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Abstract

We study the problem of best-item identification
from choice-based feedback. In this problem, a
company sequentially and adaptively shows dis-
play sets to a population of customers and col-
lects their choices. The objective is to identify
the most preferred item with the least number
of samples and at a high confidence level. We
propose an elimination-based algorithm, namely
NESTED ELIMINATION (NE), which is inspired
by the nested structure implied by the information-
theoretic lower bound. NE is simple in structure,
easy to implement, and has a strong theoretical
guarantee for sample complexity. Specifically,
NE utilizes an innovative elimination criterion
and circumvents the need to solve any complex
combinatorial optimization problem. We provide
an instance-specific and non-asymptotic bound on
the expected sample complexity of NE. We also
show NE achieves high-order worst-case asymp-
totic optimality. Finally, numerical experiments
from both synthetic and real data corroborate our
theoretical findings.

1. Introduction
Online machine learning (Shalev-Shwartz et al., 2012) has
been proven to be an effective method for efficiently col-
lecting and utilizing large amounts of data, as evidenced by
theoretical and practical studies. In this paper, we investigate
the online learning problem of best-item identification from
choice-based feedback akin to Feng et al. (2021), which is
a practical extension of the stochastic multi-armed bandit
problem (Lattimore & Szepesvári, 2020).
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Our problem can be applied to a wide range of contempo-
rary real-world scenarios. The following example will be
used throughout this paper for clarity and readability. Con-
sider a company that seeks to identify the most preferred
item (e.g., commercial product) among a set of alternative
options. The company can interact with customers through
a feedback collection process to learn the unknown pref-
erence. In particular, the company sequentially displays
(possibly) different subsets of items to different customers
and asks them to choose their favorite within the display sets.
The subsequent display sets may depend on prior ones as
well as the previously obtained samples. For the company,
an important objective is to minimize the cost of feedback
collection while maintaining a high level of accuracy in
identifying the top-ranked item.

To address the company’s problem, Feng et al. (2021) pro-
posed a relatively general framework for encoding cus-
tomers’ preferences using their choice probabilities. They
assumed that customers’ preferences (i.e., choice proba-
bility distributions) satisfy certain consistency and sepa-
rability conditions, i.e., the more preferred item is always
chosen with (strictly) higher probabilities. On account of the
instance-specific information-theoretical lower bound, they
proposed a minimax formulation of the company’s problem
and designed a randomized policy, called MYOPIC TRACK-
ING POLICY (or MTP), which is worst-case asymptotically
optimal. However, some limitations of MTP still need to
be addressed urgently. One major issue is its computational
inefficiency for large-scale problems, which requires solv-
ing combinatorial optimization problems. Additionally, the
theoretical guarantees of MTP are not only asymptotic in
nature but also instance-independent.

Main Contributions. Our main results and contributions
are summarized as follows:

(i) We design an elimination-based algorithm NESTED
ELIMINATION (NE); see Section 3. This algorithm is
based on a new design of a sequence of hitting times
governing when (and how) to rule out sub-optimal
items. This design is inspired by the nested struc-
ture in the optimal solution to the max-min problem
for the information-theoretic lower bound. It differs
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from many classic successive elimination algorithms
for multi-armed bandit problems, typically based on
estimating the expected reward of each arm (Even-Dar
et al., 2006; Kalyanakrishnan & Stone, 2010; Karnin
et al., 2013). It is also different from those inspired
by the information-theoretic lower bound and based
on the track-and-plug-in strategies (Chernoff, 1959;
Garivier & Kaufmann, 2016; Feng et al., 2021).

In addition, The algorithm is rather simple in structure
and quick to implement, as the elimination criterion is
easily calculable. In particular, our algorithm differs
from MTP in that it does not involve any combinatorial
optimization problems, making it efficient computa-
tionally and suitable for large-scale applications.

(ii) We theoretically analyze the performance of our algo-
rithm NE from multiple perspectives; see Section 4.
To summarize, for every (instead of just worst-case)
instances and error tolerance δ, we provide a non-
asymptotic and instance-specific bound of the expected
sample complexity of NE; see Theorem 4.1. This per-
formance guarantee is always better than that of MTP,
and sometimes the difference can be on the order of
Ω(log(1/δ)).

Apart from tight performance characterization, we also
show higher-order worst-case optimality of NE. Specif-
ically, under the worst-case instances, the difference
between the sample complexity under NE and the
information-theoretical lower bound is bounded by a
constant independent of δ; see Proposition 4.2 and dis-
cussion thereafter. In comparison, MTP by Feng et al.
(2021) allows the residual term to be on the order of
o(log(1/δ)).

(iii) We conduct comprehensive numerical experiments gen-
erated from both synthetic and real data sets; see Sec-
tion 5. In particular, we demonstrate both the compu-
tational and sample efficiency of NE, especially com-
pared with MTP.

More Related Work. Our work is also related to the
stochastic multi-armed bandit problem, which was first intro-
duced by Thompson (1933). The multi-armed bandit model
offers a straightforward yet effective online learning frame-
work, which has been studied extensively in the literature.
While the regret minimization problem aims at maximizing
the cumulative reward by carefully balancing the trade-off
between exploration and exploitation (Auer et al., 2002;
Bubeck & Cesa-Bianchi, 2012; Agrawal & Goyal, 2012),
the pure exploration problem focuses on achieving efficient
exploration with specific objectives in mind, e.g., best arm
identification (Even-Dar et al., 2006; Audibert et al., 2010;
Karnin et al., 2013; Garivier & Kaufmann, 2016). For a

more in-depth review of bandit algorithms, we refer to Lat-
timore & Szepesvári (2020).

Our studied model differs from standard multi-armed ban-
dits, as the decision variable is a subset of items referred to
as a display set, instead of a single item, and the observa-
tion is an item rather than a stochastic reward. Therefore,
we refrain from using the terminology “arm” to prevent
ambiguity. However, there is another line of work that incor-
porates the choice-based feedback model into multi-armed
bandits. In particular, Chen et al. (2018) studied the prob-
lem of top-items identification under a Luce-type choice
model, which is different from the class of choice models
we consider in this work, as described in Section 2. Ad-
ditionally, when evaluating the asymptotic performance of
their algorithm, they fixed the moderate confidence level
while allowing other instance-specific parameters (such as
the number of items) to tend to infinity. In contrast, we fix
the instance and let the confidence level tend to zero, which
is more commonly adopted in the literature on pure explo-
ration. Furthermore, Saha & Gopalan (2020) considered the
problem of identifying a near-optimal item under a random
utility-based discrete choice model, where each item is asso-
ciated with an unknown random utility score. Nevertheless,
they fixed the size of the display sets, whereas we allow for
display sets of varying sizes. Finally, we remark that, to the
best of our knowledge, only the results in Feng et al. (2021)
are comparable to ours.

2. Problem Setup and Preliminaries
Choice-Based Feedback Model. We consider a choice-
based feedback model in which a customer randomly selects
exactly one item from the display set presented by the com-
pany (or agent). In particular, the set of available items is
denoted as [K] := {1, 2, . . . ,K} and the collection of all
the possible display sets is S := {S ⊂ [K], |S| ≥ 2}.1
Therefore, an instance of such a choice-based feedback
model corresponds to an inherent preference f , which can
be described by the probability f(i|S) that item i is chosen
from the display set S for any S ∈ S and i ∈ S.

We follow the notation of Feng et al. (2021) and only assume
that preference f belongs to the p-Separable familyMp for
some given p ∈ (0, 1); see Definition 2.1.

Definition 2.1 (p-Separable family). Let p ∈ (0, 1) be a
fixed dispersion parameter. A preference f belongs to the
p-Separable familyMp if:

(i) For any S ∈ S, f(i|S) > 0 if and only if i ∈ S;
(ii) For any S ∈ S,

∑
i∈S f(i|S) = 1;

(iii) There exists a global ranking σf : [K] → [K] such

1Note that the case where the display set is a singleton is com-
pletely uninformative.
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that for any S ∈ S and i, i′ ∈ S, f(i|S) ≤ pf(i′|S) if
σf (i

′) < σf (i).

For any S ∈ S and i ∈ S, we refer to the local ranking of i
in S as σf (i|S) :=

∑
j∈S 1{σf (i) ≤ σf (j)}. For the con-

venience of expression, we assume that the unknown global
ranking σf of the customer preference f that interacts with
the company is the identity ranking σ∗ := (1, 2, . . . ,K)
throughout this work, without loss of generality. Accord-
ingly, item 1 is always the customer’s most preferred item
within the item set [K].

Remark 2.2. The reason we adopt the p-Separable family
Mp of preference instances as our modeling framework is
that it is relatively general. Essentially, we assume that the
choice probabilities corresponding to f are (statistically)
consistent with some (unknown) ranking of items. In ad-
dition, the choice probabilities are separable by at least a
factor of p. Many common choice models, such as the multi-
nomial logit (MNL) model and the Mallows choice model,
could be incorporated into this framework. See Remark 2
of Feng et al. (2021) for more discussion.

Remark 2.3. The parameter p measures the noise level of
the choice-based feedback model and is also a separation
parameter. Throughout the paper, we perform our analysis
treating the value of p as known and given. However, note
thatMp ⊂Mp′ for all p < p′. Therefore, if only a conser-
vative estimate (i.e., an upper bound) of p, say, p′ is avail-
able, our theoretical results for the algorithm performance
(e.g., Theorem 4.1, as well as the worst-case asymptotic
optimality (9)) still hold after replacing p with p′.

Best-Item Identification from Choice-Based Feedback.
The company aims to identify the best item by displaying
subsets of the item set [K] to customers with an unknown
consensus preference f sequentially and adaptively. Specif-
ically, at each time step t ∈ N+ := {1, 2, 3, . . .}, the com-
pany chooses one display set St ∈ S and presents it to
one customer. Then the customer selects an item Xt ∈ St

according to the underlying probability distribution f(·|St).

