
A theory of representation learning
gives a deep generalisation of kernel methods

Adam X. Yang 1 Maxime Robeyns 1 Edward Milsom 1 Ben Anson 1 Nandi Schoots 2 Laurence Aitchison 1

Abstract

The successes of modern deep machine learning
methods are founded on their ability to transform
inputs across multiple layers to build good high-
level representations. It is therefore critical to
understand this process of representation learn-
ing. However, standard theoretical approaches
(formally NNGPs) involving infinite width limits
eliminate representation learning. We therefore
develop a new infinite width limit, the Bayesian
representation learning limit, that exhibits repre-
sentation learning mirroring that in finite-width
models, yet at the same time, retains some of the
simplicity of standard infinite-width limits. In
particular, we show that Deep Gaussian processes
(DGPs) in the Bayesian representation learning
limit have exactly multivariate Gaussian posteri-
ors, and the posterior covariances can be obtained
by optimizing an interpretable objective combin-
ing a log-likelihood to improve performance with
a series of KL-divergences which keep the poste-
riors close to the prior. We confirm these results
experimentally in wide but finite DGPs. Next, we
introduce the possibility of using this limit and
objective as a flexible, deep generalisation of ker-
nel methods, that we call deep kernel machines
(DKMs). Like most naive kernel methods, DKMs
scale cubically in the number of datapoints. We
therefore use methods from the Gaussian process
inducing point literature to develop a sparse DKM
that scales linearly in the number of datapoints. Fi-
nally, we extend these approaches to NNs (which
have non-Gaussian posteriors) in the Appendices.

1University of Bristol 2Kings College London. Correspondence
to: Laurence Aitchison <laurence.aitchison@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
The successes of modern machine learning methods from
neural networks (NNs) to deep Gaussian processes (DGPs
Damianou & Lawrence, 2013; Salimbeni & Deisenroth,
2017) is based on their ability to use depth to transform
the input into high-level representations that are good for
solving difficult tasks (Bengio et al., 2013; LeCun et al.,
2015). However, theoretical approaches using infinite limits
to understand deep models struggle to capture representa-
tion learning. In particular, there are two broad families of
infinite limit, and while they both use kernel-matrix-like
objects they are ultimately very different. First is the neural
network Gaussian process (NNGP Neal, 1996; Lee et al.,
2018; Matthews et al., 2018) which applies to Bayesian
models like Bayesian neural networks (BNNs) and DGPs
and describes the representations at each layer (formally,
the NNGP kernel is raw second moment of the activities).
Second is the neural tangent kernel (NTK Jacot et al., 2018),
which is a very different quantity that involves gradients,
and describes how predictions at all datapoints change if
we do a gradient update on a single datapoint. As such, the
NNGP and NTK are suited to asking very different theoret-
ical questions. For instance, the NNGP is better suited to
understanding the transformation of representations across
layers, while the NTK is better suited to understanding how
predictions change through NN training.

While challenges surrounding representation learning have
recently been addressed in the NTK setting (Yang & Hu,
2021), we are the first to address this challenge in the NNGP
setting.

At the same time, kernel methods (Smola & Schölkopf,
1998; Shawe-Taylor & Cristianini, 2004; Hofmann et al.,
2008) were a leading machine learning approach prior to
the deep learning revolution (Krizhevsky et al., 2012). How-
ever, kernel methods were eclipsed by deep NNs because
depth gives NNs the flexibility to learn a good top-layer
representation (Aitchison, 2020). In contrast, in a standard
kernel method, the kernel (or equivalently the representa-
tion) is highly inflexible — there are usually a few tunable
hyperparameters, but nothing that approaches the enormous
flexibility of the top-layer representation in a deep model.
There is therefore a need to develop flexible, deep gener-

1

A theory of representation learning gives a deep generalisation of kernel methods

alisations of kernel method. Remarkably, our advances in
understanding representation learning in DGPs give such a
flexible, deep kernel method.

Follow-up work has generalised the DKM to the convolu-
tional setting, and obtains results of e.g. 92% on CIFAR-10
and 71% on CIFAR-100 (Milsom et al., 2023).

2. Contributions
• We present a new infinite width limit, the Bayesian

representation learning limit, that retains representation
learning in deep Bayesian models including DGPs.
The key insight is that as the width goes to infinity, the
prior becomes stronger, and eventually overwhelms the
likelihood. We can fix this by rescaling the likelihood
to match the prior. This rescaling can be understood in
a Bayesian context as copying the labels (Sec. 4.3).

• We show that in the Bayesian representation learning
limit, DGP posteriors are exactly zero-mean multivari-
ate Gaussian, P

(
f ℓλ|X,y

)
= N

(
f ℓλ;0,Gℓ

)
where f ℓλ,

is the activation of the λth feature in layer ℓ for all
inputs (Sec. 4.4 and Appendix E).

• We show that the posterior covariances can be obtained
by optimizing the “deep kernel machine objective”,

L(G1, . . . ,GL) = log P (Y|GL)

−
∑L

ℓ=1νℓ DKL (N (0,Gℓ)∥N (0,K(Gℓ−1))) ,
(1)

where Gℓ are the posterior covariances, K(Gℓ−1) are
the kernel matrices, and νℓ accounts for any differences
in layer width (Sec. 4.3).

• We give an interpretation of this objective, with
log P (Y|GL) encouraging improved performance,
while the KL-divergence terms act as a regulariser,
keeping posteriors, N (0,Gℓ), close to the prior,
N (0,K(Gℓ−1)) (Sec. 4.5).

• We introduce a sparse DKM, which takes inspiration
from GP inducing point literature to obtain a practical,
scalable method that is linear in the number of data-
points. In contrast, naively computing/optimizing the
DKM objective is cubic in the number of datapoints
(as with most other naive kernel methods; Sec. 4.7).

• We extend these results to BNNs (which have non-
Gaussian posteriors) in Appendix A.

3. Related work
Our work is focused on DGPs and gives new results such as
the extremely simple multivariate Gaussian form for DGP
true posteriors. As such, our work is very different from
previous work on NNs, where such results are not available.
There are at least four families of such work.

First, there is recent work on representation learning in the
very different NTK setting (Jacot et al., 2018; Yang, 2019;
Yang & Hu, 2021) (see Sec. 1). In contrast, here we focus
on NNGPs (Neal, 1996; Williams, 1996; Lee et al., 2018;
Matthews et al., 2018; Novak et al., 2019; Garriga-Alonso
et al., 2018; Jacot et al., 2018), where the challenge of
representation learning has yet to be addressed. As work on
the NTK does not consider the Bayesian posterior, and does
not consider the DGP setting, they do not find results such
as the extremely simple multivariate Gaussian form for the
true posterior.

Second, there is a body of work using methods from
physics to understand representation learning in neural net-
works (Antognini, 2019; Dyer & Gur-Ari, 2019; Hanin
& Nica, 2019; Aitchison, 2020; Li & Sompolinsky, 2020;
Yaida, 2020; Naveh et al., 2020; Zavatone-Veth et al., 2021;
Zavatone-Veth & Pehlevan, 2021; Roberts et al., 2021;
Naveh & Ringel, 2021; Halverson et al., 2021). Again,
this work focuses on the finite NN setting, so does give
results such as the extremely simple multivariate Gaussian
form for the true posterior.

Third, there is a body of theoretical work including (Mei
et al., 2018; Nguyen, 2019; Sirignano & Spiliopoulos,
2020a;b; Nguyen & Pham, 2020) which establishes prop-
erties such as convergence to the global optimum. This
work is focused on two-layer (or one-hidden layer network)
networks, and like the NTK, considers learning under SGD
rather than Bayesian posteriors.

Fourth, deep kernel processes (rather than our machines).
These are fully Bayesian deep nonlinear function approxima-
tors that optimize a variational approximate posterior over
Gram matrices (Aitchison et al., 2021; Ober & Aitchison,
2021; Ober et al., 2023). Similarly to DKMs, deep kernel
processes (DKPs) propagate kernels between layers, though
DKPs require sampling kernels at each layer, whereas each
kernel in a DKM is deterministic.

Another related line of work uses kernels to give a closed-
form expression for the weights of a neural network, based
on a greedy-layerwise objective (Wu et al., 2022). This
work differs in that it uses the HSIC objective, and therefore
does not have a link to DGPs or Bayesian neural networks,
and in that it uses a greedy-layerwise objective, rather than
end-to-end gradient descent.

4. Results
We start by defining a DGP; see Appendix A for Bayesian
NN (BNNs). This model maps from inputs, X ∈ RP×ν0 ,
to outputs, Y ∈ RP×νL+1 , where P is the number of input
points, ν0 is the number of input features, and νL+1 is the
number of output features. The model has L intermediate
layers, indexed ℓ ∈ {1, . . . , L}, and at each intermediate

2

A theory of representation learning gives a deep generalisation of kernel methods

layer there are Nℓ features, Fℓ ∈ RP×Nℓ . Both Fℓ and Y
can be written as a stack of vectors,

Fℓ = (f ℓ1 f ℓ2 · · · f ℓNℓ
) (2a)

Y = (y1 y2 · · · yνL+1
), (2b)

where f ℓλ ∈ RP gives the value of one feature and yλ ∈ RP

gives the value of one output for all P input points. The
features, F1, . . . ,FL, and (for regression) the outputs, Y,
are sampled from a Gaussian process (GP) with a covariance
which depends on the previous layer features (Fig. 1 top),

P (Fℓ|Fℓ−1) =
∏Nℓ

λ=1N
(
f ℓλ;0,K(G(Fℓ−1))

)
(3a)

P (Y|FL) =
∏νL+1

λ=1 N
(
yλ;0,K(G(FL)) + σ2I

)
.

(3b)

Note we only use the regression likelihood (3b) to give a
concrete example; we could equally use an alternative like-
lihood e.g. for classification (Appendix B). The distinction
between DGPs and BNNs arises through the choice of K(·)
and G(·). For BNNs, see Appendix A. For DGPs, G(·),
which takes the features and computes the corresponding
P × P Gram matrix, is

G(Fℓ−1) =
1

Nℓ−1

∑Nℓ−1

λ=1 f ℓ−1
λ (f ℓ−1

λ)T

= 1
Nℓ−1

Fℓ−1F
T
ℓ−1. (4)

Now, we introduce random variables representing the Gram
matrices, Gℓ−1 = G(Fℓ−1), where Gℓ−1 is a random vari-
able representing the Gram matrix at layer ℓ− 1, whereas
G(·) is a deterministic function that takes features and com-
putes the corresponding Gram matrix using Eq. (4). Finally,
K(·), transforms the Gram matrices, Gℓ−1 to the final ker-
nel. Many kernels of interest are isotropic, meaning they
depend only on the normalized squared distance between
datapoints, Rij ,

Kisotropic;ij(Gℓ−1) = kisotropic (Rij(Gℓ−1)) . (5)

Importantly, we can compute this squared distance from
Gℓ−1, without needing Fℓ−1,

Rij(G) = 1
N

∑N
λ=1

(
Fiλ − Fjλ

)2
= 1

N

∑N
λ=1

((
Fiλ

)2 − 2FiλFjλ +
(
Fjλ

)2)
= Gii − 2Gij +Gjj , (6)

where λ indexes features, i and j index datapoints and we
have omitted the layer index for simplicity. Importantly,
we are not restricted to isotropic kernels: other kernels that
depend only on the Gram matrix, such as the arccos kernels
from the infinite NN literature (Cho & Saul, 2009) can also
be used (for further details, see Aitchison et al., 2021).

4.1. BNN and DGP priors can be written purely in
terms of Gram matrices

Notice that Fℓ depends on Fℓ−1 only through Gℓ−1 =
G(Fℓ−1), and Y depends on FL only through GL =
G(FL) (Eq. 3). We can therefore write the graphical model
in terms of those Gram matrices (Fig. 1 middle).

P (Fℓ|Gℓ−1) =
∏Nℓ

λ=1N
(
f ℓλ;0,K(Gℓ−1)

)
(7a)

P (Gℓ|Fℓ) = δ (Gℓ −G(Fℓ)) (7b)

P (Y|GL) =
∏νL+1

λ=1 N
(
yλ;0,K(GL) + σ2I

)
. (7c)

where δ is the Dirac-delta, and G0 depends on X (e.g.
G0 = 1

ν0
XXT). Again, for concreteness we have used

a regression likelihood, but other likelihoods could also be
used.

Now, we can integrate Fℓ out of the model, in which case,
we get an equivalent generative model written solely in
terms of Gram matrices (Fig. 1 bottom), with

P (Gℓ|Gℓ−1) =

∫
dFℓ P (Gℓ|Fℓ) P (Fℓ|Gℓ−1) , (8)

and with the usual likelihood (e.g. Eq. 7c). This looks
intractable (and indeed, in general it is intractable). However
for DGPs, an analytic form is available. In particular, note
the Gram matrix (Eq. 4) is the outer product of IID Gaussian
distributed vectors (Eq. 3a). This matches the definition of
the Wishart distribution (Gupta & Nagar, 2018), so we have,

P (Gℓ|Gℓ−1) = Wishart
(
Gℓ;

1
Nℓ

K(Gℓ−1), Nℓ

)
(9)

log P (Gℓ|Gℓ−1) =
Nℓ−P−1

2 log |Gℓ|−Nℓ

2 log |K(Gℓ−1)|
−Nℓ

2 Tr
(
K−1(Gℓ−1)Gℓ

)
+αℓ, (10)

where

αℓ = −NℓP
2 log 2 + NℓP

2 logNℓ − log ΓP

(
Nl

2

)
(11)

is constant wrt all Gℓ and ΓP is the multivariate Gamma
function. This distribution over Gram matrices is valid for
DGPs of any width (though we need to be careful in the
low-rank setting where Nℓ < P). We are going to leverage
these Wishart distributions to understand the behaviour of
the Gram matrices in the infinite width limit.

