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Abstract
Proposing an effective and flexible matrix to rep-
resent a graph is a fundamental challenge that has
been explored from multiple perspectives, e.g.,
filtering in Graph Fourier Transforms. In this
work, we develop a novel and general framework
which unifies many existing GNN models from
the view of parameterized decomposition and fil-
tering, and show how it helps to enhance the flexi-
bility of GNNs while alleviating the smoothness
and amplification issues of existing models. Es-
sentially, we show that the extensively studied
spectral graph convolutions with learnable poly-
nomial filters are constrained variants of this for-
mulation, and releasing these constraints enables
our model to express the desired decomposition
and filtering simultaneously. Based on this gen-
eralized framework, we develop models that are
simple in implementation but achieve significant
improvements and computational efficiency on a
variety of graph learning tasks. Code is available
at https://github.com/qslim/PDF.

1. Introduction
Graph Neural Networks (GNNs) have emerged as a power-
ful and promising technique for representation learning on
graphs and have been widely applied to various applications.
A large number of GNN models have been proposed, includ-
ing spectral graph convolutions, spatial message-passing,
and even Graph Transformers, for boosting performance or
resolving existing defects, e.g., the oversmoothing issue (Li
et al., 2018; Oono & Suzuki, 2020; Huang et al., 2020) or
expressive power (Xu et al., 2019b; Morris et al., 2019; Sato,
2020). This raises the natural question of: how are these dif-
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ferent models related to one another? Consequently, when
conducting learning tasks on a graph with these models,
the fundamental questions we aim to address are: how to
construct an effective adaptive matrix representation for the
graph topology, and how to flexibly capture the interactions
between multichannel graph signals.

Under the paradigm of spectral graph convolution theo-
ries, the Laplacian and its variants are used as the matrix
representation of the graph to maintain theoretical consis-
tency (Chung, 1997; Hammond et al., 2011; Shuman et al.,
2013; Defferrard et al., 2016). This induces spectral GNNs,
which have become a popular class of GNNs with perfor-
mance guarantees, including GCN (Kipf & Welling, 2017),
SGC (Wu et al., 2019a), S2GC (Zhu & Koniusz, 2020), and
others (Klicpera et al., 2019a;b; Ming Chen et al., 2020). All
of them utilize the eigenvectors of the (normalized) Lapla-
cian for Graph Fourier Transform and design different graph
signal filters in the frequency domain.

Beyond spectral models, spatial GNNs have gradually be-
come prominent in the research community, which con-
sider graph convolution within the message-passing frame-
work (Gilmer et al., 2017; Xu et al., 2019b; Corso et al.,
2020; Yang et al., 2020), and the advantage of flexible im-
plementation makes them favorable for the graph-level pre-
diction task. Interestingly, the aggregation design, which
plays a central role in the spatial GNNs, also implicitly cor-
responds to a specific matrix representation for the graph.

Recently, transformers have shown promising performance
on molecular property predictions (Ying et al., 2021;
Kreuzer et al., 2021; Bastos et al., 2022; Min et al., 2022;
Rampášek et al., 2022). These models apply transformers
with positional encoding, structural encoding, and other
techniques to graph data, while they actually also refer to
specific matrix representations. Besides, several studies
in the field of graph signal processing also show that the
matrix representation can be flexible as long as it reflects
the topology of the underlying graph (Dong et al., 2016;
Deri & Moura, 2017; Ortega et al., 2018). Graph Shift
Operator (GSO) proposes a group of feasible matrix repre-
sentations (Sandryhaila & Moura, 2013), and allows GNNs
to obtain better performance for graph learning tasks by
learning matrix representations from a group of GSOs (Da-
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soulas et al., 2021).

Accordingly, designing a flexible and suitable matrix repre-
sentation for the underlying graph plays an intrinsic role in
improving GNNs on various tasks. Although many specific
choices exist, each of them has its own limitations and no
single matrix representation is suitable for every task (But-
ler & Chung, 2017). Therefore, it is highly important to
systematically explore the differences among these differ-
ent models and automatically find the most suitable matrix
representation, while capturing the complex interaction of
multichannel signals for a graph learning task.

In this paper, we show how various graph matrix repre-
sentations applied to graph learning can be interpreted as
different (Decomposition, Filtering) operations over input
signals assigned to the graph. Then, based on this under-
standing, we propose to learn (Decomposition, Filtering)
as a whole, fundamentally different from existing spectral
graph convolutions with learnable filters. Correspondingly,
the objective is extended from learning a suitable filter to
learning a suitable graph matrix representation, i.e. (Decom-
position, Filtering).

To achieve this, we propose a novel Parameterized-(D,F)
framework which aims to learn a suitable (Decomposition,
Filtering) for input signals. It inspires the use of more
expressive learnable mappings on graph topology to en-
large the learning space of graph matrix representations.
Also, Parameterized-(D,F) serves as a general framework
that unifies existing GNNs ranging from the original spec-
tral graph convolutions to the latest Graph Transformers.
For example, spectral graph convolution corresponds to
fixed D and parameterized F via the lens of Parameterized-
(D,F), and recent Graph Transformers, which improve
performance by leveraging positional/structural encodings,
potentially result in more effective (D,F) on input sig-
nals. Parameterized-(D,F) also inspires new insight into
the widely-studied smoothing and amplification issues in
GNNs, which serves as the motivation of our proposed solu-
tion as well. Our main contributions include,

1. We present Parameterized-(D,F), which addresses the
deficiencies of learning filters alone, and also reveals
the connections between various existing GNNs;

2. With Parameterized-(D,F) framework, we develop
a model with a simple implementation that achieves
superior performance while preserving computational
efficiency.

2. Preliminaries
Consider an undirected graph G = (V, E) with vertex set
V and edge set E . Let A ∈ Rn×n be the adjacency matrix
(W ∈ Rn×n if G is weighted) with corresponding degree
matrix D = diag(A1n), L = D − A be the Laplacian,

Ã = A + I and D̃ = D + I. Let f ∈ Rn be the single-
channel graph signal assigned on G, and H ∈ Rn×d be
the d-channel graph signal or node feature matrix with d
dimensions. We use [K] to denote the set {0, 1, 2, . . . ,K}.

Graph Representation. A graph topology can be expressed
with various matrix representations, e.g., (normalized) adja-
cency, Laplacian, GSO (Sandryhaila & Moura, 2013), etc.
(Dong et al., 2016; Deri & Moura, 2017; Ortega et al., 2018)
show that the representation matrix used in graph signal
processing can be flexible as long as it reflects the graph
topology, and different representations lead to different sig-
nal models. In recent GNN studies, the involved graph
representations are even more flexible (Ying et al., 2021).
Since they are all induced from the same graph topology,
we use the graph representation spaceMG to denote the set
of all possible representations for a graph G. A summary
of existing strategies for building a graph representation
S ∈ MG is provided in Appendix A. In this work, we
only consider undirected graphs withMG only involving
symmetric matrices.

3. Parameterized-(D,F)
3.1. Generalizing Spectral Graph Convolution

Given a graph G with the Laplacian L = UΛU>, Λ =
diag(λ), a filter t and a graph signal f assigned on G, the
spectral graph convolution of f with t on G leveraging
convolution theorem (Hammond et al., 2011; Defferrard
et al., 2016) is defined as

f ′ = t ∗L f = U((U>t)� (U>f))

≈ U(gθ(λ)� (U>f)) = U(gθ(Λ)(U>f))

= gθ(L)f ,

(1)

where f̂ = U>f is the Graph Fourier Transform, and
f = Uf̂ is its inverse transform over the graph domain,
gθ(λ) is the polynomial over λ and is used to approximate
the transformed filter t̂ = U>t. Although various graph
convolutions have been proposed, they are all under the
formulation in Eq. 1, and most of them enhance gθ(λ) with
sophisticated designed polynomials with learnable coeffi-
cients.