More formally, the company uses an online policy π to de-
cide the display set St to present at each time step t, to
select a time τ to stop the interactions, and to ultimately
recommend iout as the identified best item to output. Let
Ft := σ(S1, X1, . . . , St, Xt) denote the smallest σ-field
generated by the history of display sets and customers’
choices up to and including time t. Therefore, the online
algorithm π is comprised of three components:

• The display rule selects St (with possible randomiza-
tion), which is adapted to the filtration Ft−1;

• The stopping rule determines a stopping time2 τ , which

2In this work, we slightly abuse the terminology stopping time,

is adapted to the filtration (Ft)
∞
t=1;

• The recommendation rule produces a candidate best
item iout, which is Fτ -measurable.

To facilitate comparisons with previous work, we will also
adopt the fixed-confidence setting in the theoretical analysis.
In the fixed-confidence setting, a confidence level δ ∈ (0, 1)
is given. Then the company is required to identify the best
item with probability at least 1 − δ using the fewest time
steps (i.e., samples).

Definition 2.4 (δ-PAC policy). For a prescribed confidence
level δ ∈ (0, 1), an online best-item identification policy π
is said to be δ-PAC (probably approximately correct) if for
all preferences f ∈ Mp, it terminates within a finite time
almost surely and the probability of error is no more than
δ (i.e., P(τ <∞) = 1 and P(iout ̸= 1) ≤ δ). Furthermore,
for a class of policies Π = {πδ}δ∈(0,1) parameterized by δ,
we say it is PAC if πδ is δ-PAC for all δ.

In this regard, our overarching goal is to design a δ-PAC
best-item identification policy while minimizing its expected
sample complexity E[τ ].

Information-Theoretic Lower Bound and Worst-Case
Analysis. Following an argument that dates back to Cher-
noff (1959), which was further popularized by Kaufmann
et al. (2016), one can derive an information-theoretic lower
bound on E[τ ] in terms of the optimal value of a certain
max-min optimization problem. Let P(S) denote the collec-
tion of all the probability distributions on S. For any fixed
preference f ∈ Mp, we define Mp(f) := {f ′ ∈ Mp :
σf ′(1) ̸= σf (1)}, which represents the set of alternative
preferences with different best items. We summarize the
non-asymptotic and instance-specific lower bound on E[τ ]
in Theorem 2.5 below.

Theorem 2.5 (Paraphrased from Feng et al., 2021). For any
preference f ∈Mp, let

I∗(f) := sup
λ∈P(S)

inf
f ′∈Mp(f)

∑
S∈S,i∈S

λ(S)f(i|S) log f(i|S)
f ′(i|S)

. (1)

Then any δ-PAC best-item identification policy satisfies

E[τ ] ≥ log(1/δ)− log 2.4

I∗(f)
.

In the information-theoretical lower bound, I∗(·) is a mea-
sure that quantifies the easiness of identifying the best item
from the item set [K]. The optimal solution λ∗ to the outer
maximization problem (1) can be roughly interpreted as the
optimal long-run-average proportions of different display

although the context should make our usage clear. In fact, τ is
both a stopping time with respect to the corresponding filtration
and the time step to terminate the algorithm.
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sets to be presented. Therefore, it can be used to inspire de-
signs of efficient algorithms; see Chernoff (1959), Garivier
& Kaufmann (2016).

However, in our case, the prohibitive complexity of the
problem (1) makes it impractical to utilize I∗(·) directly.3 In
this regard, Feng et al. (2021) identified a “hardest-to-learn”
preference instance (uniquely specified up to permutation),
which is referred to as fOA.4 Here the superscript “OA”
refers to Ordinal Attraction (OA) preferences; see Remark
2.6. The instance fOA minimizes the hardness quantity
I∗(·) amongMp. In other words,

IOA
∗ := I∗(f

OA) = min
f∈Mp

I∗(f). (2)

It turns out that the problem (1) is solvable under fOA. In
particular, Feng et al. (2021) found that when f = fOA, the
optimal solution λ∗ to the outer maximization problem of
(1) admits a nested structure. That is, λ∗(S) > 0 if and only
if S ∈ {[i] : i = 2, . . . ,K}.

Feng et al. (2021) designed a randomized strategy (i.e.,
MTP) specialized to the worst-case instancesMOA

p by try-
ing to match the randomization distribution with λ∗ using
a track-and-plug-in strategy. They showed that MTP is
worst-case asymptotically optimal, i.e.,

MTP ∈ argmin
Π is PAC

sup
f∈Mp

lim sup
δ↓0

Eπδ
f [τ ]

log(1/δ) . (3)

In comparison, we will directly exploit the nested structure
in λ∗ and design a nested elimination-based algorithm; see
Section 3 for the details.

Remark 2.6. The closed form expression for fOA is that
fOA(i|S) = 1−p

1−p|S| p
σfOA(i|S)−1 for all S ∈ S and i ∈ S.

Under this preference instance, the choice probability of
an item only depends on its ordinal information, i.e., its
local ranking within the display set. That is where the name
“Ordinal Attraction” (OA) comes from. As such, it is an
extension of commonly-used noisy pairwise comparison
models (Braverman & Mossel, 2008; Wauthier et al., 2013).
Interestingly, Feng & Tang (2022) also showed that fOA

could also be viewed as the aggregate choice model from a
distance-based ranking distribution, therefore “rationalizing”
this choice model from a different perspective.

Other Notations. For any display set S ∈ S and its subset
S′ ⊂ S, we define f(S′|S) :=

∑
i∈S′ f(i|S), which is the

3The quantity I∗(·) is difficult to evaluate in general since
it involves solving a max-min problem (1). In its outer layer,
the optimization is taken over the probability distribution over
S = {S ⊆ [K] : |S| ≥ 2}. In its inner layer, the optimization is
taken over Mp(f). Both of them are high-dimensional objects.

4Since fOA is only uniquely defined up to permutation (i.e.,
relabeling of the items), we will also use MOA

p to denote the
collection of all such fOA for formality.

Algorithm 1 Nested Elimination (NE)
Input: Tuning parameter M > 0.

1: Initialize voting score W0(i)← 0 for all i ∈ [K], active
item set Sactive ← [K], t← 0.

2: while |Sactive| > 1 do
3: Update the timer: t← t+ 1.
4: Display the active set Sactive, and observe the choice

Xt ∈ Sactive.
5: Update voting scores based on Xt:

Wt(i)←

{
Wt−1(i) + 1 if i = Xt

Wt−1(i) if i ̸= Xt.

6: Update the active set:
(i) Sort the remaining items based on their voting
scores. That is, find a ranking σt : [|Sactive|] →
Sactive such that Wt(σt(1)) ≥ Wt(σt(2)) ≥ · · · ≥
Wt(σt(|Sactive|)).
(ii) Search for the smallest k such that∑k

i=1
Wt(σt(i))− kWt(σt(k + 1)) ≥M.

If such k exists, Sactive ← {σt(1), . . . , σt(k)}.
7: end while
Output: The only element iout of Sactive.

probability that a customer with preference f chooses one
item in the subset S′ when presented with display set S.
Consider any multivariate function g : R × Rn−1 → R,
and any univariate function h : R → R. For any fixed
y ∈ Rn−1, we say g(x, y) = Ox(h(x)) (resp. Ωx(h(x))) if
there exists a positive constant c and a constant x0 (possibly
dependent on parameter y) such that |g(x, y)| ≤ c · h(x)
(resp. |g(x, y)| ≥ c ·h(x)) for all x ≥ x0. Alternatively, we
say g(x, y) = ox(h(x)) (resp. ωx(h(x))) if for any positive
constant c, there exists a constant x0 (possibly dependent on
parameter y) such that |g(x, y)| < c·h(x) (resp. |g(x, y)| >
c · h(x)) for all x ≥ x0.

3. The NESTED ELIMINATION Algorithm
In this section, we propose a structurally simple and com-
putationally efficient algorithm, namely NESTED ELIMINA-
TION (or NE), to identify the best item from choice-based
feedback. The pseudocode for NE is presented in Algo-
rithm 1 and explained in the following.

As its name suggests, our algorithm NE is elimination-
based and maintains an active item set Sactive at each time
step. The algorithm is parameterized by a tuning parameter
M > 0, which plays an essential role in controlling the
accuracy of the eliminations. We will discuss more on the
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choice of parameter M in Theorem 4.1. As a general
rule, the larger the parameter M , the more effective the
eliminations are in preserving the best item. This, in turn,
leads to a lower probability of outputting suboptimal items.

Initially, all the items are included in the active item set
Sactive. For any item i ∈ [K], we refer to the number of
times that item i is selected by the customers up to time t as
voting score Wt(i).

At each time step t, NE displays Sactive to the next cus-
tomer, and observes the choice Xt ∈ Sactive. After that, the
algorithm sorts the active items with respect to their voting
scores so that the ith most voted item up to time t is denoted
by Wt(σt(i)) for any i ∈ [|Sactive|].

Our elimination criterion in Step 6 (ii) is straightforward to
implement. Specifically, we retain only the k items with the
highest voting scores in Sactive if they satisfy the following
condition:∑k

i=1
Wt(σt(i))− kWt(σt(k + 1)) ≥M. (4)

Furthermore, if multiple values of k meet this condition, we
select the smallest one to facilitate the algorithm procedure.

As the algorithm progresses, there is only one single item
iout in the active item set Sactive eventually. That will be
the output of our algorithm NE.

Remark 3.1. One main observation we make from NE is
that at every stage (i.e., time steps between item elimina-
tions), the “active” voting scores {Wt(i) : i ∈ Sactive}
behave like a (biased) random walk on the integer lattice
Z|Sactive|. In the meantime, the elimination criterion follows
a sequence of hitting times of the corresponding random
walk. This structure gives us great analytical tractability by
leveraging tools such as martingale theory, and that is how
non-asymptotic bounds are possible for us.5

Remark 3.2. On a more technical note, multiple items can
be eliminated within a single time step under Algorithm 1.
In this regard, it is straightforward to verify that if there
exists some value of k such that the elimination criterion
is satisfied, i.e.,

∑k
i=1 Wt(σt(i))− kWt(σt(k + 1)) ≥M ,

then for all integer k′ ∈ [k, |Sactive| − 1],∑k′

i=1
Wt(σt(i))− k′Wt(σt(k

′ + 1)) ≥M.

