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Abstract
We consider the problem of graph matching, or
learning vertex correspondence, between two cor-
related stochastic block models (SBMs). The
graph matching problem arises in various fields,
including computer vision, natural language pro-
cessing and bioinformatics, and in particular,
matching graphs with inherent community struc-
ture has significance related to de-anonymization
of correlated social networks. Compared to the
correlated Erdős-Rényi (ER) model, where var-
ious efficient algorithms have been developed,
among which a few algorithms have been proven
to achieve the exact matching with constant edge
correlation, no low-order polynomial algorithm
has been known to achieve exact matching for
the correlated SBMs with constant correlation. In
this work, we propose an efficient algorithm for
matching graphs with community structure, based
on the comparison between partition trees rooted
from each vertex, by extending the idea of Mao
et al. (2021a) to graphs with communities. The
partition tree divides the large neighborhoods of
each vertex into disjoint subsets using their edge
statistics to different communities. Our algorithm
is the first low-order polynomial-time algorithm
achieving exact matching between two correlated
SBMs with high probability in dense graphs.

1. Introduction
Graph matching aims to align two (or more) graphs to re-
veal a bijection between the vertex sets such that the number
of aligned edges is maximized. Given two graphs with n
vertices, graph matching finds a solution for a quadratic as-
signment problem (QAP), maxΠ∈Sn

⟨A,ΠBΠ⊤⟩ over the
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set of all n×n permutation matrices Sn, where A and B de-
note the adjacency matrices of the two graphs. This problem
has been studied in various fields, including social network
analysis (Narayanan & Shmatikov, 2009), computer vision
(Schellewald & Schnörr, 2005), pattern recognition (Conte
et al., 2004), natural language processing (Haghighi et al.,
2005), machine learning (Liu & Qiao, 2012), and bioinfor-
matics (Kazemi et al., 2016; Chen & Yuan, 2006).

Although the QAP is known to be NP-hard in the worst case
(Burkard et al., 1998), the graph matching can be solved
in polynomial time for the average case of random graph
models. Thus, many previous works have studied the graph
matching for random graph models, especially for Erdős-
Rényi (ER) graphs. In particular, the correlated ER graph
model proposed by Pedarsani & Grossglauser (2011) has
been widely studied. In this model, there exists a parent ER
graph G0 ∼ G (n, p/(1− α)), and two subgraphs G and
G′ are obtained by independent subsampling of G0, where
each edge of G0 is removed independently with probability
α. The parameter α indicates the noise level, and 1− α is
the correlation between G and G′. Assuming a permutation
π : [n] → [n] and denoting by Gπ the graph obtained by
permuting the vertices of G with π, exact graph matching
aims to recover π from the two graphs Gπ, G′ ∼ G(n, p).

For the correlated ER model, many works have focused on
two fundamental questions: 1) deriving the information-
theoretic limit on (n, p, α) for exact matching, and 2) devel-
oping polynomial-time algorithms for recovering π. Re-
garding the first question, it was shown in (Cullina &
Kiyavash, 2016; Wu et al., 2022) that exact matching is
achievable if np(1 − α) ≥ (1 + ϵ) log n for any ϵ > 0
where p/(1 − α) = o(1). This limit implies that graph
matching is information-theoretically possible for constant
α if np = Θ(log n) and even for α close to 1 if np≫ log n.
However, achieving this limit with polynomial-time algo-
rithms is still open, although various efficient algorithms
have been proposed (Ding et al., 2021; Fan et al., 2020; Mao
et al., 2021b). Most of these algorithms require the noise
level α to be arbitrarily close to 0 in order to guarantee exact
matching. Some recent work has developed polynomial-
time algorithms for constant correlation in the spare regime
(Mao et al., 2021a) or in the sparse and dense regimes but
with α less than some specific constant (Mao et al., 2022).
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While this previous line of work has revealed several impor-
tant aspects in matching correlated random graphs, it is still
largely open how these results generalize to more practical
random graph models beyond the Erdős-Rényi (ER) model.
In particular, matching graphs with inherent community
structure has relevance to real-world applications such as
de-anonymization of social networks, but the investigation
of efficient graph-matching algorithms for the graphs with
community structure has been largely unexplored.

In this paper, we consider exact graph matching for random
graphs with community structure, and develop a polynomial-
time matching algorithm for constant edge-correlation. We
focus on the correlated stochastic block models (SBMs),
where the parent graph G0 is assumed to be sampled from
the SBM, which is known to be one of the most natural
generative models for networks with community structure.
To the best of our knowledge, our algorithm is the first
low-order polynomial-time algorithm that guarantees exact
matching of the correlated SBMs with constant correlation.

1.1. Correlated Stochastic Block Models

Consider an undirected graph of n vertices with a planted
partition. Suppose the vertex set [n] is partitioned into dis-
joint subsets of k ≥ 1 communities, C1, C2, . . . , Ck, where
the number of vertices in community Ci is |Ci| = ni and∑k

i=1 ni = n. Without loss of generality, we assume that
n1 ≥ n2 ≥ · · · ≥ nk := nmin. Given the partition {Ci}ki=1,
the correlated stochastic block models (Onaran et al., 2016)
are parameterized by p, q ∈ [0, 1], p > q, and α ∈ [0, 1).
We assume that there exists a parent graph G0 with the
given partition {Ci}ki=1, where the edges between each pair
of vertices are drawn independently as follows: u ∈ Ci

and v ∈ Cj are connected with probability p/(1 − α) if
i = j ∈ [k] and with probability q/(1 − α) otherwise.
Then two subgraphs G and G′ are obtained by indepen-
dent subsampling of G0 as follows: G is obtained by re-
moving each edge of G0 independently with probability α,
and G′ is obtained independently in the same way as G.
Note that P{(i, j) ∈ E(G)|(i, j) ∈ E(G′)} = 1− α where
E(G) is the edge set of the graph G. Given a permutation
π : [n] → [n], Gπ is the graph obtained by permuting the
vertices of G by π. Our goal is to design a polynomial-time
algorithm that can exactly recover the permutation π at the
constant noise level α. We will prove the performance guar-
antees of the proposed algorithm in terms of the parameters
(p, q, α, k, nmin), both for the cases with and without the
knowledge of the exact community structure {Ci}ki=1.

1.2. Prior Work and Main Question

Graph matching on correlated stochastic block models has
been studied from two different aspects: first, when the
community structure is revealed in both Gπ and G′, what

are the information-theoretically feasible regimes where ex-
act matching is possible so that the vertex identities can
be de-anonymized; second, when the goal is to recover
the community structure of the original graph G0 from
the subsampled graph G′, what is the regime where hav-
ing Gπ as side information can be beneficial? The first
aspect was studied in Onaran et al. (2016); Cullina et al.
(2016) for the two-community case (k = 2), and the suf-
ficient condition for the optimal maximum likelihood es-
timator to recover π with high probability is shown to be
(1 − α)(p + q)n/2 > 2(log n) when n1 = n2 = n/2.
The second aspect was studied in (Racz & Sridhar, 2021)
for the case of two equal-sized communities, and it was
shown that even if the communities of Gπ and G′ are not
revealed, the maximum likelihood estimator can recover
π when (1 − α)(p + q)n/2 > (log n), which matches the
impossibility results for the exact matching proved in (Cul-
lina et al., 2016). Note that (1 − α)(p + q)n/2 > (log n)
is the necessary condition to guarantee that there are no
isolated vertices in G ∩G′ with high probability. The result
of Racz & Sridhar (2021) implies that there exist regimes of
(p, q, α) where having the correlated graph Gπ can bring an
information advantage in recovering the community of G′

(or G0) through the graph matching between Gπ and G′.

These previous works establish the information-theoretic
thresholds for exact graph matching of the correlated
SBMs with two communities, and in particular, it is shown
that when p = Θ(q) = Ω(log n/n), graph matching is
information-theoretically possible with constant correlation
(1 − α), even if the community structure is not revealed
in both graphs. However, no polynomial-time algorithm
has been proven to guarantee exact graph matching for the
correlated SBMs with constant correlation.

When the partition of vertices based on their community
labels is revealed in both Gπ and G′, it is possible to apply
the graph matching algorithm for the correlated ER model
to each of the communities, since the subgraphs induced
by Ci in Gπ and G′ are the correlated ER graphs with a
parent graph G0(Ci) ∼ G(ni, p/(1 − α)). In Table 1, we
summarize the results of the previous algorithms, originally
developed for the correlated ER model, when applied to
each recovered community (C1, · · · , Ck) of the correlated
SBMs. Here we simply assume that all the communities
have the same size of m := n/k.

The ‘Black swan’ algorithm (Barak et al., 2019) allows the
largest noise level of α = 1− (logm)−o(1), but it requires
quasi-polynomial time complexity mΘ(logm). This algo-
rithm defines a rich family of rare subgraphs called ‘black
swans’, each consisting of Θ(logm) vertices, and finds the
rare subgraphs that appear in both graphs with mΘ(logm)

time complexity. The ‘Chandelier’ (Mao et al., 2022) algo-
rithm also uses the idea of ‘subgraph counting’, but with a
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Table 1: Comparison with literature for the exact matching of the correlated SBMs with k-balanced communities of size m.

Algorithm Density Noise level Time complexity

Black swan (Barak et al., 2019) mp ≥ mo(1) α ≤ 1− (logm)−o(1) k ×mO(logm)

Degree profile (Ding et al., 2021) mp ≥ (logm)C α ≤ (logm)−C k ×O(m3p2 +m2.5)
GRAMPA (Fan et al., 2019) mp ≥ (logm)C α ≤ (logm)−C k ×O(m3)

Binary tree (Mao et al., 2021a) (1 + ϵ) logm ≤ mp ≤ m1/(C log logm) α ≤ min{const., ϵ/4} k ×m2+o(1)

Chandelier (Mao et al., 2022) (1 + ϵ) logm ≤ mp(1− α) α ≤ 1−
√
0.338 ≥ k ×m25

Our result (2k
′
-ary partition tree)

(logm)C ≤ mp ≤ m1/20

α ≤ const. k ×O(m4p)
mq = Ω

(
(log logm)2

)

family of unbalanced rooted trees of size Θ(logm), called
‘chandeliers’, which can be counted approximately in poly-
nomial time. This algorithm succeeds in graph matching
for both sparse and dense regimes with constant correlation,
but the time complexity scales in high-order polynomials,
Ω(m25).

Among computationally more efficient methods with time
complexity O(m3), the only algorithm that has been proven
to guarantee exact matching with constant correlation is the
‘Binary (partition) tree’ algorithm by Mao et al. (2021a).
The main idea is to define a signature vector of dimension
Θ(logm) associated with each vertex i ∈ [m] by using the
degree information of a large neighborhood of each i. By
measuring the similarity between the signature vectors, the
algorithm recovers the exact match for m vertices. The
signature vector is defined by constructing a depth-ℓ binary
partition tree rooted at each vertex i ∈ [m], where at each
depth r ∈ [ℓ] the neighborhood around the vertex i with
radius-r is partitioned into 2r disjoint subsets. To define
a signature vector of dimension 2ℓ = Θ(logm), the depth
of the binary partition tree needs to be ℓ = Θ(log logm).
Thus, the graph should be sparse as mp ≤ m1/(C log logm)

to avoid generating a loop in the partition tree, and this
limits the application of this algorithm in the denser regime.

The main open question is how to construct an efficient
matching algorithm for the correlated SBMs in the dense
regime. We focus on the fact that the edges between com-
munities have not been exploited in the previous algorithms.
By using the correlation of both intra- and inter-community
edges, as well as the known community structure, we de-
velop a matching algorithm using the similarity between
the signature vectors of the correct pairs, as in Mao et al.
(2021a), but by constructing 2k

′
-ary (rather than binary) par-

tition trees, which effectively reduces the required depth of
the tree and thus successfully operates in the dense regime.

1.3. Main Results

Our main contribution is the development of a low-order
polynomial-time algorithm for the exact matching of the cor-
related SBMs with constant correlation in the dense regime.

Theorem 1.1 (Exact matching for the correlated SBMs
with known community structure). There exist absolute
constants α1,M,M ′ > 0 with the properties below. Con-
sider the two graphs Gπ and G′, which are generated from
the correlated SBMs defined in Sec. 1.1, with the underlying
permutation π and correlation 1−α. Suppose that the com-
munity labels (C1, C2, . . . , Ck) are given in both graphs,
and assume that Ck is the smallest community of size nmin.
Assume that α ∈ (0, α1), nmin = Ω(n10/19) and

(log nmin)
1.1 ≤ nminp ≤ n

1/20
min , (1.1)

nminq ≥M ′(log log nmin)
2, (1.2)

k ≥
(
M(log log nmin) · (log nminp)

log nmin
∨ 3

)
. (1.3)

Then, there exists a polynomial-time algorithm that recovers
π exactly with high probability as n → ∞. The complex-
ity of the algorithm scales as O(km4p) for the balanced
communities of size m := n/k.

Even if the community structure is not revealed in both
graphs, we can apply our matching algorithm by impos-
ing an additional assumption on nmin, which is sufficient
for a polynomial-time algorithm to recover the community
structure in both graphs. We combine Theorem 1.1 with the
result of Yan et al. (2018), which proposed a semidefinite
programming (SDP) for community detection with provable
guarantees.
Corollary 1.2 (Exact matching for the correlated SBMs
with unknown community structure). There exist absolute
constants α1,M,M ′,M1 > 0 with the properties below.
Consider the two graphs Gπ and G′, which are generated
from the correlated SBMs defined in Sec. 1.1, with the un-
derlying permutation π and correlation 1− α. Assume that
the sizes of all communities are different and the smallest
community size is nmin. Assume that α ∈ (0, α1/2) and
(1.1), (1.2) and (1.3) hold. Also assume that

nmin ≥M1

( √
np

p− q
∨ p log n

(p− q)2

)
. (1.4)

Then, there exists a polynomial-time algorithm that recovers
π exactly with high probability as n→∞.
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Remark 1.3. The assumption in Corollary 1.2 that commu-
nity sizes are unique can be satisfied with high probability
even if the community label of each vertex is sampled from
a distribution, as long as each label is sampled with proba-
bility Θ(1/k). We prove this in Appendix D.1.