As U is column orthogonal and gθ(Λ) is diagonal, the
convolution t ∗L f = U(gθ(Λ)(U>f)) in Eq. 1 can be
divided into three individual steps:

1) f̂ = U>f : decomposition (or transformation);
2) f̂ ′ = gθ(Λ)f̂ : filtering (or scaling) with gθ(Λ);
3) f ′ = Uf̂ ′: reverse transformation.

Consequently, we can interpret the convolution as above
that filter f with gθ(Λ) under the decomposition U>. With-
out loss of generality, we use D to denote the involved
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decomposition and its reversion, F to denote the involved
filtering, and then the above operation is represented as
(D,F)gθ(L)(f) which indicates the applied (D,F) on f is
provided by gθ(L). The options of (D,F)gθ(L) in gen-
eral polynomial graph filters are only restricted within
{gθ(L)|θ ∈ Rk} ⊂ MG where k is the order of the poly-
nomial and θ is the polynomial coefficients. Note that any
S ∈ MG is a symmetric matrix with the unique eigende-
composition S = U′Λ̂′U′>, where U′ and Λ̂′ can serve as
a feasible (D,F). It is desirable to extend (D,F) beyond
{gθ(L)|θ ∈ Rk}. Hence we have for any S ∈MG,

Sf = U′Λ̂′(U′>f) = (D,F)S(f).

Still, Sf refers to filtering f with Λ̂′ under the decompo-
sition U′>, where U′ is column orthogonal referring to a
rotation of U. Consequently, applying different S ∈ MG

all correspond to filtering f with related filters under differ-
ent decomposition U> 1. To build a generalized point of
view, we generalize the spectral graph convolution in Eq. 1
as follows.

Definition 3.1 (Parameterized-(D,F)). Given a graph G,
and a signal f assigned on G, the Parameterized-(D,F) of
f over G is defined as

f ′ = fθ(G)f (2)

where G ⊂MG and fθ : {Rn×n} 7→ Rn×n is the mapping
of G with the parameter θ. fθ should satisfy the conditions,

• Closeness: ∀G ⊂MG , fθ(G) ∈MG, and
• Permutation-equivariance: For any permutation matrix

M ∈ Rn×n, fθ({M>SM |S ∈ G}) = M>fθ(G)M.

Given G, fθ(G) is parameterized by θ, and the resulting
space w.r.t. θ is {fθ(G)|θ} ⊂ MG. Any S ∈ {fθ(G)|θ}
corresponds to a specific (D,F)S. {gθ(L)|θ ∈ Rk} in Eq.1
based on the theory of spectral graph convolution refers
to a constrained Parameterized-(D,F): (i) G = {L} as
required in Graph Fourier Transform, and (ii) fθ = gθ is
constrained to be polynomials such that it is equivariant to
the decomposition U, i.e., gθ(UΛU>) = Ugθ(Λ)U>. 2

This makes all S ∈ {gθ(L)|θ} share the same D. In other
words, applying learnable θ will only learn F but fix D.

By removing such constraints, different θ results in different
D and F . Therefore, applying learnable θ makes it capa-
ble of learning (D,F) as a whole. We will systematically
investigate the effectiveness of learnable D by first revis-
iting existing GNNs via the lens of Parameterized-(D,F)
in Sec. 3.2, and then developing our models leveraging the

1Furthermore, Sf = U′Λ̂′(U′>f) = U′(λ̂′ � (U′>f)) =
U′((U′>λ′)� (U′>f)) = λ′ ∗S f , which is consistent with the
definition of spectral graph convolution.

2Or alternatively, G = {Lk|k ∈ [K]}, and fθ =
∑

k∈[K] θk·.

(a) (b) (c) (d)

Figure 1. A taxonomy of existing GNN architectures via the lens
of (D,F) for multichannel signal H. Within each of them, the
colored box corresponds to a channel processed with an individual
(D,F). We use the same color to denote the same (D,F). Each
entry in the D-F plane corresponds to a specific (D,F) ∈ MG.
As eigendecomposition is unique, these (D,F) are different.

learnable D in Sec. 3.3. In Sec. 4, we will conduct analysis
on the limitations of learning F alone and the necessity of
learning (D,F) as a whole.

3.2. Unifying Existing GNNs with Parameterized-(D,F)

By assigning constraints on fθ and G in Eq. 2, we can
achieve (fixed D, fixed F ), (fixed D, learnable F ) or (learn-
able D, learnable F) respectively, which provides a unifi-
cation of various GNNs. First, we summarize all possible
architectures in multichannel signal scenario as in Fig. 1.

(a) refers that all channels share the same (D,F);
(b) assigns each channel with an independent (D,F);
(c) applies independent F under a shared D in different

channels;
(d) assigns each signal with multiple (D,F).

Then, by integrating learnable D or F into each of these ar-
chitectures, we can classify all existing models as in Tab. 1.
Note that (b) has not been well investigated yet, and to
the best of our knowledge, only Correlation-free (Yang
et al., 2022a) implicitly results in this architecture due to
nonlinear computations in their code implementation, but
there is no reflection of this architecture in their paper. (a)
acts as the most common form under which many stud-
ies correspond to designing sophisticated polynomials to
parameterize F , e.g., ChebyNet/CayleyNet/BernNet. Ja-
cobiConv differs from them in that it learns F for each
channel independently, therefore it corresponds to (c). Com-
pared with (b), the channel-wise learnable F in (c) is still
under the shared D. (d) assigns each channel with mul-
tiple (D,F). It is generalized from multi-head attention,
e.g., Multi-head GAT/Transformer, or multi-aggregator, e.g.,
PNA/ExpC, where each head in multi-head attention, or
each aggregator in multi-aggregator corresponds to an in-
dividual (D,F). Their effectiveness can be interpreted by
filtering task-relevant patterns from multiple D for each
input channel. Some spatial methods with learnable ag-
gregation coefficients implicitly result in learnable D, e.g.,
GAT/ExpC/PNA, as the resulting S ∈ MG with different
aggregation coefficients generally do not share D.

3



Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering

Table 1. A summary of differences of popular GNNs via the lens of (D,F). TF denotes Transformer and MGAT denotes multi-head GAT.

GCN/SGC BernNet/GPR JacobiConv Corr-free PGSO/GAT GIN-0 TF/MGAT/ExpC PNA

Category Spectral Spectral Spectral ? ? Spatial Spatial Spatial
Learnable F No Yes Yes Yes Yes No Yes No
Learnable D No No No Yes Yes No Yes No
Architecture (a) (a) (c) (b)? (a) (a) (d) (d)

Eq. 2 also inspires a new perspective regarding the differ-
ence between spectral and spatial methods 3: if D is fixed
to be the eigenspace of Laplacian, they belong to spectral
models, and can be implemented with fixed/learnable or
channel-shared/independent F strategies. Otherwise, they
belong to non-spectral or spatial models.

3.3. Developing an Effective Parameterized-(D,F)

We have shown that some competitive graph-level prediction
models implicitly include learnable D. But they are intro-
duced as a side effect of various attention, neighborhood
aggregation, and transformer designs. And their learning
space (the set of all D that can be learned from the given
graph) varies from each other due to different implemen-
tations. We believe that the learnable (D,F) as a whole
can potentially contribute to the final performance improve-
ments. To fully leverage learnable D as well as F for a
graph G, we develop Parameterized-(D,F) with the objec-
tive of learning (D,F) from a larger subspace ofMG for
input graph signals.