5For example, when K = 2, the random walk can be reduced to
the well-known (one-dimensional) gambler’s ruin problem. In this
problem, the player wins one dollar with probability f(1|[2]) ≥
1

1+p
and loses one dollar with probability f(2|[2]) ≤ p

1+p
every

time and quits when he either wins or loses M dollars in total. The
error probability in our problem (i.e., NE outputting the incorrect
item) corresponds to the probability that the player ends up losing,
and the sample complexity corresponds to the expected length of
time the player plays before quitting. In this simplest case, both
quantities have closed-form expressions.

Thus, the outcomes of the eliminations will not be altered if
we only allow eliminating the items one by one, starting with
the least voted item, still within one time step. This is more
convenient for the analysis presented in Section 4, although
it requires slightly more calculations. See Algorithm 2 in
the appendix for the pseudocode of such formulation.

4. Main Results
In this section, we theoretically analyze the correctness and
sample complexity (stopping time) of our algorithm NE
(Algorithm 1). For ease of reading, we assume that the
tuning parameter M is an integer without loss of generality.
In general situations, M appearing in the analysis should be
replaced by ⌈M⌉, without affecting other expressions.

For any preference f ∈Mp, we introduce a novel hardness
quantity

IN(f) := log
(

1
p

)[∑K−1

r=1
D(f, r)

]−1

,

where the detailed expressions of D(f, r) for all r ∈ [K−1]
are deferred to Appendix B. In addition, we define β(K) :=
2K−1 − 1 for simplicity, which is a constant independent
of δ. We now present our first main result in Theorem 4.1
below.

Theorem 4.1 (Sample complexity of NE in the fixed-confi-
dence setting). For every confidence level δ ∈ (0, 1), NE is
δ-PAC with parameter

M =
log(1/δ) + log(β(K))

log(1/p)
. (5)

Furthermore, for every preference instance f ∈Mp, there
is a constant Cf independent of δ such that

E[τ ] ≤ log(1/δ)

IN(f)
+ Cf . (6)

The expression for the constant Cf is specified in Equa-
tion (43) in the corresponding proof.

Theorem 4.1 shows that NE is δ-PAC for appropriate
choices of M . With the introduction of instance-specific
hardness quantity IN(f), it also provides a non-asymptotic
and instance-specific bound of its expected sample complex-
ity. Notably, we can characterize the sample complexity by
a form of log(1/δ)/IN (f) plus a constant Cf independent
of δ. We will present a proof sketch of Theorem 4.1, along
with its key intermediate results in Section 4.2.

To achieve a deeper understanding of the hardness quantity
IN(·), we present its lower bound in Proposition 4.2 below.
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Proposition 4.2 (Lower bound of IN). It holds that

min
f∈Mp

IN(f) = IOA
∗ .

Furthermore, IN(·) attains its minimum when f ∈ MOA
p ,

i.e.,MOA
p ⊆ argminf∈Mp

IN(f).

Proposition 4.2 has several implications. First, the prefer-
ence fOA ∈MOA

p minimizes both I∗(·) and IN(·), validat-
ing the fact that fOA is a “hardest to learn” instance. Of
course, we make this observation from distinct approaches:
I∗(·) comes from the information-theoretic lower bound (1),
while IN(·) appears in the analysis of the expected sample
complexity of NE. Second, the values of I∗(·) and IN(·)
match at fOA. Together with Theorems 2.5 and 4.1, this
implies that NE has a “higher-order” worst-case asymptotic
optimality than MTP; please see Section 4.1 for more de-
tails. The proof of Proposition 4.2 is deferred to Appendix C,
where we also provide a more precise characterization of
the minimizer in Remark C.3.

4.1. Discussion: Comparisons with Previous Work

We compare our method NE with MTP (Feng et al., 2021)
in terms of both the algorithm design and their theoretical
guarantees.

Algorithm Design and Implementation. NE is quite
easy to implement. At each time step, its display rule is
to simply and consistently show the active item set Sactive.
Its stopping rule only requires sorting the voting scores of
the active items plus a verification step (4). In compari-
son, MTP involves solving two combinatorial optimization
problems (which can be formulated as integer linear pro-
gramming problems) at every time step: One for conducting
the maximum likelihood estimation and the other one to
track the Generalized Likelihood Ratio process. In fact, it
is clear to see from the numerical studies in Section 5 that
the running speed of NE typically improves upon MTP by
three orders of magnitude, especially for large K.

Theoretical Guarantees. NE is superior to MTP in var-
ious aspects. For any preference f ∈ Mp, the expected
sample complexity of NE can be summarized as

E[τ ] ≤ log(1/δ)
IN(f) +O 1

δ
(1); (7)

see (6). In comparison, the expected sample complexity of
MTP can be summarized as

E[τ ] ≤ log(1/δ)
IOA
∗

+ o 1
δ

(
log
(
1
δ

))
. (8)

Invoking Proposition 4.2, the performance guarantee of NE
in (7) is always better than that of MTP in (8):

lim
δ↓0

E[τ ]
log(1/δ)

f ∈MpMOA
p

1

IOA
∗

(worst case & Feng et al., 2021)

1

IN(f)
(ours)

1

I∗(f)
(lower bound)

Figure 1. A conceptual illustration of our theoretical contributions
in the fixed-confidence setting. The horizontal axis represents
different preference instances f , while the vertical axis represents
the asymptotic expected sample complexity.

• If IN(f) > IOA
∗ , the improvement is in the leading

term and is on the order of Ω1/δ (log (1/δ));

• If IN(f) = IOA
∗ , the improvement is in the residual

term from o1/δ (log (1/δ)) to O1/δ (1).6 Please see
Remark C.3 on when that happens.

We also refer the reader to Figure 1 for a graphic illustration.

Furthermore, NE achieves “higher-order” worst-case
asymptotic optimality. More precisely, a combination of
Theorems 2.5 and 4.1, as well as Proposition 4.2 implies
that for an arbitrarily slowly growing order ω1/δ(1), we
have

NE ∈ argmin
Π is PAC

sup
f∈Mp

lim sup
δ↓0

Eπδ
f [τ ]−

log(1/δ)
IOA
∗

ω1/δ(1)
. (9)

In comparison, the optimality of MTP is specified in (3),
which is equivalent to

MTP ∈ argmin
Π is PAC

sup
f∈Mp

lim sup
δ↓0

Eπδ
f [τ ]−

log(1/δ)
IOA
∗

log(1/δ) .

One can verify that the optimality criterion of NE is more
“sensitive” than that of MTP.

6It is worth noting that the o 1
δ

(
log

(
1
δ

))
term in (8) cannot

be specified in a detailed expression. This is partially inevitable
because, like Garivier & Kaufmann (2016), MTP adopts a track-
and-plug-in strategy, which is directly targeted at the asymptotic
regime. In contrast, benefiting from the simplicity of NE, our
analysis takes root in the non-asymptotic regime; hence, the corre-
sponding residual term can be precisely defined.

6
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4.2. Key Intermediate Results

In this subsection, we discuss the key intermediate results
for the proof of Theorem 4.1, which we believe also have
some independent significance.

Proposition 4.3 (Expected stopping time). For any cus-
tomer preference f ∈Mp, NE ensures that

E[τ ] ≤ log(1/p)M

IN(f)
+ oM (1)

where the oM (1) term is specified in Equation (18) in the
corresponding proof.

Proposition 4.3 above states that the expected stopping time
of NE with input parameter M is asymptotically upper
bounded by log(1/p)M/IN(f) as the tuning parameter M
tends to infinity. Refer to Appendix B for the proof of
Proposition 4.3.

In addition to the expected stopping time, the other impor-
tant performance metric is the error probability. Proposi-
tion 4.4, proved in Appendix D, provides an upper bound
on the error probability of our algorithm NE.

Proposition 4.4 (Error probability). For any customer pref-
erence f ∈Mp, NE outputs an item iout satisfying

P(iout ̸= 1) ≤ β(K) · pM .

Note that the upper bound demonstrated in Proposition 4.4
does not depend on the specific preference instance f . In
particular, it decays exponentially in the exogenous parame-
ter M .

Remark 4.5. The exponential decay rate of the error proba-
bility in Proposition 4.4 is tight. More precisely, we have

log(p)
(a)

≤ lim
M→∞

log(P(iout ̸= 1))

M

(b)

≤ log(p),

where (a) is a consequence of the lower bound in Theo-
rem 2.5, and (b) follows from Proposition 4.3 directly.

With all the necessary results in hand, we now present a
proof sketch of Theorem 4.1. A detailed version can be
found in Appendix E.

Proof Sketch of Theorem 4.1. For any given confidence
level δ, Proposition 4.4 implies that the choice of M in
Equation (5) guarantees the error probability is no more than
δ. Furthermore, since E[τ ] < +∞ due to Proposition 4.3,
P(τ < ∞) = 1. Therefore, NE is δ-PAC. Moreover, the
upper bound on the expected stopping time E[τ ] can be de-
rived directly from Proposition 4.3 and the choice of tuning
parameter M .
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(a) K = 5, p = 0.9.
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(b) K = 15, p = 0.9.
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(d) K = 15, p = 0.6.

Figure 2. The empirical averaged stopping times of NE and MTP
for different δ under the worst cases with different K and p.

5. Numerical Experiments
In this section, we empirically evaluate the performance of
our algorithm NE. Specifically, in Section 5.1, we examine
the fixed-confidence setting and compare NE with MTP
(Feng et al., 2021), with regard to their stopping times. Next,
in Section 5.2, a thorough numerical examination of NE is
conducted, confirming the correctness of Proposition 4.3.
In each experiment, the reported stopping times (or other
statistics) of different methods are averaged over 512 inde-
pendent trials. The corresponding standard errors are also
displayed as the (tiny) error bars in the figures. Additional
implementation details and numerical results can be found
in Appendix F.