4.2. Standard infinite width limits of DGPs lack
representation learning

We are now in a position to take a new viewpoint on the
DGP analogue of standard NNGP results (Lee et al., 2018;
Matthews et al., 2018; Hron et al., 2020; Pleiss & Cunning-
ham, 2021). We can then evaluate the log-posterior for a

3

A theory of representation learning gives a deep generalisation of kernel methods

X F1 F2 F3 Y

X G0 F1 G1 F2 G2 F3 G3 Y

X G0 G1 G2 G3 Y

Layer 1 Layer 2 Layer 3

Figure 1. The graphical model structure for each of our generative models for L = 3. Top. The standard model (Eq. 3), written purely in
terms of features, Fℓ. Middle. The standard model, including Gram matrices as random variables (Eq. 7) Bottom. Integrating out the
activations, Fℓ,

model written only in terms of Gram matrices,

log P (G1, . . . ,GL|X,Y) = log P (Y|GL)

+
∑L

ℓ=1 log P (Gℓ|Gℓ−1) + const, (12)

where const is constant and independent of G1 . . . ,GL.
Then we take the limit of infinite width,

Nℓ = N νℓ for ℓ ∈ {1, . . . , L} with N → ∞.
(13)

This limit modifies log P (Gℓ|Gℓ−1) (Eq. 9), but does not
modify G1, . . . ,GL in Eq. (12) as we get to choose the
values of G1, . . . ,GL at which to evaluate the log-posterior.
Specifically, the log-prior, log P (Gℓ|Gℓ−1) (Eq. 9), scales
with Nℓ and hence with N . To get a finite limit, we therefore
need to divide by N ,

lim
N→∞

1
N log P (Gℓ|Gℓ−1) (14)

= νℓ

2

(
log
∣∣K−1(Gℓ−1)Gℓ

∣∣− Tr
(
K−1(Gℓ−1)Gℓ

))
+ lim

N→∞
αℓ

N

= −νℓ DKL (N (0,Gℓ)∥N (0,K(Gℓ−1))) + const,
(15)

We justify that limN→∞ αℓ/N exists and is constant in
Appendix C. Remarkably limit (14) can be written as the
KL-divergence between two multivariate Gaussians. In con-
trast, the log likelihood, log P (Y|GL), is constant wrt N
(Eq. 7c), so limN→∞

1
N log P (Y|GL) = 0. The limiting

log-posterior is thus,

lim
N→∞

1
N log P (G1, . . . ,GL|X,Y) =

−
∑L

ℓ=1νℓ DKL (N (0,Gℓ)∥N (0,K(Gℓ−1)))+const .
(16)

This form highlights that the log-posterior scales with N , so
in the limit as N → ∞, the posterior converges to a point
distribution at the global maximum, denoted G∗

1, . . . ,G
∗
L,

(see Appendix D for a formal discussion of weak conver-
gence),

lim
N→∞

P (G1, . . . ,GL|X,Y) =
∏L

ℓ=1δ (Gℓ −G∗
ℓ) .

(17)

Moreover, it is evident from the KL-divergence form for
the log-posterior (Eq. 16) that the unique global maximum
can be computed recursively as G∗

ℓ = K(G∗
ℓ−1), with e.g.

G∗
0 = 1

ν0
XXT . Thus, the limiting posterior over Gram

matrices does not depend on the training targets, so there is
no possibility of representation learning (Aitchison, 2020).
This is concerning as the successes of modern deep learning
arise from flexibly learning good top-layer representations.

4.3. The Bayesian representation learning limit

In the previous section, we saw that standard infinite width
limits eliminate representation learning because as N → ∞
the log-prior terms, log P (Gℓ|Gℓ−1), in Eq. (12) domi-
nated the log-likelihood, P (Y|GL), and the likelihood is
the only term that depends on the labels. We therefore in-
troduce the “Bayesian representation learning limit” which
retains representation learning. The Bayesian representation
learning limit sends the number of output features, NL+1,
to infinity as the layer-widths go to infinity,

Nℓ = N νℓ for ℓ ∈ {1, . . . , L+ 1} with N → ∞.
(18)

Importantly, the Bayesian representation learning limit gives
a valid probabilistic model with a well-defined posterior,
arising from the prior, (Eq. 8) and a likelihood which as-
sumes each output channel is IID,

P (Ỹ|GL) =
∏NL+1

λ=1 N
(
ỹλ;0,K(GL) + σ2I

)
. (19)

where Ỹ ∈ RP×NL+1 is infinite width (Eq. 18) whereas
the usual DGP data, Y ∈ RP×νL+1 , is finite width. Of
course, infinite-width data is unusual if not unheard-of. In
practice, real data, Y ∈ RP×νL+1 , almost always has a
finite number of features, νL+1. How do we apply the DKM
to such data? The answer is to define Ỹ as N copies of
the underlying data, Y, i.e. Ỹ =

(
Y · · · Y

)
. As each

channel is assumed to be IID (Eq. 7c and 19) the likelihood
is N times larger,

log P (Ỹ|GL) = N log P (Y|GL) , (20)

The log-posterior in the Bayesian representation learning
limit is very similar to the log-posterior in the standard

4

A theory of representation learning gives a deep generalisation of kernel methods

in
it

DK
M

 (N
NG

P) G1 K(G1) G2 K(G2)

in
it

DG
P

tra
in

ed
 D

GP

1 50
index

tra
in

ed
 D

KM

1 50
index

1 50
index

1 50
index

1 50
index

1

50

in
de

x

K(G0)

1 50
index

G3

1

0

1

Figure 2. A two hidden layer DGP with 1024 units per hidden layer and DKM with squared exponential kernels match closely. The data
was the first 50 datapoints of the yacht dataset. The first column, K0 is a fixed squared exponential kernel applied to the inputs, and the
last column, G3 = yyT is the fixed output Gram matrix. The first row is the DKM initialization at the prior Gram matrices and kernels
which is equivalent to an NNGP. The second row is the DGP, which is initialized by sampling from the prior. As expected, the finite width
DGP prior closely matches the infinite-width DKM initialization, which corresponds to the standard infinite width limit. The third row is
the Gram matrices and kernels for the trained DGP, which has changed dramatically relative to its initialization (second row) in order to
better fit the data. The fourth row is the Gram matrices and kernels for the optimized DKM, which closely matches those for the trained
DGP.

limit (Eq. 16). The only difference is that the likelihood,
log P (Ỹ|GL) now scales with N , so it does not disappear
as we take the limit, allowing us to retain representation
learning,

L(G1, . . . ,GL) (21)

= lim
N→∞

1
N log P (G1, . . . ,GL|X, Ỹ) + const,

= log P (Y|GL)

−
∑L

ℓ=1νℓ DKL (N (0,Gℓ)∥N (0,K(Gℓ−1))) .

Here, we denote the limiting log-posterior as
L(G1, . . . ,GL), and this forms the DKM objective.
Again, as long as the global maximum of the DKM objec-
tive is unique, the posterior is again a point distribution
around that maximum (Eq. 17). Of course, the inclusion
of the likelihood term means that the global optimum
G∗

1, . . . ,G
∗
L cannot be computed recursively, but instead

we need to optimize, e.g. using gradient descent (see
Sec. 4.7). Unlike in the standard limit (Eq. 16), it is no
longer possible to guarantee uniqueness of the global
maximum. We can nonetheless say that the posterior

converges to a point distribution as long as the global
maximum of L(G1, . . . ,GL) is unique, (i.e. we can have
any number of local maxima, as long as they all lie below
the unique global maximum). We do expect the global
maximum to be unique in most practical settings: we know
the maximum is unique when the prior dominates (Eq. 16),
in Appendix K, we prove uniqueness for linear models,
and in Appendix L, we give a number of experiments in
nonlinear models in which optimizing from very different
initializations found the same global maximum, indicating
uniqueness in practical settings.

4.4. The exact DGP posterior over features is
multivariate Gaussian

Above, we noted that the DGP posterior over Gram matri-
ces in the Bayesian representation learning limit is a point
distribution, as long as the DKM objective has a unique
global maximum. Remarkably, in this setting, the corre-
sponding posterior over features is multivariate Gaussian

5

A theory of representation learning gives a deep generalisation of kernel methods

5 0 5
feature

0.0

0.3

0.6

de
ns

ity

a

= 1

5 0 5
feature

= 2

3 0 3
input 1

3

0

3

in
pu

t 2

b

= 1

3 0 3
input 1

= 2

0.0

0.5

1.0

RM
SE

c boston yacht concrete

on
e-

la
ye

r

energy

21 23 25 27 29 211

width

0.0

0.5

1.0

RM
SE

G1
G2

21 23 25 27 29 211

width
21 23 25 27 29 211

width
21 23 25 27 29 211

width

tw
o-

la
ye

r

0.0

0.2

0.0

0.2

Figure 3. Wide DGP posteriors converge to the DKM. Here, we trained DGPs with Langevin sampling (see Appendix G), and compared
to a trained DKM. a Marginal distribution over features for one input datapoint for a two-layer DGP trained on a subset of yacht. We
used a width of N1...L = 1024 and ν1...L = 5 in all plots to ensure that the data had a strong effect on the learned representations. The
marginals (blue histogram) are very close to Gaussian (the red line shows the closest fitted Gaussian). Remember that the true posterior
over features is IID (Eq. 36), so each column aggregates the distribution over features (and over 10 parallel chains with 100 samples from
each chain) for a single input datapoint. b The 2D marginal distributions for the same DGP for two input points (horizontal and vertical
axes). c Element-wise RMSE (normalized Frobenius distance) between Gram matrices from a trained DKM compared to trained DGPs of
increasing width. The DGP Gram matrices converge to the DKM solution as width becomes larger.

(see Appendix E for the full derivation),

P
(
f ℓλ|X,y

)
= N

(
f ℓλ;0,G

∗
ℓ

)
(22)

While such a simple result might initially seem remarkable,
it should not surprise us too much. In particular, the prior
is Gaussian (Eq. 3). In addition, in Fig. 1 (middle), we
saw that the next layer features depend on the current layer
features only through the Gram matrices, which are just the
raw second moment of the features, Eq. (4). Thus, in effect
the likelihood only constrains the raw second moments of
the features. Critically, that constraints on the raw second
moment are tightly connected to Gaussian distributions:
under the MaxEnt framework, a Gaussian distribution arises
by maximizing the entropy under constraints on the raw
second moment of the features (Jaynes, 2003). Thus it is
entirely plausible that a Gaussian prior combined with a
likelihood that “constrains” the raw second moment would
give rise to Gaussian posteriors (though of course this is not
a proof; see Appendix E for the full derivation).

Finally, note that we appear to use Gℓ or G∗
ℓ in two separate

senses: as 1
Nℓ

FℓF
T
ℓ in Eq. (4) and as the posterior covari-

ance in the Bayesian representation learning limit (Eq. 22).
In the infinite limit, these two uses are consistent. In partic-
ular, consider the value of Gℓ defined by Eq. (4) under the

posterior,

Gℓ = lim
N→∞

1
Nℓ

∑Nℓ

λ=1f
ℓ
λ(f

ℓ
λ)

T

= EP(fℓλ|X,y)
[
f ℓλ(f

ℓ
λ)

T
]
= G∗

ℓ . (23)

The second equality arises by noticing that we are comput-
ing the average of infinitely many terms, f ℓλ(f

ℓ
λ)

T , which
are IID under the true posterior (Eq. 22), so we can apply
the law of large numbers, and the final expectation arises by
computing moments under Eq. (22).

4.5. The DKM objective gives intuition for
representation learning

The form for the DKM objective in Eq. (21) gives a strong
intuition for how representation learning occurs in deep
networks. In particular, the likelihood, log P (Y|GL), en-
courages the model to find a representation giving good
performance on the training data. At the same time,
the KL-divergence terms keep the posterior over features,
N (0,Gℓ), (Eq. 22) close to the prior N (0,K(Gℓ−1))
(Eq. 3a). This encourages the optimized representations, Gℓ,
to lie close to their value under the standard infinite-width
limit, K(Gℓ−1). We could use any form for the likelihood
including classification and regression, but to understand

6

A theory of representation learning gives a deep generalisation of kernel methods

Table 1. RMSE for inducing point methods. (Equal) best methods are displayed in bold. Error bars give two stderrs for a paired test, which
uses differences in performance between that method and best method, (so there are no meaningful error bars on the best performing
method itself). The MAP objective was numerically unstable on the Boston dataset, and thus did not run to completion.

dataset P NNGP MAP L
boston 506 4.41± 0.31 — 4.35± 0.51

concrete 1,030 5.38± 0.098 5.60± 0.15 5.10
energy 768 0.83± 0.076 0.73± 0.049 0.47
kin8nm 8,192 (7.3± 0.06)·10-2 (7.4± 0.05)·10-2 6.6·10-2

naval 11,934 (6.4± 0.6)·10-4 (5.4± 0.5)·10-4 4.6·10-4

power 9,568 3.81± 0.091 3.73± 0.14 3.58
protein 45,730 4.21± 0.029 4.30± 0.033 4.10
wine 1,599 0.68± 0.0084 0.66± 0.0067 0.64
yacht 308 0.94± 0.058 1.14± 0.077 0.58

how the likelihood interacts with the other KL-divergence
terms, it is easiest to consider regression (Eq. 7c), as this
log-likelihood can also be written as a KL-divergence,

log P (Y|GL) =

− νL+1 DKL
(
N (0,GL+1)

∥∥N (
0,K(GL) + σ2I

))
+ const (24)

Thus, the likelihood encourages K(GL)+σ2I to be close to
the covariance of the data, GL+1 = 1

νL+1
YYT , while the

DGP prior terms encourage all Gℓ to lie close to K(Gℓ−1).
In combination, we would expect the optimal Gram matrices
to “interpolate” between the input kernel, G0 = 1

ν0
XXT

and the output kernel, GL+1.

