3447± 0.0451 1.5368± 0.0701

D-calibration SCen−log 0.0045± 0.0004 0.0002± 0.0000 0.0370± 0.0032
SCen−log−simple 0.0127± 0.0013 0.0002± 0.0001 0.0349± 0.0024

KM-calibration SCen−log 0.0048± 0.0026 0.0048± 0.0028 0.0057± 0.0027
SCen−log−simple 0.0614± 0.0081 0.0083± 0.0024 0.0061± 0.0033

Table 3. Comparison between two extensions of logarithmic score for B = 16.
Metric Loss Function flchain prostateSurvival support

SCen−log−simple SCen−log 3.6774± 0.0386 1.2880± 0.0247 1.6017± 0.0733
SCen−log−simple 3.6676± 0.0424 1.3447± 0.0451 1.6008± 0.0731

D-calibration SCen−log 0.0005± 0.0002 0.0001± 0.0000 0.0147± 0.0020
SCen−log−simple 0.0013± 0.0004 0.0002± 0.0000 0.0143± 0.0021

KM-calibration SCen−log 0.0117± 0.0046 0.0142± 0.0036 0.0149± 0.0080
SCen−log−simple 0.0162± 0.0049 0.0158± 0.0063 0.0158± 0.0100

Table 4. Comparison between two extensions of logarithmic score for B = 32.
Metric Loss Function flchain prostateSurvival support

SCen−log−simple SCen−log 1.5054± 0.0508 1.3608± 0.0295 1.8307± 0.0452
SCen−log−simple 1.5059± 0.0513 1.3609± 0.0301 1.8296± 0.0446

D-calibration SCen−log 0.0003± 0.0001 0.0001± 0.0000 0.0063± 0.0009
SCen−log−simple 0.0003± 0.0001 0.0001± 0.0000 0.0062± 0.0012

KM-calibration SCen−log 0.0206± 0.0049 0.0312± 0.0084 0.0299± 0.0115
SCen−log−simple 0.0213± 0.0049 0.0343± 0.0102 0.0288± 0.0127
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