5.1. Fixed-Confidence Setting

First, we consider the worst-case preferences inMOA
p (as

defined in Section 2). Recall that MOA
p represents the

“hardest-to-learn” preferences that minimizes both hardness
quantities IN (·) and I∗(·); see (2) and Proposition 4.2. We
conduct our experiments with different target confidence
levels δ, as well as values of K and p.7 We plot the empirical
averaged stopping times of NE vs. MTP against log(1/δ)
in each simulation episode. The results are summarized in

7It is worth mentioning that the empirical error probability
is consistently lower than the corresponding target confidence
level δ because we use the value of M in (5) with theoretical
guarantees. This choice of M is asymptotically tight for small δ;
see Remark 4.5.
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Figure 2.8 In addition, we report the empirical means of the
CPU runtimes for the whole procedure 9 for δ = 0.01 in
Table 1.

Table 1. The empirical means of the CPU runtimes (secs) for δ =
0.01 under fOA with different K and p.

p = 0.9 p = 0.6

K NE MTP NE MTP

5 0.0773 23.4022 0.0035 0.8957
10 0.1297 108.4158 0.0050 3.5353
15 0.1376 400.5358 0.0064 13.7457

Next, we examine two general (non-worst-case) preferences
f1 and f2, which are calibrated from the Netflix Prize and
Debian Logo datasets, respectively using the multinomial
logistic (MNL) model. The number of items for preference
f1 is 4, while f2 has 8 items. We set p = 0.9 for both
preferences; see Appendix F for detailed information. Fig-
ure 3 shows the experimental results under the two general
preferences. Note that no explicit lower bound is available
for general preferences since I∗(f) is intractable to solve in
general.
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(a) Preference f1
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(b) Preference f2

Figure 3. The empirical averaged stopping times of NE and MTP
for different δ under two (non-worst-case) preferences f1 and
f2 calibrated from the Netflix Prize and Debian Logo datasets,
respectively.

From Figure 2, Table 1 and Figure 3, we have the following
observations:

(i) Sample Efficiency. Our algorithm NE consistently
outperforms its competitor MTP in terms of empirical
stopping times across all levels of δ. Notably, in the
non-asymptotic regime where δ is moderately small,
NE is significantly superior, indicating its greater prac-
ticality in real-world applications.

8Due to space constraints, the results for stopping times under
fOA with K = 10 are deferred to Appendix F.

9All our experiments are implemented in MATLAB and paral-
lelized on an Intel® Xeon® Gold 6244 CPU (3.60 GHz).

(ii) Computational Efficiency. NE is computationally
highly efficient and demonstrates a substantial advan-
tage with regard to CPU runtimes as the problem scale
increases. It is clear to see that the running speed of
NE typically improves upon MTP by three orders of
magnitude, especially for large values of K.

5.2. Further In-Depth Investigations of NE

Note that based on the hardness quantity IN(·), Proposi-
tion 4.3 gives an asymptotic upper bound of the expected
stopping time of NE, and the oM (1) term therein vanishes
as the exogenous parameter M tends to infinity. The experi-
mental results under the preference fOA (with K = 10 and
p = 0.9) and general preference f2 are shown in Figure 4.10

Each sub-figure illustrates the empirical averaged stopping
times of NE as well as the asymptotic upper bound with
respect to varying input parameters M .
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Figure 4. The stopping times of NE for different M .

It can be seen from Figure 4 that as M increases, the two
curves nearly overlap, supporting the theoretical result in
Proposition 4.3. In addition, it confirms the effectiveness of
the hardness quantity IN(·) in characterizing the expected
stopping time of NE.

6. Conclusions and Future Work
In this paper, we propose and analyze NESTED ELIMINA-
TION (or NE), an online algorithm for identifying the best
item from choice-based feedback. The algorithm is straight-
forward in design and implementation, making it a practical
solution for various applications. One of the key features of
NE is its dynamics and unique elimination criterion. NE can
be characterized by a sequence of (biased) random walks on
the integer lattice, and the elimination criterion can be rep-
resented by a sequence of hitting times of the corresponding
random walk. We believe this structure is of independent
interest and can be served as a fertile avenue for develop-

10Additional results for other instances are deferred to Ap-
pendix F.3.
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ing online learning algorithms for other various purposes.
Furthermore, our theoretical analysis and numerical exper-
iments clearly demonstrate the computational and sample
efficiency of our algorithm.

There are a few opportunities for future work. First, we
consider the fixed-confidence formulation of the learning
problem. A promising future direction would be to investi-
gate the fixed-budget setting, where the total number of time
steps is strictly bounded, by combining the ideas from the
multi-armed bandit literature. Second, this paper considers
a setting for a fixed separation parameter p < 1 (or at least
when a conservative estimate of p is available). It will be
interesting to design an algorithm that is fully agnostic to
the value of p as well.
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A. An Equivalent Formulation of Nested Elimination
An equivalent formulation of our algorithm NE is presented in Algorithm 2, which only allows eliminating the items one by
one, starting with the least voted item, within one time step.

Algorithm 2 Nested Elimination (only allowing eliminating the items one by one)
Input: Tuning parameter M > 0.

1: Initialize voting score W0(i)← 0 for all i ∈ [K], active item set Sactive ← [K], t← 0
2: while |Sactive| > 1 do
3: Sort the remaining items based on their voting scores. That is, find a ranking σt : [|Sactive|] → Sactive such that

Wt(σt(1)) ≥Wt(σt(2)) ≥ · · · ≥Wt(σt(|Sactive|)).
4: if

∑|Sactive|−1
i=1 Wt(σt(i))− (|Sactive| − 1)Wt(|Sactive|) ≥M then

5: Sactive ← {σt(1), . . . , σt(|Sactive| − 1)}
6: else
7: Update the timer: t← t+ 1.
8: Display the active set Sactive, and observe the choice Xt ∈ Sactive.
9: Update voting scores based on Xt:

Wt(i)←

{
Wt−1(i) + 1 if i = Xt

Wt−1(i) if i ̸= Xt.

10: end if
11: end while
Output: The only element iout of Sactive.

B. Proof of Proposition 4.3
For any general preference f ∈Mp, we define

D(f, 1) :=
1

1−Kf(K|[K])

and

D(f, r) :=
(K − r + 1)

∑r−1
i=1 (f(K − r + 1|[K − i+ 1])− f(K − r + 2|[K − i+ 1]))D(f, i)

1− (K − r + 1)f(K − r + 1|[K − r + 1])

for all r ∈ [K − 1] \ {1}.

Proof of Proposition 4.3. Before all, note that although Algorithm 1 and Algorithm 2 are equivalent with respect to the final
outputs, Algorithm 2 is more convenient for the analysis and thus will be adopted in this proof.

In Algorithm 2, the whole procedure can be divided into K− 1 stages according to the number of active items. For any stage
r ∈ [K − 1], we denote the active item set of size K − r + 1 as Sr = {S1

r , S
2
r , . . . , S

K−r+1
r }, where the corresponding

true ranking satisfies S1
r < S2

r < . . . < SK−r+1
r . In particular, S1 = [K]. For convenience, we also set SK as the singleton

Sactive when the algorithm terminates, and refer to the item that is eliminated in stage r as ar, i.e., ar := Sr \Sr+1. Besides,
for any stage r ∈ [K − 1], its cumulative time is denoted as Tr, i.e.,

Tr := inf

{
t ≥ 1

∣∣∣∣∣
K−r∑
i=1

Wt(σt(i))− (K − r)Wt(σt(K − r + 1)) ≥M

}
,

which is a stopping time by definition. For ease of notation, we also set T0 = 0. For any stage r ∈ [K − 1], we denote its
number of time steps as τr := Tr − Tr−1.

As such, we are interested in bounding the expected stopping time E[τ ] = E[TK−1].
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Step 1 (Decomposition of the expected stopping time). For any stage r ∈ [K − 1], we define the event

Er = {aj = K − j + 1 for all j ∈ [r − 1]},

which means that our algorithm NE eliminates the worst item correctly in each of the first r − 1 stages. In particular, E1 is
always true and E1 ⊃ E2 ⊃ · · · ⊃ EK−1. Note that if Er holds, then the active set Sr in stage r must be exactly [K − r + 1].

Due to linearity of expectation, we can decompose the expected stopping time as follows:

E[τ ] =
K−1∑
r=1

E[τr] =
K−1∑
r=1

E[τr · 1{Er}] +
K−1∑
r=1

E[τr · 1{Ecr}].

For convenience, we introduce two shorthand notations
T † =

K−1∑
r=1

E[τr · 1{Er}]

T ‡ =

K−1∑
r=1

E[τr · 1{Ecr}].

In the following steps, we will bound T † and T ‡ separately. Specifically, we will show T † ≤ log(1/p)M
IN(f) + oM (1) and

T ‡ = oM (1).

Step 2 (Bounding T †). Let us start from the first stage. Notice that the worst item in S1 (i.e., item K) is not necessarily
the one that is going to be eliminated in the first stage, and σT1 might not be consistent with the ground truth σ∗. In addition,
at time step T1,

∑K−1
i=1 WT1

(σT1
(i)) − (K − 1)WT1

(σT1
(K)) is exactly equal to M since this quantity of interest can

increase by only 1 within each time step.

Thus, we have

K−1∑
i=1

WT1
(i)− (K − 1)WT1

(K) ≤
K−1∑
i=1

WT1
(σT1

(i))− (K − 1)WT1
(σT1

(K)) = M.

By taking expectation on both sides, we can get

M ≥ E

[
K−1∑
i=1

WT1
(i)− (K − 1)WT1

(K)

]

=

(
K−1∑
i=1

f(i|[K])− (K − 1)f(K|[K])

)
E[τ1]

= (1−Kf(K|[K]))E[τ1 · 1{E1}]

=
E[τ1 · 1{E1}]

D(f, 1)
,

where the first equality follows from the optional stopping theorem, and the fact that

K−1∑
i=1

Wt(i)− (K − 1)Wt(K)−

(
K−1∑
i=1

f(i|[K])− (K − 1)f(K|[K])

)
t

is a martingale in the first stage.