Note that fθ(G) involves two components: G and fθ . Build-
ing G can be flexible. For example, in some attention-
based methods, e.g., GAT and Graph Transformers, G is
implemented as an attention weight matrix that takes ad-
vantage of both graph topology and node features. In
PGSO, G is a group of GSOs. Here, we build G as
G = {(D̃εÃD̃ε)k| − 0.5 ≤ ε ≤ 0, k ∈ [K]} in order that
D̃εÃD̃ε with different ε do not share eigenspace. There
can be more sophisticated designs of G, and we leave them
for future work. Then, we implement fθ as a multi-layer
perceptron (MLP), which satisfies the two conditions in Def-
inition 3.1. For the sake of brevity, we only present one layer
perceptron here without loss of generality. Correspondingly,
the convolution on a single-channel signal f is

f ′ = fθ(G)f = σ(
∑
Si∈G

θiSi)f , (3)

where θ ∈ R|G| is the learnable coefficient and σ is a nonlin-
ear function in the MLP. Given G and its associated G, the
learning space of (D,F) w.r.t. θ is {σ(

∑
Si∈G θiSi)|θ}.

3There are no formal definitions of spectral and spatial-based
methods. Generally, the ones introduced from spectral graph con-
volution as in Eq. 1 are considered as spectral-based methods, and
others such as message-passing, Graph Transformers are consid-
ered as spatial ones.

Applying more expressive fθ allows learning (D,F) from
a larger subspace inMG. In Sec. 5.1, we conduct extensive
experiments to evaluate the effects of different fθ and G.

To extend Eq. 3 to multichannel signal scenario, we design
Channel-shared Parameterized-(D,F) (denoted by “shd-
PDF”) and Channel-independent Parameterized-(D,F) (de-
noted by “idp-PDF”) strategies with each of them divided
into three steps, differing at Step 2.

1) Pre-transform: Z = σ(HW1)
2) Multichannel Parameterized-(D,F):

• shd-PDF: Z′ = σ(
∑

Si∈G θiSi)Z

• idp-PDF: Z′:j = σ(
∑

Si∈GΘijSi)Z:j

3) Post-transform: H′ = σ(Z′W2)

Correspondingly, shd-PDF belongs to Fig. 1(a), and idp-
PDF belongs to Fig. 1(b) which has not been well investi-
gated by existing studies. W1,W2 ∈ Rd×d are learnable
transformation matrices. In shd-PDF, the channel-shared
(D,F) is parameterized by the learnable θ ∈ R|G|, and in
idp-PDF, the channel-independent (D,F) is parameterized
by the learnable Θ ∈ R|G|×d.

Compared with the latest best-performing methods, shd-
PDF and idp-PDF benefit from their simple implementa-
tions and computational efficiency. The time and space com-
plexity and the running time are provided in Appendix C.5.
In our experiments, the performance improvements under
these simple implementations validate the effectiveness of
Parameterized-(D,F).

Scalability. As graph matrices are generally stored in a
sparse manner, which only stores non-zero entries to save
memory space, the proportion of non-zero entries deter-
mines the amount of memory usage. Especially for large
graphs, we need to leverage sparse matrix representations,
which is a subset of graph matrix representations, to make
it tractable under the limited memory resources. There are
many ways to express larger scope substructure while pre-
serving the matrix sparsity such as encoding local structures
to graph matrix entries. They can all be viewed as a sparse
subset ofMG, which is denoted asMsps

G .

Why is it necessary to learn D from the input signals?
We provide an intuitive example in Fig. 2 here to illustrate
the considerations. Suppose all signal channels form two
clusters and the downstream task requires identifying these
two clusters, then D in Fig. 2(a) serves as a more suitable
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one compared with that in Fig. 2(b), as the projections on
that basis better distinguish the two clusters. Therefore, the
characteristics/distributions of input signals should be taken
into consideration when choosing D, which serves as an
empirical understanding of learnable D. This idea is well-
adopted in dimension reduction techniques, e.g., PCA (Abdi
& Williams, 2010), LDA (Xanthopoulos et al., 2013), etc.
The theoretical motivations behind this are given in Sec. 4.

(a) (b)

Figure 2. The effects of basis choices when considering within a
bunch of signal channels.

4. Motivations on Learning (D,F) as a Whole
A multi-channel graph signal H ∈ Rn×d involves d chan-
nels. Along with the iterative graph convolution operations,
the smoothness of each channel dynamically change w.r.t.
model depth, and oversmoothed signals account for the per-
formance drop of deep models. In this section, we study the
smoothness of signals from two complementary perspec-
tives, i.e., the smoothness within a single channel and that
over different channels, showing how Parameterized-(D,F)
as a whole affects both of them.

4.1. Smoothness within a Single Channel

For a weighted undirected graph G, its Laplacian is defined
as L = D−W, where W is the weighted adjacency matrix
with Wij > 0 if vertices i and j are adjacent, and Wij = 0
otherwise. D = diag(W1n) is the diagonal degree matrix.

Smoothness. The smoothness of a graph signal f ∈ Rn
w.r.t. G is measured in terms of a quadratic form of the
Laplacian (Zhou & Schölkopf, 2004; Shuman et al., 2013):

f>Lf =
1

2

∑
i,j∈[n]

Wij(f(i)− f(j))2, (4)

where f(i) and f(j) are the signal values associated with
these two vertices. Intuitively, given that the weights are non-
negative, Eq. 4 shows that a graph signal f is considered to
be smooth if strongly connected vertices (with a large weight
on the edge between them) have similar values. In particular,
the smaller the quadratic form in Eq. 4, the smoother the
signal on the graph (Dong et al., 2016).

In addition to the traditional smoothness analysis, we pro-
vide a new insight based on (D,F). Let f̂i = U>i f ∈ R

be the i-th component after Graph Fourier Transform, then

f>Lf = f>UΛU>f

= (U>f)>ΛU>f = f̂>Λf̂

=

n∑
i=1

f̂2
i λi.

(5)

As λi ≥ 0, Eq. 5 shows that the smoothness of a graph
signal f w.r.t. Laplacian L in vertex domain is equivalent to
the squares of its weighted norm in frequency domain with
the spectrum of L serving as weights. Also, Eq. 5 shows that
the smoothness w.r.t. L is decided by both decomposition
U and filtering Λ. Next, we show what signal smoothness
on the underlying graph implies in graph neural networks.

The learnable polynomial filter designs are the most popular
approaches in spectral GNN studies, e.g., ChebyNet (Def-
ferrard et al., 2016), CayleyNet (Levie et al., 2019), Bern-
Net (He et al., 2021), GPR (Chien et al., 2021), Jacobi-
Conv (Wang & Zhang, 2022), Corr-free (Yang et al., 2022a),
etc. But applying various polynomials gθ only introduces
modifications on filtering, with decomposition unchanged
as gθ(L) = Ugθ(Λ)U>. This leads to the negative effect
on signal smoothness as follows.

Proposition 4.1. For a polynomial graph filter with the
polynomial gθ and the underlying (normalized) Laplacian
L with the spectrum λi, i ∈ [n],
(i) if |gθ(λi)| < 1 for all i ∈ [n], the resulting graph convo-
lution smooths any input signal w.r.t. L;
(ii) if |gθ(λi)| > 1 for all i ∈ [n], the resulting graph
convolution amplifies any input signal w.r.t. L.