To make the notion of interpolation explicit, we consider
σ2 = 0 with a linear kernel, K(Gℓ−1) = Gℓ−1, so named
because it corresponds to a linear neural network layer. With
this kernel and with all νℓ = ν, there is an analytic solu-
tion for the (unique) optimum of the DKM objective (Ap-
pendix K.1),

G∗
ℓ = G0

(
G−1

0 GL+1

)ℓ/(L+1)
, (25)

which explicitly geometrically interpolates between G0 and
GL+1. Of course, this discussion was primarily for DGPs,
but the exact same intuitions hold for BNNs, in that maxi-
mizing the DKM objective finds a sequence of Gram matri-
ces, G∗

1, . . . ,G
∗
L that interpolate between the input kernel,

G0 and the output kernel, GL+1. The only difference is
in details of P (Gℓ|Gℓ−1), and specifically as slight differ-
ences in the KL-divergence terms (see below).

4.6. The DKM objective mirrors representation
learning in finite networks

Here, we confirm that the optimizing DKM objective for an
infinite network matches doing inference in wide but finite-
width networks using Langevin sampling (see Appendix G
for details).

We began by looking at DGPs, and confirming that the
posterior marginals are Gaussian (Eq. 22; Fig. 3ab). Then,
we confirmed that the representations match closely for
infinite-width DKMs (Fig. 2 top and bottom rows) and finite-
width DGPs (Fig. 2 middle two rows), both at initialization
(Fig. 2 top two rows) and after training to convergence
(Fig. 2 bottom two rows). Note that the first column, K0 is
a squared exponential kernel applied to the input data, and
G3 = yyT is the output Gram matrix (in this case, there is
only one output feature).

To confirm that the match improves as the DGP gets wider,
we considered the RMSE between elements of the Gram
matrices for networks of different widths (x-axis) for differ-
ent UCI datasets (columns) and different numbers of layers
(top row is one-layer, bottom row is two-layers; Fig. 3c). In
most cases, we found a good match as long as the width
was at least 128, which is around the width of typical fully
connected neural network, but is a little larger than typical
DGP widths (e.g. Damianou & Lawrence, 2013; Salimbeni
& Deisenroth, 2017).

4.7. The sparse deep kernel machine as a deep
generalisation of kernel methods

DGPs in the Bayesian representation learning limit consti-
tute a deep generalisation of kernel methods, with a very
flexible learned kernel, which we call the deep kernel ma-
chine (DKM; which was introduced earlier just in the con-
text of the objective). Here, we design a sparse DKM, in-
spired by sparse methods for DGPs (Damianou & Lawrence,
2013; Salimbeni & Deisenroth, 2017) (Appendix M). The
sparse DKM scales linearly in the number of datapoints, P ,
as opposed to cubic scaling of the plain DKM (similar to
the cubic scaling in most naive kernel methods).

We compared DKMs (Eq. 21), MAP over features (Sec. F)
for DGPs, and an NNGP (specifically, an infinite width
DGP). The NNGP mirrored the structure of the deep ker-

7

A theory of representation learning gives a deep generalisation of kernel methods

nel machine but where the only flexibility comes from the
hyperparameters. Formally, this model can be obtained
by setting, Gℓ = K(Gℓ−1) and is denoted “Kernel Hy-
per” in Table 1. We applied these methods to UCI datasets
(Gal & Ghahramani, 2016) using a two hidden layer archi-
tecture, with a kernel inspired by DGP skip-connections,
K(Gℓ) = wℓ

1Gℓ +wℓ
2Ksqexp(Gℓ). Here, wℓ

1, wℓ
2 and σ are

hyperparameters, and Ksqexp(Gℓ) is a squared-exponential
kernel.

We used 300 inducing points fixed to a random subset of the
training data and not optimised during training. We used
the Adam optimizer with a learning rate of 0.001, full-batch
gradients and 5000 iterations for smaller datasets and 1000
iterations for larger datasets (kin8nm, naval and protein).

We found that the deep kernel machine objective gave better
performance than MAP, or the hyperparameter optimization
baseline (Tab. 1). Note that these numbers are not directly
comparable to those in the deep GP literature (Salimbeni
& Deisenroth, 2017), as deep GPs have a full posterior so
offer excellent protection against overfitting, while DKMs
give only a point estimate.

5. Conclusion
We introduced the Bayesian representation learning limit,
a new infinite-width limit for BNNs and DGPs that retains
representation learning. Representation learning in this limit
is described by the intuitive DKM objective, which is com-
posed of a log-likelihood describing performance on the
task (e.g. classification or regression) and a sum of KL-
divergences keeping representations at every layer close
to those under the infinite-width prior. For DGPs, the ex-
act posteriors are IID across features and are multivariate
Gaussian, with covariances given by optimizing the DKM
objective. Empirically, we found that the distribution over
features and representations matched those in wide by finite
DGPs. We argued that DGPs in the Bayesian representa-
tion learning limit form a new class of practical deep kernel
method: DKMs. We introduce sparse DKMs, which scale
linearly in the number of datapoints. Finally, we give the ex-
tension for BNNs where the exact posteriors are intractable
and so must be approximated (Appendix E.1).

References
Aitchison, L. Why bigger is not always better: on finite and

infinite neural networks. In International Conference on
Machine Learning, pp. 156–164. PMLR, 2020.

Aitchison, L., Yang, A. X., and Ober, S. W. Deep ker-
nel processes. In International Conference on Learning
Representations, 2021.

Antognini, J. M. Finite size corrections for neural network

gaussian processes. In ICML Workshop on Theoretical
Physics for Deep Learning, 2019.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Cai, T. T. and Zhang, L. High-dimensional gaussian copula
regression: Adaptive estimation and statistical inference.
Statistica Sinica, pp. 963–993, 2018.

Cho, Y. and Saul, L. K. Kernel methods for deep learning.
In NIPS, pp. 342–350. Curran Associates, Inc., 2009.

Damianou, A. and Lawrence, N. D. Deep gaussian pro-
cesses. In Artificial intelligence and statistics, pp. 207–
215. PMLR, 2013.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G.
Neural spline flows. volume 32, 2019.

Dyer, E. and Gur-Ari, G. Asymptotics of wide
networks from feynman diagrams. arXiv preprint
arXiv:1909.11304, 2019.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning.
In International Conference on Machine Learning, 2016.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow gaussian pro-
cesses. In International Conference on Learning Repre-
sentations, 2018.

Gupta, A. K. and Nagar, D. K. Matrix variate distributions.
Chapman and Hall/CRC, 2018.

Halverson, J., Maiti, A., and Stoner, K. Neural networks
and quantum field theory. Machine Learning: Science
and Technology, 2(3):035002, 2021.

Hanin, B. and Nica, M. Finite depth and width cor-
rections to the neural tangent kernel. arXiv preprint
arXiv:1909.05989, 2019.

Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel meth-
ods in machine learning. The annals of statistics, pp.
1171–1220, 2008.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Horn, R. A., Horn, R. A., and Johnson, C. R. Topics in
matrix analysis. Cambridge university press, 1994.

8

A theory of representation learning gives a deep generalisation of kernel methods

Hron, J., Bahri, Y., Novak, R., Pennington, J., and Sohl-
Dickstein, J. Exact posterior distributions of wide
bayesian neural networks. In ICML Workshop on Un-
certainty and Ro- bustness in Deep Learning, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Jaynes, E. T. Probability theory: The logic of science.
Cambridge university press, 2003.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington,
J., and Sohl-Dickstein, J. Deep neural networks as gaus-
sian processes. In International Conference on Learning
Representations, 2018.

Li, Q. and Sompolinsky, H. Statistical mechanics of deep
linear neural networks: The back-propagating renormal-
ization group. arXiv preprint arXiv:2012.04030, 2020.

Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In International Conference on
Learning Representations, 2018.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field
view of the landscape of two-layer neural networks. Pro-
ceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018.

Milsom, E., Anson, B., and Aitchison, L. Convolutional
deep kernel machines. 2023.

Naveh, G. and Ringel, Z. A self consistent theory of gaus-
sian processes captures feature learning effects in finite
cnns. arXiv preprint arXiv:2106.04110, 2021.

Naveh, G., Ben-David, O., Sompolinsky, H., and Ringel,
Z. Predicting the outputs of finite networks trained with
noisy gradients. arXiv preprint arXiv:2004.01190, 2020.

Neal, R. M. Priors for infinite networks. In Bayesian
Learning for Neural Networks, pp. 29–53. Springer, 1996.

Nguyen, P.-M. and Pham, H. T. A rigorous framework for
the mean field limit of multilayer neural networks. arXiv
preprint arXiv:2001.11443, 2020.

Nguyen, Q. On connected sublevel sets in deep learning.
In International Conference on Machine Learning, pp.
4790–4799. PMLR, 2019.

Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G., Hron, J.,
Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J.
Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Conference
on Learning Representations, 2019.

Ober, S., Anson, B., Milsom, E., and Aitchison, L. An
improved variational approximate posterior for the deep
wishart process. Conference on Uncertainty in Artificial
Intelligence, 2023. In press.

Ober, S. W. and Aitchison, L. A variational approximate
posterior for the deep wishart process. arXiv preprint
arXiv:2107.10125, 2021.

Pleiss, G. and Cunningham, J. P. The limitations of large
width in neural networks: A deep gaussian process per-
spective. Advances in Neural Information Processing
Systems, 34, 2021.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International Conference on Machine
Learning, pp. 1278–1286. PMLR, 2014.

Roberts, D. A., Yaida, S., and Hanin, B. The principles of
deep learning theory. arXiv preprint arXiv:2106.10165,
2021.

Salimbeni, H. and Deisenroth, M. Doubly stochastic vari-
ational inference for deep gaussian processes. arXiv
preprint arXiv:1705.08933, 2017.

Seroussi, I. and Ringel, Z. Separation of scales and a ther-
modynamic description of feature learning in some cnns.
arXiv preprint arXiv:2112.15383, 2021.

Shawe-Taylor, J. and Cristianini, N. Kernel methods for
pattern analysis. Cambridge university press, 2004.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks: A central limit theorem. Stochastic Pro-
cesses and their Applications, 130(3):1820–1852, 2020a.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks: A law of large numbers. SIAM Journal
on Applied Mathematics, 80(2):725–752, 2020b.

9

A theory of representation learning gives a deep generalisation of kernel methods

Smola, A. J. and Schölkopf, B. Learning with kernels. MIT
Press, 1998.

Williams, C. Computing with infinite networks. Advances
in neural information processing systems, 9, 1996.

Wu, C., Masoomi, A., Gretton, A., and Dy, J. Deep layer-
wise networks have closed-form weights. arXiv preprint
arXiv:2202.01210, 2022.

Yaida, S. Non-gaussian processes and neural networks at
finite widths. In Mathematical and Scientific Machine
Learning, pp. 165–192. PMLR, 2020.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

Yang, G. and Hu, E. J. Feature learning in infinite-width
neural networks. In International Conference on Machine
Learning, 2021.

Zavatone-Veth, J. and Pehlevan, C. Exact marginal prior
distributions of finite bayesian neural networks. Advances
in Neural Information Processing Systems, 34, 2021.

Zavatone-Veth, J. A., Canatar, A., and Pehlevan, C. Asymp-
totics of representation learning in finite bayesian neural
networks. arXiv preprint arXiv:2106.00651, 2021.

10

A theory of representation learning gives a deep generalisation of kernel methods

A. Bayesian neural network extension
Consider a neural network of the form,

F1 = XW0 (26a)
Fℓ = ϕ(Fℓ−1)Wℓ−1 for ℓ ∈ {2, . . . , L+ 1} (26b)

W ℓ
λµ ∼ N

(
0, 1

Nℓ

)
W 0

λµ ∼ N
(
0, 1

ν0

)
(26c)

where W0 ∈ Rν0×N1 , Wℓ ∈ RNℓ×Nℓ+1 and WL+1 ∈ RNL×νL+1 are weight matrices with independent Gaussian priors
and ϕ is the usual pointwise nonlinearity.

In principle, we could integrate out the distribution over Wℓ to find P (Fℓ|Fℓ−1)

P (Fℓ|Fℓ−1) =

∫
dWℓ P (Wℓ) δ (Fℓ − ϕ(Fℓ−1)Wℓ−1) , (27)

where δ is the Dirac delta. In practice, it is much easier to note that conditioned on Fℓ−1, the random variables interest,
Fℓ are a linear combination of Gaussian distributed random variables, Wℓ. Thus, Fℓ are themselves Gaussian, and this
Gaussian is completely characterised by its mean and variance. We begin by writing the feature vectors, f ℓλ in terms of
weight vectors, wℓ

λ,

f ℓλ = ϕ(Fℓ−1)w
ℓ
λ. (28)

As the prior over weight vectors is IID, the prior over features (conditioned on Fℓ−1) is also IID,

P (W) =

Nℓ∏
λ=1

P
(
wℓ

λ

)
=

Nℓ∏
λ=1

N
(
wℓ

λ;0,
1

Nℓ−1
I
)
, (29)

P (Fℓ|Fℓ−1) =

Nℓ∏
λ=1

P
(
f ℓλ|Fℓ−1

)
. (30)

The mean of f ℓλ conditioned on Fℓ−1 is 0,

E
[
f ℓλ|Fℓ−1

]
= E

[
ϕ(Fℓ−1)w

ℓ
λ|Fℓ−1

]
= ϕ(Fℓ−1)E

[
wℓ

λ|Fℓ−1

]
= ϕ(Fℓ−1)E

[
wℓ

λ

]
= 0. (31)

The covariance of f ℓλ conditioned on Fℓ−1 is,

E
[
f ℓλ
(
f ℓλ
)T |Fℓ−1

]
= E

[
ϕ(Fℓ−1)w

ℓ
λ

(
ϕ(Fℓ−1)w

ℓ
λ

)T |Fℓ−1

]
= ϕ(Fℓ−1)E

[
wℓ

λ(w
ℓ
λ)

T
]
ϕT (Fℓ−1)

= 1
Nℓ−1

ϕ(Fℓ−1)ϕ
T (Fℓ−1) (32)

This mean and variance imply that Eq. (3) captures the BNN prior, as long as we choose KBNN(·) and GBNN(·) such that,

KBNN(GBNN(Fℓ−1)) =
1

Nℓ−1

∑Nℓ−1

λ=1 ϕ(f ℓ−1
λ)ϕT (f ℓ−1

λ), (33)

Specifically, we choose the kernel function, KBNN(·) to be the identity function, and GBNN(·) to be the same outer product
as in the main text for DGPs (Eq. 4), except where we have applied the NN nonlinearity,

KBNN(Gℓ−1) = Gℓ−1, (34)

GBNN(Fℓ−1) =
1

Nℓ−1

∑Nℓ−1

λ=1 ϕ(f ℓ−1
λ)ϕT (f ℓ−1

λ). (35)

This form retains the average-outer-product form for GBNN(·), which is important for our derivations.