1.4. Notation

Asymptotic dependencies are denoted by the standard nota-
tions O(·), o(·),Ω(·), ω(·),Θ(·) with n→∞. For n ∈ N+,
we denote the set [n] := {1, 2, . . . , n}. Let ∧ denote the
minimum operator and ∨ denote the maximum operator. For
a real number x, Sign(x) = 1 if x ≥ 0 and Sign(x) = −1
if x < 0. For a graph G, we define NG(i) as the set of
neighbors of vertex i in G, and NG(S) as the union of
NG(i) over all i in set S ⊂ [n]. For d ∈ N+, BG(i, d)
(SG(i, d)) denotes the ball (sphere) of radius d centered at
vertex i in graph G. For a subset R ⊂ [n] and a permutation
π : [n] → [n], G(R) denotes the subgraph of G induced
by R, and π|R denotes the permutation over R defined by
π. Let degG(i) denote the degree of i in a graph G. For a
graph G with communities (C1, C2, . . . , Ck), degaG(i) de-
notes the size of neighbors of i in the community Ca.

2. Algorithm and Results
2.1. Overview of Algorithm

Consider the correlated SBMs (Gπ, G′) with correlation 1−
α. Suppose that the community structure (C1, C2, . . . , Ck)
is revealed in both graphs, and |C1| ≥ |C2| ≥ · · · ≥ |Ck| =
nmin. Our algorithm consists of three stages. In the first
stage, we focus on the minimum-size community Ck and
generate a signature vector for each vertex in Gπ(Ck) and
G′(Ck). In this stage, we use both the edges within the com-
munity Ck and the edges across Ck and other (randomly
sampled) k′ < k − 1 communities, say C1, . . . , Ck′ . Each
vertex i ∈ Gπ(Ck) and j ∈ G′(Ck) is associated with a
signature vector f(i) ∈ R2k

′ℓ
and f ′(j) ∈ R2k

′ℓ
, respec-

tively, where the (2k
′·ℓ)-dimensional signature is obtained

from a depth-ℓ (2k
′
)-ary partition tree rooted from i (j),

which partitions the vertices in the sphere SGπ(Gk)(i, r)

(SG′(Gk)(j, r)) at each depth r ∈ [ℓ] into 2k
′r disjoint sub-

sets. The detailed steps of generating the partition trees
and the signature vectors are explained in Sec. 2.2. We
will choose (k′, ℓ) such that k′ · ℓ = Θ(log log nmin) so
that the signature contains enough information to distin-
guish and match nmin vertices in Gπ(Gk) and G′(Gk).
The maximum depth ℓ of the partition tree needs to satisfy
(nminp)

ℓ = O(nmin) to guarantee that the partition tree
does not contain a loop with high probability, and this gives
a condition on k′ such that k′ ≥ C(log lognmin)·(lognminp)

lognmin

for our algorithm to operate successfully.

In the second stage, we compare the signature vectors f(i)

Algorithm 1 Vertex Signature Using Community Structure

Input: a graph Γ with community structure (C1, . . . , Ck)
where |Ck| = nk, parameters k′, ℓ ∈ N, and i ∈ Ck

Output: f(i) ∈ R2k
′ℓ

and v(i) ∈ R2k
′ℓ

1: T 0
∅ ← {i}

2: for r = 0, . . . , ℓ− 1 do
3: for sr ∈ {−1, 1}k′r and sr+1 ∈ {−1, 1}k

′
do

4: T r+1
(sr,sr+1)

(i)←{
j ∈ NΓ(Ck) (T

r
sr (i)) ∩ SΓ(Ck)(i, r + 1) :

Sign (degaΓ(j)− naq) = sr+1(a) for a ∈ [k′]}
5: end for
6: end for
7: Define f(i), v(i) ∈ R2k

′ℓ
by

fsℓ(i) :=
∑

j∈T ℓ

sℓ
(i)

(
degkΓ(j)− 1− nkp

)
,

vsℓ(i) := nkp(1 − p)
∣∣T ℓ

sℓ(i)
∣∣ for sℓ ∈ {−1, 1}k′ℓ.

return f(i) and v(i)

and f ′(j) for each (i, j) pair in Gπ(Ck) and G′(Ck), and
find a pair whose “normalized distance” is less than some
threshold. This gives an almost exact matching for the
vertices in Ck, and a subsequent refinement step gives the
exact matching for nmin vertices.

In the last stage, we use the matched vertex pairs in Gπ(Ck)
and G′(Ck) as initial seeds, and apply a seeded graph match-
ing algorithm multiple times to match the rest of the vertices.
In the following, we explain each of the three stages in more
detail.

2.2. Partition Trees using Community Structure

In this section, we explain the process of constructing a parti-
tion tree for each vertex i ∈ Ck in a graph Γ ∼ SBM(n, p, q)
using a known community structure (C1, . . . , Ck) for [n].
This partition tree is used to define a signature vector
f(i) for each i ∈ Ck. We randomly select k′ < k − 1
communities and denote them by C1, . . . , Ck′ for nota-
tional simplicity. For a given vertex i ∈ Ck, the parti-
tion tree starts from a root T 0

∅ := {i}, and at each level
r = 1, . . . , ℓ the tree partitions the vertices in SΓ(Ck)(i, r)

into 2k
′r disjoint subsets, denoted by nodes T r

(s1,...,sr)
for

(s1, . . . , sr) ∈ {−1, 1}k
′r. For notational simplicity, let

sr := (s1, . . . , sr). For every r < ℓ, the node T r
sr has 2k

′

children T r+1
(sr,sr+1)

, sr+1 ∈ {−1, 1}k
′
, where T r+1

(sr,sr+1)

contains all vertices j ∈ NΓ(Ck)(T
r
sr )∩SΓ(Ck)(i, r+1) sat-

isfying Sign(degaΓ(j)− naq) = sr+1(a) for each a ∈ [k′],
where sr+1(a) is the a-th entry of sr+1 ∈ {−1, 1}k

′
. In

other words, we check whether the degree of vertex j to
each community Ca, a ∈ [k′], is greater than or equal
to the average degree naq, encode this information by
sr+1 ∈ {−1, 1}k

′
, and assign the vertex j to the corre-

sponding node set T r+1
(sr,sr+1)

in the partition tree. After

4



Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation

constructing the partition tree of depth-ℓ rooted at i, the
signature vector f(i) ∈ R2k

′ℓ
is generated based on the de-

grees of the vertices in the leaves T ℓ
sℓ , sℓ ∈ {−1, 1}k′ℓ.We

also define a variance vector v(i) ∈ R2k
′ℓ

that stores the
variances of each entry of the signature vector f(i).

Algorithm 1 describes the process of inductively construct-
ing the partition tree and generating the signature vector.

2.3. Exact Matching for the Smallest Community

The second stage aims to match all the correct vertex
pairs in Gπ(Ck) and G′(Ck) by computing and compar-
ing (f(i), f ′(j)) for all possible pairs i ∈ Gπ(Ck) and
j ∈ G′(Ck). For this stage, we follow the two-step proce-
dures, designed by Mao et al. (2021a), where the first-step
finds a rough estimate of the permutation over [nk] vertices
by comparing the similarity between the signature vectors,
and the second step refines the output of the first step to
recover the exact permutation. In the first step, every pair
of i ∈ Gπ(Ck) and j ∈ G′(Ck) is compared in terms of the

normalized distance
∑

sℓ∈J
(fsℓ (i)−f ′

sℓ
(j))

2

v
sℓ

(i)+v′
sℓ

(j) where J is a

random subset uniformly drawn from {−1, 1}k′ℓ with poly-
logarithmic cardinality in nk. If there exists (i, j) whose dis-
tance is less than the threshold |J |(1− 1√

lognk
) then the pair

is matched. To resolve the case where more than one vertices
j ∈ G′(Ck) are matched to the same vertex i ∈ Gπ(Ck)
or no vertex is matched to i ∈ Gπ(Ck), a clean-up step is
applied to generate a permutation π̃k : [nk] → [nk] over
Ck. Algorithm 2 describes the process of obtaining an ini-
tial estimate π̃k of the permutation. Given the estimate π̃k,
one can apply the refinement step to obtain the permutation
π̂k : [nk]→ [nk] equal to the true one π|Ck

. Due to space
limitations, we present the refinement algorithm (Algorithm
4 (Mao et al., 2021a)) in Appendix §J.

Theorem 2.1 (Almost Exact Matching on Ck). For any
constant D > 0 there exist constants n0 and c depending on
D, and absolute constants α1,M,M ′ with the properties
below. Consider the two graphs Gπ and G′, generated from
the correlated SBMs defined in Sec. 1.1, with the underlying
permutation π : [n]→ [n]. Suppose that community labels
are given in both graphs, and Ck is the smallest community
of size nmin. Assume that α ∈ (0, α1), nmin ≥ n0, (1.1),
(1.2) and (1.3) hold. Then, Algorithm 2 applied to the inputs
(Gπ, G′) with the known community structure in both graphs
yields the permutation π̃k over Ck such that

|i ∈ Ck : π̃k(i) ̸= π(i)| ≤ 4n1−c
min . (2.1)

with probability at least 1− n−D
min.

By combining Theorem 2.1 with the result of Mao et al.
(2021a), where it was shown that the exact matching of the
correlated ER model can be obtained from the almost exact

Algorithm 2 Almost Exact Matching (Mao et al., 2021a)

Input: two graphs Γ and Γ′ with community structure
(C1, . . . , Ck) where |Ck| = nk

Output: a permutation π̃k : [nk]→ [nk]

1: ℓ←
⌈

lognk

40 lognkp

⌉
∧ ⌈42 log log nk⌉

2: w ← ⌊(log nk)
5⌋, k′ ← ⌈1680(log lognk)

lognkp
lognk

⌉
3: for i ∈ Ck do
4: (f(i), v(i))← Algorithm 1(Γ, k′, ℓ, i)
5: (f ′(i), v′(i))← Algorithm 1(Γ′, k′, ℓ, i)
6: end for
7: J ← a random subset uniformly drawn from {−1, 1}k′ℓ

with cardinality 2w,
8: for i ∈ Γ(Ck) and j ∈ Γ′(Ck) do
9: if

∑
sℓ∈J

(f
sℓ

(i)−f ′
sℓ

(j))2

v
sℓ

(i)+v′
sℓ

(j) < 2w
(
1− 1√

lognk

)
then

10: Bi,j ← 1
11: else
12: Bi,j ← 0
13: end if
14: end for
15: H ← the bipartite graph with adjacency matrix B
16: let V = V ′ = [nk]
17: while H has at least one edge do
18: choose a random edge i ∼ j in H for (i, j) ∈ V ×V ′

19: define π̃ (j) := i and remove the edge i ∼ j from H
20: V ← V \{i}, V ′ ← V ′\ {j}
21: end while
22: if V ̸= ∅ then
23: define π̃|V as an arbitrary bijection from V to V ′

24: end if
25: return π̃k

matching under some mild conditions on the graphs, which
can already be satisfied by the conditions in Theorem 2.1,
we can obtain the result for the exact matching.

Corollary 2.2 (Exact matching on Ck). Assume the condi-
tions of Theorem 2.1. Let π̃k : [nk]→ [nk] be the output of
Algorithm 2 when the inputs are the correlated SBMs Gπ

and G′. Then, when the refinement matching algorithm (Al-
gorithm 4 (Mao et al., 2021a)) is applied to π̃k, the output
π̂k : [nk] → [nk] recovers the original permutation over
Ck, i.e., π̂k = π|Ck

, with probability at least 1− 2n−D
min.

Remark 2.3 (Conditions on k and q). In Theorem 2.1, in ad-
dition to the density condition (1.1), we need two additional
conditions on the number k of communities (1.3) and on the
edge density q between communities (1.2). The condition
on k is required to have the signature vector of dimension
2k

′ℓ = Θ(log nmin) at the maximum tree depth ℓ, the diam-
eter of Ck. If nminp = O(n

1/R log lognmin

min ), we only need a
constant number of communities, but in the denser regime
nminp = nc

min, c > 0, we need k = Θ(log log nmin), since
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Algorithm 3 Seeded Matching

Input: two graphs Γ and Γ′ with community (C1, . . . , Ck),
a permutation πs : [ns]→ [ns] over Cs

Output: a permutation π̂t : [nt]→ [nt] over Ct

1: for i ∈ Ct and i′ ∈ Ct do
2: let the weight w(i, i′) = 0
3: for each j ∈ Cs do
4: if ∃z ∈ NΓ(Ct)(i) and ∃z′ ∈ NΓ′(Ct)(i

′) such that
(z, πs(j)) ∈ E(Γ) and (z′, j) ∈ E(Γ′) then

5: w(i, i′) = w(i, i′) + 1
6: end if
7: end for
8: if w(i, i′) ≥ (ntnspq)/8 then
9: π̂t(i

′) = i
10: end if
11: end for
12: return π̂t

the diameter is a constant. The condition on q is needed
to guarantee that there are enough edges between Ck and
other communities so that the 2k

′
-ary partition tree is well

constructed by using the edges between communities.

2.4. Seeded Graph Matching

The last stage aims to recover the complete permutation
π : [n]→ [n] using the matched pairs in Ck as initial seeds.
The main idea is to apply a seeded graph matching algo-
rithm (similar to that in (Korula & Lattanzi, 2013)), where
vertex pairs i ∈ Gπ(Ct) and i′ ∈ G′(Ct) are compared by
counting the number of common seed pairs in the 2-hop
neighborhoods of i and i′. Algorithm 3 describes the exact
seeded matching algorithm, and Theorem 2.4 describes the
condition for recovering a permutation πt over Ct by using
a known permutation πs over Cs.
Theorem 2.4 (Seeded Matching for a Community). There
exists an absolute constant K > 0 with the properties below.
Consider the two graphs Gπ and G′, generated from the
correlated SBMs defined in Sec. 1.1, with the underlying
permutation π : [n] → [n]. Suppose that the community
labels (C1, C2, . . . , Ck) are given in both graphs. Addition-
ally, the exact permutation πs : [ns]→ [ns] for the vertices
in community Cs is given. Assume that the parameters
(p, q, nt, ns, α) of the model satisfy α < 1

10 , p ≤ 1
256 , and

ntp ≥ K log nt, ntnspq ≥ K log nt, ntpq ≤ 1/256.
(2.2)

Then Algorithm 3 applied to Gπ and G′ yields π̂t = π|Ct

with probability at least 1− 4/nt.