We prove Proposition 4.1 in Appendix B.1. Proposition 4.1
shows that if we fixD and considerF alone, the smoothness
of the resulting signals is sensitive to the range of gθ(λi).
A freely learned polynomial coefficient θ is more likely to
result in the smoothness issue. Especially in deep models,
the smoothness issue will accumulate. This may explain
why learnable polynomial filter design is challenging and
usually requires sophisticated polynomial bases. For ex-
ample, JacobiConv uses Jacobi polynomials and configures
the basis P a,bk by carefully setting a and b (Wang & Zhang,
2022).

Some methods alternatively use pre-defined filters to avoid
learning a filter with the above smoothness issue (Wu et al.,
2019a; Klicpera et al., 2019a; Ming Chen et al., 2020;
Klicpera et al., 2019b; Zhu & Koniusz, 2020). However, for
some models, the smoothness issue still exists.

Proposition 4.2. The GCN layer always smooths any input
signal w.r.t. L̃ = I− D̃−

1
2 ÃD̃−

1
2 .

We prove Proposition 4.2 in Appendix B.2. Proposition 4.2
shows that the accumulation of signal smoothness may ac-

5



Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering

count for the performance degradation of deep GCN. Sim-
ilarly, we can prove that SGC (Wu et al., 2019a) suffers
from the same issue. Some other fixed filter methods ap-
ply residual connections and manually set spectrum shift,
which implicitly help to preserve the range of gθ(λi), mak-
ing them tractable for stacking deep architectures (Klicpera
et al., 2019a; Ming Chen et al., 2020; Xu et al., 2018).

Comparisons with existing smoothness analysis. First,
based on the definition of smoothness in Eq. 4, the smooth-
ness analysis of signals in Proposition 4.1 and Proposi-
tion 4.2 is always considered with the underlying graphs,
while the convergence analysis in most existing oversmooth-
ing studies is not considered under the graph topology. Also,
they only deal with the theoretical infinite depth case and
study the final convergence result. Second, Proposition 4.1
shows that in addition to smoothness issue, the amplification
issue will also occur complementarilly with inappropriate
filter design. The amplification issue is less discussed, in
contrast, the numerical instabilities as a reflection of the am-
plification issue are more well-known. And most methods
choose D̃−

1
2 ÃD̃−

1
2 with the bounded spectrum [−1, 1] to

avoid numerical instability (Kipf & Welling, 2017). Some
other studies find the signal amplification issue from their
empirical evaluations and overcome it by proposing vari-
ous normalization techniques (Zhou et al., 2021; Guo et al.,
2022). Our analysis shows that both smoothness and am-
plification issues can somehow appear complementarily in
(fixed D, learnable F) designs for deeper models, which
reveals the connections between existing oversmoothing and
numerical instability/amplification studies.

4.2. Smoothness over Different Channels

Apart from the smoothness within each channel, the smooth-
ness over different channels in hidden features also indicates
information loss and affects the performance. For example,
the cosine similarity between signal pairs is usually used as
a metric of smoothness over different channels. The larger
the cosine similarity is, the smoother they are to each other.
In the extreme case, all signal pairs have a cosine similarity
equal to one, which means the worst information loss case
where each signal is linearly dependent on each other. (Yang
et al., 2022a) shows that in a polynomial graph filter with
the resulting matrix representation S = Ugθ(Λ)U>,

cos (〈Sf ,Ui〉) =
(U>i f)gθ(λi)√∑n
j=1(U

>
j f)

2gθ(λj)2
. (6)

As the model goes deeper, the spectrum diversity will accu-
mulate exponentially, i.e. Sk = Ugθ(Λ)kU>. As a result,
all signals will tend to correlate to the leading eigenvector
U0. Inspired by this, some work explores strategies to re-
strict the expanding of spectrum diversity in deep models to
alleviate this issue, but in return restricting the expressive-

ness of polynomial filters (Yang et al., 2022a).

However, note that U>i f and gθ(λi) have equivalent con-
tributions to the smoothness over different channels as re-
flected in Eq. 6. We can explore a better matrix represen-
tation, which improves (D,F) as a whole, to avoid restric-
tions imposed on the filters as introduced in other works.

The smoothness of a single channel and that over multi-
channels serve as two orthogonal perspectives, having been
investigated by many existing works, e.g., the former stud-
ied by (Li et al., 2018; Oono & Suzuki, 2020; Rong et al.,
2020; Huang et al., 2020), and the latter studied by (Zhao
& Akoglu, 2020; Liu et al., 2020; Chien et al., 2021; Yang
et al., 2022a; Jin et al., 2022). In comparison to existing
work which only consider F and related spectrum, we fur-
ther involveD, indicating that by treating (D,F) as a whole,
we can handle the above smoothness issues simultaneously.

5. Experiments
We evaluate our model PDF induced from Parameterized-
(D,F) on the graph-level prediction tasks. Detailed infor-
mation of the datasets is given in Appendix C.1. We first
conduct extensive ablation studies to validate its effective-
ness, and then compare its performance with baselines.

5.1. Ablation Studies

We evaluate the effectiveness of PDF as the instantiation
of Parameterized-(D,F) on multichannel signal scenario
on ZINC following its default dataset settings. We use
“shd” and “idp” to represent the channel-shared and channel-
independent architectures, respectively. Both architectures
learn the corresponding coefficients θ ∈ R|G| and Θ ∈
R|G|×d from scratch.

Parameterized-(D,F) involves two components: the con-
struction of G and the implementation of fθ. For each of
them, we design the following variants:

• For the matrix representation G,
– Lap: G = {(D̃− 1

2 ÃD̃−
1
2 )k|k ∈ [K]},

– (ε, k): G = {(D̃εÃD̃ε)k| − 0.5 ≤ ε ≤ 0, k ∈
[K]};

• For the mapping function fθ,
– Lin: fθ is a learnable affine transformation,
– 1L: fθ is a 1-layer perceptron,
– 2L: fθ is a 2-layer perceptron.

(Lap,Lin) corresponds to general spectral GNNs that apply
fixed normalized Laplacian decomposition and learnable fil-
tering. ((ε, k),Lin), ((ε, k), 1L) and ((ε, k), 2L) belong to
learnable (D,F). shd-((ε, k),Lin) is similar to PGSO with
the involved G slightly different. ((ε, k), 2L)sps is used to
test the effects of learning within sparse representation sub-
spaceMsps

G ⊂MG, which is implemented by masking all
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Table 2. Ablation studies on ZINC.

Ablation valid MAE test MAE

shd+

(Lap,Lin) 0.227±0.0445 0.219±0.0520
((ε, k),Lin) 0.184±0.0276 0.167±0.0234
((ε, k), 2L)sps 0.174±0.0125 0.150±0.0141
((ε, k), 1L) 0.172±0.0087 0.160±0.0119
((ε, k), 2L) 0.121±0.0137 0.112±0.0138

idp+

(Lap,Lin) 0.188±0.0048 0.172±0.0041
((ε, k),Lin) 0.168±0.0071 0.150±0.0038
((ε, k), 2L)sps 0.127±0.0028 0.111±0.0024
((ε, k), 1L) 0.104±0.0028 0.088±0.0031
((ε, k), 2L) 0.085±0.0038 0.066±0.0020

neighbors beyond 2-hop in ((ε, k), 2L). Detailed model con-
figurations of each test case are provided in Appendix C.6.
Tab. 2 presents the ablation study results, and more detailed
statistics are in Appendix C.4.