Therefore, it holds that

E[τ1 · 1{E1}] ≤ D(f, 1)M. (10)
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For any subsequent stage r ∈ [K − 1] \ {1}, conditioned on any fixed realization of previous stages such that Er holds,

K−r∑
i=1

Wt (i)− (K − r)Wt (K − r + 1)−

(
K−r∑
i=1

f(i|[K − r + 1])− (K − r)f(K − r + 1|[K − r + 1])

)
t

is a martingale for t ≥ Tr−1, and hence we have

M ≥ E

[
K−r∑
i=1

WTr
(i)− (K − r)WTr

(K − r + 1)

]

= E

[
K−r∑
i=1

(
WTr

(i)−WTr−1
(i)
)
− (K − r)

(
WTr

(K − r + 1)−WTr−1
(K − r + 1)

)]

+

K−r∑
i=1

WTr−1
(i)− (K − r)WTr−1

(K − r + 1)

=

(
K−r∑
i=1

f(i|[K − r + 1])− (K − r)f(K − r + 1|[K − r + 1])

)
E[τr]

+M − (K − r + 1)(WTr−1
(K − r + 1)−WTr−1

(K − r + 2)),

where the last equality follows from the fact that item K − r + 2 is eliminated from the active set Sr−1 = [K − r + 2], i.e.,

K−r+1∑
i=1

WTr−1 (i)− (K − r + 1)WTr−1 (K − r + 2) = M,

since Er occurs.

Therefore, conditioned on any fixed realization of previous stages satisfying Er, we have

E[τr] ≤
(K − r + 1)(WTr−1(K − r + 1)−WTr−1(K − r + 2))∑K−r
i=1 f(i|[K − r + 1])− (K − r)f(K − r + 1|[K − r + 1])

=
(K − r + 1)(WTr−1

(K − r + 1)−WTr−1
(K − r + 2))

1− (K − r + 1)f(K − r + 1|[K − r + 1])
.

By taking expectation with respect to all the realization of previous stages satisfying Er, we can get

E[τr · 1{Er}] ≤
(K − r + 1)E[(WTr−1

(K − r + 1)−WTr−1
(K − r + 2)) · 1{Er}]

1− (K − r + 1)f(K − r + 1|[K − r + 1])
. (11)

Now we consider E[(WTr−1
(K − r + 1)−WTr−1

(K − r + 2)) · 1{Er}].

Obviously, it holds that |WTr−1
(K − r + 1)−WTr−1

(K − r + 2)| ≤ M . Otherwise, the algorithm would have already
been terminated. Therefore, we can get

E[(WTr−1
(K − r + 1)−WTr−1

(K − r + 2)) · 1{Er}]
= E[(WTr−1

(K − r + 1)−WTr−1
(K − r + 2)) · 1{Er−1}]

− E[(WTr−1
(K − r + 1)−WTr−1

(K − r + 2)) · 1{Er−1 \ Er}]
≤ E[(WTr−1

(K − r + 1)−WTr−1
(K − r + 2)) · 1{Er−1}] +MP(Er−1 \ Er). (12)

In stage r − 1, supposing that Er−1 occurs, the active set Sr−1 is [K − r + 2] and

(Wt(K − r + 1)−Wt(K − r + 2))− (f(K − r + 1|[K − r + 2])− f(K − r + 2|[K − r + 2]))t

is a martingale for t ≥ Tr−2.
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Therefore, by the optional stopping theorem, we can obtain

E[(WTr−1(K − r + 1)−WTr−1(K − r + 2)) · 1{Er−1}]
= (f(K − r + 1|[K − r + 2])− f(K − r + 2|[K − r + 2]))E[τr−1 · 1{Er−1}]
+ E[(WTr−2(K − r + 1)−WTr−2(K − r + 2)) · 1{Er−1}]. (13)

Combining (12) and (13) gives

E[(WTr−1
(K − r + 1)−WTr−1

(K − r + 2)) · 1{Er}]
≤ (f(K − r + 1|[K − r + 2])− f(K − r + 2|[K − r + 2]))E[τr−1 · 1{Er−1}]
+ E[(WTr−2

(K − r + 1)−WTr−2
(K − r + 2)) · 1{Er−1}] +MP(Er−1 \ Er).

Observe that the above analysis of E[(WTr−1
(K − r + 1) − WTr−1

(K − r + 2)) · 1{Er}] can also be applied to
E[(WTi

(K − r + 1)−WTi
(K − r + 2)) · 1{Ei+1}] for all i ∈ [r − 1]. Thus, we have

E[(WTr−1(K − r + 1)−WTr−1(K − r + 2)) · 1{Er}]

≤
r−1∑
i=1

(f(K − r + 1|[K − i+ 1])− f(K − r + 2|[K − i+ 1]))E[τi · 1{Ei}]

+ E[(WT0
(K − r + 1)−WT0

(K − r + 2)) · 1{E1}] +M

r−1∑
i=1

P(Ei \ Ei+1)

=

r−1∑
i=1

(f(K − r + 1|[K − i+ 1])− f(K − r + 2|[K − i+ 1]))E[τi · 1{Ei}] +M

r−1∑
i=1

P(Ei \ Ei+1)

Together with (11) and Lemma B.1, it holds that

E[τr · 1{Er}] ≤
(K − r + 1)

∑r−1
i=1 (f(K − r + 1|[K − i+ 1])− f(K − r + 2|[K − i+ 1]))E[τi · 1{Ei}]

1− (K − r + 1)f(K − r + 1|[K − r + 1])

+
(K − r + 1)M

∑r
i=2 Q

i
∗

1− (K − r + 1)f(K − r + 1|[K − r + 1])
(14)

for all subsequent stage r ∈ [K − 1] \ {1}.

To reduce clutter and ease the reading, we define

D̂(f, 1) := D(f, 1) =
1

1−Kf(K|[K])

and

D̂(f, r) :=
(K − r + 1)

∑r−1
i=1 (f(K − r + 1|[K − i+ 1])− f(K − r + 2|[K − i+ 1]))D̂(f, i)

1− (K − r + 1)f(K − r + 1|[K − r + 1])

+
(K − r + 1)

∑r
i=2 Q

i
∗

1− (K − r + 1)f(K − r + 1|[K − r + 1])

for all r ∈ [K − 1] \ {1}. Moreover, it is straightforward to verify that(
D̂(f, r)−D(f, r)

)
M = oM (1)

based on the definition of Qi
∗ for i = [r] \ {1} in Lemma B.1.

Accordingly, Inequalities (10) and (14) jointly imply that for all r ∈ [K − 1],

E[τr · 1{Er}] ≤ D̂(f, r)M,

14
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which further leads to

T † =

K−1∑
r=1

E[τr · 1{Er}]

≤
K−1∑
r=1

D̂(f, r)M

=

K−1∑
r=1

D(f, r)M +

K−1∑
r=1

(
D̂(f, r)−D(f, r)

)
M

=
log(1/p)M

IN(f)
+

K−1∑
r=2

(
D̂(f, r)−D(f, r)

)
M

as desired.

Step 3 (Bounding T ‡). Note that E[τ1 · 1{Ec1}] = 0. Thus, we consider E[τr · 1{Ecr}] for arbitrary r ∈ [K − 1] \ {1} in
the following.

Conditioned on any fixed realization of previous stages such that Er does not occur,

K−r∑
i=1

Wt

(
Si
r

)
− (K − r)Wt

(
SK−r+1
r

)
−

(
K−r∑
i=1

f(Si
r|Sr)− (K − r)f(SK−r+1

r |Sr)

)
t

is a martingale for t ≥ Tr−1, and hence we have

M ≥ E

[
K−r∑
i=1

WTr

(
Si
r

)
− (K − r)WTr

(
SK−r+1
r

)]

= E

[
K−r∑
i=1

(
WTr

(
Si
r

)
−WTr−1

(
Si
r

))
− (K − r)

(
WTr

(
SK−r+1
r

)
−WTr−1

(
SK−r+1
r

))]

+

K−r∑
i=1

WTr−1

(
Si
r

)
− (K − r)WTr−1

(
SK−r+1
r

)
=

(
K−r∑
i=1

f(Si
r|Sr)− (K − r)f(SK−r+1

r |Sr)

)
E[τr] +

K−r∑
i=1

WTr−1

(
Si
r

)
− (K − r)WTr−1

(
SK−r+1
r

)
. (15)

For all i ∈ [K − r], it holds that
WTr−1

(
Si
r

)
−WTr−1

(
SK−r+1
r

)
≥ −M.

Otherwise, the algorithm would have already been terminated. Thus, we have

K−r∑
i=1

WTr−1

(
Si
r

)
− (K − r)WTr−1

(
SK−r+1
r

)
≥ −(K − r)M.

In addition, due to the definition ofMp, we have

K−r∑
i=1

f(Si
r|Sr)− (K − r)f(SK−r+1

r |Sr) = 1− (K − r + 1)f(SK−r+1
r |Sr)

≥ 1− (K − r + 1)(1− p)pK−r

1− pK−r+1

=
(K − r)pK−r+1 − (K − r + 1)pK−r + 1

1− pK−r+1
.

15
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Together with (15), we have

E[τr] ≤
(K − r + 1)(1− pK−r+1)M

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
,

which is conditioned on any fixed realization of previous stages satisfying Ecr .

By taking expectation with respect to all the realization of previous stages satisfying Ecr , we can get

E[τr · 1{Ecr}] ≤
(K − r + 1)(1− pK−r+1)M

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
P(Ecr ). (16)

Since Ecr =
⋃r−1

i=1 (Ei \ Ei+1) and Ei \ Ei+1 for i ∈ [r − 1] are pairwise mutually exclusive events, along with Lemma B.1,

P(Ecr ) =
r−1∑
i=1

P(Ei \ Ei+1) ≤
r∑

i=2

Qi
∗. (17)

Finally, by combining (16) and (17), we can bound T ‡ as

T ‡ =

K−1∑
r=2

E[τr · 1{Ecr}]

≤
K−1∑
r=2

r∑
i=2

(K − r + 1)(1− pK−r+1)MQi
∗

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
.

Notice that T ‡ = oM (1), as a result of the definition of Qi
∗ for i = [r] \ {1} in Lemma B.1.