Now, Eq. (21) only gave the DKM objective for DGPs. To get a more general form, we need to consider the implied
posteriors over features. This posterior is IID over features (Appendix E.1), and for DGPs, it is multivariate Gaussian
(Appendix E.2),

P (Fℓ|Gℓ−1,Gℓ) =
∏Nℓ

λ=1 P
(
f ℓλ|Gℓ−1,Gℓ

)
=

for DGPs

∏Nℓ

λ=1N
(
f ℓλ;0,Gℓ

)
. (36)

11

A theory of representation learning gives a deep generalisation of kernel methods

in
it

G1 G2 G3 G4

vD
KM

 (f
lo

w)

1 50index

vD
KM

 (M
vG

)

1 50index 1 50index 1 50index

10 0 10
feature

0.0

0.5

de
ns

ity

10 0 10
feature

10 0 10
feature

10 0 10
feature

1 50index

1

50

in
de

x

G0

1 50index

G5

4

0

4

a

b

in
it

G1 G2 G3 G4

vD
KM

 (f
lo

w)

1 50index

vD
KM

 (M
vG

)

1 50index 1 50index 1 50index

10 0 10
feature

0.0

0.5

de
ns

ity

10 0 10
feature

10 0 10
feature

10 0 10
feature

1 50index

1

50

in
de

x

G0

1 50index

G5

4

0

4

a

b

BNN
vDKM (flow)

BN
N

Figure 4. The variational DKM closely matches the BNN true posterior obtained with Langevin sampling. a Comparison of Gram
matrices. The first two rows show Gram matrices for BNN, with the first row being a random initialization, and the second row being
the posterior. The last two rows show the Gram matrices from variational DKMs with a flow approximate posterior (third row) and a
multivariate Gaussian approximate posterior (fourth row). In optimizing the variational DKM, we used Eq. (39) with 216 Monte-Carlo
samples. The Gram matrices for the flow posterior (third row) closely match those from the BNN posterior (second row), while those
for a multivariate Gaussian approximate posterior (fourth row) do not match. b Marginal distributions over features at each layer for
one input datapoint estimated using kernel density estimation. The note that the BNN (blue line) marginals are non-Gaussian, but the
variational DKM with a flow posterior (red line) is capable of capturing this non-Gaussianity.

Now, we can see that Eq. (21) is a specific example of a general expression. In particular, note that the distribution on the
left of the KL-divergence in Eq. (21) is the DGP posterior over features (Eq. 36). Thus, the DKM objective can alternatively
be written,

L(G1, . . . ,GL) = log P (Y|GL)−
∑L

ℓ=1νℓ DKL
(
P
(
f ℓλ|Gℓ−1,Gℓ

)∥∥N (0,K(Gℓ−1))
)
, (37)

and this form holds for both BNNs and DGPs (Appendix E.3). As in DGPs, the log-posterior is N times L(G1, . . . ,GL)
(Eq. 21), so as N is taken to infinity, the posterior for all models becomes a point distribution (Eq. 17) if L(G1, . . . ,GL)
has a unique global maximum.

In practice, the true posteriors required to evaluate Eq. (37) are intractable for BNNs, raising the question of how to develop

12

A theory of representation learning gives a deep generalisation of kernel methods

accurate approximations for BNNs. We develop a variational DKM (vDKM) by taking inspiration from variational inference
(Jordan et al., 1999; Blei et al., 2017) (Appendix E.4). Of course, variational inference is usually impossible in infinite width
models, because it is impossible to work with infinitely large latent variables. Our key insight is that as the true posterior
factorises across features (Appendix E.1), we can work with the approximate posterior over only a single feature vector,
Qθℓ

(
f ℓλ
)
, where θℓ are the parameters and f ℓλ ∈ RP is finite. This approach allows us to define a vDKM objective, which

bounds the true DKM objective,

L(Gθ(θ1), . . . ,Gθ(θL)) ≥ LV(θ1, . . . , θL), (38)

LV(θ1, . . . , θL) = log P (Y|Gθ(θL))−
∑L

ℓ=1νℓ DKL
(
Qθℓ

(
f ℓλ
)∥∥N (0,K(Gθ(θℓ−1)))

)
with equality when the approximate posteriors, Qθℓ

(
f ℓλ
)
, equal the true posteriors, P

(
f ℓλ|Gℓ−1,Gℓ

)
. The only subtlety

here is that it is practically difficult to design flexible approximate posteriors Qθℓ

(
f ℓλ
)

where we explicitly specify and
optimize the Gram matrices. Instead we optimize general approximate posterior parameters, θ, and compute the implied
Gram matrices,

Gθ(θℓ) =
1
Nℓ

lim
N→∞

∑Nℓ

λ=1ϕ(f
ℓ
λ)ϕ

T (f ℓλ) = EQθℓ
(fℓλ)

[
ϕ(f ℓλ)ϕ

T (f ℓλ)
]
. (39)

where f ℓλ are sampled from Qθℓ

(
f ℓλ
)
, and the second equality arises from the law of large numbers. We can compute the

Gram matrix analytically in simple cases (such as a multivariate Gaussian), but in general we can always estimate the Gram
matrix using a Monte-Carlo estimate of Eq. (39).

Finally, we checked that the vDKM objective closely matched the posterior under neural networks. This is a bit more
involved, as the marginal distributions over features are no longer Gaussian (Fig. 4b). To capture these non-Gaussian
marginals, we used a simple normalizing flow. In particular, we first sampled zℓλ ∼ N (µℓ,Σℓ) from a multivariate
Gaussian with a learned mean, µℓ, and covariance, Σℓ then we obtained features, f ℓλ = f(zℓλ), by passing zℓλ through f , a
learned pointwise function parameterised as in a neural spline flow (Durkan et al., 2019). The resulting distribution is a
high-dimensional Gaussian copula (e.g. Cai & Zhang, 2018). As shown in Fig. 4, vDKM with multivariate Gaussian (MvG)
approximate posterior cannot match the Gram matrices learned by BNN (Fig. 4a), while vDKM with flow is able to capture
the non-Gaussian marginals (Fig. 4b) and thus match the learned Gram matrices with BNN.

B. General likelihoods that depend only on Gram matrices
We consider likelihoods which depend only on the top-layer Gram matrix, GL,

P (Y|GL) =

∫
dFL+1 P (Y|FL+1) P (FL+1|GL) (40)

where,

P (FL+1|GL) =

NL+1∏
λ=1

N
(
fL+1
λ ;0,K(GL)

)
. (41)

This family of likelihoods captures regression,

P
(
yλ|fL+1

λ

)
= N

(
yL+1
λ ; fL+1

λ , σ2I
)
, (42)

(which is equivalent to the model used in the main text Eq. 3b) and e.g. classification,

P (y|F) = Categorical (y; softmax (FL+1)) , (43)

among many others.

C. Asymptotic behaviour of logP (Gl | Gl−1)

To show that N−1 logP (Gℓ | Gℓ−1) has a valid limit, we need to show that limN→∞ αℓ/N exists (where αℓ is defined in
Eq. 11). This can be done using the asymptotic expansion of the Gamma function, Γ1, and noting that we can write the

13

A theory of representation learning gives a deep generalisation of kernel methods

0 2000 4000 6000 8000 10000
N

25

30

35

40

/N

Figure 5. Convergence of αℓ
Nℓ

, with P = 50 and Nℓ ≥ 100.

multivariate Gamma function, ΓP , in terms of Γ1,

log Γ1(x) = x log x− x+ 1
2 log 2πx+O(x−1) as x → ∞, (44)

ΓP (x) = πP (P−1)/4
P∏

j=1

Γ1

(
x+ 1−j

2

)
. (45)

It follows that

1
N log ΓP

(
Nl

2

)
= O(N−1) +N−1

P∑
j=1

log Γ1

(
Nl+1−j

2

)
(46)

= o(1) +N−1
P∑

j=1

{(
Nl+1−j

2

)
log
(

Nl+1−j
2

)
− Nl+1−j

2 + 1
2 log πNl +O(N−1)

}
(47)

= o(1) + const+

P∑
j=1

νℓ

2 log (Nℓ + 1− j) , (48)

which gives

αℓ

N = const+ νℓ

2

P∑
j=1

log
(

Nℓ

Nℓ+1−j

)
+ o(1) = const+o(1) (49)

as desired. Figure 5 confirms the convergence of αℓ

Nℓ
= 1

νℓ

αℓ

N numerically.

D. Weak convergence
Here, we give a formal argument for weak convergence of the DGP posterior over Gram matrices to a point distribution in
the limit as N → ∞,

PN (G1, . . . ,GL|X, Ỹ)
d→

L∏
ℓ=1

δ(Gℓ −G∗
ℓ) (50)

where we have included N in the subscript of the probability distribution as a reminder that this distribution depends on the
width. By the Portmanteau theorem, weak convergence is established if all expectations of bounded continuous functions, f ,
converge

lim
N→∞

EPN (G1,...,GL|X,Ỹ) [f(G1, . . . ,GL)] = f(G∗
1, . . . ,G

∗
L). (51)

To show this in a reasonably general setting (which the DGP posterior is a special case of), we consider an unnormalized
probability density of the form h(g)eNL(g), and compute the moment as,

E [f(g)] =

∫
G dg f(g)h(g)eNL(g)∫

G dg h(g)eNL(g)
(52)

14

A theory of representation learning gives a deep generalisation of kernel methods

where g = (G1, . . . ,GL) is all L positive semi-definite matrices, Gℓ. Thus, g ∈ G, where G is a convex set.

We consider the superlevel set A(∆) = {g|L(g) ≥ L(g∗)−∆}, where g∗ is the unique global optimum. We select out a
small region, A(∆), surrounding the global maximum, and compute the integral as,

E [f(g)] =

∫
A(∆)

dg f(g)h(g)eNL(g) +
∫
G\A(∆)

dg f(g)h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g) +
∫
G\A(∆)

dg h(g)eNL(g)
(53)

And divide the numerator and denominator by
∫
A(∆)

dg h(g)eNL(g),

E [f(g)] =

∫
A(∆)

dg f(g)h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g) +

∫
G\A(∆)

dg f(g)h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)

1 +

∫
G\A(∆)

dg h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)

(54)

Now, we deal with each term separately. The ratio in the denominator can be lower-bounded by zero, and upper bounded by
considering a smaller superlevel set, A(∆/2), in the denominator,

0 ≤

∫
G\A(∆)

dg h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)
≤

∫
G\A(∆)

dg h(g)eNL(g)∫
A(∆/2)

dg h(g)eNL(g)

≤
eN(L(g∗)−∆)

∫
G\A(∆)

dg h(g)

eN(L(g∗)−∆/2)
∫
A(∆/2)

dg h(g)

=

∫
G\A(∆)

dg h(g)∫
A(∆/2)

dg h(g)
e−N∆/2 (55)

The upper bound converges to zero (as h(g) is independent of N), and therefore by the sandwich theorem the ratio of
interest also tends to zero.

The second ratio in the numerator can be rewritten as,∫
G\A(∆)

dg f(g)h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)
=

∫
G\A(∆)

dg f(g)h(g)eNL(g)∫
G\A(∆)

dg h(g)eNL(g)

∫
G\A(∆)

dg h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)
(56)

The first term here is an expectation of a bounded function, f(g), so is bounded, while second term converges to zero in the
limit (by the previous result).

Finally, we consider the first ratio in the numerator,∫
A(∆)

dg f(g)h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)
(57)

which can be understood as an expectation over f(g) in the region A(∆). As f is continuous, for any ϵ > 0, we can find a
δ > 0 such that for all g with |g∗ − g| < δ, we have

f(g∗)− ϵ < f(g) < f(g∗) + ϵ. (58)

Further, because the continuous function, L(g), has a unique global optimum, g∗, for every δ > 0 we are always able to find
a ∆ > 0 such that all points g ∈ A(∆) are within δ of g∗ i.e. |g∗ − g| < δ. Thus combining the previous two facts, given
an ϵ, we are always able to find a δ such that Eq. 58 holds for all g with |g∗ − g| < δ, and given a δ we are always able to
find a ∆ such that all g ∈ A(∆) have |g∗ − g| < δ. Hence for every ϵ > 0 we can find a ∆ > 0 such that Eq. 58 holds for
all g ∈ A(∆). Choosing the appropriate ϵ-dependent ∆ and substituting Eq. 58 into Eq. 57, ϵ also bounds the error in the
expectation,

f(g∗)− ϵ <

∫
A(∆)

dg f(g)h(g)eNL(g)∫
A(∆)

dg h(g)eNL(g)
< f(g∗) + ϵ. (59)

15

A theory of representation learning gives a deep generalisation of kernel methods

Now, we use the results in Eq. (55), Eq. (56) and Eq. (59) to take the limit of Eq. (54) (we can compose these limits by the
algebraic limit theorem as all the individual limits exist and are finite),

f(g∗)− ϵ < lim
N→∞

E [f(g)] < f(g∗) + ϵ. (60)

And as this holds for any ϵ, we have,

f(g∗) = lim
N→∞

E [f(g)] . (61)

This result is applicable to the DGP posterior over Gram matrices, as that posterior can be written as,

PN (G1, . . . ,GL|X, Ỹ) ∝ h(g)eNL(g), (62)

where L(g) is the usual DKM objective,

L(g) = L(G1, . . . ,GL) (63)

and h(g) is the remaining terms in the log-posterior which do not depend on N ,

h(g) = exp

(
−P+1

2

∑
ℓ

log |Gℓ|

)
(64)

(this requires P ≤ N so that Gℓ is full-rank).