Effectiveness of learnable (D,F): (Lap,Lin) is analogous
to spectral graph convolutions where all matrix representa-
tions that can be learned share the same eigenspace, which
results in a fixed D. Also, Lap refers to (−0.5, k) ⊂ (ε, k),
and therefore, for a givenG and Lin, the learning space w.r.t.
Θ has {((−0.5, k),Lin)|Θ} ⊂ {((ε, k),Lin)|Θ}. The re-
sults show that ((ε, k),Lin) with learnable (D,F) outper-
forms (Lap,Lin) with learnable F on both architectures.

Effects of the expressiveness of fθ: Note that the expressive-
ness comparisons of fθ in ((ε, k),Lin), ((ε, k), 1L) and
((ε, k), 2L) is Lin ≺ 1L ≺ 2L. Thus, for a given graph
G and (ε, k), the learning space comparison w.r.t. Θ is

{((ε, k),Lin)|Θ} ⊂ {((ε, k), 1L)|Θ}
⊂ {((ε, k), 2L)|Θ} ⊂ MG.

This is exactly reflected on their performance comparisons
where the more expressive fθ is, the better performance
the resulting model achieves. This validates our analysis
that learning from a larger subspace withinMG helps to
find more effective graph matrix representation, i.e., (D,F)
for input signals. Also, 2L is sufficient to be used to pa-
rameterize any desired mapping according to the universal
approximation theorem (Hornik et al., 1989), and we can see
that ((ε, k), 2L) does benefit from this guarantee, making it
outperform the other two by a large margin.

Effects of sparse representations: Compared with
((ε, k), 2L), the learning space of ((ε, k), 2L)sps is limited
withinMsps

G , and the results show that ((ε, k), 2L)sps does
not outperform ((ε, k), 2L). Sparse representations only
correspond to a restricted subspaceMsps

G ⊂MG. It acts as
a trade-off between scalability and prediction performance.
Users are suggested to use dense representations if it is
tractable on the given graph scales.

Effects of architecture designs: Channel-independent learn-

Table 3. Results on ZINC, ogbg-molpcba and ogbg-ppa with the
number of parameters used, where the best results are in bold, and
second-best are underlined.

Method ZINC ogbg-molpcba ogbg-ppa
MAE ↓#para AP(%) ↑#para ACC(%) ↑#para

GCN 0.367±0.011 505k 24.24±0.34 2.0m 68.39±0.84 0.5m

GIN 0.526±0.051 510k 27.03±0.23 3.4m 68.92±1.00 1.9m

GAT 0.384±0.007 531k - -
GraphS 0.398±0.002 505k - -
GatedG 0.214±0.006 505k - -
MPNN 0.145±0.007 481k - -
DeeperG - 28.42±0.43 5.6m 77.12±0.71 2.3m

PNA 0.142±0.010 387k 28.38±0.35 6.6m -
DGN 0.168±0.003 NA 28.85±0.30 6.7m -
GSN 0.101±0.010 523k - -
GINE-AP - 29.79±0.30 6.2m -
PHC-GN - 29.47±0.26 1.7m -
ExpC - 23.42±0.29 NA 79.76±0.72 1.4m

GT 0.226±0.014 NA - -
SAN 0.139±0.006 509k 27.65±0.42 NA -
Graphor 0.122±0.006 489k - -
KS-SAT 0.094±0.008 NA - 75.22±0.56 NA

GPS 0.070±0.004 424k 29.07±0.28 9.7m 80.15±0.33 3.4m

GM-Mix 0.075±0.001 NA - -

PDF (our) 0.066±0.002 500k 30.31±0.26 3.8m 80.10±0.52∗ 2.0m

able (D,F) outperforms the channel-shared one in all cases.
Meanwhile, channel-independent one is much more stable,
as reflected by smaller variations (STD) in different runs
in Tab. 2, as well as the training curves in Appendix C.4.
These results empirically show that assigning each channel
with an individual (D,F) is more appropriate.

5.2. Performance Comparison

All baseline results of ZINC, ogbg-molpcba and pgbg-ppa
in Tab. 3 are quoted from their leaderboards4 or the original
papers. And all baseline results of TUDatasets in Tab. 4 are
quoted from their original papers. All baseline models in
this section are summarized in Appendix C.2. Ogbg-ppa and
RDT-B are large scale graphs with more than 200 vertices.
We apply sparse matrix representations subspaceMsps

G on
them with the results marked with ∗. All detailed hyper-
parameter configurations can be found in Appendix C.3.
PDF appearing in the baseline comparisons refers to the
implementation idp-((ε, k), 2L).

ZINC. We use the default dataset splits for ZINC, and fol-
lowing baselines settings on leaderboard, set the number
of parameters around 500K. PDF achieves the superior
performance on ZINC compared with all existing models,
including both the lowest MAE and STD in multiple runs.

OGB. We use the default dataset splits provided in OGB.
The results in Tab. 4 involve molecular benchmark ogbg-

4https://paperswithcode.com/sota/
graph-regression-on-zinc-500k and https:
//ogb.stanford.edu/docs/leader_graphprop/
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Table 4. Results on TUDataset (Higher is better).

Method MUTAG NCI1 NCI109 ENZYMES PTC MR PROTEINS IMDB-B RDT-B

GK 81.52±2.11 62.49±0.27 62.35±0.3 32.70±1.20 55.65±0.5 71.39±0.3 - 77.34±0.18
RW 79.11±2.1 - - 24.16±1.64 55.91±0.3 59.57±0.1 - -
PK 76.0±2.7 82.54±0.5 - - 59.5±2.4 73.68±0.7 - -
FGSD 92.12 79.80 78.84 - 62.8 73.42 73.62 -
AWE 87.87±9.76 - - 35.77±5.93 - - 74.45±5.80 87.89±2.53

DGCNN 85.83±1.66 74.44±0.47 - 51.0±7.29 58.59±2.5 75.54±0.9 70.03±0.90 -
PSCN 88.95±4.4 74.44±0.5 - - 62.29±5.7 75±2.5 71±2.3 86.30±1.58
DCNN - 56.61±1.04 - - - 61.29±1.6 49.06±1.4 -
ECC 76.11 76.82 75.03 45.67 - - - -
DGK 87.44±2.72 80.31±0.46 80.32±0.3 53.43±0.91 60.08±2.6 75.68±0.5 66.96±0.6 78.04±0.39
GraphSAGE 85.1±7.6 76.0±1.8 - 58.2±6.0 - - 72.3±5.3 -
CapsGNN 88.67±6.88 78.35±1.55 - 54.67±5.67 - 76.2±3.6 73.1±4.8 -
DiffPool - 76.9±1.9 - 62.53 - 78.1 - -
GIN 89.4±5.6 82.7±1.7 - - 64.6±7.0 76.2±2.8 75.1±5.1 92.4±2.5
k-GNN 86.1 76.2 - - 60.9 75.5 74.2 -
IGN 83.89±12.95 74.33±2.71 72.82±1.45 - 58.53±6.86 76.58±5.49 72.0±5.54 -
PPGNN 90.55±8.7 83.19±1.11 82.23±1.42 - 66.17±6.54 77.20±4.73 73.0±5.77 -
GCN2 89.39±1.60 82.74±1.35 83.00±1.89 - 66.84±1.79 71.71±1.04 74.80±2.01 -

PDF (ours) 89.91±4.35 85.47±1.38 83.62±1.38 73.50±6.39 68.36±8.38 76.28±5.1 75.60±2.69 93.40±1.30∗

molpcba with small and sparse connected graphs, and
protein-protein interaction benchmark ogbg-ppa with large
and densely connected graphs. PDF achieves the best AP
with relatively fewer parameters on ogbg-molpcba. On
ogbg-ppa, PDF explores withinMsps

G to balance computa-
tional efficiency, and is still comparable to SOTA.