Using the recovered permutation πk : [nk]→ [nk] over Ck,
we first apply Algorithm 3 to recover the permutation over
Cr for some r /∈ {1, . . . , k′, k}, which is a community not
used in the previous stage of signature vector generation.

We can check that all the conditions in (2.2) except the last
one are satisfied by the conditions on |Ck| := nmin and
(p, q) in (1.1) and (1.2), since nt ≥ ns = nmin. To satisfy
ntpq ≤ 1/256 for any t ∈ {1, . . . , k − 1}, we need an
additional condition on nmin such that nmin ≥ M1n

10/19.
With these conditions, the exact matching for the vertices
in Cr can be recovered by Algorithm 3. Then, given πr :
[nr] → [nr], we use the matched pairs over Cr as seeds
and recover the matching over the rest of the communities
(C1, . . . , Cr−1, Cr+1, · · · , Ck−1). The reason we do not
use Ck but Cr as seeds in the permutation recovery is to
avoid the dependency issue caused by reusing the edges
over Ck and (C1, . . . , Ck−1) that were used in generating
the signature vectors for the vertices of Ck.

By combining Corollary 2.2 and Theorem 2.4, we obtain
our complete result to exactly recover π : [n]→ [n].

Corollary 2.5 (Exact Matching). For any constant D > 0
there exist a constant n0 depending on D and absolute
constants α1,M,M ′,M1 > 0 with the properties below.
Consider the two graphs Gπ and G′, generated from the
correlated SBMs defined in Sec. 1.1, with the underlying
permutation π : [n]→ [n] and correlation 1− α. Suppose
that community labels (C1, C2, . . . , Ck) are given in both
graphs, and assume that Ck is the smallest community with
size nmin. Assume that α ∈ (0, α1), (1.1), (1.2) and (1.3)
hold. Also assume that nmin ≥M1n

10/19. Run Algorithm
2 with input graphs (Gπ, G′) to get an initial estimate of
the permutation π̃k : [nk] → [nk] over Ck. Using π̃k as
input, run the refinement matching algorithm (Algorithm
4) to obtain π̂k : [nk] → [nk] over Ck. Using π̂k as input,
run Algorithm 3 to find a matching π̂r : [nr] → [nr] over
Cr that was not used in Algorithm 2. Then, by using π̂r

as input, run Algorithm 3 repeatedly to recover π̂i, for all
i ∈ [k]\{r, k}. By combining the recovered permutations
over each community, we get π̂ := (π̂1, . . . , π̂k) : [n]→ [n]
such that π̂ = π with probability at least 1−2n−D

min−n−1/19.

Note that Corollary 2.5 implies Theorem 1.1.

Remark 2.6 (Time complexity). We summarize the total
time complexity. For simplicity, we assume that the size
of each community is equal to m := n/k. First, the time
complexity to run Algorithm 1 is O((mp)ℓ · (k′mq)), since
the depth-ℓ partition tree contains (mp)ℓ vertices, and to
assign each vertex to one of the partitioning nodes at each
level, (k′mq) neighboring vertices need to be checked on
average. Since we will choose (mp)ℓ = O(m), this time-
complexity is bounded by O(k′m2q). In Algorithm 2, we
apply Algorithm 1 to m vertices in Ck and compare m2

pairs of signature vectors of dimension (logm)5. Thus, the
complexity is O(k′m3q + m2(logm)5). In addition, the
refinement matching by Algorithm 4 requires time complex-
ity of O(m3). The seeded graph matching by Algorithm 3
requires O(m2(mp)(m))-time complexity, and we run this

6
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algorithm a total of (k − 1) times. Thus, the complexity for
seeded matching is O(km4p). The total time complexity is
dominated by that of the seeded graph matching, O(km4p).
Remark 2.7 (Density regime). We discuss the most general
density regime, where there exist low-order polynomial-
time algorithms for exact matching of the correlated SBMs
with constant correlation. Assume approximately balanced
community sizes, i.e., nmin = Θ(n/k). Our main re-
sult (Theorem 1.1) shows that exact matching is achiev-
able in polynomial time for the correlated SBMs whose
average degrees within the smallest community satisfy
(log nmin)

1.1 ≤ nminp ≤ n
1/20
min with two additional condi-

tions on the number k of communities (1.3) and the edge
density q between communities (1.2). The result of Mao
et al. (2021a) (summarized in Table 1), on the other hand,
shows the existence of an efficient algorithm in the sparse
regime (1 + ϵ) log nmin ≤ nminp ≤ n

1/(C log lognmin)
min for

some constant C > 0. For both the algorithms, we need an
additional assumption on nmin in (1.4), which is equivalent
to k ≤ C ′(

√
n
p (p−q)∧

n(p−q)2

p logn ) for some constant C ′ > 0,

in order to recover the community labels in both graphs
before performing graph matching. In summary, for the cor-
related SBMs with the density (1 + ϵ) log n ≤ np ≤ n1/20,
there exists a low-order polynomial-time algorithm that can
achieve exact matching of vertices if α ∈ (0, const.) and
C log logn·lognp

logn ≤ k ≤ C ′(
√
n(p−q)√

p ∧ n(p−q)2

p logn ). For the

dense regime, we also need nq/k = Ω
(
(log log n)2

)
.

3. Outline of Proof
In this section, we outline the proof of Theorem 2.1. Recall
that Algorithm 1 constructs a 2k

′
-ary partition tree of depth

ℓ, rooted from each vertex i ∈ [Ck], of size |Ck| = nmin,
where the tree rooted from i is constructed within Ck by
using the intra-community edges, while the partitioning
of the vertices at each depth of the tree is done using the
inter-community edges between Ck and (C1, . . . , Ck′), the
randomly selected k′ communities. Our proof begins by
showing that for ℓ = ⌈ lognmin

40 lognminp
⌉ ∧ ⌈42 log log nmin⌉ and

k′ℓ = Θ(log log nmin), the length-ℓ neighborhoods of the
majority of vertices in Ck form trees, and the vertices in the
length-ℓ sphere SG(Ck)(i, ℓ) of i are uniformly partitioned
into the leaf nodes T ℓ

sℓ(i), sℓ ∈ {−1, 1}k
′ℓ, each with a

rough size of (nminp/2
k′
)ℓ.

We then compare the overlap between T ℓ
sℓ(i, G) and

T ℓ
sℓ(i, G

′), the leaf nodes of the partition trees of i ∈ Ck in
graphs G and G′, resp., and show that there is significant
overlap,

∣∣T ℓ
sℓ(i, G) ∩ T ℓ

sℓ(i, G
′)
∣∣ ≥ (nminp/2

k′
)ℓ(1−ϵ)k′ℓ,

where ϵ is an arbitrary small constant. This overlap leads to
a correlation between the signature vectors f(i) and f ′(i).
When comparing the ℓ2-normalized distance between f(i)
and f ′(i), we use the sparsification procedure suggested

by Mao et al. (2021a), to mitigate the dependency in the
entries of the signature vector of i caused by the overlap
between the sets T ℓ

sℓ(i, G) and T ℓ
tℓ(i, G) for sℓ ̸= tℓ. After

sparsification, the normalized distance between the sparsi-
fied signatures of correct pairs is shown to be smaller than a
given threshold with high probability.

For incorrect pairs of vertices i ̸= i′, the sizes of T ℓ
sℓ(i, G)∩

BG0(Ck) (i
′, ℓ) and T ℓ

sℓ (i
′, G′)∩BG0(Ck)(i, ℓ) summed over

the sparsified set are well controlled. As a result, the normal-
ized distance between the sparsified signatures of distinct
vertices is larger than the threshold with high probability.
Detailed proofs for theorems are available in Appendix.

4. Experiment
In this section, we evaluate our algorithm on both synthetic
and real networks with inherent community structure.

Datasets We use three types of datasets described in Table
2. For the synthetic dataset, we sample a parent graph G0

from SBM with p = 0.025 and q = p/3, where the vertices
are partitioned into six communities of equal size. Then, two
graphs G and G′ are subsampled independently from G0 by
removing each edge of G0 with probability α ∈ [0, 1). For
real datasets, we obtain correlated graphs in two different
ways: 1) For the ‘BlogCatalog’ dataset (Li et al., 2015),
the parent graph is given by the network of the blogger
community, where each user is treated as a vertex and the
edges are connected between the users if they follow each
other. We subsample the parent graph twice independently
to generate the correlated graphs. The community label
is given based on the predefined categories of the blogs.
2) For the ‘Movie’ dataset, there is no parent graph, but
two correlated networks are constructed from two different
movie datasets from ‘Rotten Tomatoes’ and ‘IMDb’ that
share common vertices (movie items). Edges are connected
between vertices if there is at least one common actor in the
top cast list, where the ‘Rotten Tomatoes’ dataset contains
up to six actors per movie and the ‘IMDb’ dataset contains
up to five actors per movie. The community label is assigned
based on six groups of release years. We also perform
experiments on two more real datasets, Flickr data (Li et al.,
2015) and ACM-DBLP data (Zhang & Tong, 2019), and
present the results in Appendix A.5.

Table 2: Details of three networks.

Type Model/Source n # of edges k

Synthetic SBM 4,998 139k 6

Sampled BlogCatalog 5,196 171k 6

Correlated Rotten-Tomatoes 4,780 110k 6
IMDb 4,780 90k 6
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(a) SBM varying p and 1− α (b) SBM varying 1− α (c) BlogCatalog varying 1− α (d) Movie

Figure 1: Comparison of our partition tree algorithm with other baselines, GRAMPA and Degree Profile (DP) for matching
networks of (a)-(b) correlated SBMs, (c) BlogCatalog network and (d) two correlated movie networks (‘RT’ and ’IMDb’).

Baselines We compare the performance of our algorithm
to two baselines: ‘GRAMPA’ (Fan et al., 2020) and ‘De-
gree Profile (DP)’ (Ding et al., 2021). As reviewed in Ta-
ble 1, these algorithms are computationally efficient graph-
matching algorithms with provable performance guarantees.
GRAMPA is an algorithm based on a spectral method where
a similarity matrix is constructed using all eigenvector pairs
of the two graphs. Then, a linear assignment problem ap-
plied to the similarity matrix yields a match (permutation
over the vertices). Degree Profile computes and compares
the degree profile of the neighbors of each vertex, which is
used to generate a similarity matrix. Since these baselines
are developed in a way that does not use the community
structure, for a fair comparison, we consider two variants of
these algorithms (Methods 1 and 2): Method 1 applies the
original algorithm (either GRAMPA or Degree Profile) to
the whole graph of [n] vertices to generate a n×n similarity
matrix, but then selects a subpart of the matrix correspond-
ing to the vertices in Ck to define the similarity matrix over
[nk]. After solving the assignment problem to generate a
permutation π̃k : [nk] → [nk], we apply the rest of the
steps same as ours, including the refinement matching for
Ck by Algorithm 4 (Mao et al., 2021a) and seeded graph
matching (Algorithm 3) using the matched pairs in Ck as
initial seeds. Method 2 applies the original algorithm to
each of the recovered communities to obtain the similarity
matrices, and then solves the assignment problem and refine-
ment matching for each of the communities. To compare
the performance of our algorithm with these baselines, we
also define a (nk × nk)-dimensional similarity matrix S

with its (i, j)-th entry Sij :=
∑

sℓ

(f
sℓ

(i)−f ′
sℓ

(j))2

v
sℓ

(i)+v′
sℓ

(j) . Instead

of thresholding the entries of S as in our Algorithm 2, we
apply the linear assignment problem to S, as in GRAMPA
(Fan et al., 2020), to compare the accuracy of the recovered
permutation over Ck. We also compare the final accuracy
of these three algorithms.

Our code is publicly available at https://github.
com/cabaksa/cSBM_Matching.

Results We present the experimental results for the SBM
networks in Fig. 1a–1b, the BlogCatalog networks in Fig.
1c and the Movie networks in Fig. 1d, respectively. Each
baseline (GRAMPA and DP) has two versions (1 and 2), as
explained before. The lines without + indicate the fraction
of correctly matched vertices within the initial comparison
set Ck after solving the linear assignment problem on the
similarity matrix of each algorithm, and those with + indi-
cate the final matching accuracy over the [n] vertices.

In Fig. 1a, we plot the empirical performances of our al-
gorithm, GRAMPA1, and Degree Profile1, averaged over
10 runs, as we change the intra-community edge density p
(q = p/3) and the correlation parameter 1 − α. A lighter
color indicates a lower fractional error. We can observe
that our algorithm is more robust against the decrease of
the correlation 1 − α for all p ∈ [0.01, 0.2] range. In Fig.
1b we can observe that our algorithm outperforms other
baselines in recovering the permutation πk : [nk] → [nk]
over Ck (solid lines) and maintains high accuracy longer
as the correlation decreases. The final matching accuracy
(dotted lines) is also better for our algorithm.

The degree distribution of BlogCatalog graphs is known
to follow a power law (Li et al., 2015). Since Algorithm
2 computes the normalized distance between the signature
vectors assuming the binomial degree distribution, we adjust
the definition of the signature vectors by using the log of
the degree instead of the degree itself. This variation is
denoted ‘Ours-log’ in Fig. 1c. We can observe that ‘Our-
log’ outperforms other baselines, although the accuracy of
our original algorithm without the degree fixing is lower
than that of GRAMPA1 and DP1.