E. General models in the Bayesian representation learning limit
Overall, our goal is to compute the integral in Eq. (8) in the limit as N → ∞. While the integral is intractable for general
models such as BNNs, we can use variational inference to reason about its properties. In particular, we can bound the
integral using the ELBO,

log P (Gℓ|Gℓ−1) ≥ ELBOℓ = EQ(Fℓ) [log P (Gℓ|Fℓ) + log P (Fℓ|Gℓ−1)− logQ (Fℓ)] . (65)

Note that Q (Fℓ) here is different from Qθℓ

(
f ℓλ
)

in the main text, both because the approximate posterior here, Q (Fℓ)
is over all features jointly, Fℓ, whereas the approximate posterior in the main text is only over a single feature, f ℓλ, and
because in the main text, we chose a specific family of distribution with parameters θℓ, while here we leave the approximate
posterior, Q (Fℓ) completely unconstrained, so that it has the flexibility to capture the true posterior. Indeed, if the
optimal approximate posterior is equal to the true posterior, Q∗ (Fℓ) = P (Fℓ|Gℓ−1,Gℓ), then the bound is tight, so
we get log P (Gℓ|Gℓ−1) = ELBO∗

ℓ . Our overall strategy is thus to use variational inference to characterise the optimal
approximate which is equal to the true posterior Q∗ (Fℓ) = P (Fℓ|Gℓ−1,Gℓ) and use the corresponding ELBO to obtain
log P (Gℓ|Gℓ−1).

E.1. Characterising exact BNN posteriors

Remember that if the approximate posterior family, Q (Fℓ) is flexible enough to capture the true posterior P (Fℓ|Gℓ−1,Gℓ),
then the Q∗ (Fℓ) that optimizes the ELBO is indeed the true posterior, the bound is tight, so the ELBO is equal to
log P (Gℓ|Gℓ−1) (Jordan et al., 1999; Blei et al., 2017). Thus, we are careful to ensure that our approximate posterior family
captures the true posterior, by ensuring that we only impose constraints on Q (Fℓ) that must hold for the true posterior,
P (Fℓ|Gℓ−1,Gℓ). In particular, note that P (Gℓ|Fℓ) in Eq. (7b) constrains the true posterior to give non-zero mass only to
Fℓ that satisfy Gℓ =

1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ). However, this constraint is difficult to handle. We therefore consider an alternative,

weaker constraint on expectations, which holds for the true posterior (the first equality below) because Eq. (7b) constrains
Gℓ =

1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ), and impose the same constraint on the approximate posterior,

Gℓ = EP(Fℓ|Gℓ,Gℓ−1)

[
1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ)

]
= EQ(Fℓ)

[
1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ)

]
. (66)

Now, we can solve for the optimal Q (Fℓ) with this constraint on the expectation. In particular, the Lagrangian is
obtained by taking the ELBO (Eq. 65), dropping the log P (Gℓ|Fℓ) term representing the equality constraint (that Gℓ =

16

A theory of representation learning gives a deep generalisation of kernel methods

1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ)) and including Lagrange multipliers for the expectation constraint, Λ, (Eq. 66) and the constraint that the

distribution must normalize to 1, Λ,

L =

∫
dFℓ Q (Fℓ) (log P (Fℓ|Gℓ−1)− logQ (Fℓ))

+ 1
2 Tr

(
Λ

(
Gℓ −

∫
dFℓ Q (Fℓ)ϕ(Fℓ)ϕ

T (Fℓ)

))
+ Λ

(
1−

∫
dFℓ Q (Fℓ)

)
(67)

Differentiating wrt Q (Fℓ), and solving for the optimal approximate posterior, Q∗ (Fℓ),

0 =
∂L

∂Q (Fℓ)

∣∣∣∣
Q∗(Fℓ)

(68)

0 = (log P (Fℓ|Gℓ−1)− logQ∗ (Fℓ))− 1− 1
2 Tr

(
Λϕ(Fℓ)ϕ

T (Fℓ)
)
− Λ (69)

Solving for logQ∗ (Fℓ),

logQ∗ (Fℓ) = log P (Fℓ|Gℓ−1)− 1
2 Tr

(
Λϕ(Fℓ)ϕ

T (Fℓ)
)
+ const . (70)

Using the cyclic property of the trace,

logQ∗ (Fℓ) = log P (Fℓ|Gℓ−1)− 1
2 Tr

(
ϕT (Fℓ)Λϕ(Fℓ)

)
+ const . (71)

Thus, logQ (Fℓ) can be written as a sum over features,

logQ∗ (Fℓ) =

Nℓ∑
λ=1

[
log P

(
f ℓλ|Gℓ−1

)
− 1

2ϕ
T (f ℓλ)Λϕ(f ℓλ)

]
+ const =

∑NL

λ=1 logQ
(
f ℓλ
)

(72)

so, the optimal approximate posterior is IID over features,

Q∗ (Fℓ) =
∏Nℓ

λ=1 Q
∗ (f ℓλ) . (73)

Remember that this approximate posterior was only constrained in expectation, and that this constraint held for the true
posterior (Eq. 66). Thus, we might think that this optimal approximate posterior would be equal to the true posterior.
However, remember that the true posterior had a tighter equality constraint, that Gℓ =

1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ), while so far we

have only imposed a weaker constraint in expectation (Eq. 66). We thus need to check that our optimal approximate posterior
does indeed satisfy the equality constraint in the limit as N → ∞. This can be shown using the law of large numbers, as f ℓλ
are IID under the optimal approximate posterior, and by using Eq. (66) for the final equality,

lim
N→∞

1
Nℓ

ϕ(Fℓ)ϕ
T (Fℓ) = lim

N→∞
1
Nℓ

Nℓ∑
λ=1

ϕ(f ℓλ)ϕ
T (f ℓλ) = EQ(fℓλ)

[
ϕ(f ℓλ)ϕ

T (f ℓλ)
]
= Gℓ. (74)

Thus, the optimal approximate posterior does meet the constraint in the limit as Nℓ → ∞, so in that limit, the true posterior,
like the optimal approximate posterior is IID across features,

P (Fℓ|Gℓ−1,Gℓ) = Q∗ (Fℓ) =
∏Nℓ

λ=1 Q
∗ (f ℓλ) =∏Nℓ

ℓ=1 P
(
f ℓλ|Gℓ−1,Gℓ

)
. (75)

E.2. Exactly multivariate Gaussian DGP posteriors

For DGPs, we have ϕ(f ℓλ) = f ℓλ, so the optimal approximate posterior is Gaussian,

logQ∗
DGP

(
f ℓλ
)
= log PDGP

(
f ℓλ|Gℓ−1

)
− 1

2 (f
ℓ
λ)

TΛf ℓλ + const (76)

= − 1
2 (f

ℓ
λ)

T
(
Λ+K−1(Gℓ−1)

)
f ℓλ + const (77)

= logN
(
f ℓλ;0,

(
Λ+K−1(Gℓ−1)

)−1
)
. (78)

17

A theory of representation learning gives a deep generalisation of kernel methods

As the approximate posterior and true posterior are IID, the constraint in Eq. (66) becomes,

Gℓ = EPDGP(fℓλ|Gℓ,Gℓ−1)
[
f ℓλ(f

ℓ
λ)

T
]
= EQ∗

DGP(fℓλ)
[
f ℓλ(f

ℓ
λ)

T
]
=
(
Λ+K−1(Gℓ−1)

)−1
. (79)

As the Lagrange multipliers are unconstrained, we can always set them such that this constraint holds. In that case both the
optimal approximate posterior and the true posterior become,

PDGP
(
f ℓλ|Gℓ−1,Gℓ

)
= Q∗

DGP

(
f ℓλ
)
= N

(
f ℓλ;0,Gℓ

)
, (80)

as required.

E.3. General form for the conditional distribution over Gram matrices

Now that we have shown that the true posterior, P (Fℓ|Gℓ−1,Gℓ) factorises, we can obtain a simple form for
log P (Gℓ|Gℓ−1). In particular, log P (Gℓ|Gℓ−1) is equal to the ELBO if we use the true posterior in place of the
approximate posterior,

lim
N→∞

1
N log P (Gℓ|Gℓ−1) = lim

N→∞
1
N EP(Fℓ|Gℓ−1,Gℓ)

[
log P (Gℓ|Fℓ) + log

P (Fℓ|Gℓ−1)

P (Fℓ|Gℓ−1,Gℓ)

]
. (81)

Under the posterior, the constraint represented by log P (Gℓ|Fℓ) is satisfied, so in the limit we can include that term in a
constant,

lim
N→∞

1
N log P (Gℓ|Gℓ−1) = lim

N→∞
1
N EP(Fℓ|Gℓ−1,Gℓ)

[
log

P (Fℓ|Gℓ−1)

P (Fℓ|Gℓ−1,Gℓ)

]
+ const . (82)

Now, we use the fact that the prior, P (Fℓ|Gℓ−1) and posterior, P (Fℓ|Gℓ−1,Gℓ), are IID across features,

lim
N→∞

1
N log P (Gℓ|Gℓ−1) = νℓ EP(fℓλ|Gℓ−1,Gℓ)

[
log

P
(
f ℓλ|Gℓ−1

)
P
(
f ℓλ|Gℓ−1,Gℓ

)]+ const (83)

and this expectation is a KL-divergence,

lim
N→∞

1
N log P (Gℓ|Gℓ−1) = −νℓ DKL

(
P
(
f ℓλ|Gℓ−1,Gℓ

)∥∥P (f ℓλ|Gℓ−1

))
+ const, (84)

which gives Eq. (37) when we combine with Eq. (12).

E.4. Parametric approximate posteriors

Eq. (75) represents a considerable simplification, as we now need to consider only a single feature, f ℓλ, rather than the joint
distribution over all features, Fℓ. However, in the general case, it is still not possible to compute Eq. (75) because the true
posterior over a single feature is still not tractable. Following the true posteriors derived in the previous section, we could
chose a parametric approximate posterior that factorises across features,

Qθ (F1, . . . ,FL) =
∏L

ℓ=1

∏Nℓ

λ=1 Qθℓ

(
f ℓλ
)
. (85)

Remember that we optimize the approximate posterior parameters, θ, directly, and set the Gram matrices as a function
of θ (Eq. 39). As before, we can bound, log P (Gℓ=Gθ(θℓ)|Gℓ−1) using the ELBO, and the bound is tight when the
approximate posterior equals the true posterior,

log P (Gℓ = Gθ(θℓ)|Gℓ−1) (86)

= EP(Fℓ|Gℓ−1,Gℓ=Gθ(θθ))

[
log P (Gℓ=Gθ(θℓ)|Fℓ) + log

P
(
Fℓ

λ|Gℓ−1

)
P (Fℓ|Gℓ−1,Gℓ=Gθ(θℓ))

]
(87)

≥ EQθ(Fℓ)

[
log P (Gℓ=Gθ(θℓ)|Fℓ) + log

P
(
Fℓ

λ|Gℓ−1

)
Qθℓ

(Fℓ)

]
. (88)

18

A theory of representation learning gives a deep generalisation of kernel methods

Now, we can cancel the log P (Gℓ = Gθ(θℓ)|Fℓ) terms, as they represent a constraint that holds both under the true
posterior, and under the approximate posterior,

EP(Fℓ|Gℓ−1,Gℓ=Gθ(θℓ)))

[
log

P (Fℓ|Gℓ−1)

P (Fℓ|Gℓ−1,Gℓ=Gθ(θℓ))

]
≥ EQθℓ

(Fℓ)

[
log

P (Fℓ|Gℓ−1)

Qθℓ
(Fℓ)

]
. (89)

Using the fact that the prior, posterior and approximate posterior are all IID over features, we can write this inequality in
terms of distributions over a single feature, f ℓλ and divide by Nℓ,

EP(fℓλ|Gℓ−1,Gℓ=Gθ(θℓ))

[
log

P
(
f ℓλ|Gℓ−1

)
P
(
f ℓλ|Gℓ−1,Gℓ=Gθ(θℓ)

)] ≥ EQθℓ
(fℓλ)

[
log

P
(
f ℓλ|Gℓ−1(θ)

)
Qθℓ

(
f ℓλ
)]

. (90)

Noting that both sides of this inequality are negative KL-divergences, we obtain,

−DKL
(
P
(
f ℓλ|Gℓ−1,Gℓ=Gθ(θℓ)

)∥∥P (f ℓλ|Gℓ−1

))
≥ −DKL

(
Qθℓ

(
f ℓλ
)∥∥P (f ℓλ|Gℓ−1

))
, (91)

which gives Eq. (38) in the main text.

F. Theoretical similarities in representation learning in finite and infinite networks
In the main text, we considered probability densities of the Gram matrices, G1, . . . ,GL. However, we can also consider
probability densities of the features, F1, . . . ,FL, for a DGP,

log P (Fℓ|Fℓ−1) = −Nℓ

2 log |K (GDGP (Fℓ−1))| − 1
2 tr

(
FT

ℓ K
−1 (GDGP (Fℓ−1))Fℓ

)
+ const . (92)

We can rewrite the density such that it is still the density of features, Fℓ, but it is expressed in terms of the DGP Gram
matrix,

log P (Fℓ|Fℓ−1) = −Nℓ

2 log |K(Gℓ−1)| − Nℓ

2 tr
(
K−1(Gℓ−1)Gℓ

)
+ const . (93)

Here, we have used the cyclic property of the trace to combine the Fℓ and FT
ℓ to form Gℓ, and we have used the fact that

our kernels can be written as a function of the Gram matrix. Overall, we can therefore write the posterior over features,
P (F1, . . . ,FL|X, Ỹ), in terms of only Gram matrices,

J (G1, . . . ,GL) =
1
N log P (F1, . . . ,FL|X, Ỹ) = log P (Y|GL) +

1
N

L∑
ℓ=1

log P (Fℓ|Fℓ−1) , (94)

substituting Eq. (93),

J (G1, . . . ,GL) = log P (Y|GL)− 1
2

∑L
ℓ=1νℓ

(
log |K(Gℓ−1)|+ tr

(
K−1(Gℓ−1)Gℓ

))
+ const . (95)

Thus, J (G1, . . . ,GL) does not depend on N , and thus the Gram matrices that maximize J (G1, . . . ,GL) are the same for
any choice of N . The only restriction is that we need Nℓ ≥ P , to ensure that the Gram matrices are full-rank.