Therefore, the proof of Proposition 4.3 is completed, and we have

E[τ ] ≤ log(1/p)M

IN(f)
+

K−1∑
r=2

(
D̂(f, r)−D(f, r)

)
M +

K−1∑
r=2

r∑
i=2

(K − r + 1)(1− pK−r+1)MQi
∗

(K − r)pK−r+1 − (K − r + 1)pK−r + 1︸ ︷︷ ︸
oM (1)

. (18)

Lemma B.1. For any customer preference f ∈Mp and any stage r ∈ [K − 1] \ {1},

P(Er−1 \ Er) ≤ Qr
∗ :=

K−r+1∑
i=1

(
qr,i∗
)M

where qr,i∗ ∈ (0, 1) is defined in (23) in the corresponding proof and does not depend on M .

Proof of Lemma B.1. Recall that the item that is eliminated in stage r− 1 is denoted as ar−1. Therefore, we can decompose
the probability of interest as follows:

P(Er−1 \ Er) = P(Er−1 ∧ ar−1 ̸= K − r + 2)

=

K−r+1∑
i=1

P(Er−1 ∧ ar−1 = i).

Next, for any i ∈ [K − r + 1], we will analyze P(Er−1 ∧ ar−1 = i), which is the probability that our algorithm NE
eliminates the worst item correctly in each of the first r − 2 stages and eliminates item i in stage r − 1.

16
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Step 1. At certain time step t in any stage r̄ ∈ [r − 1], suppose that Er̄ holds, which ensures that the current active set is
[K − r̄ + 1]. Consider

Y r,i
t (α) :=

K−r+2∑
j=1

Wt(j)− (K − r + 2)Wt(i) + α(Wt(K − r + 2)−Wt(i))

with some α > 0 to be carefully selected soon. We claim that as long as

E[Y r,i
t+1(α) | Y

r,i
t (α)] < Y r,i

t (α), (19)

then there exists 0 < q < 1 such that (1/q)Y
r,i
t (α) is a supermartingale, i.e.,

E

[(
1

q

)Y r,i
t+1(α)

∣∣∣∣∣
(
1

q

)Y r,i
t (α)

]
≤
(
1

q

)Y r,i
t (α)

. (20)

In fact, the condition in (19) is equivalent to

K−r+2∑
j=1

f(j|[K − r̄ + 1])− (K − r + 2)f(i|[K − r̄ + 1]) + α(f(K − r + 2|[K − r̄ + 1])− f(i|[K − r̄ + 1])) < 0 (21)

which is trivially true for large enough α, since f(K − r + 2|[K − r̄ + 1])− f(i|[K − r̄ + 1]) < 0.

On the other hand, (20) requires

1

q

K−r+1∑
j=1

f(j|[K − r̄ + 1])− f(i|[K − r̄ + 1])

+ qK−r+1+α · f(i|[K − r̄ + 1])

+
1

q1+α
· f(K − r + 2|[K − r̄ + 1]) + (1− f([K − r + 2]|[K − r̄ + 1])) ≤ 1. (22)

Let

g (q) :=
1

q

K−r+1∑
j=1

f(j|[K − r̄ + 1])− f(i|[K − r̄ + 1])

+ qK−r+1+α · f(i|[K − r̄ + 1])

+
1

q1+α
· f(K − r + 2|[K − r̄ + 1]) + (1− f([K − r + 2]|[K − r̄ + 1])).

Since g(1) = 1 and

g′(1)

= −

K−r+1∑
j=1

f(j|[K − r̄ + 1])− f(i|[K − r̄ + 1])

+ (K − r + 1 + α) · f(i|[K − r̄ + 1])

− (1 + α) · f(K − r + 2|[K − r̄ + 1])

= −

K−r+2∑
j=1

f(j|[K − r̄ + 1])− (K − r + 2)f(i|[K − r̄ + 1]) + α(f(K − r + 2|[K − r̄ + 1])− f(i|[K − r̄ + 1]))


> 0,

there exists 0 < q < 1 such that (22) holds. So the claim that we made above is correct.

17
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Step 2. Now we choose qr,i∗ as

qr,i∗ = min
α>0

q (23)

s.t. (21) and (22) hold for all r̄ ∈ [r − 1]

0 < q < 1.

We also refer to the corresponding optimal solution of decision variable α as αr,i
∗ . Notice that both qr,i∗ and αr,i

∗ do not
depend on M .

With such choices of qr,i∗ and αr,i
∗ , for any stage r̄ ∈ [r − 1], given that Er̄ occurs,

(
1

qr,i∗

)Y r,i
t (αr,i

∗ )

is a supermartingale until
the end of the current stage.

Step 3. Following the above result, we can sequentially apply the optional stopping theorem in the first r− 1 stages. Since
Y r,i
T0

(αr,i
∗ ) = 0, we have

1 = E

[(
1

qr,i∗

)Y r,i
T0

(αr,i
∗ )
]
≥ E

[(
1

qr,i∗

)Y r,i
T1

(αr,i
∗ )
]

= E

[(
1

qr,i∗

)Y r,i
T1

(αr,i
∗ )

· 1 {E1}

]
≥ E

[(
1

qr,i∗

)Y r,i
T1

(αr,i
∗ )

· 1 {E2}

]

≥ E

[(
1

qr,i∗

)Y r,i
T2

(αr,i
∗ )

· 1 {E2}

]
≥ E

[(
1

qr,i∗

)Y r,i
T2

(αr,i
∗ )

· 1 {E3}

]
≥ · · ·

≥ E

[(
1

qr,i∗

)Y r,i
Tr−2

(αr,i
∗ )

· 1 {Er−2}

]
≥ E

[(
1

qr,i∗

)Y r,i
Tr−2

(αr,i
∗ )

· 1 {Er−1}

]

≥ E

[(
1

qr,i∗

)Y r,i
Tr−1

(αr,i
∗ )

· 1 {Er−1}

]

where we also utilize the fact that E1 ⊃ E2 ⊃ · · · ⊃ EK−1 and the nonnegativity of
(

1

qr,i∗

)Y r,i
t (αr,i

∗ )

.

Note that Er−1 implies Sr−1 = [K − r + 2]. Furthermore, if ar−1 = i, then it must be the case that WTr−1
(i) ≤

WTr−1
(K − r+ 2) and

∑K−r+2
j=1 WTr−1

(j)− (K − r+ 2)WTr−1
(i) = M , which gives Y r,i

Tr−1
(αr,i

∗ ) > M since αr,i
∗ > 0.

Hence, we can get

1 ≥ E

[(
1

qr,i∗

)Y r,i
Tr−1

(αr,i
∗ )

· 1 {Er−1}

]

≥ E

[(
1

qr,i∗

)Y r,i
Tr−1

(αr,i
∗ )

· 1 {Er−1 ∧ ar−1 = i}

]

≥ P(Er−1 ∧ ar−1 = i) ·
(

1

qr,i∗

)M

which is equivalent to

P(Er−1 ∧ ar−1 = i) ≤
(
qr,i∗
)M

.

Therefore, the proof of Lemma B.1 is completed now.
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C. Proof of Proposition 4.2
We will prove Proposition 4.2 in a slightly different flow than how it is described.

First, we demonstrate in Lemma C.1 that the classMOA
p minimizes {IN(f) : f ∈Mp}. Next, in Lemma C.2, we prove that

for any preference f ∈MOA
p , IN(f) = IOA

∗ . Finally, Proposition 4.2 follows directly from Lemma C.1 and Lemma C.2.

Lemma C.1. It holds that

MOA
p ⊂ argmin

f∈Mp

IN(f).

Lemma C.2. For any preference f ∈MOA
p , it holds that

IN(f) = IOA
∗ .

Remark C.3. As a matter of fact, in light of the proof of Lemma C.1, we can have a more accurate characterization of the
minimizer in Proposition 4.2. Specifically, the minimum of {IN(f) : f ∈Mp} is attained if and only if

f(j|[r]) = 1− p

1− pr
pj−1

for all r ∈ [K] and j ∈ [r].

C.1. Proof of Lemma C.1

Proof of Lemma C.1. We will prove the desired result in the following steps.

Step 1. Recall that for any general preference f ∈Mp,

D(f, 1) =
1

1−Kf(K|[K])

and

D(f, r) =
(K − r + 1)

∑r−1
i=1 (f(K − r + 1|[K − i+ 1])− f(K − r + 2|[K − i+ 1]))D(f, i)

1− (K − r + 1)f(K − r + 1|[K − r + 1])
(24)

for all r ∈ [K − 1] \ {1}.

In the following, we will prove via induction that for all r ∈ [K − 1] \ {1}, it holds that

r−1∑
i=1

(f([K − r + 1]|[K − i+ 1])− (K − r + 1)f(K − r + 2|[K − i+ 1]))D(f, i) = 1 (25)

We only need to consider K ≥ 3 as the case that K = 2 is vacuous. For r = 2, the claim of (25) is equivalent to

(f([K − 1]|[K])− (K − 1)f(K|[K]))D(f, 1) = 1,

which holds trivially due to the definition of D(f, 1).

19
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Now suppose that (25) is true for r = r̄ with 2 ≤ r̄ ≤ K − 2. Then we can derive

r̄∑
i=1

(f([K − r̄]|[K − i+ 1])− (K − r̄)f(K − r̄ + 1|[K − i+ 1]))D(f, i)− 1

=

r̄∑
i=1

(f([K − r̄]|[K − i+ 1])− (K − r̄)f(K − r̄ + 1|[K − i+ 1]))D(f, i)

−
r̄−1∑
i=1

(f([K − r̄ + 1]|[K − i+ 1])− (K − r̄ + 1)f(K − r̄ + 2|[K − i+ 1]))D(f, i)

=

r̄−1∑
i=1

(K − r̄ + 1)(f(K − r̄ + 2|[K − i+ 1]))− f(K − r̄ + 1|[K − i+ 1])))D(f, i)

+ (f([K − r̄]|[K − r̄ + 1])− (K − r̄)f(K − r̄ + 1|[K − r̄ + 1]))D(f, r̄)

=

r̄−1∑
i=1

(K − r̄ + 1)(f(K − r̄ + 2|[K − i+ 1]))− f(K − r̄ + 1|[K − i+ 1])))D(f, i)

+ (1− (K − r̄ + 1)f(K − r̄ + 1|[K − r̄ + 1]))D(f, r̄)

= 0,

where the last equality results from the definition of D(f, r̄) as (24).