For ‘Movie’ networks, unlike other data, there is no parent
graph, and the two correlated graphs have different edge den-
sities. The common edges between the two graphs are∼80k,
which means that the correlation 1 − α is 0.73 and 0.89,
respectively, from the perspective of each graph. Figure
1d shows the fraction of correctly matched vertices on this
dataset, where our algorithm achieves the best performance.
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5. Discussion and Open Problems
We presented a polynomial-time algorithm with low-order
complexity for achieving exact matching on correlated
SBMs with constant correlation. Our result is the first of its
kind in the dense regime. In the sparse regime of the graphs
where (1 + ϵ) log nmin ≤ nminp ≤ n

1/(C log lognmin)
min , by

directly applying the binary partition tree algorithm from
Mao et al. (2021a) to each recovered community, one can
achieve the exact graph matching with constant correlation
in polynomial-time complexity. By generalizing the idea
from Mao et al. (2021a), we developed a 2k

′
-ary partition

tree algorithm for exact graph matching for the correlated
SBMs, using the known community structure and the edges
between communities. Our algorithm achieves the exact
matching in (log nmin)

1.1 ≤ nminp ≤ n
1/20
min with constant

correlation, with two additional conditions on the minimum
number of communities k and the edge density across com-
munities. Our work leaves several important open questions,
as discussed below.

Exact graph matching without exact community recov-
ery In the correlated SBMs, where Gπ and G′ are sampled
from a parent graph G0, one can try to match the vertices of
the correlated graphs Gπ and G′ using a known community
structure, or one can try to recover the community labels
by first matching the two correlated graphs. The second
problem was considered in (Racz & Sridhar, 2021) for the
case of two equal-sized communities, and it was shown that
there exist regimes of (p, q, α) where having the correlated
graph Gπ as side information can provide an information
advantage in recovering the community of G′ (or G0) by
graph matching between Gπ and G′. Our work addressed
the first problem and showed that there exists a low-order
polynomial-time algorithm that can achieve the exact graph
matching with constant correlation by using the known com-
munity structure in both graphs. However, it requires an
additional assumption on nmin, the minimum size of the
community, as in (1.4), to recovery the community structure
exactly in polynomial time. Then the natural question is
whether exact community recovery is necessary to achieve
exact graph matching with constant correlation in polyno-
mial time. The answer may be no, and this is an interesting
future work.

Exact graph matching via exact community recovery
Even if we assume that the community labels in both graphs
are given as side information, there is a gap between the
information-theoretic limits for exact graph matching and
the regime where the current polynomial algorithms can
exactly recover the matching between the vertices of the cor-
related SBMs. First, our algorithm achieves the exact graph
matching in the dense regime, but up to nminp ≤ n

1/20
min .

The upper bound on nmin is needed in the proof of Lemma

F.6 to guarantee that the majority of vertices in Ck form
trees up to depth ℓ. Thus, we may need another algorith-
mic approach beyond the partition tree to achieve the ex-
act matching in the denser regime, e.g., nminp = n

1−o(1)
min .

For the sparse regime, to apply the algorithm from Mao
et al. (2021a) to each community, we need the condition
(1 + ϵ) log nmin ≤ nminp ≤ n

1/(C log lognmin)
min . Consider

the correlated SBMs with two balanced (size n/2 each)
communities. The information-theoretic limit from Racz
& Sridhar (2021) shows that exact matching is possible if
a+b
2 (1− α) > 1 on the correlated SBMs with two balanced

communities, where p = a logn
(1−α)n , and q = b logn

(1−α)n for pos-
itive constant a, b. Thus, if a = 1.5, b = 1, and α is a suf-
ficiently small constant, the exact matching is information-
theoretically possible. However, since the density of each
community in this regime is nminp ≈ 0.75 log nmin <
log nmin, we cannot apply the matching algorithm from
Mao et al. (2021a) to each community. Thus, there is a gap
between the information-theoretic limit and the computa-
tional limit when we apply the matching algorithm to each
recovered community. This implies that we need another
algorithmic approach that uses both inter-/intra-community
edges even in the sparse regime to bridge the gap between
the information-theoretic limit and the computational limit.

Using seeded graph matching Our algorithm uses Algo-
rithm 2 to achieve the almost exact matching on community
Ck, and then uses the refinement matching (Algorithm 4)
to achieve exact matching on community Ck. Finally, it
uses vertex pairs from the community Ck as seeds to com-
plete exact matching for the rest of the vertices in the corre-
lated SBMs. In the correlated ER model, the seeded graph
matching algorithm has been extensively studied. There
are seeded graph matching algorithms based on percolation
(Yartseva & Grossglauser, 2013; Chiasserini et al., 2014),
and algorithms using large neighbor statistics (Mossel &
Xu, 2020). Furthermore, Kazemi et al. (2015); Lubars &
Srikant (2018); Yu et al. (2021) have proposed algorithms
for seeded graph matching, even when the initial seeds are
noisy. It is also worth investigating how we can improve
the conditions for our exact graph matching algorithm by
adjusting the first step and allowing some noisy matching
from the initial seed set Ck.
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Sapiro, G. Robust multimodal graph matching: Sparse
coding meets graph matching. Advances in Neural Infor-
mation Processing Systems, 26, 2013.

Haghighi, A., Ng, A. Y., and Manning, C. D. Robust textual
inference via graph matching. In Proceedings of Human
Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pp.
387–394, 2005.

Kazemi, E., Hassani, S. H., and Grossglauser, M. Growing
a graph matching from a handful of seeds. Proceedings
of the VLDB Endowment, 8(10):1010–1021, 2015.

Kazemi, E., Hassani, S. H., Grossglauser, M., and Modarres,
H. P. PROPER: global protein interaction network align-
ment through percolation matching. BMC Bioinform., 17:
527:1–527:16, 2016.

Korula, N. and Lattanzi, S. An efficient reconcilia-
tion algorithm for social networks. arXiv preprint
arXiv:1307.1690, 2013.

Li, J., Hu, X., Tang, J., and Liu, H. Unsupervised stream-
ing feature selection in social media. CIKM ’15, pp.
1041–1050. Association for Computing Machinery, 2015.
ISBN 9781450337946.

Liu, Z.-Y. and Qiao, H. A convex-concave relaxation pro-
cedure based subgraph matching algorithm. In Asian
Conference on Machine Learning, pp. 237–252. PMLR,
2012.

Lubars, J. and Srikant, R. Correcting the output of approx-
imate graph matching algorithms. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications,
pp. 1745–1753. IEEE, 2018.

Mao, C., Rudelson, M., and Tikhomirov, K. Exact match-
ing of random graphs with constant correlation. arXiv
preprint arXiv:2110.05000, 2021a.

Mao, C., Rudelson, M., and Tikhomirov, K. Random graph
matching with improved noise robustness. In Conference
on Learning Theory, pp. 3296–3329. PMLR, 2021b.

Mao, C., Wu, Y., Xu, J., and Yu, S. H. Random graph
matching at otter’s threshold via counting chandeliers.
arXiv preprint arXiv:2209.12313, 2022.

Mossel, E. and Xu, J. Seeded graph matching via large
neighborhood statistics. Random Structures & Algo-
rithms, 57(3):570–611, 2020.

Narayanan, A. and Shmatikov, V. De-anonymizing social
networks. In 2009 30th IEEE symposium on security and
privacy, pp. 173–187. IEEE, 2009.

Okamoto, M. Some inequalities relating to the partial sum
of binomial probabilities. Annals of the institute of Statis-
tical Mathematics, 10(1):29–35, 1959.

Onaran, E., Garg, S., and Erkip, E. Optimal de-
anonymization in random graphs with community struc-
ture. In 2016 50th Asilomar conference on signals, sys-
tems and computers, pp. 709–713. IEEE, 2016.

10



Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation

Pedarsani, P. and Grossglauser, M. On the privacy of
anonymized networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 1235–1243, 2011.

Racz, M. and Sridhar, A. Correlated stochastic block mod-
els: Exact graph matching with applications to recovering
communities. Advances in Neural Information Process-
ing Systems, 34:22259–22273, 2021.
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The appendix of this paper is organized as follows. Additional experimental details and results are presented in Sec. A, and
the proofs of the theoretical results follow. The proof of Corollary 1.2, where we give the sufficient conditions for exact
matching of the correlated SBMs with unknown community structure, is presented in Sec. B. Theorem 2.4, which presents
the performance of seeded graph matching (Algorithm 3), is proved in Sec. C. The proof of Corollary 2.5 is given in Sec. D.
The proof of our main theorem (Theorem 2.1) is presented in Sec. E. Various lemmas to prove Theorem 2.1 are presented in
Sections F, G and H. Some technical tools to prove the main results are summarized in Sec. I, and the previous result of
Mao et al. (2021a) regarding the refinement algorithm for exact matching is summarized in Sec. J.

A. Experiment
A.1. Experimental Details

• Movie data: To generate two correlated networks sharing a common set of vertices, we use the ‘Rotten Tomatoes’1

dataset and the ‘IMDb’2 dataset. We generate two networks that share a common set of vertices corresponding to 4780
movies. Edges are connected between vertices if there is at least one common actor in the top cast list, where the
‘Rotten Tomatoes’ dataset contains up to six actors per movie and the ‘IMDb’ dataset contains up to five actors per
movie. The community label is assigned based on six groups of release years.

• Community labels: In all the experiments reported in Section 4, to focus on the performance comparisons between
different matching algorithms, we assume that the ground-truth community labels are given in the networks.

• Parameters: In order to apply our algorithm (Algorithm 1), the model parameters (p, q) are needed to obtain the values
of naq, nkp and nkp(1− p), which are used to compute the signatures. Since these parameters are unknown in real
datasets, we estimate these values from the data. Specifically, the medians of the vertex degree within and across
communities are used instead of nkp and naq, respectively, and the empirical variance of vertex degree within Ck

replaces nkp(1− p).

• Signature vector: The two parameters (k′, ℓ), which determine the dimension of the signature vectors, can be considered
as hyperparameters of our algorithm. In our experiments, we choose k′ = 4 and ℓ = 2. In Appendix §A.3, we provide
additional experiments with varying (k′, ℓ).

• Similarity matrix and assignment problem: The two main baselines (GRAMPA and Degree Profile) use two-step
procedures, generating the similarity matrix over the vertices and solving the assignment problem to output a permuta-
tion from the similarity matrix. To compare the performance of our algorithm with these baselines, we also define a

(nk × nk)-dimensional similarity matrix S by defining its (i, j)-th entry as Sij :=
∑

sℓ

(f
sℓ

(i)−f ′
sℓ

(j))2

v
sℓ

(i)+v′
sℓ

(j) . If both the

partitioning nodes T ℓ
sℓ(i) and T ′ℓ

sℓ(j) are empty for some sℓ ∈ {−1, 1}k′ℓ, we set
(f

sℓ
(i)−f ′

sℓ
(j))2

v
sℓ

(i)+v′
sℓ

(j) := 0. Instead of

thresholding the entries of S as in our Algorithm 2 to generate the permutation over Ck, we apply the linear assignment
problem to S suggested in (Fan et al., 2020), to compare the accuracy of the permutation obtained from our similarity
matrix with that of the two baselines.

• Seeded matching : In Algorithm 3, we count the number of common seeds on 2-hop neighborhood when comparing
each pair of vertices, and match the vertices if the number of common seeds exceeds the given threshold. The reason
we considered 2-hop neighborhood instead of 1-hop neighborhood was to make the algorithm work even from very
sparse regime of inter-community edge density, nminq = C(log log nmin)

2 for C > 0. In the simulation, since the
inter-community edge density is not very sparse, it is sufficient to count the number of seeds in the 1-hop neighborhood
as the seeded matching algorithm proposed by Korula & Lattanzi (2013). Thus, we use the greedy seeded matching
algorithm, where we match the pair of vertices with the maximum number of common seeds in the 1-hop neighborhood
among the set of remaining vertices as we match the nodes one by one.

• Refinement matching : After the initial matching, refinement matching is performed on each community for T rounds.
Theorem 2.4 in (Mao et al., 2021a) shows that exact matching is achievable from partial matching using refinement
matching by Algorithm 4. In Algorithm 4, the refinement step runs over ⌈log2 n⌉ rounds by checking whether the

1https://www.kaggle.com/datasets/ayushkalla1/rotten-tomatoes-movie-database?resource=
download

2https://www.kaggle.com/datasets/jyoti1706/imdbmoviesdataset?datasetId=9670
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number of common pairs in the 1-hop neighborhood of the matched pairs exceeds a certain threshold and whether
it is below a certain threshold for all unmatched pairs. Since setting the threshold requires knowledge of the model
parameters (p, q), instead we solve the linear assignment problem πt = argmaxπ∗∈Sn

∑
i |π

−1
t−1 (NGπ (π∗(i))) ∩

NG′(i)| where Sn is the permutation matrix. Appendix §A.4 shows the effect of the number of iteration rounds T on
the final accuracy of the matching.

A.2. Degree Distribution of Datasets

(a) SBM (b) BlogCatalog (c) Movie

Figure 2: Degree histogram for three different datasets

Figure 2 shows the histograms of vertex degrees within the initial comparison set Ck for three different datasets, considered
in Sec. 4. Unlike the ‘SBM’ dataset, where we sampled the network from the statistical model and thus the degree
distribution within each community follows the binomial distribution, the degree distribution in real datasets deviates from
the SBM. In particular, the degree distribution of the ‘BlogCatalog’ dataset is very different from the SBM and follows
a power law. Since Algorithm 2 calculates the normalized distance between the signature vectors assuming the binomial
degree distribution, we modify the definition of the signature vectors by using the logarithm of the degree instead of the
degree itself for this dataset.

A.3. Impact of Hyperparamters k′ and ℓ for Partition Tree Algorithm

Table 3: Fraction of correctly matched vertices per k′ and ℓ

SBM
(1− α = 0.9)

BlogCatalog
(1− α = 0.85) Movie

k′
ℓ

1 2 1 2 1 2

1 0.0099 0.0148 0.0605 0.1283 0.0342 0.0565
2 0.0298 0.0683 0.1552 0.3582 0.0907 0.2167
3 0.0740 0.2339 0.2622 0.6317 0.1567 0.2945
4 0.1505 0.5598 0.3747 0.8015 0.1908 0.3557
5 0.2241 0.8252 0.4452 0.8989 0.2073 0.3416

In our partition tree algorithm with 2k
′
-ary tree of depth-ℓ, the two parameters (k′, ℓ), which determine the dimension of the

signature vectors, can be considered as hyperparameters. In Table 3, we show the impact of these parameters by reporting
the performance of almost exaction matching over Ck for different (k′, ℓ) pairs, where the numbers indicate the fraction of
correctly matched vertices over Ck after solving the linear assignment problem for the similarity matrix obtained by the
signature vectors from the partition tree. The numbers reported for the ‘SBM’ and ‘BlogCatalog’ datasets are the results
averaged over 20 independent runs by randomly sampling the networks, while the numbers reported for the ‘Movie’ dataset
are the result from a given fixed correlated networks (without any sampling or averaging). For a fixed ℓ, it can be seen that
the accuracy increases with k′ in most cases. For a fixed k′, the accuracy increases as ℓ increases in all the cases considered.
When we generate a 2k

′
-ary partition tree of depth ℓ, if k′ℓ > 8, the number of leaves 2k

′ℓ in a partition tree becomes larger
than the number of vertices in Ck (which is about 830), and thus some of the leaf nodes become empty. So we choose
(k′, ℓ) = (4, 2) in our experiment.