To confirm these results, we used Adam with a learning rate of 10−3 to optimize full-rank Gram matrices with Eq. (95) and
to directly do MAP inference over features using Eq. (92). As expected, as the number of features increased, the Gram
matrix from MAP inference over features converged rapidly to that expected using Eq. (95) (Fig. 6).

G. Additional experimental details
To optimize the analytic DKM objective for DGPs and the variational DKM objective for DGPs (Figs. 3–12), we param-
eterised the Gram matrices (or covariances for the variational approximate posterior) as the product of a square matrix,
Rℓ ∈ RP×P , with itself transposed, Gℓ = 1

P RℓR
T
ℓ , and we used Adam with a learning rate of 10−3 to learn Rℓ. To

do Bayesian inference in finite BNNs and DGPs, we used Langevin sampling with 10 parallel chains, and a step size
of 10−3. Note that in certain senarios, Langevin sampling can be very slow, as the features have a Gaussian prior with
covariance K(Gℓ−1) which has some very small and some larger eigenvalues, which makes sampling difficult. Instead, we

19

A theory of representation learning gives a deep generalisation of kernel methods

0.00

0.05

0.10

0.15

0.20

RM
SE

boston yacht concrete

on
e-

la
ye

r

energy

21 23 25 27 29 211

width

0.00

0.05

0.10

0.15

0.20

RM
SE

G1
G2

21 23 25 27 29 211

width
21 23 25 27 29 211

width
21 23 25 27 29 211

width

tw
o-

la
ye

r

Figure 6. RMSE of trained Gram matrices between one-hidden-layer (first row) and two-hidden-layer (second row) DGPs of various
width trained by gradient descent and the corresponding MAP limit. Columns correspond to different datasets (trained on a subset of 50
datapoints).

reparameterised the model in terms of the standard Gaussian random variables, Vℓ ∈ RP×Nℓ . We then wrote Fℓ in terms of
Vℓ,

Fℓ = Lℓ−1Vℓ. (96)

Here, Lℓ−1 is the Cholesky of K(Gℓ−1), so K(Gℓ−1) = Lℓ−1L
T
ℓ−1. This gives an equivalent distribution P (Fℓ|Fℓ−1).

Importantly, as the prior on Vℓ is IID standard Gaussian, sampling Vℓ is much faster. To ensure that the computational cost
of these expensive simulations remained reasonable, we used a subset of 50 datapoints from each dataset.

For the DKM objective for BNNs, we used Monte-Carlo to approximate the Gram matrices,

Gθ(θℓ) ≈ 1
K

K∑
k=1

ϕ(f ℓk)ϕ
T (f ℓk). (97)

with f ℓk drawn from the appropriate approximate posterior, and K = 216. We can use the reparameterisation trick (Kingma
& Welling, 2013; Rezende et al., 2014) to differentiate through these Monte-Carlo estimates.

H. Additional comparisons with finite-width DGPs
Here, we give additional results supporting those in Sec. 4.6, Fig. 3–Fig. 12. In particular, we give the DGP representations
learned by two-layer networks on all UCI datasets (boston, concrete, energy, yacht), except those already given in the main
text Fig. 7–9.

20

A theory of representation learning gives a deep generalisation of kernel methods

in
it

DK
M

 (N
NG

P) G1 K(G1) G2 K(G2)

in
it

DG
P

tra
in

ed
 D

GP

1 50
index

tra
in

ed
 D

KM

1 50
index

1 50
index

1 50
index

1 50
index

1

50

in
de

x

K(G0)

1 50
index

G3

1

0

1

Figure 7. One hidden layer DGP and DKM with squared exponential kernel trained on a subset of energy. First and second row:
initializations of DGP and DKM. Third and fourth row: trained DGP (by Langevin sampling) and DKM Gram matrices and kernels.

in
it

DK
M

 (N
NG

P) G1 K(G1) G2 K(G2)

in
it

DG
P

tra
in

ed
 D

GP

1 50
index

tra
in

ed
 D

KM

1 50
index

1 50
index

1 50
index

1 50
index

1

50

in
de

x

K(G0)

1 50
index

G3

1

0

1

Figure 8. One hidden layer DGP and DKM with squared exponential kernel trained on a subset of boston. First and second row:
initializations of DGP and DKM. Third and fourth row: trained DGP (by Langevin sampling) and DKM Gram matrices and kernels.

21

A theory of representation learning gives a deep generalisation of kernel methods

in
it

DK
M

 (N
NG

P) G1 K(G1) G2 K(G2)

in
it

DG
P

tra
in

ed
 D

GP

1 50
index

tra
in

ed
 D

KM

1 50
index

1 50
index

1 50
index

1 50
index

1

50

in
de

x

K(G0)

1 50
index

G3

1

0

1

Figure 9. One hidden layer DGP and DKM with squared exponential kernel trained on a subset of concrete. First and second row:
initializations of DGP and DKM. Third and fourth row: trained DGP (by Langevin sampling) and DKM Gram matrices and kernels.

22

A theory of representation learning gives a deep generalisation of kernel methods

I. The flow posterior in a 2-layer BNN
Here, we give the 2-layer version (Fig. 10) of Fig. 4 in the main text, which again shows a close match between the
variational DKM with a flow posterior, and the BNN true posterior.

in
it

G1 G2

vD
KM

 (f
lo

w)

1 50index

vD
KM

 (M
vG

)

1 50index

5 0 5
feature

0.0

0.5

de
ns

ity

5 0 5
feature

1 50index

1

50

in
de

x

G0

1 50index

G3

0.75

0.00

0.75

a

b

BNN
vDKM (flow)

BN
N

Figure 10. Two-layer ReLU BNN and variational DKM with flow. a Initialized (first row) and learned Gram matrices of a width 1024
BNN (second row), vDKM with flow (third row) and vDKM with multivariate Gaussian (fourth row) using 214 Monte-Carlo samples.
The Gram matrices between BNN and vDKM (flow) match closely after training. (MvG). b Marginal PDF over features at each layer for
one input datapoint using kernel density estimation. The marginal PDFs of BNN are non-Gaussian (blue curves), vDKM with flow is able
to capture the non-Gaussianity and match closely with BNNs marginals (red curves).

23

A theory of representation learning gives a deep generalisation of kernel methods

J. Multivariate Gaussian approximate posteriors in deeper networks
There is a body of theoretical work (e.g. (Seroussi & Ringel, 2021)), on BNNs that approximates BNN posteriors over
features as Gaussian. While we have shown that this is a bad idea in general (Fig. 4 and 10), we can nonetheless ask whether
there are circumstances where the idea might work well. In particular, we hypothesised that depth is an important factor. In
particular, in shallow networks, in order to get GL close to the required representation, we may need the posterior over Fℓ

to be quite different from the prior. In contrast, in deeper networks, we might expect the posterior over Fℓ to be closer to its
(Gaussian) prior, and therefore we might expect Gaussian approximate posteriors to work better.

However, we cannot just make the network deeper, because as we do so, we apply the nonlinearity more times and
dramatically alter the network’s inductive biases. To resolve this issue, we derive a leaky relu nonlinearity that allows
(approximately) independent control over the inductive biases (or effective depth) and the actual depth (Appendix J.1). Using
these nonlinearities, we indeed find that very deep networks are reasonably well approximated by multivariate Gaussian
approximate posteriors (Appendix J.2).

J.1. Leaky relu nonlinearities

Our goal is to find a pointwise nonlinearity, ϕ, such that (under the prior),

EPDGP(fℓλ|Gℓ−1)
[
ϕ(f ℓλ)ϕ

T (f ℓλ)
]
= pEP(fℓλ|Gℓ−1)

[
relu(f ℓλ)reluT (f ℓλ)

]
+ (1− p)Gℓ−1. (98)

We will set p = α/L, where α is the “effective” depth of the network and L is the real depth. These networks are designed
such that their inductive biases in the infinite width limit are similar to a standard relu network with depth α. Indeed, we
would take this approach if we wanted a well-defined infinite-depth DKM limit.

Without loss of generality, we consider a 2D case, where x and y are zero-mean bivariate Gaussian,

π(x, y) = N
((

x
y

)
;0,

(
Σxx Σxy
Σxy Σyy

))
(99)

where π(x, y) is the probability density for the joint distribution. Note that we use a scaled relu,

relu(x) =

{√
2 x for 0 < x

0 otherwise
(100)

such that E
[
relu2(x)

]
= Σxx. Mirroring Eq. 98, we want the nonlinearity, ϕ, to satisfy,

E
[
ϕ(x2)

]
= pE

[
relu2(x)

]
+ (1− p)Σxx = Σxx (101a)

E
[
ϕ(y2)

]
= pE

[
relu2(y)

]
+ (1− p)Σyy = Σyy (101b)

E [ϕ(x)ϕ(y)] = pE [relu(x)relu(y)] + (1− p)Σxy (101c)

We hypothesise that this nonlinearity has the form,

ϕ(x) = a relu(x) + bx. (102)

We will write the relu as a sum of x and |x|,

relu(x) = 1√
2
(x+ |x|), (103)

because E [f(x, y)] = 0 for f(x, y) = x|y| or f(x, y) = |x|y. It turns out that we get zero expectation for all functions
where f(−x,−y) = −f(x, y), which holds for the two choices above. To show such functions have a zero expectation, we
write out the integral explicitly,

E [f(x, y)] =

∫ ∞

−∞
dx

∫ ∞

−∞
dy π(x, y)f(x, y). (104)

24

A theory of representation learning gives a deep generalisation of kernel methods

We split the domain of integration for y at zero,

E [f(x, y)] =

∫ ∞

−∞
dx

∫ 0

−∞
dy π(x, y)f(x, y) +

∫ ∞

−∞
dx

∫ ∞

0

dy π(x, y)f(x, y). (105)

We substitute y′ = −y and x′ = −x in the first integral,

E [f(x, y)] =

∫ ∞

−∞
dx′
∫ ∞

0

dy′ π(−x′,−y′)f(−x′,−y′) +

∫ ∞

−∞
dx

∫ ∞

0

dy π(x, y)f(x, y). (106)

As the variables we integrate over are arbitrary we can relabel y′ as y and x′ as x, and we can then merge the integrals as
their limits are the same,

E [f(x, y)] =

∫ ∞

−∞
dx

∫ ∞

0

dy [π(−x,−y)f(−x,−y) + π(x, y)f(x, y)] . (107)

Under a zero-mean Gaussian, π(−x,−y) = π(x, y),

E [f(x, y)] =

∫ ∞

−∞
dx

∫ ∞

0

dy π(x, y) (f(−x,−y) + f(x, y)) . (108)

Thus, if f(−x,−y) = −f(x, y), then the expectation of that function under a bivariate zero-mean Gaussian distribution is
zero.

Remember that our overall goal was to design a nonlinearity, ϕ, (Eq. 102) which satisfied Eq. (101). We therefore compute
the expectation,

E [ϕ(x)ϕ(y)] = E [(a relu(x) + bx) (a relu(y) + by)] (109)

= E
[(

a√
2
(x+ |x|) + bx

)(
a√
2
(y + |y|) + by

)]
(110)

Using the fact that E [x|y|] = E [|x|y] = 0 under a multivariate Gaussian,

= E
[
a2 1√

2
(x+ |x|) 1√

2
(y + |y|) +

(√
2ab+ b2

)
xy
]

(111)

= a2 E [relu(x)relu(y)] +
(√

2ab+ b2
)
E [xy] . (112)

Thus, we can find the value of a by comparing with Eq. (101c),

p = a2 a =
√
p. (113)

For b, things are a bit more involved,

1− p =
√
2ab+ b2 =

√
2p b+ b2 (114)

where we substitute for the value of a. This can be rearranged to form a quadratic equation in b,

0 = b2 +
√

2p b+ (p− 1), (115)

which can be solved,

b = 1
2

(
−
√

2p±
√

2p− 4(p− 1)
)

(116)

b = 1
2

(
−
√

2p±
√

4− 2p
)

(117)

b = −
√

p
2 ±

√
1− p

2 (118)

Only the positive root is of interest,

b =
√
1− p

2 −
√

p
2 (119)

25

A theory of representation learning gives a deep generalisation of kernel methods

Thus, the nonlinearity is,

ϕ(x) =
√
p relu(x) +

(√
1− p

2 −
√

p
2

)
x (120)

where we set p = α/L, and remember we used the scaled relu in Eq. (100). Finally, we established these choices by
considering only the cross term, E [ϕ(x)ϕ(y)]. We also need to check that the E

[
ϕ2(x)

]
and E

[
ϕ2(y)

]
terms are as required

(Eq. 101a and Eq. 101b). In particular,

E
[
ϕ2(x)

]
= E

[
(a relu(x) + bx)

2
]
= E

[(
a√
2
(x+ |x|) + bx

)2]
(121)

using E [x|x|] = 0 as x|x| is an odd function of x, and the zero-mean Gaussian is an even distribution,

E
[
ϕ2(x)

]
= a2 E

[
relu2(x)

]
+
(√

2ab+ b2
)
Σxx (122)

using Eq. (113) to identify a2 and Eq. (114) to identify
√
2ab+ b2,

E
[
ϕ2(x)

]
= pE

[
relu2(x)

]
+ (1− p)Σxx, (123)

as required.