Therefore, (25) is also true for r = r̄ + 1 and the induction step is completed.

By mathematical induction, we can conclude that our claim (25) holds for all r ∈ [K − 1] \ {1}.

Next, combining (24) and (25) results in another helpful expression of D(f, r), i.e.,

D(f, r) =
1−

∑r−1
i=1 (f([K − r]|[K − i+ 1])− (K − r)f(K − r + 1|[K − i+ 1]))D(f, i)

1− (K − r + 1)f(K − r + 1|[K − r + 1])
, (26)

for all r ∈ [K − 1] \ {1}.

Step 2. For any general preference f ∈Mp, due to the definition of D(f, 1) and Lemma C.4, we have

D(f, 1) =
1

1−Kf(K|[K])

=
1

f([K − 1]|[K])− (K − 1)f(K|[K])

≤ 1− pK

(K − 1)pK −KpK−1 + 1
,

which further gives

(1− p)pK−1

1− pK
D(f, 1) ≤ (1− p)pK−1

(K − 1)pK −KpK−1 + 1
. (27)

For any r ∈ [K − 1] \ {1}, again by Lemma C.4, we can get

f([K − r]|[K − i+ 1])− (K − r)f(K − r + 1|[K − i+ 1]) ≥ (K − r)pK−r+1 − (K − r + 1)pK−r + 1

1− pK−i+1

for any i ∈ [r − 1], and

1− (K − r + 1)f(K − r + 1|[K − r + 1]) ≥ (K − r)pK−r+1 − (K − r + 1)pK−r + 1

1− pK−r+1
.
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Plug the above two inequalities into the expression of D(f, r) in (26), then we have

D(f, r) +

r−1∑
i=1

1− pK−r+1

1− pK−i+1
D(f, i) ≤ 1− pK−r+1

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
. (28)

By multiplying (28) with different coefficients for all r ∈ [K − 1] \ {1}, we can get

(1− p)pK−r

1− pK−r+1
D(f, r) +

r−1∑
i=1

(1− p)pK−r

1− pK−i+1
D(f, i) ≤ (1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
(29)

for all r ∈ [K − 2] \ {1}, and

D(f,K − 1) +

K−2∑
i=1

1− p2

1− pK−i+1
D(f, i) ≤ 1 + p

1− p
. (30)

Step 3. Finally, adding up Inequalities (27), (29) and (30) leads to

K−2∑
r=1

(1− p)pK−r

1− pK−r+1
D(f, r) +

K−2∑
r=2

r−1∑
i=1

(1− p)pK−r

1− pK−i+1
D(f, i) +D(f,K − 1) +

K−2∑
i=1

1− p2

1− pK−i+1
D(f, i)

≤ (1− p)pK−1

(K − 1)pK −KpK−1 + 1
+

K−2∑
r=2

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
+

1 + p

1− p

⇐⇒
K−2∑
r=1

(1− p)pK−r

1− pK−r+1
D(f, r) +

K−3∑
r=1

K−2∑
i=r+1

(1− p)pK−i

1− pK−r+1
D(f, r) +

K−2∑
r=1

1− p2

1− pK−r+1
D(f, r) +D(f,K − 1)

≤
K−2∑
r=1

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
+

1 + p

1− p

⇐⇒
K−2∑
r=1

pK−r − pK−r+1

1− pK−r+1
D(f, r) +

K−3∑
r=1

p2 − pK−r

1− pK−r+1
D(f, r) +

K−2∑
r=1

1− p2

1− pK−r+1
D(f, r) +D(f,K − 1)

≤
K−2∑
r=1

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
+

1 + p

1− p

⇐⇒
K−1∑
r=1

D(f, r) ≤
K−2∑
r=1

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
+

1 + p

1− p
.

Therefore, we obtain that for any general preference f ∈Mp,

log(1/p)

IN(f)
=

K−1∑
r=1

D(f, r) ≤
K−2∑
r=1

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
+

1 + p

1− p
. (31)

Note that the above upper bound of log(1/p)
IN(f) does not depend on the particular choice of f . Furthermore, in view of

Lemma C.4, exact equality in (31) can be achieved if f ∈MOA
p .

As a result, we conclude that
MOA

p ⊂ argmin
f∈Mp

IN(f).

as desired.
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Lemma C.4. For any r ∈ [K] and i ∈ [r − 1],

min
f∈Mp

f([i]|[r])− if(i+ 1|[r]) = ipi+1 − (i+ 1)pi + 1

1− pr
. (32)

Furthermore, the minimum is attained if and only if

f(j|[r]) = 1− p

1− pr
pj−1

for all j ∈ [r].

Proof of Lemma C.4. Notice that only the preference on [r] (i.e., f(j|[r]) for j ∈ [r]) matters in terms of the minimization
problem (32). For ease of notation, we denote xj := f(j|[r]) for all j ∈ [r]. Then the problem (32) of interest can be
reformulated as the following optimization problem:

min
x

i∑
j=1

xj − ixi+1

s.t. pxj − xj+1 ≥ 0, ∀j ∈ [r − 1]
r∑

j=1

xj = 1

xj ≥ 0, ∀j ∈ [r].

We let h(x) :=
∑i

j=1 xj − ixi+1. Due to the constraints on x, for all 1 ≤ j1 < j2 ≤ r − 1, it holds that

xj1 ≥ pj1−j2xj2 , (33)

where the exact equality is achieved if and only if pxj = xj+1 for all j1 ≤ j < j2.

Therefore, by (33), we can get

i∑
j=1

xj ≥

 i∑
j=1

p−j

xi+1,

which is equivalent to

−ixi+1 ≥
−ipi(1− p)

1− pi

i∑
j=1

xj .

Then we can bound h(x) as follows:

h(x) ≥
i∑

j=1

xj −
ipi(1− p)

1− pi

i∑
j=1

xj

=
ipi+1 − (i+ 1)pi + 1

1− pi

i∑
j=1

xj . (34)
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For any j ∈ [i], again by (33), we have

xj =
1− pi

1− pr
xj +

pi − pr

1− pr
xj

≥ 1− pi

1− pr
xj +

pi − pr

1− pr
· 1∑r

j′=i+1 p
j′−j

r∑
j′=i+1

xj′

=
1− pi

1− pr
xj +

pj−1(1− p)

1− pr

r∑
j′=i+1

xj′ . (35)

Adding up (35) for all j ∈ [i] results in

i∑
j=1

xj ≥
i∑

j=1

 1− pi

1− pr
xj +

pj−1(1− p)

1− pr

r∑
j′=i+1

xj′


=

1− pi

1− pr

i∑
j=1

xj +

r∑
j′=i+1

xj′

i∑
j=1

pj−1(1− p)

1− pr

=
1− pi

1− pr

i∑
j=1

xj +
1− pi

1− pr

r∑
j′=i+1

xj′

=
1− pi

1− pr

r∑
j=1

xj .

Together with (34), we conclude that

h(x) ≥ ipi+1 − (i+ 1)pi + 1

1− pr
. (36)

It is straightforward to check the lower bound in (36) can be binding if and only if

xj =
1− p

1− pr
pj−1

for all j ∈ [r].

Thus, the proof of Lemma C.4 is finished.

C.2. Proof of Lemma C.2

Proof of Lemma C.2. It suffices to show for any preference f ∈MOA
p ,

log(1/p)

IN(f)
=

log(1/p)

IOA
∗

, (37)

where

IOA
∗ = (1− p) log

(
1

p

)1 +

K∑
j=2

pj−1

1 + 2p+ · · ·+ (j − 1)pj−2

−1

as shown in Feng et al. (2021).

In fact, according to (31) in the proof of Proposition 4.2, we have

log(1/p)

IN(f)
=

K−2∑
r=1

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
+

1 + p

1− p

23



Nested Elimination: A Simple Algorithm for Best-Item Identification From Choice-Based Feedback

for any preference f ∈MOA
p .

For the right-hand side of (37), by the combinatorial identity

1 + 2p+ · · ·+ (j − 1)pj−2 =
(j − 1)pj − jpj−1 + 1

(1− p)2
,

it holds that

log(1/p)

IOA
∗

=
1

1− p

1 +

K∑
j=2

pj−1

1 + 2p+ · · ·+ (j − 1)pj−2


=

1

1− p

1 +

K∑
j=2

(1− p)2pj−1

(j − 1)pj − jpj−1 + 1


=

1

1− p
+

(1− p)p

p2 − 2p+ 1
+

K∑
j=3

(1− p)pj−1

(j − 1)pj − jpj−1 + 1

=
1 + p

1− p
+

K−2∑
r=1

(1− p)pK−r

(K − r)pK−r+1 − (K − r + 1)pK−r + 1

=
log(1/p)

IN(f)

which leads to the desired result of (37).

Therefore, Lemma C.2 is proved.

D. Proof of Proposition 4.4
Proof of Proposition 4.4. Here we also adopt the notations introduced in the proof of Proposition 4.3.

Recall that for any stage r ∈ [K − 1], the active set of size K − r + 1 is referred to as Sr. Therefore, we are interested in
bounding

P(iout ̸= 1) = P(1 ̸∈ SK)

=

K−1∑
r=1

P(1 ̸∈ Sr+1 ∧ 1 ∈ Sr). (38)

In the following, we will analyze P(1 ̸∈ Sr+1 ∧ 1 ∈ Sr), which represents the probability of eliminating the best item in the
given item set [K] (i.e., item 1) in stage r.

Step 1. For any stage r ∈ [K − 1], condition on any fixed realization of previous stages such that the best item is not
eliminated prior to stage r, i.e., 1 ∈ Sr.

Then we claim that for this fixed realization of Sr = {S1
r , S

2
r , . . . , S

K−r+1
r } with S1

r = 1,(
1

p

)∑K−r+1
i=2 Wt(S

i
r)−(K−r)Wt(S

1
r)

is a supermartingale for t ≥ Tr−1.