13



Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation

A.4. Final Accuracy of Refinement Matching with Different Iterations on BlogCatalog Dataset

(a) Ours-log (b) Degree Profile 1 (c) Degree Profile 2

(d) GRAMPA 1 (e) GRAMPA 2

Figure 3: The fraction of correctly matched vertices in the final matching with respect to the correlation 1− α, for different
number T of iteration rounds.

Figure 3 shows the effect of iteration rounds on the refinement matching for the BlogCatalog Dataset. In most experiments,
the accuracy improves as the number of iteration rounds T increases, but each algorithm requires a different number of
rounds to converge, depending on the initial accuracy of the algorithm. For example, for T = 2 and 0 ≤ 1− α ≤ 0.65, our
algorithm and GRAMPA 1 converge, while others require more iterations to converge. This result implies that our algorithm
requires less computation time for the final matching.

A.5. Additional Experiments

We compare our algorithm with baselines on two additional real-world datasets summarized in Table 4. For the ‘Flickr’
dataset (Li et al., 2015), the parent graph is given by the network of the image hosting and sharing website, where each user
is treated as a vertex and the edges are connected between the vertices if they follow each other. This data consists of 7,575
vertices, 239,738 edges, and 9 communities. ACM-DBLP data (Zhang & Tong, 2019) consists of two correlated networks
regarding the papers posted on ACM and DBLP in 2016, respectively. Authors are treated as vertices and an edge is added
when two authors are co-authors. The community label of each author is given by their research area. This data consists of
two graphs of different sizes, 9,872 / 9,916 vertices with ∼ 6,000 ground-truth pairs. Since the baseline algorithm GRAMPA
runs on correlated graphs of the same size, we only choose vertices in the ground-truth pairs to compare the performance of
our algorithm and the baselines. Thus, we use the correlated graphs consisting of 6,299 vertices, 24,822 / 27,892 edges, and
4 communities. The correlations between the two graphs are 0.9511 / 0.8464 from the perspective of each graph.

Figure 4 shows the histograms of vertex degrees within the initial comparison set Ck for these two datasets. We use the

Table 4: Details of additional datasets.

Type Model/Source n # of edges k

Sampled Flickr 7,575 240k 9

Correlated ACM 6,299 25k 4
DBLP 6,299 28k 4
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(a) Flickr (b) ACM-DBLP

Figure 4: Degree histogram for additional datasets

logarithm of the degree when computing the signature vectors in our algorithm, since the degree distributions of these two
additional datasets follow a power law like the BlogCatalog dataset considered in the main experiment. In the case of the
ACM-DBLP dataset, each community has a size of about 1,600 vertices, which is twice the size of the BlogCatalog data,
and the average degree within the comparison set Ck is lower, indicating a sparser network compared to the BlogCatalog.
Therefore, we set the hyperparameter ℓ = 3 instead of ℓ = 2. In addition, since the maximum number of communities that
can be used to construct signatures is 4− 1 (the number of communities −1), we set k′ = 3. On the other hand, in the case
of the Flickr dataset, we set ℓ = 2, the same as before. When comparing the degree distributions (Figure 4a and Figure 2b),
we observe that the Flickr data has a long-tail distribution compared to the BlogCatalog data. In order to evenly partition the
neighbors of high-degree vertices belonging to the long tail for the Flickr dataset, we set k′ to be a larger value, 6 instead of
4.

(a) Flickr (b) ACM-DBLP

Figure 5: Comparison of our partition tree algorithm with other baselines, GRAMPA and Degree Profile (DP) for matching
networks of (a) Flickr (b) ACM-DBLP

In Figure 5a, the result shows the fraction of correctly matched vertices within the comparison set Ck on the Flickr dataset
with different correlations, averaged over 20 independent runs. Although the performance gap between our algorithm and
other algorithms gets smaller, our algorithm still outperforms other algorithms on this dataset with a long-tail distribution of
vertex degrees.

For ACM-DBLP data, Figure 5b shows the fraction of correctly matched vertices within the comparison set Ck (without +
mark) and the accuracy after final matching, which is indicated with + mark. For this dataset, since there are some vertices
that do not have any intra-community edges, we added the refinement matching step using an adjacency matrix for all
vertices in the final step. For this dataset, our algorithm also achieves the best performance.
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B. Proof of Corollary 1.2
When the community structure is not known in both graphs Gπ and G′, we first perform community detection on each graph
separately. Then, we apply our graph matching algorithm to the two correlated graphs, using the recovered community
labels. To ensure the independence between the two-step procedures, we use a random edge splitting approach in both
graphs Gπ and G′. Specifically, we randomly partition the edges of each graph into two sub-graphs (Gπ

1 , G
π
2 ) and (G′

1, G
′
2)

with probabilities β and 1− β respectively, where β ∈ (0, 1). We then apply the community detection algorithm from Yan
et al. (2018) to Gπ

1 and G′
1, and our graph matching algorithm to (Gπ

2 , G
′
2). This ensures that the edges used for community

detection are not reused in the graph matching process.

Note that both Gπ
1 and G′

1 are graphs generated by the stochastic block model, with intra- and inter-community edge
densities of pβ and qβ, respectively. The result from (Yan et al., 2018) can be expressed in the following simple form.

Theorem B.1 (Theorem 1 in (Yan et al., 2018)). There exists an absolute constant C0 > 0 with the properties below. Let
nmin be the minimum community size. Let B be the k × k symmetric matrix, whose (i, j)-th entry, Bij , is equal to the
probability that a node in community i is connected to a node in community j. If

min
k

(
Bkk −max

l ̸=k
Bkl

)
≥2
√
6 log nmax

k

√
Bkk/nk + 6 max

1≤k<l≤r

√
Bkl log n/nmin + C0

√
(n/n2

min) (maxBkk),

then the exact community detection is possible with high probability by using the semidefinite programming (SDP) proposed
in (Yan et al., 2018).

By applying the result from Yan et al. (2018), under the condition (1.4), we can complete the community detection on the
graphs Gπ

1 and G′
1 with high probability, where M1 is a sufficiently large constant depending only on β. Because of the

assumption that the sizes of all the communities are different, once the communities are detected, we can complete the
matching between the communities of the two graphs just by comparing their sizes.

Note that Gπ
2 = Gπ\E(Gπ

1 ) and G′
2 = G′\E(G′

1) where E(G) is the edge set of G. Then, (1− α)(1− β) is the correlation
between the two graphs Gπ

2 and G′
2, and the community structures are now revealed in both Gπ

2 and G′
2. If we choose

β = α1/2 and α ∈ (0, α1/2), the correlation (1−α)(1− β) is greater than 1−α1. The conditions (1.1), (1.2), and (1.3) in
Theorem 1.1 are all satisfied on the graphs Gπ

2 and G′
2 for any constant β when n is sufficiently large. Moreover, combining

the maximum density condition in (1.1) with the condition for community detection in (1.4) gives nmin = Ω(n20/21), which
is a stricter condition than nmin = Ω(n10/19). Thus, all conditions in Theorem 1.1 are satisfied in both Gπ

2 and G′
2, showing

that the exact matching of (Gπ
2 , G

′
2) is possible by using our graph matching algorithm. This completes the proof.

C. Proof of Theorem 2.4
Let the set of seed pairs given by πs : [ns]→ [ns] over Cs be

S := {(πs(u1), u1), (πs(u2), u2), . . . , (πs(uns), uns)}. (C.1)

Let Vt and V ′
t be the vertex sets in the community Ct of the graph Gπ and G′, respectively. Let E(Gπ) and E(G′) be the

sets of edges in the graphs Gπ and G′, respectively. For every vertex pair (i, i′) ∈ Vt × V ′
t , we define the weight function

w(i, i′) :=
∣∣{j ∈ [ns] | ∃z ∈ NGπ(Ct)(i) and ∃z′ ∈ NG′(Ct)(i

′) such that (z, πs(uj)) ∈ E(Gπ) and (z′, uj) ∈ E(G′)}
∣∣ .

(C.2)
For a correct pair (π(i), i) ∈ Vt×V ′

t , the distribution of
∣∣NGπ(Ct)(π(i)) ∩NG′(Ct)(i)

∣∣ is given by Binomial(nt, p(1− α)).
Thus, applying the bounds on binomial tail (Theorem I.1), we have

∣∣NGπ(Ct)(π(i)) ∩NG′(Ct)(i)
∣∣ ≥ 1

2
ntp(1− α) (C.3)
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with probability at least 1− 1/n2
t , where α < 1/10 and ntp ≥ K log nt for a sufficiently large constant K > 0. Thus, for

any seed pair (πs(uj), uj), we have

P
{
∃z ∈ NGπ(Ct)(π(i)) ∩NG′(Ct)(i) s.t. (z, πs(uj)) ∈ E(Gπ) and (z, uj) ∈ E(G′)

}
= 1− (1− q(1− α))|NGπ(C2)(π(i))∩NG′(C2)(i)|

≥ 1− (1− q(1− α))
1
2ntp(1−α)

= q(1− α)
(
1 + (1− q(1− α)) + (1− q(1− α))2 + · · ·+ (1− q(1− α))

1
2ntp(1−α)−1

)
(a)

≥ 1

2
ntpq(1− α)2

(
1− 1

2
ntpq(1− α)2

)
(b)

≥ 1

3
ntpq(1− α)2 ≥ 1

4
ntpq.

(C.4)

where (a) holds since (1− x)n ≥ 1− nx for any x < 1, (b) holds since ntpq ≤ 2/3, and the last inequality holds since
α < 1/10. Since the weight function w(π(i), i) counts the number of seed pairs connected to at least one neighboring node
pair of (π(i), i), we have

P
{
w(π(i), i) ≤ 1

8
nsntpq

}
≤ P

{
Bin

(
ns,

1

4
ntpq

)
≤ 1

8
nsntpq

}
(a)

≤ 1

n2
t

, (C.5)

where (a) holds by Theorem I.1 with nsntpq ≥ K log nt for a sufficiently large constant K > 0. By applying a union
bound over all i ∈ Vt, we have

w(π(i), i) >
1

8
nsntpq (C.6)

for all correct pairs with probability at least 1− 2
nt

.

For a wrong pair (π(i), i′) ∈ Vt × V ′
t with i ̸= i′, we have

∣∣NGπ(Ct)(π(i)) ∩NG′(Ct)(i
′)
∣∣ ∼ Bin

(
nt, p

2(1− α)2
)
. Thus,

P
{∣∣NGπ(Ct)(π(i)) ∩NG′(Ct)(i

′)
∣∣ ≥ 4ntp

2 ∨ 8 log nt

}
= P

{
Bin

(
nt, p

2(1− α)2
)
≥ 4ntp

2 ∨ 8 log nt

}
≤ P

{
Bin

(
nt, p

2
)
≥ 4ntp

2 ∨ 8 log nt

} (a)

≤ 1

n3
t

,
(C.7)

where (a) holds from the binomial tail bounds (Theorem I.1). Moreover, from
∣∣NG0(Ct)(i)

∣∣ ∼ Bin (nt, p/(1− α)), we can
show that

P
{∣∣NG0(Ct)(i)

∣∣ ≥ 2ntp
}
= P {Bin (nt, p/(1− α)) ≥ 2ntp} ≤

1

n3
t

, (C.8)

where the last inequality holds by Theorem I.1 since α < 1/10 and ntp ≥ K log nt for a sufficiently large constant K > 0.
(C.8) implies that ∣∣NGπ(Ct)(π(i))| ∨ |NG′(Ct)(i

′)
∣∣ ≤ 2ntp

holds with probability at least 1− 1
n3
t

. Thus, for any seed pair (πs(uj), uj)) and i ̸= i′, we have

P
{
∃z ∈ NGπ(Ct)(π(i)) and ∃z′ ∈ NG′(Ct)(i

′) s.t. (z, πs(uj)) ∈ E(Gπ) and (z′, uj) ∈ E(G′)
}

(a)

≤
{
1− (1− q(1− α))4ntp

2∨8 lognt

}
+
{
1− (1− q)2ntp

}2 (b)

≤ 4ntp
2q ∨ 8q log nt + 4n2

tp
2q2

≤ 16
(
q log nt ∨ n2

tp
2q2 ∨ ntp

2q
)
≤ 1

16
ntpq.

(C.9)

The inequality (a) holds since the first term is the probability that there exists a common neighbor pair that is connected
to the seed pair and the second term is the probability that two different neighboring nodes z ∈ NGπ(Ct)(π(i)) and
z′ ∈ NG′(Ct)(i

′) are connected to the seed pair. The inequality (b) holds since (1 − x)n ≥ 1 − nx for x < 1, and the
last inequality holds since ntp ≥ K log nt for a sufficiently large constant K, ntpq ≤ 1/256 and p ≤ 1/256. Therefore,
applying Theorem I.1, we get

P
{
w(π(i), i′) ≥ 1

8
nsntpq

}
≤ P

{
Bin

(
ns,

1

16
ntpq

)
≥ 1

8
nsntpq

}
≤ 1

n3
t

, (C.10)
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where nsntpq ≥ K log nt for a sufficiently large constant K > 0. Applying the union bound over (π(i), i′) ∈ Vt × V ′
t with

i ̸= i′, we have

w(π(i), i′) <
1

8
nsntpq (C.11)

for all wrong pairs with probability at least 1− 2
nt

. By combining (C.6) and (C.11), the proof is complete.