J.2. Multivariate Gaussian in deeper networks

In the main text, we show that a more complex approximate posterior can match the distributions in these networks. Here,
we consider an alternative approach. In particular, we hypothesise that these distributions are strongly non-Gaussian because
the networks are shallow, meaning that the posterior needs to be far from the prior in order to get a top-layer kernel close
to GL+1. We could therefore make the posteriors closer to Gaussian by using leaky-relu nonlinearities (Appendix J.1)
with fixed effective depth (α = 2), but increasing real depth, L. In particular, we use multivariate Gaussian approximate
posteriors with learned means,

Qθℓ

(
f ℓλ
)
= N

(
f ℓλ;µℓ,Σℓ

)
, (124)

with θℓ = (µℓ,Σℓ). As expected, for a depth 32 network, we get similar marginals (Fig. 11 top) and learned representations
(Fig. 12 top).

26

A theory of representation learning gives a deep generalisation of kernel methods

5 0 5
0

1

de
ns

ity

= 1

5 0 5

= 2

5 0 5

= 3

5 0 5

4
la

ye
rs

= 4

5 0 5
feature

0

1

de
ns

ity

= 8

5 0 5
feature

= 16

5 0 5
feature

= 24

5 0 5
feature

32
 la

ye
rs

= 32

BNN
vDKM

Figure 11. Comparison of posterior feature marginal distributions between a BNN of width 1024 (trained by Langevin sampling over
features) and a variational DKM with 216 Monte-Carlo samples, in a 4-layer (row 1) and a 32-layer (row 2) network. We give the BNN
posterior features from Langevin sampling (blue histogarm) and the best fitting Gaussian (blue line), and compare against the variational
DKM approximate posterior Gaussian distribution (red line).

27

A theory of representation learning gives a deep generalisation of kernel methods

G1 G2 G3 G4

G8 G16 G24 G32

1 50
index

1 50
index

1 50
index

1 50
index

1 50
index

1

50

in
de

x

G0

1 50
index

GL + 1

1

0

1

32
 la

ye
rs

BN
N

in
it

vD
KM

vD
KM

4
la

ye
rs

BN
N

in
it

Figure 12. Comparison of Gram matrices between BNN of width 1024 (trained by Langevin sampling over features) and variational DKM,
in 4-layer (row 1-3) and 32-layer networks (row 4-6). Initializations are shown in row 1 and 4, trained BNN Gram matrices are shown in
row 2 and 5, and trained variational DKM Gram matrices are shown in row 3 and 6. As in Figure 11, the variational DKM is a poor match
to Langevin sampling in a BNN for a 4-layer network, but is very similar in a 32 layer network.

28

A theory of representation learning gives a deep generalisation of kernel methods

K. Unimodality in linear deep kernel machines
K.1. Theory: unimodality with a linear kernel and same widths

Here, we show that the deep kernel machine objective is unimodal for a linear kernel. A linear kernel simply returns the
input Gram matrix,

K (G) = G. (125)

It is called a linear kernel, because it arises in the neural network setting (Eq. 26) by choosing the nonlinearity, ϕ to be the
identity, in which case, Fℓ = Fℓ−1Wℓ−1. For a linear kernel the objective becomes,

L(G1, ...,GL) =
∑L+1

ℓ=1
νℓ

2

(
log
∣∣G−1

ℓ−1Gℓ

∣∣− Tr
(
G−1

ℓ−1Gℓ

))
(126)

where we have assumed there is no output noise, σ2 = 0. Taking all νℓ to be equal, ν = νℓ (see Appendix K.2 for the
general case),

L(G1, ...,GL) = log
∣∣G−1

0 GL+1

∣∣− ν
2

∑L+1
ℓ=1 Tr

(
G−1

ℓ−1Gℓ

)
. (127)

Note that G0 and GL+1 are fixed by the inputs and outputs respectively. Thus, to find the mode, we set the gradient wrt
G1, . . . ,GL to zero,

0 =
∂L
∂Gℓ

= ν
2

(
G−1

ℓ−1 −G−1
ℓ Gℓ+1G

−1
ℓ

)
(128)

Thus, at the mode, the recursive relationship must hold,

T = G−1
ℓ−1Gℓ = G−1

ℓ Gℓ+1. (129)

Thus, optimal Gram matrices are given by,

Gℓ = G0T
ℓ, (130)

and we can solve for T by noting,

G−1
0 GL+1 = TL+1. (131)

Importantly, T is the product of two positive definite matrices, T = G−1
ℓ−1Gℓ, so T must have positive, real eigenvalues

(but T does not have to be symmetric (Horn & Johnson, 2012)). There is only one solution to Eq. (131) with positive real
eigenvalues (Horn et al., 1994). Intuitively, this can be seen using the eigendecomposition, G−1

0 GL+1 = V−1DV, where
D is diagonal,

T =
(
V−1DV

)1/(L+1)
= V−1D1/(L+1)V. (132)

Thus, finding T reduces to finding the (L+ 1)th root of each positive real number on the diagonal of D. While there are
(L+ 1) complex roots, there is only one positive real root, and so T and hence G1, . . . ,GL are uniquely specified. This
contrasts with a deep linear neural network, which has infinitely many optimal settings for the weights.

Note that for the objective to be well-defined, we need K(G) to be full-rank. With standard kernels (such as the squared
exponential) this is always the case, even if the input Gram matrix is singular. However, a linear kernel will have a singular
output if given a singular input, and with enough data points, G0 = 1

ν0
XXT is always singular. To fix this, we could e.g.

define G0 = K(1
ν0
XXT) to be given by applying a positive definite kernel (such as a squared exponential) to 1

ν0
XXT .

This results in positive definite G0, as long as the input points are distinct.

K.2. Theory: unimodality with a linear kernel and arbitrary widths

In the main text we showed that the deep kernel machine is unimodal when all νℓ are equal. Here, we show that unimodality
in linear DKMs also holds for all choices of νℓ. Recall the linear DKM objective in Eq. (126),

L(G1, ...,GL) =
∑L+1

ℓ=1
νℓ

2

(
log
∣∣G−1

ℓ−1Gℓ

∣∣− Tr
(
G−1

ℓ−1Gℓ

))
(133)

=
∑L+1

ℓ=1
νℓ

2

(
log |Gℓ| − log |Gℓ−1| − Tr

(
G−1

ℓ−1Gℓ

))
. (134)

29

A theory of representation learning gives a deep generalisation of kernel methods

To find the mode, again we set the gradient wrt Gℓ to zero,

0 =
∂L
∂Gℓ

= −νℓ+1−νℓ

2 G−1
ℓ − νℓ

2 G
−1
ℓ−1 +

νℓ+1

2 G−1
ℓ Gℓ+1G

−1
ℓ , (135)

for ℓ = 1, ..., L. Right multiplying by 2Gℓ and rearranging,

νℓ+1G
−1
ℓ Gℓ+1 = νℓG

−1
ℓ−1Gℓ + (νℓ+1 − νℓ) I, for ℓ = 1, ..., L. (136)

Evaluating this expression for ℓ = 1 and ℓ = 2 gives,

ν2G
−1
1 G2 = ν1G

−1
0 G1 + (ν2 − ν1) I, (137)

ν3G
−1
2 G3 = ν2G

−1
1 G2 + (ν3 − ν2) I = ν1G

−1
0 G1 + (ν3 − ν1) I. (138)

Recursing, we get,

νℓG
−1
ℓ−1Gℓ = ν1G

−1
0 G1 + (νℓ − ν1) I. (139)

Critically, this form highlights constraints on G1. In particular, the right hand side, G−1
ℓ−1Gℓ, is the product of two positive

definite matrices, so has positive eigenvalues (but may be non-symmetric (Horn & Johnson, 2012)). Thus, all eigenvalues of
ν1G

−1
0 G1 must be larger than ν1 − νℓ, and this holds true at all layers. This will become important later, as it rules out

inadmissible solutions.

Given G0 and G1, we can compute any Gℓ using,

G−1
0 Gℓ =

ℓ∏
ℓ′=1

(
G−1

ℓ′−1Gℓ′
)
= 1∏ℓ

ℓ′=1
νℓ′

ℓ∏
ℓ′=1

(
νℓ′G

−1
ℓ′−1Gℓ′

)
(140)(

ℓ∏
ℓ′=1

νℓ′

)
G−1

0 Gℓ =

ℓ∏
ℓ′=1

(
ν1G

−1
0 G1 + (νℓ′ − ν1) I

)
(141)

where the matrix products are ordered as
∏L

ℓ=1 Aℓ = A1 · · ·AL. Now, we seek to solve for G1 using our knowledge of
GL+1. Computing G−1

0 GL+1,(
L+1∏
ℓ=1

νℓ

)
G−1

0 GL+1 =

L+1∏
ℓ=1

(
ν1G

−1
0 G1 + (νℓ − ν1) I

)
. (142)

We write the eigendecomposition of ν1G−1
0 G1 as,

ν1G
−1
0 G1 = VDV−1. (143)

Thus, (
L+1∏
ℓ=1

νℓ

)
G−1

0 GL+1 =

L+1∏
ℓ=1

(
VDV−1 + (νℓ − ν1) I

)
= VΛV−1 (144)

where Λ is a diagonal matrix,

Λ =

L+1∏
ℓ=1

(D+ (νℓ − ν1) I) . (145)

Thus, we can identify V and Λ by performing an eigendecomposition of the known matrix,
(∏L+1

ℓ=1 νℓ

)
G−1

0 GL+1. Then,
we can solve for D (and hence G1) in terms of Λ and V. The diagonal elements of D satisfy,

0 = −Λii +

L+1∏
k=1

(Dii + (νℓ − ν1)) . (146)

30

A theory of representation learning gives a deep generalisation of kernel methods

This is a polynomial, and remembering the constraints from Eq. (139), we are interested in solutions which satisfy,

ν1 − νmin ≤ Dii. (147)

where,

νmin = min (ν1, . . . , νL+1) . (148)

To reason about the number of such solutions, we use Descartes’ rule of signs, which states that the number of positive real
roots is equal to or a multiple of two less than the number of sign changes in the coefficients of the polynomial. Thus, if
there is one sign change, there must be one positive real root. For instance, in the following polynomial,

0 = x3 + x2 − 1 (149)

the signs go as (+), (+), (−), so there is only one sign change, and there is one real root. To use Descartes’ rule of signs,
we work in terms of D′

ii, which is constrained to be positive,

0 ≤ D′
ii = Dii − (ν1 − νmin) Dii = D′

ii + (ν1 − νmin) . (150)

Thus, the polynomial of interest (Eq. 146) becomes,

0 = −Λii +

L+1∏
ℓ=1

(D′
ii + (ν1 − νmin)− (ν1 − νℓ)) = −Λii +

L+1∏
ℓ=1

(D′
ii + (νℓ − νmin)) (151)

where 0 < νℓ − νmin as νmin is defined to be the smallest νℓ (Eq. 148). Thus, the constant term, −Λii is negative, while all
other terms, D′

ii, . . . , (D
′
ii)

L+1 in the polynomial have positive coefficients. Thus, there is only one sign change, which
proves the existence of only one valid real root, as required.

L. Unimodality experiments with nonlinear kernels
For the posterior over Gram matrices to converge to a point distribution, we need the DKM objective L(G1, . . . ,GL) to
have one unique global optimum. As noted above, this is guaranteed when the prior dominates (Eq. 16), and for linear
models (Appendix K). While we believe that it might be possible to construct counter examples, in practice we expect a
single global optimum in most practical settings. To confirm this expectation, we did a number of experiments, starting with
many different random initializations of a deep kernel machine and optimizing using gradient descent (Appendix L). In all
cases tested, the optimizers converged to the same maximum.

We parameterise Gram matrices Gℓ =
1
P VℓV

T
ℓ with Vℓ ∈ RP×P being trainable parameters. To make initializations with

different seeds sufficiently separated while ensuring stability we initialize Gℓ from a broad distribution that depends on
K(Gℓ−1). Specifically, we first take the Cholesky decomposition K(Gℓ−1) = Lℓ−1L

T
ℓ−1, then set Vℓ = Lℓ−1ΞℓD

1/2
ℓ

where each entry of Ξℓ ∈ RP×P is independently sampled from a standard Gaussian, and Dℓ is a diagonal scaling matrix
with each entry sampled i.i.d. from an inverse-Gamma distribution. The variance of the inverse-Gamma distribution is
fixed to 100, and the mean is drawn from a uniform distribution U [0.5, 3] for each seed. Since for any random variable
x ∼ Inv-Gamma(α, β), E(x) = β

α−1 and V(x) = β
(α−1)(α−2) , once we fix the mean and variance we can compute α and β

as

α =
E(x)2

V(x)
+ 2, (152)

β = E(x)(α− 1). (153)

We set νℓ = 5, and use the Adam optimizer (Kingma & Ba, 2014) with learning rate 0.001 to optimize parameters Vℓ

described above. We fixed all model hyperparameters to ensure that any multimodality could emerge only from the
underlying deep kernel machine. As we did not use inducing points, we were forced to consider only the smaller UCI
datasets (yacht, boston, energy and concrete). For the deep kernel machine objective, all Gram matrices converge rapidly to
the same solution, as measured by RMSE (Fig. 13). Critically, we did find multiple modes for the MAP objective (Fig 14),
indicating that experiments are indeed powerful enough to find multiple modes (though of course they cannot be guaranteed

31

A theory of representation learning gives a deep generalisation of kernel methods

500

490

480

ob
je

ct
iv

e
yacht

860

850

840
boston

1110

1100

1090
energy

1740

1730

1720
concrete

0 50000 100000
iters

0.0

0.5

1.0

RM
SE

0 50000 100000
iters

0 50000 100000
iters

0 50000 100000
iters

500 490 480
objective

0.0

0.5

1.0

RM
SE

860 850 840
objective

1110 1100 1090
objective

1740 1730 1720
objective

Figure 13. One-layer DKMs with squared exponential kernel trained on full UCI datasets (through columns) converges to the same
solution, despite very different initializations by applying stochastic diagonal scalings described in Appendix G to the standard initialization
with different seeds. Standard initialization is shown in dashed line, while scaled initializations are the color lines each denoting a different
seed. The first row shows the objective during training for all seeds that all converge to the same value. The second row shows the
element-wise RMSE between the Gram matrix of each seed and the optimized Gram matrix obtained from the standard initialization.
RMSE converges to 0 as all initializations converge on the same maximum. The last row plots RMSE versus objective value, again
showing a single optimal objective value where all Gram matrices are the same.

to find them). Finally, note that the Gram matrices took a surprisingly long time to converge: this was largely due to the high
degree of diversity in the initializations; convergence was much faster if we initialised deterministically from the prior.