TUDataset. We test our model on 8 TUDataset datasets
involving both bioinformatics datasets (MUTAG, NCI1,
NCI109, ENZYMES, PTC MR and PROTEINS), and social
network datasets (IMDB-B and RDT-B). To ensure a fair
comparison with baselines, we follow the standard 10-fold
cross-validation and dataset splits in (Zhang et al., 2018),
and then report our results according to the protocol de-
scribed in (Xu et al., 2019b; Ying et al., 2018). The results
are presented in Tab.4. PDF achieves the highest classifica-
tion accuracies on 6 out of 8 datasets, among which PDF
outperforms existing models by a large margin on NCI1 and
ENZYMES respectively.

Also, PDF benefits from its simple architecture and is more
computational efficient than other SOTA models. In Ap-
pendix C.5, we show that PDF shares a similar time com-
plexity with GIN and GCN. Also, in our tests, the practical
training and evaluation time on each epoch is similar to GIN,
which can be more than 2× faster than some latest SOTA
models that improve their performance by leveraging high
expressive power or transformer architectures.

6. Related Work
GWNN (Xu et al., 2019a) replaces the Fourier basis with
wavelet basis, which refers to a different decomposition on
input signals. But similar to Fourier basis, it still uses fixed

decomposition and cannot adopt relevant bases for input
signals.

JacobiConv (Wang & Zhang, 2022) and Corr-free (Yang
et al., 2022a) learn individual filtering for each channel,
which is similar to our channel-independent architecture,
but share the decomposition over these channels since they
are induced by the spectral graph convolution theories.

Parameterized Graph Shift Operator (PGSO) (Dasoulas
et al., 2021) is motivated by spanning the space of com-
monly used GSOs as a replacement of the (normalized)
Laplacian/Adjacency. As different GSOs generally do not
share the eigenspace, PGSO can learn both D and F . How-
ever, the linear combination of several GSOs can only lever-
age limited subspace within MG. From the perspective
of Parameterized-(D,F), PGSO is somehow a restricted
implementation of our shd-PDF, where k is fixed to 1 and
fθ is a learnable linear transformation. The limited learning
space may not be sufficient to obtain a suitable (D,F) for
input signals. As PGSO is analogous to one test case in our
ablation studies, we can see that our model outperforms it,
as shown in Sec. 5.1.

Multi-graph convolutions (Geng et al., 2019; Khan & Blu-
menstock, 2019) learn from multiple graphs, with each one
having its own semantic meaning. These methods are more
application-oriented, e.g., traffic forecasting, and usually
need domain expertise to define multigraphs, while our
method has no such restriction.
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7. Conclusion
In this work, we propose Parameterized-(D,F), which aims
to learn a (decomposition, filtering) as a whole, i.e., a graph
matrix representation, for input graph signals. It well unifies
existing GNN models and the inspired new model achieves
superior performance while preserving computational effi-
ciency.
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Le, T., Bertolini, M., Noé, F., and Clevert, D.-A. Parame-
terized hypercomplex graph neural networks for graph
classification. arXiv preprint arXiv:2103.16584, 2021.

Lee, J. B., Rossi, R. A., Kong, X., Kim, S., Koh, E., and
Rao, A. Graph convolutional networks with motif-based
attention. In Proceedings of the 28th ACM international
conference on information and knowledge management,
pp. 499–508, 2019.

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M.
Cayleynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2019. doi: 10.1109/
TSP.2018.2879624.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739, 2020.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 338–348, 2020.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. arXiv preprint
arXiv:1812.09902, 2018.

10

http://proceedings.mlr.press/v80/ivanov18a.html
http://proceedings.mlr.press/v80/ivanov18a.html


Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. In Proceedings of
the 33rd International Conference on Neural Information
Processing Systems, pp. 2156–2167, 2019.

Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W.,
Zhao, P., Huang, J., Ananiadou, S., and Rong, Y. Trans-
former for graphs: An overview from architecture per-
spective. arXiv preprint arXiv:2202.08455, 2022.

Ming Chen, Z. W., Zengfeng Huang, B. D., and Li, Y. Sim-
ple and deep graph convolutional networks. 2020.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602–4609, 2019.

Neumann, M., Garnett, R., Bauckhage, C., and Kersting,
K. Propagation kernels: efficient graph kernels from
propagated information. Machine Learning, 102(2):209–
245, 2016.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning con-
volutional neural networks for graphs. In International
Conference on Machine Learning, pp. 2014–2023, 2016.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=S1ldO2EFPr.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., and
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A. Graph Representation.
Considering the various possible representations for the topology of a graph, we denote the matrix representation space of
an undirected graph G byMG. Admittedly, providing the formal unified definition forMG or enumerating all its elements
is indeed hard, but it is still possible to give some feasible instances. For example,MG can include

• Graph shift operators (Sandryhaila & Moura, 2013): including the adjacency matrix, Laplacian matrix, and their various
normalization versions, as well as the mean aggregation operator of GNNs and Parametrized graph shift operator
(PGSO) (Dasoulas et al., 2021);

• Structure derived matrices: k path-length counting matrix Ak, shortest path distance matrix (SPD), motif adjacency
matrix (Lee et al., 2019; Jiang et al., 2022), and point-wise mutual information matrix (Wu et al., 2020), etc.

• Feature-engineering-based matrices, like the neural graph fingerprint (Duvenaud et al., 2015).

Different matrices emphasize the graph structure or topology from different angles, like local or global view; and each of
them has its own limitations in that there are some properties that the matrix cannot always determine (Butler & Chung,
2017). Under the graph spectral formulation, here we only account forMG which is composed of some symmetric matrices;
for any S ∈MG, it has the unique eigendecomposition as S = UΛU>, according to the spectral theorem.

B. Proofs.
B.1. Proof of Proposition 4.1

Proof. Let f ′ = gθ(L)f denote the graph signal after graph convolution. If |gθ(λi)| < 1, i ∈ [n], then

f ′>Lf ′ = (gθ(L)f)
>Lgθ(L)f

= f>gθ(L)Lgθ(L)f

= f>Ugθ(Λ)Λgθ(Λ)U>f

= f>Udiag(gθ(λi)
2λi)U

>f

= f̂>diag(gθ(λi)
2λi)f̂

=

n∑
i=1

f̂2
i λigθ(λi)

2

<

n∑
i=1

f̂2
i λi / ∗ λi ≥ 0, i ∈ [n] ∗ /

= f>Lf / ∗ As in Eq. 5 ∗ /

Hence, f ′ is smoother than f w.r.t. L. Similarly, we can prove f ′>Lf ′ > f>Lf f ′ when |gθ(λi)| > 1, i ∈ [n].

B.2. Proof of Proposition 4.2

Proof. In GCN, we have f ′ = D̃−
1
2 ÃD̃−

1
2f . Let L̃ = I − D̃−

1
2 ÃD̃−

1
2 . Then D̃−

1
2 ÃD̃−

1
2 = I − L̃ = gθ(L̃) is the

polynomial of the Laplacian L̃. Let λ̃i, i ∈ [n] denote the spectrum of L̃. Then, 0 ≤ λ̃i < 2 and gθ(λ̃i) = 1− λ̃i ∈ (−1, 1).
According to Proposition 4.1, we have f ′>L̃f ′ ≤ f>L̃f ,

C. Experimental Details.
C.1. Datasets Statistics.

All detailed statistics of the datasets used in our experiments are presented in Tab. 5. The corresponding tasks involve graph
regression task and graph classification task collecting from real-world molecules, social networks and protein-protein
interactions. The scale of datasets ranges from hundreds of graphs (e.g. MUTAG, PTC MR) to hundreds of thousands of
graphs (e.g., ogbg-molpcba, pgbg-ppa). The scale of graphs involved in each dataset ranges from 10-20 (e.g., MUTAG,
PTC MR, IMDB-B) to 400-500 (e.g., RDT-B). Also, the density of connectivity e.g., 2×Avg # edges

Avg # nodes ranges from 2.x (most
molecular datasets) to 18.x (e.g., ogbg-ppa).
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Table 5. Statistics of the datasets used in our experiments.