D. Proof of Corollary 2.5
Applying Corollary 2.2, we obtain the permutation π̂k over Ck such that π̂k = π|Ck

with probability at least 1 − 2n−D
min.

From the assumptions (1.1), (1.2) and (1.3) in Theorem 2.1, all conditions of Theorem 2.4 except ntpq ≤ 1/256 are satisfied.
The condition ntpq ≤ 1/256 can be satisfied when nmin ≥M1n

10/19 for a sufficiently large constant M1 > 0, since for
any t ∈ [k], we have

ntpq ≤ npq ≤ np2
(a)

≤ M
−19/10
1 n

19/10
min p2 = M

−19/10
1

(nminp)
2

n
1/10
min

≤M
−19/10
1 , (D.1)

where the inequality (a) holds since nmin ≥M1n
10/19 and the last inequality holds since nminp ≤ n

1/20
min from (1.1).

Let us choose a community Cr that has not been used to generate the signature vector for vertices in Ck. Then, applying
Theorem 2.4 with Ck, we can obtain the permutation π̂r over Cr such that π̂r = π|Cr with probability at least 1− 4/nr.
Similarly, we can complete the exact matching over the remaining communities with probability at least 1 −

∑k
i=1

4
ni

by applying Theorem 2.4 with Cr as seeds. Since nmin ≥ M1n
10/19, the number of communities k should be less than

1
M1

n9/19. Thus, we have

1−
k∑

i=1

4

ni
≥ 1− 4k

nmin
≥ 1− 1

n1/19
, (D.2)

which completes the proof.

Remark D.1 (Relation between q and nmin). The reason we proposed a new seeded matching algorithm (Algorithm
3 beyond (Korula & Lattanzi, 2013)) and proved Theorem 2.4 was to do the seeded matching at a smaller q such as
nminq = M ′(log log nmin)

2 for a sufficiently large constant M ′ > 0. But if q is large enough such as nminq ≥ C log n for
a sufficiently large constant C > 0, then the seeded matching can be performed by simply counting the number of common
seed pairs in the 1-hop neighbors as proposed by Korula & Lattanzi (2013). In this case, nmin ≥M1n

10/19 is not required.

D.1. Balanced Community Size

In Remark 2.7, we discussed the case where the community sizes are approximately balanced, i.e., nmin = Θ(n/k), and
derived the conditions to guarantee the exact recovery of the underlying permutation for the correlated SBMs with constant
correlation within a low-order polynomial-time complexity. Next, we prove that when the community label of each vertex
is sampled from a probability distribution [r1, r2, . . . , rk] with each ri = Θ(1/k) the community sizes are approximately
balanced and the sizes of all communities are different with high probability as mentioned in Remark 1.3

Lemma D.2. Suppose that there are n vertices and k communities. Let ri be the probability that each vertex belongs to
community Ci, where

k∑
i=1

ri = 1 and ri = Θ

(
1

k

)
. (D.3)

If the number of communities
k = o(n1/5) (D.4)

then the communities are approximately balanced, i.e., ni = Θ(n/k) for all i ∈ [k], and the sizes of all communities are
different with high probability as n→∞.

Proof. Without loss of generality, assume that r1 ≥ . . . ≥ rk. Let ni be the community size of Ci and nmin be the smallest
community size. Define an event

F :=

{
nmin ≥

1

2
nrk

}
.
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Then, we can get

P{Fc} ≤
k∑

i=1

P{ni ≤
1

2
nrk} ≤ kP

{
nk ≤

1

2
nrk

}
≤ kP

{
Bin(n, rk) ≤

1

2
nrk

}
(a)

≤ k exp(−3 log n) ≤ k

n3
.

(D.5)

The inequality (a) holds by Theorem I.1 with n
k = ω(n4/5). Moreover, we can show that nmax ≤ 2nr1 with probability at

least 1− k
n3 using a similar approach as in (D.5). Therefore, ni = Θ(n/k) holds with high probability as n→∞.

For any i, j ∈ [k], i ̸= j, we have

P{ni = nj |F} ≤
∑

t≥ 1
2nrk

P{ni = nj |ni + nj = 2t}P{ni + nj = 2t}

≤ max
t≥ 1

2nrk
P{ni = nj |ni + nj = 2t}

≤ max
t≥ 1

2nrk

(
2t

t

)(
ri

ri + rj

)t(
rj

ri + rj

)t

≤ max
t≥ 1

2nrk

(
2t

t

)
1

22t
(a)
= O

(
1
√
nrk

)
.

(D.6)

The equality (a) holds by Stirling’s approximation. Thus, we have

P{ni = nj} ≤ P{ni = nj |F}+ P{Fc} = O (1/
√
nrk) = O

(√
k/n

)
. (D.7)

Applying a union bound over i, j, we can show that the community sizes are all different with probability 1−O

(
k2
√

k
n

)
.

We have k2
√

k
n → 0 as n→∞ since (D.4).

In Remark 2.7, we assumed that k ≤ C ′
√

n
p (p− q). On the condition np ≤ n1/20, we have

C ′
√

n

p
(p− q) ≤ C ′√np ≤ n1/40 = o(n1/5)

as n→∞. Therefore, the condition (D.4) in Lemma D.2 can be satisfied.

E. Proof of Theorem 2.1
From now on, assume that the permutation π : [n]→ [n] is the identity, so that Gπ = G. Let Ck be the smallest community
and m denote the size of the community Ck, i.e, m = nmin.

In proving Theorem 2.1 (almost exact matching of Gπ(Ck) and G′(Ck)), we follow the proof structure mostly similar to
that of Mao et al. (2021a), where the almost exact matching of the correlated ER model was proved based on the correlation
between the signature vectors of the correct pair of vertices, where the signature vector is defined in terms of the binary
partition tree rooted from each vertex. The main difference of our analysis from that of Mao et al. (2021a) is that we use
both inter- and intra-community edges when constructing the 2k

′
-ary partition tree, while that of Mao et al. (2021a) uses

only inter-community edges (since there is no community structure in the ER model) both in generating the binary tree and
in partitioning the vertices within the tree. In our analysis, the intra-community edges are used to generate the tree structure,
while the inter-community edges are used to partition the vertices at each level of the tree into different nodes based on their
inter-community edge degrees. The proof becomes simpler for our analysis of the correlated SBMs due to this difference.

In this section, we present two main lemmas, Lemma E.1 and Lemma E.2, to prove Theorem 2.1. Lemma E.1 shows that

for most correct vertex pairs, the value of the normalized distance
∑

sℓ∈J
(fsℓ (i)−f ′

sℓ
(i))

2

v
sℓ

(i)+v′
sℓ

(i) between the signature vectors in

Algorithm 2 is less than the threshold 2w
(
1− 1√

logm

)
with high probability.
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Lemma E.1. For any constants C,D > 0, there exist constants R,Q1, Q2,m0, α1, c > 0 with the properties below.
Consider the graphs Gπ and G′, which are generated from the correlated Stochastic Block Models (SBMs) described in
Section 1.1 with correlation 1 − α. Consider a random subset J uniformly drawn from {−1, 1}k′ℓ with cardinality 2w,
where w is an integer. Suppose that m ≥ m0, α ∈ (0, α1), w ≥ (logm)4, and the following conditions hold:

(logm)1.1 ≤ mp ≤ m1/20,

mq ≥ Q1k
′2ℓ2,

2 log
(
w4(logm)

)
≤ k′ℓ ≤ C log logm, k′ ≤ Q2 logmp, ℓ ≤ logm

R logmp
∧ C log logm.

Then, there are at least m−m1−c vertices i ∈ Ck satisfying∑
sℓ∈J

(
fsℓ(i)− f ′

sℓ(i)
)2

vsℓ(i) + v′
sℓ(i)

≤ 2w

(
1− 1

(logm)0.1

)
, (E.1)

with probability at least 1−m−D.

The proof of Lemma E.1 can be found in Section G.

Lemma E.2, on the other hand, demonstrates that for most of the incorrect pairs (i, i′) in Ck, the normalized distance value∑
sℓ∈J

(fsℓ (i)−f ′
sℓ

(i′))
2

v
sℓ

(i)+v′
sℓ

(i′) between the signature vectors exceeds the threshold 2w
(
1− 1√

logm

)
with high probability.

Lemma E.2. For any constants C,D > 0, there exist constants R,Q1, Q2,m0, α1, c > 0 with the properties below.
Consider the graphs Gπ and G′, which are generated from the correlated Stochastic Block Models (SBMs) described in
Section 1.1 with correlation 1 − α. Consider a random subset J uniformly drawn from {−1, 1}k′ℓ with cardinality 2w,
where w is an integer. Suppose that m ≥ m0, α ∈ (0, α1), w ≥ ⌊(logm)5⌋, and the following conditions hold:

(logm)1.1 ≤ mp ≤ m1/20,

mq ≥ Q1k
′2ℓ2,

k′ℓ ≤ C log logm, k′ ≤ Q2 logmp, ℓ ≤ logm

R logmp
∧ C log logm.

Then, there exists a subset I ⊂ Ck with a size |I| ≥ m−m1−c such that for any i, i′ ∈ I, i ̸= i′, we have

∑
sℓ∈J

(
fsℓ(i)− f ′

sℓ(i
′)
)2

vsℓ(i) + v′
sℓ(i′)

≥ 2w

(
1− 1

(logm)0.9

)
, (E.2)

with probability at least 1−m−D.

The proof of Lemma E.2 can be found in Section H.

Proof of Theorem 2.1. We will set the order of ℓ as large as possible to minimize the order of k′ (or k). Let ℓ =
⌈

logm
40 logmp

⌉
∧

⌈42 log logm⌉ and k′ =
⌈
1680 log logm logmp

logm

⌉
. We consider a random subset J ∈ {−1, 1}k′ℓ of a size |J | = 2w where

w =
⌊
(logm)5

⌋
. By Lemma E.1 and E.2, we can find a subset I ⊂ Ck with its size |I| ≥ m−m1−c for a positive constant

c such that
∑

sℓ∈J
(fsℓ (i)−f ′

sℓ
(i))

2

v
sℓ

(i)+v′
sℓ

(i) < 2w
(
1− 1√

logm

)
and

∑
sℓ∈J

(fsℓ (i)−f ′
sℓ

(i′))
2

v
sℓ

(i)+v′
sℓ

(i′) > 2w
(
1− 1√

logm

)
for any distinct

i, i′ ∈ I. Hence, by running Algorithm 2, we can get a matrix B satisfying that

Bπ(i′),i =

{
1 if i = i′ ∈ I,
0 if i, i′(i ̸= i′) ∈ I.

By Proposition 2.2 in (Mao et al., 2021a) with matrix B as an input, we can obtain a permutation π̂ on community Ck that
satisfies

|i ∈ [m] : π̂(i) ̸= π(i)| ≤ 4m1−c. (E.3)

This completes the proof.
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F. Structural Properties of Partition Tree
We analyze the statistical behavior of large neighborhoods of vertices in Erdős-Rényi (ER) graph and the partition trees
rooted from each vertex, which will be used to prove the main theoretical results. Section F.1 is dedicated to the statement of
lemmas concerning the statistics of the large neighborhoods in the ER graph G(n, p). In Section F.2, we show that the sizes
of the nodes T d

sd(i) at each level d ∈ [ℓ] of the partition tree are well balanced for every sd ∈ {−1, 1}k′d. Furthermore, in
Section F.3 we establish that the ℓ-neighborhoods of a majority of vertices in Ck form a tree with high probability.

F.1. Large Neighborhoods in ER Graph

In this subsection, we state lemmas that analyze the statistics of large neighborhoods in Erdős-Rényi (ER) graph G(n, p).
Lemma F.1 (Sizes of neighbors). For any constant D,R, δ > 0, there exists a constant n0, which depends only on D,R
and δ, with the properties below. Consider an Erdős-Rényi (ER) graph G ∼ G(n, p). Assume that

n ≥ n0, and np ≥ (log n)1+δ. (F.1)

Then, we have that
|SG(i, 1)− np| ≤ np

R log log n
∀i ∈ [n], (F.2)

with probability at least 1− n−D.

Proof. Applying Bernstein’s inequality (stated in Lemma I.5), for any vertex i we have

P
{
|SG(i, 1)− np| ≥ np

R log log n

}
≤ 2 exp

(
−R′ np

(log log n)2

)
≤ n−D−1, (F.3)

where R′ depends only on R. The last inequality holds since (log n)1+δ ≤ np and n ≥ n0(D,R, δ). By applying a union
bound over all vertices i ∈ [n], we can complete the proof.

Lemma F.2 (Sizes of intersections of neighbors (Lemma 4.1 in (Mao et al., 2021a))). For any constant D > 1, there
exist constants K > 0 and n0, which depend only on D, with the properties below. Consider an Erdős-Rényi (ER) graph
G ∼ G(n, p) with n ≥ n0 and np ≥ log n. With probability at least 1− n−D, the number of vertices in the ball of radius l
centered at i is bounded by

|BG(i, l)| ≤ K(np)l for any i, l ∈ [n]. (F.4)

Furthermore, under the event defined by (F.4), consider any positive integer m and i, j ∈ [n] satisfying that i ̸= j and
G (BG(i, 3m)) forms a tree. If the distance d = distG(i, j) ≤ 2m, then we have

|BG(i,m) ∩ BG(j,m)| ≤ K(np)m−⌈d/2⌉.

F.2. Sizes of Nodes in the Partition Tree

We next provide the bounds on the sizes of the nodes {T d
sd(i)}sd∈{−1,1}k′d,d∈[ℓ] in the 2k

′
-ary partition tree.