This might contradict our usual intuitions about huge multimodality in the weights/features of BNNs and DGPs. This
can be reconciled by noting that each mode, written in terms of Gram matrices, corresponds to (perhaps infinitely) many
modal features. In particular, in Sec. F, we show that the log-probability for features, P (Fℓ|Fℓ−1) (Eq. 93) depends
only on the Gram matrices, and note that there are many settings of features which give the same Gram matrix. In
particular, the Gram matrix is the same for any unitary transformation of the features, F′

ℓ = FℓU, satisfying UUT = I, as
1
Nℓ

F′
ℓF

′T
ℓ = 1

Nℓ
FℓUℓU

T
ℓ F

T
ℓ = 1

Nℓ
FℓF

T
ℓ = Gℓ. For DGPs we can use any unitary matrix, so there are infinitely many sets

of features consistent with a particular Gram matrix, while for BNNs we can only use permutation matrices, which are a
subset of unitary matrices. Thus, the objective landscape must be far more complex in the feature domain than with Gram
matrices, as a single optimal Gram matrix corresponds to a large family of optimal features.

32

A theory of representation learning gives a deep generalisation of kernel methods

4650

4700

ob
je

ct
iv

e

yacht

6460

6510
boston

12400

12450
energy

15750

15800
concrete

0 50000 100000
iters

0.0

0.5

1.0

RM
SE

0 50000 100000
iters

0 100000 200000
iters

0 50000 100000
iters

4650 4700
objective

0.0

0.5

1.0

RM
SE

6460 6510
objective

12400 12450
objective

15750 15800
objective

Figure 14. One-layer DGP with MAP inference over features as described in Appendix F Eq. (95). Rows and columns are the same as in
Figure 13. Using the same randomly scaled initializations described above, we are able to find multiple modes in energy and concrete
showing our initializations are diverse enough, albeit there is still only a single global optimum.

33

A theory of representation learning gives a deep generalisation of kernel methods

M. Inducing point DKMs
To do large-scale experiments on UCI datasets, we introduce inducing point DKMs by extending Gaussian process inducing
point methods (Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017) to the DKM setting. This approach uses the
variational interpretation of the deep kernel machine objective described in Appendix E.

To do inducing-point variational inference, we need to explicitly introduce top-layer features mirroring FL+1 ∈ RP×νL+1

in Appendix B, but replicated N times, F̃L+1 ∈ RP×NL+1 . Formally, each feature, f̃L+1
1 , . . . , f̃L+1

NL+1
is IID, conditioned on

FL,

P (F̃L+1|FL) =
∏Nℓ

λ=1N
(
f̃L+1
λ ;0,K(G(FL))

)
, (154a)

P (Ỹ|F̃L+1) =
∏Nℓ

λ=1N
(
ỹλ; f̃

L+1
λ , σ2I

)
, (154b)

where we give the likelihood for regression, but other likelihoods (e.g. for classification) are possible (Appendix B).

Further, we take the total number of points, P , to be made up of Pi inducing points and Pt test/train points, so that
P = Pi + Pt. Thus, we can separate all features, Fℓ ∈ RP×Nℓ , into the inducing features, Fℓ

i ∈ RPi×Nℓ , and the test/train
features, Fℓ

t ∈ RPt×Nℓ . Likewise, we separate the inputs, X, and outputs, Y, into (potentially trained) inducing inputs, Xi,
and trained inducing outputs, Yi, and the real test/training inputs, Xt, and outputs, Yt,

Fℓ =

(
Fℓ

i
Fℓ

t

)
F̃L+1 =

(
F̃L+1

i
F̃L+1

t

)
X =

(
Xi
Xt

)
Y =

(
Yi
Yt

)
Ỹ =

(
Ỹi
Ỹt

)
(155)

We follow the usual doubly stochastic inducing point approach for DGPs. In particular, we treat all the features at
intermediate layers, F1, . . . ,FL, and the top-layer train/test features, FL+1

t as latent variables. However, we deviate from
the usual setup in treating the top-layer inducing outputs, FL+1

i , as learned parameters and maximize over them to ensure
that the ultimate method does not require sampling, and at the same time allows minibatched training. The prior and
approximate posterior over F1, . . . ,FL are given by,

Q (F1, . . .FL|X) =
∏L

ℓ=1 Q (Fℓ|Fℓ−1) , (156a)

P (F1, . . . ,FL|X) =
∏L

ℓ=1 P (Fℓ|Fℓ−1) , (156b)

and remember F0 = X, so G0 = 1
N0

XXT . The prior and approximate posterior at each layer factorises into a distribution
over the inducing points and a distribution over the test/train points,

Q (Fℓ|Fℓ−1) = P
(
Fℓ

t |Fℓ
i ,Fℓ−1

)
Q
(
Fℓ

i

)
, (157a)

P (Fℓ|Fℓ−1) = P
(
Fℓ

t |Fℓ
i ,Fℓ−1

)
P
(
Fℓ

i |Fℓ−1
i

)
. (157b)

Critically, the approximate posterior samples for the test/train points is the conditional prior P
(
Fℓ

t |Fℓ
i ,Fℓ−1

)
, which is

going to lead to cancellation when we compute the ELBO. Likewise, the approximate posterior over F̃L+1
t is the conditional

prior,

Q
(
F̃L+1

t |FL+1
i ,FL

)
= P

(
F̃L+1

t |FL+1
i ,FL

)
. (158)

Concretely, the prior approximate posterior over inducing points are given by,

Q
(
Fℓ

i

)
=
∏Nℓ

λ=1N
(
f ℓi;λ;0,G

ℓ
ii

)
, (159a)

P
(
Fℓ

i |Fℓ−1
i

)
=
∏Nℓ

λ=1N
(
f ℓi;λ;0,K(G(Fℓ−1

i))
)

(159b)

The approximate posterior is directly analogous to Eq. (80) and the prior is directly analogous to Eq. (3a), but where we
have specified that this is only over inducing points. Now we compute the ELBO

ELBO(FL+1
i ,G1

ii, . . . ,G
L
ii) = EQ

[
log P

(
Ỹt|F̃L+1

t

)
+ log

P
(
F̃L+1

t |FL+1
i ,FL

)
P (F1, . . .FL|X)

Q
(
F̃L+1

t |FL+1
i ,FL

)
Q (F1, . . .FL|X)

]
(160)

34

A theory of representation learning gives a deep generalisation of kernel methods

Note that the P
(
Fℓ

t |Fℓ
i ,Fℓ−1

)
terms are going to cancel in the ELBO (we consider them below when we come to describing

sampling). Substituting Eq. (156–158) and cancelling P
(
Fℓ

t |Fℓ
i ,Fℓ−1

)
and P

(
F̃L+1

t |FL+1
i ,FL

)
,

ELBO(FL+1
i ,G1

ii, . . . ,G
L
ii) = EQ

[
log P

(
Ỹt|F̃L+1

t

)
+

L∑
ℓ=1

log
P
(
Fℓ

i |F
ℓ−1
i

)
Q
(
Fℓ

i

)]
. (161)

So far, we have treated the Gram matrices, Gℓ
ii as parameters of the approximate posterior. However, in the infinite

limit N → ∞, these are consistent with the features generated by the approximate posterior. In particular the matrix
product 1

Nℓ
Fℓ

i

(
Fℓ

i

)T
can be written as an average over infinitely many IID vectors, f ℓi;λ (first equality), and by the law of

large numbers, this is equal to the expectation of one term (second equality), which is Gℓ
ii (by the approximate posterior

Eq. (159a)),

lim
N→∞

1
Nℓ

Fℓ
i

(
Fℓ

i

)T
= lim

N→∞
1
Nℓ

∑Nℓ

λ=1f
ℓ
i;λ

(
f ℓi;λ
)T

= EQ(fℓi;λ)

[
f ℓi;λ
(
f ℓi;λ
)T]

= Gℓ
ii. (162)

By this argument, the Gram matrix from the previous layer, Gℓ−1
ii is deterministic. Further, in a DGP, Fℓ

i only depends on
Fℓ−1

i through Gℓ−1
ii (Eq. 7), and the prior and approximate posterior factorise. Thus, in the infinite limit, individual terms in

the ELBO can be written,

lim
N→∞

1
N EQ

[
log

P
(
Fℓ

i |F
ℓ−1
i

)
Q
(
Fℓ

i

)]
= νℓ EQ

log P
(
f ℓi;λ|G

ℓ−1
ii

)
Q
(
f ℓi;λ

)
 (163)

= −νℓ DKL
(
N
(
0,K(Gℓ

ii)
)∥∥N (

0,Gℓ−1
ii

))
, (164)

where the final equality arises when we notice that the expectation can be written as a KL-divergence. The inducing DKM
objective, Lind, is the ELBO, divided by N to ensure that it remains finite in the infinite limit,

Lind(F
L+1
i ,G1

ii, . . . ,G
L
ii)= lim

N→∞
1
N ELBO(FL+1

i ,G1
ii, . . . ,G

L
ii) (165)

=EQ

[
log P

(
Yt|FL+1

t

)]
−

L∑
ℓ=1

νℓ DKL
(
N
(
0,K(Gℓ

ii)
)∥∥N (

0,Gℓ−1
ii

))
.

Note that this has almost exactly the same form as the standard DKM objective for DGPs in the main text (Eq. 21). In
particular, the second term is a chain of KL-divergences, with the only difference that these KL-divergences apply only to
the inducing points. The first term is a “performance” term that here depends on the quality of the predictions given the
inducing points. As the copies are IID, we have,

EQ

[
log P

(
Ỹt|F̃L+1

t

)]
= N EQ

[
log P

(
Yt|FL+1

t

)]
. (166)

Now that we have a simple form for the ELBO, we need to compute the expected likelihood, EQ

[
log P

(
Yt|FL+1

t
)]

. This
requires us to compute the full Gram matrices, including test/train points, conditioned on the optimized inducing Gram
matrices. We start by defining the full Gram matrix,

Gℓ =

(
Gℓ

ii Gℓ
it

Gℓ
ti Gℓ

tt

)
(167)

for both inducing points (labelled “i”) and test/training points (labelled “t”) from just Gℓ
ii. For clarity, we have Gℓ ∈ RP×P ,

Gℓ
ii ∈ RPi×Pi , Gℓ

ti ∈ RPt×Pi , Gℓ
tt ∈ RPt×Pt , where Pi is the number of inducing points, Pt is the number of train/test points

and P = Pi + Pt is the total number of inducing and train/test points.

The conditional distribution over Fℓ
t given Fℓ

i is,

P
(
Fℓ

t

∣∣Fℓ
i ,Gℓ−1

)
=
∏Nℓ

λ=1N
(
f ℓt;λ;KtiK

−1
ii f ℓi;λ,Ktt·i

)
(168)

35

A theory of representation learning gives a deep generalisation of kernel methods

Algorithm 1 DKM prediction
Parameters: {νℓ}Lℓ=1

Optimized Gram matrices {Gℓ
ii}Lℓ=1

Inducing and train/test inputs: Xi, Xt
Inducing outputs: FL+1

i
Initialize full Gram matrix(
G0

ii G0;T
ti

G0
ti G0

tt

)
= 1

ν0

(
XiX

T
i XiX

T
t

XtX
T
i XtX

T
t

)
Propagate full Gram matrix
for ℓ in (1, . . . , L) do(

Kii KT
ti

Kti Ktt

)
= K

((
Gℓ−1

ii (Gℓ−1
ti)T

Gℓ−1
ti Gℓ−1

tt

))
Ktt·i = Ktt −KtiK

−1
ii KT

ti .
Gℓ

ti = KtiK
−1
ii Gℓ

ii
Gℓ

tt = KtiK
−1
ii Gℓ

iiK
−1
ii KT

ti +Ktt·i
end for
Final prediction using standard Gaussian process expressions(
Kii KT

ti
Kti Ktt

)
= K

((
GL

ii (GL
ti)

T

GL
ti GL

tt

))
Yt ∼ N

(
KtiK

−1
ii FL+1

i ,Ktt −KtiK
−1
ii KT

ti + σ2I
)

where f ℓt;λ is the activation of the λth feature for all train/test inputs, f ℓi;λ is the activation of the λth feature for all train/test
inputs, and f ℓi;λ, and (

Kii KT
ti

Kti Ktt

)
= K

(
1

Nℓ−1
Fℓ−1F

T
ℓ−1

)
= K (Gℓ−1) (169)

Ktt·i = Ktt −KtiK
−1
ii KT

ti . (170)

In the infinite limit, the Gram matrix becomes deterministic via the law of large numbers (as in Eq. 162), and as such Git
and Gtt become deterministic and equal to their expected values. Using Eq. (168), we can write,

Fℓ
t = KtiK

−1
ii Fℓ

i +K
1/2
tt·i Ξ. (171)

where Ξ is a matrix with IID standard Gaussian elements. Thus,

Gℓ
ti =

1
ν E
[
Fℓ

t (F
ℓ
i)

T
]

(172)

= 1
νKtiK

−1
ii E

[
Fℓ

i (F
ℓ
i)

T
]

(173)

= KtiK
−1
ii Gℓ

ii (174)

and,

Gℓ
tt =

1
ν E
[
Fℓ

t (F
ℓ
t)

T
]

(175)

= 1
νKtiK

−1
ii E

[
Fℓ

i (F
ℓ
i)

T
]
K−1

ii KT
ti +

1
νK

1/2
tt·i E

[
ΞΞT

]
K

1/2
tt·i (176)

= KtiK
−1
ii GiiK

−1
ii KT

ti +Ktt·i (177)

For the full prediction algorithm, see Alg. 1.

36