Dataset # Graphs Avg # nodes Avg # edges Node attr Edge attr Task type

ZINC 12,000 23.2 24.9 Y Y Regression

ogbg-molpcba 437,929 26.0 28.1 Y Y Binary classi.
ogbg-ppa 158,100 243.4 2,266.1 N Y 37-way classi.

MUTAG 188 17.93 19.79 N N Binary classi.
NCI1 4110 29.87 32.39 N N Binary classi.
NCI109 4127 29.68 32.13 N N Binary classi.
ENZYMES 600 32.63 62.14 Y N 6-way classi
PTC MR 344 14.29 14.69 N N Binary classi.
PROTEINS 1113 39.06 72.82 Y N Binary classi.
IMDB-B 1000 19.77 96.53 N N Binary classi.
RDT-B 2000 429.63 497.75 N N Binary classi.

C.2. Baselines.

The baseline models used for comparisons include: GK (Shervashidze et al., 2009), RW (Vishwanathan et al., 2010),
PK (Neumann et al., 2016), FGSD (Verma & Zhang, 2017), AWE (Ivanov & Burnaev, 2018), DGCNN (Zhang et al., 2018),
PSCN (Niepert et al., 2016), DCNN (Atwood & Towsley, 2016), ECC (Simonovsky & Komodakis, 2017), DGK (Yanardag &
Vishwanathan, 2015), CapsGNN (Xinyi & Chen, 2019), DiffPool (Ying et al., 2018), GIN (Xu et al., 2019b), k-GNN (Morris
et al., 2019), IGN (Maron et al., 2018), PPGNN (Maron et al., 2019), GCN2 (de Haan et al., 2020) GraphSage (Hamilton
et al., 2017), GAT (Veličković et al., 2018), GatedGCN-PE (Bresson & Laurent, 2017), MPNN (sum) (Gilmer et al.,
2017), DeeperG (Li et al., 2020), PNA (Corso et al., 2020), DGN (Beani et al., 2021), GSN (Bouritsas et al., 2020),
GINE-APPNP (Brossard et al., 2020), PHC-GNN (Le et al., 2021), ExpC (Yang et al., 2022b), GT (Dwivedi et al., 2020),
SAN (Kreuzer et al., 2021), Graphormer (Ying et al., 2021), KS-SAT (Chen et al., 2022), GPS (Rampášek et al., 2022),
GM-Mix (He et al., 2022).

C.3. Experimental Setup.

Tab. 6 and Tab. 7 present all hyperparameter configurations used in baseline comparisons in Sec. 5.2. On ZINC, we keep the
number of learnable coefficients used on our model close to 500K as configured by other baseline methods.

C.4. Additional Experimental Details.

We present the learning curves of training, valid and test sets on ZINC in Fig. 3 and Fig. 4, which are exactly the same
runs as that in Tab. 2. But the curves give more prominent results: on all test cases, channel-independent Parameterized-
(D,F) architecture which assigns each channel with an independent (D,F) is much more robust than channel-shared
Parameterized-(D,F) architecture in different runs.

C.5. Complexity Analysis and Computational Efficiency.

We analyze the time and space complexities of our PDF5. The results are presented in Tab. 8, where n, m, l, d refer to the
number of vertices, edges, layers, and hidden dimensions respectively; g denotes the number of attention heads used in
multi-head GAT or the number of aggregators used in PNA and ExpC, and k = |G| in PDF. Generally, k � d, hence, the
additional computations of both channel-shared and channel independent PDF are minor compared with GCN or GIN. Also,
in the channel-independent architecture, each individual channel’s computation is fully independent and can be parallelized.

We tested the practical running time on a shared computing cluster environment running on Nvidia A100 (40GiB) GPU
server. All test codes are built upon Deep Graph Library (DGL). Tab. 9 presents the running time on ZINC dataset which
involves small molecular graphs. And we test both dense graph matrix representations and 1-hop sparse graph matrix
representations. Tab. 10 presents the running time on RDT-B dataset, which involves large social network graphs. And we

5Many GNN studies discuss the complexity of their models, but the results vary from each other. Here, we follow the widely-adopted
one used in (Wu et al., 2019b; Veličković et al., 2018; Chiang et al., 2019).
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Table 6. Hyperparameter settings on ZINC and OGB datasets.

Hyperparameter ZINC ogbg-molpcba ogbg-ppa

Hidden Dim. 160 384 384
Num. Layers 6 8 4
Drop. Rate 0 0 0.5

Readout Mean Max Sum

Batch Size 64 64 16
Initial LR 0.001 0.0005 0.001

LR Dec. Steps 35 5 30
LR Dec. Rate 0.6 0.2 0.65
# Warm. Steps 5 5 5
Weight Dec. 5e-5 1e-2 0

G Dense Dense Sparse
σ in fθ GELU GELU GELU

{(ε, k)}

(-0.1, 4),
(-0.2, 4),
(-0.3, 4),
(-0.4, 4),
(-0.5, 4)

(-0.2, 1),
(-0.2, 2),
(-0.2, 3),
(-0.2, 4),
(-0.2, 5),

(-0.25, 1),
(-0.25, 2),
(-0.25, 3),
(-0.25, 4),
(-0.25, 5),
(-0.3, 1),
(-0.3, 2),
(-0.3, 3),
(-0.3, 4),
(-0.3, 5),

(-0.35, 1),
(-0.35, 2),
(-0.35, 3),
(-0.35, 4),
(-0.35, 5)

(0, 1),
(-0.05, 1),
(-0.1, 1),
(-0.15, 1),
(-0.2, 1),
(-0.2, 2),
(-0.25, 1),
(-0.25, 2),
(-0.3, 1),
(-0.3, 2),
(-0.35, 1),
(-0.35, 2),
(-0.4, 1),
(-0.4, 2),
(-0.4, 3),
(-0.45, 1),
(-0.45, 2),
(-0.45, 3),
(-0.5, 1),
(-0.5, 2),
(-0.5, 3)

only test 1-hop sparse graph matrix representations. The running time results show that all our four test cases on ZINC and
all our two test cases on RDT-B have minor differences in computational efficiency. And their running time is analogical to
GIN. Channel-shared architectures almost have the same efficiency compared with channel-independent architecture on
both PDF and PDF 1-hop. On both architectures, PDF takes slightly longer time than PDF 1-hop due to processing densely
vertex connections. But the differences are also very small. In conclusion, the best performing test case idp-PDF, which is
used in baseline comparisons in Sec. 5.2, has similar training and evaluation speed compared with GIN.

C.6. Ablation Settings

Tab. 11 summaries the model setting details in our ablation studies. To ensure a fair comparison, all five cases share the
same hyperparameter setting, which is also the same as that used in baseline comparisons in Tab. 6. Also, they apply the
same number of input graph matrix representations, i.e. |G| = |{(ε, k)}|. In ((ε, k),Lin) case, the applied {(ε, k)} is slightly
different with that in the case ((ε, k), 2L) because in our test, ((ε, k),Lin) did not get the best performance when sharing
the same {(ε, k)} with ((ε, k), 2L). Based on the above settings, all five implementation cases share the same amount of
learnable coefficients, 499681.
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Figure 3. Ablation studies with channel-shared architecture on ZINC.
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Figure 4. Ablation studies with channel-independent architecture on ZINC.
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Table 7. Hyperparameter settings on TUDataset.