Lemma F.3 (Sizes of nodes in the partition tree). For any constants D,R, δ > 0 , there exist a constant m0 depending on
D,R, δ, a constant k0 depending on δ and an absolute constant Q > 0 with the properties below. Let G ∼ SBM(n, p, q, k)
with communities (C1, . . . , Ck). Assume that the community labels (C1, C2, . . . , Ck) are given. Assume that

m ≥ m0, (logm)1+δ ≤ mp, k′ ≤ k0 logmp, mq ≥ Qk′2ℓ2, (F.5)

for a fixed positive integer ℓ ≤
⌊

logm
logmp

⌋
∧R log logm. For any d ∈ [ℓ], sd ∈ {−1, 1}k′d, and i ∈ Ck, recall T d

sd(i) defined

in Sec. 2.2. Then, for any i ∈ Ck satisfying that G
(
BG(Ck)(i, ℓ)

)
forms a tree, we have

∣∣T d
sd(i)

∣∣ ≤ 6
(mp

2k′

)d
(F.6)

with probability at least 1−m−D.
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Proof. For notational simplicity, we will use Gk instead of G(Ck). We will prove (F.6) using mathematical induction. We
start with the base case d = 1, and by applying Lemma F.1, we obtain the following result:

P
{
|SGk

(i, 1)| ≤ mp

(
1 +

1

5ℓ

)}
≥ 1−m−D−2 (F.7)

since mp ≥ (logm)1+δ and m ≥ m0(D,R, δ). Let s1 ∈ {−1, 1}k
′
. By applying the bounds from Lemma I.2 and I.3 for a

binomial random variable, we can derive the following inequality for j ∈ SGk
(i, 1) and a ∈ [k′]:∣∣∣∣P{Sign(degaG(j)− naq) = 1} − 1

2

∣∣∣∣ ≤ C
√
naq
≤ C
√
mq

(F.8)

where C is a universal constant. Therefore, we can show that∣∣∣∣P{Sign(degaG(j)− naq) = s1(a) for all a ∈ [k′]} − 1

2k′

∣∣∣∣ ≤ 4Ck′

2k′√mq
(F.9)

by applying Lemma I.10 with the condition mq ≥ 4C2k′2. If mq ≥ Qk′2ℓ2 for a sufficiently large constant Q, we obtain

P{Sign(degaG(j)− naq) = s1(a) for all a ∈ [k′]} ≤ 1

2k′

(
1 +

1

5ℓ

)
. (F.10)

Thus, by applying Hoeffding’s inequality (Lemma I.4), we have

P
{∣∣T 1

s1
(i)
∣∣ ≤ 2

mp

2k′

(
1 +

1

ℓ

)}
(a)

≥ 1− exp
(
−C ′ mp

22k′

)
≥ 1−m−D−1, (F.11)

where the inequality (a) holds for a constant C ′ > 0 by (F.7) and (F.10). The last inequality holds since k′ ≤ k0 logmp for a
sufficiently small constant k0 depending on δ such that 22k0 logmp ≤ (mp)0.5δ/(1+δ), mp ≥ (logm)1+δ and m ≥ m0(D, δ).

Define an event

Fd :=

{
degGk

(j) ≤ mp

(
1 +

1

5ℓ

)
, ∀j ∈ BGk

(i, d)

}
. (F.12)

Let Pd denote the conditional probability given the subgraph Gk(B(i, d)) under the condition that Fd−1 holds. For
su ∈ {−1, 1}k

′
, let sd = (s1, . . . , sd). Define

Qd := 2

(
1 +

1

ℓ

)d

. (F.13)

By Lemma F.1, we have

Pd

{
Fd occurs

∣∣∣∣ ∣∣T d
sd(i)

∣∣ ≤ Qd

(mp

2k′

)d}
≥ 1−m−D−2 (F.14)

and

Pd

{∣∣NGk
(T d

sd(i)) ∩ SGk
(i, d+ 1)

∣∣ ≤ |T d
sd(i)|mp

(
1 +

1

5ℓ

)∣∣∣∣ ∣∣T d
sd(i)

∣∣ ≤ Qd

(mp

2k′

)d
and Fd occurs

}
≥ 1−m−D−2.

(F.15)
Thus, we can get

Pd

{∣∣NGk
(T d

sd(i)) ∩ SGk
(i, d+ 1)

∣∣ ≤ 2k
′
Qd

(mp

2k′

)d+1
(
1 +

1

5ℓ

)
and Fd occurs

∣∣∣∣ |T d
sd(i)| ≤ Qd

(mp

2k′

)d}
≥ 1− 2m−D−2.

(F.16)

Let H := NGk
(T d

sd(i)) ∩ SGk
(i, d+ 1). For sd+1 ∈ {−1, 1}k

′
and any j ∈ H ,

Pd{Sign(degaG(j)− naq) = sd+1(a) for all a ∈ [k′]} ≤ 1

2k′

(
1 +

1

5ℓ

)
. (F.17)
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The above result follows from (F.10). Similar to (F.11), by applying Hoeffding’s inequality we have

Pd

{
|T d+1

sd+1(i)| ≤ Qd+1

(mp

2k′

)d+1
∣∣∣∣ |H| ≤ 2k

′
Qd

(mp

2k′

)d+1
(
1 +

1

5ℓ

)
,Fd occurs and |T d

sd(i)| ≤ Qd

(mp

2k′

)d}
= Pd

{
|T d+1

sd+1(i)| ≤ Qd+1

(mp

2k′

)d+1
∣∣∣∣ |H| ≤ 2k

′
Qd

(mp

2k′

)d+1
(
1 +

1

5ℓ

)}
≥ 1−m−D−2.

(F.18)
By (F.16) and (F.18), we finally get

Pd

{
|T d+1

sd+1(i)| ≤ Qd+1

(mp

2k′

)d+1

and Fd occurs
∣∣∣∣ |T d

sd(i)| ≤ Qd

(mp

2k′

)d}
= Pd

{
|T d+1

sd+1(i)| ≤ Qd+1

(mp

2k′

)d+1
∣∣∣∣ |H| ≤ 2k

′
Qd

(mp

2k′

)d+1
(
1 +

1

5ℓ

)
,Fd occurs and |T d

sd(i)| ≤ Qd

(mp

2k′

)d}
× Pd

{
|H| ≤ 2k

′
Qd

(mp

2k′

)d+1
(
1 +

1

5ℓ

)
and Fd occurs

∣∣∣∣ |T d
sd(i)| ≤ Qd

(mp

2k′

)d}
≥ 1−m−D−1.

(F.19)
Applying a union bound over (F.11) and (F.19) for d ∈ [ℓ− 1] and sd ∈ {−1, 1}k′d, we can get

P
{
|T d

sd(i)| ≤ Qd

(mp

2k′

)d
∀d ∈ [ℓ], sd ∈ {−1, 1}k

′d

}
≥ 1− Σℓ

d=12
k′dm−D−1 ≥ 1−m−D, (F.20)

where the last inequality holds since k′ ≤ k0 logmp and ℓ ≤
⌊

logm
logmp

⌋
. Moreover, we have Qℓ = 2

(
1 + 1

ℓ

)ℓ ≤ 2e ≤ 6.
Thus, the proof is complete.

F.3. Tree Structure and Typical Vertices

Consider the parent graph G0, which follows an SBM(n, p/(1−α), q/(1−α), k) with community labels (C1, C2, . . . , Ck).
Recall that Ck is the smallest community with size m.

Following Definition 4.10 in (Mao et al., 2021a), we introduce the concept of a “typical” vertex in the parent graph, which
satisfies certain conditions that will be useful for analyzing the signature vectors. Compared to Definition 4.10 in (Mao et al.,
2021a), our definition has fewer conditions, due to the main difference of our algorithm that the edges used to construct the
tree structure are not reused to partition the vertices at each level of the tree.

Definition F.4. We define a vertex i ∈ Ck of the parent graph G0 as typical with parameters ℓ ∈ N and ϵ > 0, denoted as
i ∈ TypG0(Ck)

(ℓ, ϵ), if it satisfies the following conditions:

(A1) G0

(
BG0(Ck)(i, ℓ)

)
forms a tree.

(A2) degG0(Ck)
(j) ≤ 2m

p

1− α
for any j ∈ BG0(Ck)(i, ℓ− 1).

(A3) degG0(Ck)
(j) > (1− ϵ)m

p

1− α
for any j ∈ BG0(Ck)(i, ℓ− 1).

Lemma F.5 (Lemma 4.9 in (Mao et al., 2021a)). Consider an Erdős-Rényi graph Γ ∼ G(n, r) for a positive integer n and
r ∈ (0, 1). For any positive integer x, the probability that there exist at least (5x)3(log n)6(nr)3x vertices i ∈ Γ such that
Γ (BΓ(i, x)) is not a tree, is upper bounded by exp

(
− log2 n

)
.

The following result shows that the majority of vertices in G0(Ck) are typical, satisfying Definition F.4.

Proposition F.6. For any constants D, δ, ϵ > 0, there exist R > 1, c ∈ (0, 1/2) and m0 depending on D, δ, ϵ with the
properties below. If

m ≥ m0, (logm)1+δ ≤ m
p

1− α
≤ m1/20, ℓ ≤ logm

R logmp
, (F.21)

then
P
{∣∣∣TypG0(Ck)

(ℓ, ϵ)
∣∣∣ ≥ m−m1−c

}
≥ 1−m−D.
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Proof. Recall that G0(Ck) is a G(m, p/(1− α)) Erdős-Rényi graph. Thus, by applying Lemma F.5 for x = ℓ ≤ logm
R logmp

with a sufficiently large R, we can obtain that there are at most

(5ℓ)3(logm)6
(

mp

1− α

)3ℓ

≤
√
m (F.22)

vertices whose ℓ-neighborhoods are not trees in G0(Ck) with probability at least 1− exp
(
−(logm)2

)
≥ 1−m−D−1 for

m ≥ m0(D). Thus, the condition (A1) holds. By Lemma F.1, it can be easily checked that the two conditions (A2) and
(A3) are satisfied for all i ∈ Ck with probability 1−m−D−1 for m ≥ m0(D, δ, ϵ).

G. Proof of Lemma E.1
From now on, for simpleness in the notation we will use T d

sd(i) and T ′d
sd(i) instead of T d

sd(i, G) and T d
sd(i, G

′), respectively.
Consider a random subset J uniformly drawn from {−1, 1}k′ℓ with cardinality 2w, where w is a positive integer satisfying
w > 2(logm)2. We say that the event G holds if and only if there exists a subset J̃(i) ⊂ J such that

|J\J̃(i)| < (logm)2 (G.1)

and

|Rsℓ(i)| ∨ |R′
sℓ(i)| ≤ 96ew4 (mp)ℓ

4k′ℓ
, ∀sℓ ∈ J̃(i), (G.2)

|Rsℓ(i)| ∨ |R′
sℓ(i)| ≤ 6

(mp)ℓ

2k′ℓ
, ∀sℓ ∈ J, (G.3)

where

Rsℓ(i) := T ℓ
sℓ(i) ∩ T ′ℓ

J\{sℓ}(i), (G.4)

R′
sℓ(i) := T ′ℓ

sℓ(i) ∩ T ℓ
J\{sℓ}(i). (G.5)

Let us define the five conditions (B1)− (B5) as follows.

(B1) G0

(
BG0(Ck)(i, ℓ)

)
forms a tree.

(B2)
∣∣BG0(Ck)(i, ℓ)

∣∣ ≤ m0.1.

(B3)
∣∣T ℓ

sℓ(i)
∣∣ ∨ ∣∣T ′ℓ

sℓ(i)
∣∣ ≤ 6(mp/2k

′
)ℓ for all sℓ ∈ {−1, 1}k

′ℓ.

(B4) Event G holds.

(B5)
∣∣T ℓ

sℓ(i) ∩ T ′ℓ
sℓ(i)

∣∣ ≥ (mp/2k
′
)ℓ(1− 6ϵ)k

′ℓ for a constant ϵ and for all sℓ ∈ {−1, 1}k
′ℓ.

We will show that there are enough number of vertices i ∈ Ck satisfying the conditions (B1) − (B5), and for all such
vertices (E.1) holds with high probability. The conditions (B1)− (B3) will be shown to be held with high probability by
using the analysis from Sec. F, and the conditions (B4)− (B5) will be proved in Sec. G.3 and Sec. G.4, respectively.

G.1. Proof of Lemma E.1

We consider a fixed vertex i ∈ Ck, and subsets J and J̃(i) ⊂ J . Additionally, we condition on the neighborhoods
G0(BG0(Ck)(i, ℓ)), G(BG0(Ck)(i, ℓ)), and G′(BG0(Ck)(i, ℓ)) such that conditions (B1)− (B5) hold. Let us define

m̃ := m−
∣∣BG0(Ck)(i, ℓ)

∣∣ . (G.6)

Note that on the conditions (B1) and (B2), we can see that for any j ∈ SG0(Ck)(i, ℓ), degG(Ck)
(j)− 1 follows a binomial

distribution with parameters m̃ defined in (G.6) with m̃ ≥ m − m0.1 and p. Furthermore, it is independent for each
j ∈ SG0(Ck)(i, ℓ). The same statement holds for degG′(Ck)

(j)− 1.

Lemma G.1 (Similar to Lemma 5.7 in (Mao et al., 2021a)). For any constant D > 0, there exists a constant K > 0 which
depends on D with the properties below. For a fixed vertex i ∈ Ck, subsets J and J̃(i) ⊂ J , define Rsℓ(i) and R′

sℓ(i) as in
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(G.4) and (G.5). Suppose that conditions (B1)− (B5) hold. Then, we have

|ηsℓ(i)| ∨ |η′sℓ(i)| ≤ K
(mp)(ℓ+1)/2

2k′ℓ
w2
√

logm, ∀sℓ ∈ J̃(i) (G.7)

|ηsℓ(i)| ∨ |η′sℓ(i)| ≤ K
(mp)(ℓ+1)/2

2k′ℓ/2

√
logm, ∀sℓ ∈ J (G.8)

where

ηsℓ(i) :=
∑

j∈R
sℓ

(i)

(
degG(Ck)

(j)− 1−mp
)

and η′sℓ(i) :=
∑

j∈R′
sℓ

(i)

(
degG′(Ck)

(j)− 1−mp
)

(G.9)

with probability at least 1−m−D.