To verify this favorable property, it suffices to show

1

p

K−r+1∑
i=2

f(Si
r|Sr) + pK−rf(S1

r |Sr) ≤ 1.
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Actually, the above inequality is equivalent to

f(S1
r |Sr) ≥

1− p

1− pK−r+1
,

which holds trivially due to the definition ofMp.

Therefore, by the optional stopping theorem, it holds that(
1

p

)∑K−r+1
i=2 WTr−1

(Si
r)−(K−r)WTr−1

(S1
r)

≥ E

[(
1

p

)∑K−r+1
i=2 WTr (S

i
r)−(K−r)WTr (S

1
r)
]

≥ P(1 ̸∈ Sr+1) ·
(
1

p

)M

where the last equality follows from the fact that if 1 ∈ Sr but 1 ̸∈ Sr+1, then

K−r+1∑
i=2

WTr
(Si

r)− (K − r)WTr
(S1

r ) = M.

Again by taking expectation with respect to all the realization of previous stages satisfying 1 ∈ Sr, we can derive

P(1 ̸∈ Sr+1 ∧ 1 ∈ Sr) ≤ E

[(
1

p

)∑K−r+1
i=2 WTr−1

(Si
r)−(K−r)WTr−1

(S1
r)

· 1{1 ∈ Sr}

]
· pM . (39)

Step 2. Consider any stage r ∈ [K − 1].

For ease of presentation, we define Ŝr := Sr \ {S1
r} = {S2

r , S
3
r , . . . , S

K−r+1
r }. Notice that Ŝr is also a random variable.

In addition, we use lower-case ŝr and {sir}K−r+1
i=2 to denote the indicators of the specific realizations of Ŝr and {Si

r}K−r+1
i=2 ,

respectively.

Then we have

E

[(
1

p

)∑K−r+1
i=2 WTr−1

(Si
r)−(K−r)WTr−1

(S1
r)

· 1{1 ∈ Sr}

]

=
∑

ŝr⊂[K]\{1}

E

[(
1

p

)∑K−r+1
i=2 WTr−1

(sir)−(K−r)WTr−1
(1)

· 1 {{1} ∪ ŝr = Sr}

]

=
∑

ŝr⊂[K]\{1}

E

[(
1

p

)∑K−r+1
i=2 WTr−1

(sir)−(K−r)WTr−1
(1)

· 1 {{1} ∪ ŝr ⊂ Sr}

]
. (40)

Next, for any ŝr ⊂ [K] \ {1}, we will show via mathematical induction that

E

[(
1

p

)∑K−r+1
i=2 WTr−1

(sir)−(K−r)WTr−1
(1)

· 1 {{1} ∪ ŝr ⊂ Sr}

]
≤ 1. (41)

Consider the first stage, where the active set S1 is [K]. Since(
1

p

)∑K−r+1
i=2 Wt(s

i
r)−(K−r)Wt(1)
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is a supermartingale in the first phase, by the optional stopping theorem, it holds that

1 = E

[(
1

p

)∑K−r+1
i=2 WT0

(sir)−(K−r)WT0
(1)
]

≥ E

[(
1

p

)∑K−r+1
i=2 WT1

(sir)−(K−r)WT1
(1)
]

≥ E

[(
1

p

)∑K−r+1
i=2 WT1

(sir)−(K−r)WT1
(1)

· 1 {{1} ∪ ŝr ⊂ S2}

]
.

Suppose that for all j in {2, 3, . . . , r̄ − 1},

E

[(
1

p

)∑K−r+1
i=2 WTj−1

(sir)−(K−r)WTj−1
(1)

· 1 {{1} ∪ ŝr ⊂ Sj}

]
≤ 1

is correct. Then consider the r̄-th stage. Since for any fixed realization of Sr̄ such that {1} ∪ ŝr ⊂ Sr̄,(
1

p

)∑K−r+1
i=2 Wt(s

i
r)−(K−r)Wt(1)

is a supermartingale for t ≥ Tr̄−1, again by the optional stopping theorem, it holds that

1 ≥ E

[(
1

p

)∑K−r+1
i=2 WTr̄−1

(sir)−(K−r)WTr̄−1
(1)

· 1 {{1} ∪ ŝr ⊂ Sr̄}

]

≥ E

[(
1

p

)∑K−r+1
i=2 WTr̄ (s

i
r)−(K−r)WTr̄ (1)

· 1 {{1} ∪ ŝr ⊂ Sr̄}

]

≥ E

[(
1

p

)∑K−r+1
i=2 WTr̄ (s

i
r)−(K−r)WTr̄ (1)

· 1 {{1} ∪ ŝr ⊂ Sr̄+1}

]
which establishes the induction step and further proves (41).

Note that the cardinality of ŝr is K − r. Therefore, combining (40) and (41) gives

E

[(
1

p

)∑K−r+1
i=2 WTr−1

(Si
r)−(K−r)WTr−1

(S1
r)

· 1{1 ∈ Sr}

]
≤
(
K − 1

K − r

)
.

Together with (39), we can get

P(1 ̸∈ Sr+1 ∧ 1 ∈ Sr) ≤
(
K − 1

K − r

)
pM . (42)

Step 3. Finally, by plugging (42) into (38), we have

P(iout ̸= 1) =

K−1∑
r=1

P(1 ̸∈ Sr+1 ∧ 1 ∈ Sr)

≤
K−1∑
r=1

(
K − 1

K − r

)
pM

= (2K−1 − 1)pM

which completes the proof of Proposition 4.4.
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E. Proof of Theorem 4.1
Proof of Theorem 4.1. Consider any fixed confidence level δ ∈ (0, 1). On account of Proposition 4.4, with parameter
M = log(1/δ)+log(β(K))

log(1/p) , NE outputs an item iout satisfying

P(iout ̸= 1) ≤ β(K) · pM = δ

for any customer preference f ∈Mp.

Therefore, according to Definition 2.4, to confirm our algorithm NE is δ-PAC, it remains to show P(τ <∞) = 1. Note
that for any random variable, finite expectation implies almost sure finiteness. So by Proposition 4.3, we can get that the
stopping time τ is finite almost surely, which concludes that NE is δ-PAC.

Furthermore, based on Proposition 4.3 as well as Equation (18) in the corresponding proof, the expected stopping time E[τ ]
can be upper bounded as follows:

E[τ ] ≤ log(1/p)M

IN(f)
+

K−1∑
r=2

(
D̂(f, r)−D(f, r)

)
M +

K−1∑
r=2

r∑
i=2

(K − r + 1)(1− pK−r+1)MQi
∗

(K − r)pK−r+1 − (K − r + 1)pK−r + 1

=
log(1/δ)

IN(f)
+

log(β(K))

IN(f)

+

K−1∑
r=2

(
D̂(f, r)−D(f, r)

)
M +

K−1∑
r=2

r∑
i=2

(K − r + 1)(1− pK−r+1)MQi
∗

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
.

Here, recall that {Qi
∗} is defined in Lemma B.1.

Finally, with M = log(1/δ)+log(β(K))
log(1/p) , we have

Ĉf (δ) :=

K−1∑
r=2

(
D̂(f, r)−D(f, r)

)
M +

K−1∑
r=2

r∑
i=2

(K − r + 1)(1− pK−r+1)MQi
∗

(K − r)pK−r+1 − (K − r + 1)pK−r + 1
= oM (1) = o 1

δ
(1).

Therefore, the theorem holds by letting

Cf :=
log(β(K))

IN(f)
+ sup

δ∈(0,1)

Ĉf (δ) < +∞. (43)

F. Additional Implementation Details and Numerical Results
F.1. Additional Implementation Details of MTP

Initialization. At the initial time step, i.e., t = 1, we randomly assign a ranking on the item set [K] as the estimated
global ranking, and use this ranking to determine the first display set. In fact, through extensive tests, we notice that the
initialization step has minimal influence on the overall performance.

Stopping Rule. For the threshold function used in the stopping rule of MTP, we follow the one indicated in the
experimental parts of Feng et al. (2021), i.e.,

log((K − 1)(K − 1)!) + log(1/δ).

Optimization Solver. As we noted in Section 4.1, both the display rule and the stopping rule of MTP require solving
some combinatorial optimization problems. Throughout the experiments, we follow the exact integer linear programming
formulation in Feng et al. (2021), and utilize Gurobi 9.5.2 as the optimization solver.
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Figure 5. The empirical averaged stopping times of NE and MTP for different δ under the worst cases with K = 10 and different p.

F.2. Fixed-Confidence Setting

Worst-Case Preferences. The empirical averaged stopping times of NE and MTP for different confidence levels δ under
the worst cases with K = 15 and different p are shown in Figure 5.

General Preferences. Both the Netflix Prize and Debian Logo datasets are provided by PrefLib (Mattei & Walsh, 2013).
The Netflix Prize dataset Bennett et al. (2007) consists of 823 preference rankings over 4 movies, while the Debian Logo
dataset consists of 143 preference rankings over 8 candidates for the Debian logo. To generate one general (not worst-case)
preference from each raw dataset, we consider each preference ranking as an interaction between the company and the
customers, and hence the top-ranked item is treated as the choice of the customer. Next, we fit an MNL model (defined in
Definition F.1), using maximum likelihood estimation. Finally, note that both final outputs, f1 and f2, belong toMp with
p = 0.9.

Definition F.1 (Luce (1959)). Under the multinomial logistic (MNL) model, a preference f is characterized by a non-
negative vector of attraction scores {ν1, ν2, . . . , νK}, and the probability that item i is chosen from the display set S ∈ S
is

f(i|S) = νi∑
j∈S νj

.

F.3. In-Depth Investigations of NE

The empirical averaged and theoretical stopping times of NE for different input parameters M under the worst cases and
general cases are shown in Figure 6 and Figure 7, respectively.
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Figure 6. The stopping times of NE for different M under the worst cases with different K and p.
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(a) Preference f1.
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Figure 7. The stopping times of NE for different M under two general preferences f1 and f2.

29