Hyperparameter MUTAG NCI1 NCI109 ENZYMES PTC MR PROTEINS IMDB-B RDT-B

Hidden Dim. 256 256 256 256 128 128 256 256
Num. Layers 4 6 6 6 6 6 3 4
Drop. Rate 0 0 0 0.2 0 0 0 0

Readout Max Max Max Max Max Mean Max Max

Batch Size 64 64 64 64 64 64 16 64
Initial LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

LR Dec. Steps 50 50 50 40 30 50 40 50
LR Dec. Rate 0.6 0.6 0.6 0.6 0.65 0.65 0.6 0.6
# Warm. Steps 0 0 0 0 0 0 0 0
Weight Dec. 0 0 0 0 0 0 0 0

G Dense Dense Dense Dense Dense Dense Dense Sparse
σ in fθ GELU GELU GELU GELU GELU GELU GELU GELU

{(ε, k)}

(-0.2, 1),
(-0.2, 2),
(-0.2, 3),
(-0.2, 4),
(-0.2, 5),

(-0.25, 1),
(-0.25, 2),
(-0.25, 3),
(-0.25, 4),
(-0.25, 5),
(-0.3, 1),
(-0.3, 2),
(-0.3, 3),
(-0.3, 4),
(-0.3, 5)

(-0.2, 1),
(-0.2, 2),
(-0.2, 3),
(-0.2, 4),
(-0.2, 5),
(-0.25, 1),
(-0.25, 2),
(-0.25, 3),
(-0.25, 4),
(-0.25, 5)

(-0.2, 1),
(-0.2, 2),
(-0.2, 3),
(-0.2, 4),
(-0.2, 5),

(-0.25, 1),
(-0.25, 2),
(-0.25, 3),
(-0.25, 4),
(-0.25, 5)

(-0.2, 1),
(-0.2, 2),
(-0.2, 3),
(-0.2, 4),
(-0.2, 5),
(-0.2, 6),

(-0.25, 1),
(-0.25, 2),
(-0.25, 3),
(-0.25, 4),
(-0.25, 5),
(-0.25, 6),
(-0.3, 1),
(-0.3, 2),
(-0.3, 3),
(-0.3, 4),
(-0.3, 5),
(-0.3, 6),

(-0.35, 1),
(-0.35, 2),
(-0.35, 3),
(-0.35, 4),
(-0.35, 5),
(-0.35, 6)

(-0.3, 1),
(-0.3, 2),
(-0.3, 3),
(-0.3, 4),
(-0.3, 5),
(-0.3, 6),
(-0.3, 7),
(-0.3, 8),

(-0.35, 1),
(-0.35, 2),
(-0.35, 3),
(-0.35, 4),
(-0.35, 5),
(-0.35, 6),
(-0.35, 7),
(-0.35, 8),
(-0.4, 1),
(-0.4, 2),
(-0.4, 3),
(-0.4, 4),
(-0.4, 5),
(-0.4, 6),
(-0.4, 7),
(-0.4, 8)

(-0.3, 1),
(-0.3, 2),
(-0.3, 3),
(-0.3, 4),

(-0.35, 1),
(-0.35, 2),
(-0.35, 3),
(-0.35, 4),
(-0.4, 1),
(-0.4, 2),
(-0.4, 3),
(-0.4, 4)

(-0.2, 1),
(-0.2, 2),
(-0.2, 3),
(-0.25, 1),
(-0.25, 2),
(-0.25, 3),
(-0.3, 1),
(-0.3, 2),
(-0.3, 3),
(-0.3, 4),
(-0.3, 5),
(-0.35, 1),
(-0.35, 2),
(-0.35, 3),
(-0.35, 4),
(-0.35, 5),
(-0.4, 1),
(-0.4, 2),
(-0.4, 3),
(-0.4, 4),
(-0.4, 5)

(-0.3, 1),
(-0.3, 2),

(-0.35, 1),
(-0.35, 2),
(-0.4, 1),
(-0.4, 2

Table 8. Time and space complexities of existing methods and ours.

Method Time Complexity Memory Complexity

GCN (Kipf & Welling, 2017) O(l(md+ nd2)) O(m+ l(nd+ d2))
GIN (Xu et al., 2019b) O(l(md+ nd2)) O(m+ l(nd+ d2))
GAT (Veličković et al., 2018) O(lg(md+ nd2)) O(m+ lg(nd+ d2))
PNA (Corso et al., 2020) O(lg(md+ nd2)) O(m+ lg(nd+ d2))
ExpC (Yang et al., 2022b) O(lg(md+ nd2)) O(m+ lg(nd+ d2))

shd-PDF O(mk + l(md+ nd2)) O(km+ l(nd+ d2))
idp-PDF O(mkd+ l(md+ nd2)) O(k(m+ d) + l(nd+ d2))
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Table 9. Training and evaluation time on ZINC. mean ± std over 50 epochs (seconds).

Model Training (Train set) Eval (Train set) Eval (Val set) Eval (Test set)

GIN 3.016 ± 0.198 1.459 ± 0.083 0.531 ± 0.081 0.533 ± 0.077

shd- PDF 1-hop 3.539 ± 0.218 1.503 ± 0.078 0.426 ± 0.064 0.430 ± 0.056
PDF 4.024 ± 0.211 1.769 ± 0.115 0.588 ± 0.086 0.583 ± 0.078

idp- PDF 1-hop 3.638 ± 0.184 1.599 ± 0.089 0.572 ± 0.076 0.574 ± 0.089
PDF 4.050 ± 0.174 1.744 ± 0.086 0.622 ± 0.091 0.613 ± 0.071

Table 10. Training and evaluation time on RDT-B. mean ± std over 50 epochs (seconds).

Model Training (Train set) Eval (Train set) Eval (Val set)

GIN 0.792 ± 0.009 0.335 ± 0.004 0.040 ± 0.002

shd-PDF 1-hop 0.723 ± 0.005 0.301 ± 0.003 0.035 ± 0.001

idp-PDF 1-hop 1.035 ± 0.006 0.407 ± 0.006 0.049 ± 0.002

Table 11. Ablation study settings on ZINC.

Hyperparameter (Lap,Lin) ((ε, k),Lin) ((ε, k), 2L)sps ((ε, k), 1L) ((ε, k), 2L)

Hidden Dim. 160
Num. Layers 6
Drop. Rate 0

Readout Mean

Batch Size 64
Initial LR 0.001

LR Dec. Steps 35
LR Dec. Rate 0.6
# Warm. Steps 5
Weight Dec. 5e-5

G Dense Dense Sparse Dense Dense
σ in fθ Linear Linear GELU GELU GELU

{(ε, k)}

(-0.5, 1),
(-0.5, 2),
(-0.5, 3),
(-0.5, 4),
(-0.5, 5)

(-0.1, 3),
(-0.2, 3),
(-0.3, 4),
(-0.4, 4),
(-0.5, 4)

(-0.1, 4),
(-0.2, 4),
(-0.3, 4),
(-0.4, 4),
(-0.5, 4)

(-0.1, 4),
(-0.2, 4),
(-0.3, 4),
(-0.4, 4),
(-0.5, 4)

(-0.1, 4),
(-0.2, 4),
(-0.3, 4),
(-0.4, 4),
(-0.5, 4)
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