Proof. Since Rsℓ(i) ⊂ SG0(Ck)(i, ℓ), for any j ∈ Rsℓ(i), (degG(Ck)
(j) − 1) is distributed as Bin(m̃, p) with

m̃ := m −
∣∣BG0(Ck)(i, ℓ)

∣∣ ≥ m − m0.1. In addition, it is independent for each j ∈ Rsℓ(i). Therefore we have∑
j∈R

sℓ
(i)

(
degG(Ck)

(j)− 1
)
∼ Bin (m̃ |Rsℓ(i)| , p). From this result, we can obtain

|ηsℓ(i)| =

∣∣∣∣∣∣
∑

j∈R
sℓ

(i)

(
degG(Ck)

(j)− 1−mp
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

j∈R
sℓ

(i)

(
degG(Ck)

(j)− 1
)
− m̃p|Rsℓ(i)| − (m− m̃)p|Rsℓ(i)|

∣∣∣∣∣∣
≤ K1

(√
mp |Rsℓ(i)| logm+ logm

)
+ (m− m̃)p |Rsℓ(i)|

≤ K2

√
mp (|Rsℓ(i)|+ 1) logm

(G.10)

with probability at least 1−m−D−1, where K1 and K2 are sufficiently large constants depending on D. In the same way, a
bound for η′sℓ(i) can be obtained. By combining (G.10) with (B4), we obtain (G.8) and (G.7). By applying a union bound
over sℓ ∈ {−1, 1}k′ℓ, we can conclude the proof.

For a fixed vertex i, we omit (i) from Tsℓ(i), Rsℓ(i), fsℓ(i), and vsℓ(i) for the sake of brevity in the notation.

Lemma G.2 (Similar to Lemma 5.9 in (Mao et al., 2021a)). Assume a realization of edges between (Rsℓ ∪ R′
sℓ) and

SG0(Ck)(i, ℓ+1) in the graphs G0, G, and G′. Consider the corresponding conditional probability and expectation, denoted
by P̂ and Ê, respectively. Then, for any sℓ ∈ J , we have

fsℓ − f ′
sℓ = Zsℓ +∆sℓ ,

where Zsℓ is a random variable and ∆sℓ is a deterministic value that satisfy the following:

• Ê [Zsℓ ] = 0;

• Ê
[
Z2
sℓ

]
≤ vsℓ + v′sℓ − 2m̃p(1− p− α)

∣∣T ℓ
sℓ(i) ∩ T ′ℓ

sℓ(i)
∣∣;

• P̂ {|Zsℓ | ≥ t} ≤ 2 exp

(
−t2/2

Ê
[
Z2

sℓ

]
+t/3

)
;

• |∆sℓ | ≤ |ηsℓ |+
∣∣η′sℓ

∣∣+ 2m0.2p.

Furthermore, the random variables Zsℓ are conditionally independent for distinct sℓ ∈ J .
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Proof. Lemma G.2 can be proved in a similar way as that of Lemma 5.9 in (Mao et al., 2021a). The main observation
behind the proof is that fsℓ − f ′

sℓ = Zsℓ +∆sℓ , where

Zsℓ :=
∑

j∈T ℓ

sℓ
∩T ′ℓ

sℓ

(
degG(Ck)

(j)− degG′(Ck)
(j)
)

+
∑

j∈T ℓ

sℓ
\T ′ℓ

J

(
degG(Ck)

(j)− 1− m̃p
)

−
∑

j∈T ′ℓ
sℓ

\T ℓ
J

(
degG′(Ck)

(j)− 1− m̃p
)

and
∆sℓ := ηsℓ − η′sℓ + (m̃−m)p

(∣∣T ℓ
sℓ

∣∣− ∣∣T ′ℓ
sℓ

∣∣) .
Lemma G.3 (Upper bound on the normalized distance of sparsified signature vectors for a correct pair). For any constants
C,D,K, δ > 0, there exist constant ϵ and m0 with the properties below. Suppose that m ≥ m0, α ∈ (0, ϵ), w ≥ (logm)4,
and

(logm)1+δ ≤ m
p

1− α
≤ m1/20,

2 log
(
w4 logm

)
≤ k′ℓ ≤ C log logm.

Moreover, suppose that a vertex i ∈ Ck satisfies conditions (B1) − (B5) with a constant ϵ > 0. Consider a subset
J ⊂ {−1, 1}k′ℓ satisfying |J | = 2w. Under the same conditions as stated in Lemma G.2, where ηsℓ and η′sℓ satisfy (G.7)
and (G.8) with a constant K > 0, we have

∑
sℓ∈J

(
fsℓ(i)− f ′

sℓ(i)
)2

vsℓ(i) + v′
sℓ(i)

≤ 2w

(
1− 1

(logm)0.1

)
,

with a conditional probability of at least 1−m−D.

Lemma G.3 will be proved in Section G.2.

Proof of Lemma E.1. First, we will show that conditions (B1) − (B5) hold for at least m −m1−c vertices i ∈ Ck with
probability at least 1−m−D−1.

• By Proposition F.6, there exist at least m−m1−c1 vertices i ∈ Ck for a constant c1 ∈ (0, 0.5) that satisfy condition
(B1) with probability at least 1−m−D−2.

• Based on Lemma F.2, we have |BG0(Ck)(i, ℓ)| = O
(
(mp/(1− α))ℓ

)
≤ m0.1 for all i ∈ Ck and ℓ ≤ logm

11 logmp , with
probability at least 1−m−D−2. Thus, the condition (B2) holds for all i ∈ Ck with probability at least 1−m−D−2.

• On the conditions (B1) and (B2), the condition (B3) holds for all i ∈ Ck with probability at least 1 −m−D−2 by
Lemma F.3.

• Condition (B4) holds for all i ∈ Ck satisfying conditions (B1) and (B3) with probability at least 1 −m−D−2 by
Lemma G.4.

• By Proposition F.6, |TypG0(Ck)
(ℓ, ϵ)| ≥ m−m1−c2 holds for a constant c2 ∈ (0, 0.5) with probability 1−m−D−2.

Thus, condition (B5) holds for at least m−m1−c2 vertices i ∈ Ck with probability at least 1− 2m−D−2 by Lemma
G.6.

Moreover, by applying Lemma G.1 to the vertex i satisfying conditions (B1)− (B5), we obtain ηsℓ and η′sℓ that satisfy
(G.7) and (G.8) with a probability of at least 1−m−D−2. Therefore, by applying Lemma G.3, the proof is complete.
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G.2. Proof of Lemma G.3

By condition (B5), we have that
|T ℓ

sℓ(i) ∩ T ′ℓ
sℓ(i)| ≥ (mp/2k

′
)ℓ(1− 6ϵ)k

′ℓ (G.11)

for any sℓ ∈ {−1, 1}k′ℓ. Thus, we obtain

vsℓ = mp(1− p)
∣∣T ℓ

sℓ(i)
∣∣ ≥ mp(1− p)|T ℓ

sℓ(i) ∩ T ′ℓ
sℓ(i)|

≥ (1− p)

(
1− 6ϵ

2

)k′ℓ

(mp)ℓ+1.
(G.12)

Moreover, by condition (B3),

vsℓ = mp(1− p)
∣∣T ℓ

sℓ(i)
∣∣ ≤ 6(1− p)

(mp)ℓ+1

2k′ℓ
. (G.13)

In the same way, the bounds for v′sℓ can be obtained as follows:

(1− p)

(
1− 6ϵ

2

)k′ℓ

(mp)ℓ+1 ≤ v′sℓ ≤ 6(1− p)
(mp)ℓ+1

2k′ℓ
. (G.14)

One can see from Lemma G.2 that for a correct pair of vertices the difference between the entries of signatures fsℓ and f ′
sℓ

at some sℓ ∈ {−1, 1}k′ℓ can be decomposed into the random variable part Zsℓ and the deterministic part ∆sℓ . Define

Xsℓ :=
fsℓ − f ′

sℓ√
vsℓ + v′

sℓ

=
Zsℓ +∆sℓ√
vsℓ + v′

sℓ

,

where Zsℓ and ∆sℓ are defined in Lemma G.2.

We first estimate the expectation and variance of Xsℓ . Recall Ê defined in Lemma G.2. By Lemma G.2, (G.7),(G.8),(G.12)
and (G.13), we can have∣∣∣Ê [Xsℓ ]

∣∣∣ = |∆sℓ |√
vsℓ + v′

sℓ

≤
|ηsℓ |+

∣∣η′sℓ

∣∣+ 2m0.2p√
2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ

≤
2K (mp)(ℓ+1)/2

2k′ℓ w2
√
logm+ 2m0.2p√

2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ
≤ 5Kw2

√
logm

2k′ℓ/2(1− 6ϵ)k′ℓ/2
for sℓ ∈ J̃(i),

(G.15)

∣∣∣Ê [Xsℓ ]
∣∣∣ = |∆sℓ |√

vsℓ + v′
sℓ

≤
2K (mp)(ℓ+1)/2

2k′ℓ/2

√
logm+ 2m0.2p√

2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ
≤ 5K

√
logm

(1− 6ϵ)k′ℓ/2
for sℓ ∈ J, (G.16)

and

Var (Xsℓ) =
Ê
[
Z2
sℓ

]
vsℓ + v′

sℓ

≤
vsℓ + v′sℓ − 2m̃p(1− p− α)

∣∣T ℓ
sℓ ∩ T ′ℓ

sℓ

∣∣
vsℓ + v′

sℓ

≤ 1− 2m̃p(1− p− α)(mp/2k
′
)ℓ(1− 6ϵ)k

′ℓ

12(1− p)(mp)ℓ+1/2k′ℓ
≤ 1− (1− 6ϵ)k

′ℓ

13
,

(G.17)

if α ≤ 1
10 . By (G.15) and (G.17), we can get

Ê
[
X2

sℓ

]
=

Ê
[
Z2
sℓ

]
+∆2

sℓ

vsℓ + v′
sℓ

≤ 1− (1− 6ϵ)k
′ℓ

13
+

25K2w4 logm

2k′ℓ(1− 6ϵ)k′ℓ
≤ 1− (1− 6ϵ)k

′ℓ

14
for sℓ ∈ J̃(i) (G.18)

if 2 log
(
w4 logm

)
≤ k′ℓ, ϵ is sufficiently small and m ≥ m0(K, ϵ). Similarly, we have

Ê
[
X2

sℓ

]
=

Ê
[
Z2
sℓ

]
+∆2

sℓ

vsℓ + v′
sℓ

≤ 1− (1− 6ϵ)k
′ℓ

14
+

25K2 logm

(1− 6ϵ)k′ℓ
≤ 26K2 logm

(1− 6ϵ)k′ℓ
for sℓ ∈ J, (G.19)
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if k′ℓ ≤ C log logm, ϵ is a sufficiently small constant that depends on C, and m ≥ m0(K, ϵ). Moreover, we can

obtain P̂
{∣∣∣Xsℓ − Ê [Xsℓ ]

∣∣∣ ≥ t
}
≤ 2 exp

(
−t2/2
1+t/3

)
since P̂ {|Zsℓ | ≥ t} ≤ 2 exp

(
−t2/2

Ê
[
Z2

sℓ

]
+t/3

)
holds by Lemma G.2 and

Var (Xsℓ) ≤ 1 from (G.17). Therefore, applying Lemma I.9, we obtain∑
sℓ∈J

X2
sℓ ≤

∑
sℓ∈J

Ê
[
X2

sℓ

]
+ C1

√
w(logm)3/2 + C1

(
max
sℓ∈J

∣∣∣Ê [Xsℓ ]
∣∣∣) (

√
w logm+ logm), (G.20)

with conditional probability at least 1−m−D, for J ⊂ {−1, 1}k′ℓ such that |J | = 2w and a sufficiently large constant C1

depending on D. By (G.19), (G.18) and (G.1) in condition (B4), we can get∑
sℓ∈J

Ê
[
X2

sℓ

]
=

∑
sℓ∈J̃(i)

Ê
[
X2

sℓ

]
+

∑
sℓ∈J\J̃(i)

Ê
[
X2

sℓ

]
≤ 2w

(
1− (1− 6ϵ)k

′ℓ

14

)
+ (logm)2

26K2 logm

(1− 6ϵ)k′ℓ
≤ 2w

(
1− (1− 6ϵ)k

′ℓ

15

) (G.21)

if k′ℓ ≤ C log logm, ϵ > 0 is a sufficiently small constant that depends on C, w ≥ (logm)4 and m ≥ m0(K, ϵ). Finally,
by (G.16), (G.20) and (G.21), we obtain∑

sℓ∈J

X2
sℓ ≤ 2w

(
1− (1− 6ϵ)k

′ℓ

15

)
+ C1

√
w(logm)3/2 + C1

5K
√
logm

(1− 6ϵ)k′ℓ/2
(
√

w logm+ logm)

≤ 2w

(
1− (1− 6ϵ)k

′ℓ

16

)
≤ 2w

(
1− 1

(logm)0.1

)
if k′ℓ ≤ C log logm, ϵ is a sufficiently small constant that depends on C, w ≥ (logm)4 and m ≥ m0(K, ϵ).

G.3. Proof of Condition (B4)

In this subsection, we will show that event G (or condition (B4)) holds with high probability. The idea of comparing
sparsified signature vectors was addressed and used in (Mao et al., 2021a;b) to mitigate the dependency issue between the
signature vectors. We will follow the same trick here.
Lemma G.4 (Similar to Lemma 5.6 in (Mao et al., 2021a)). Consider a fixed i ∈ Ck and a random subset J uniformly
drawn from {−1, 1}k′ℓ with cardinality 2w, for a positive integer w satisfying w > 2(logm)2. If a vertex i satisfies that

(C1) G0

(
BG0(Ck)(i, ℓ)

)
forms a tree;

(C2)
∣∣T ℓ

sℓ(i)
∣∣ ∨ ∣∣T ′ℓ

sℓ(i)
∣∣ ≤ 6

(mp

2k′

)ℓ
for all sℓ ∈ {−1, 1}k

′ℓ,

then event G (or condition (B4)) holds with probability at least 1− exp
(
−(logm)1.5

)
.

Proof. By the condition (C2), we have ∣∣T ℓ
sℓ(i)

∣∣ ∨ ∣∣T ′ℓ
sℓ(i)

∣∣ ≤ 6
(mp)ℓ

2k′ℓ
(G.22)

for all sℓ ∈ {−1, 1}k′ℓ. Thus, it is easy to see that (G.3) is established since Rsℓ(i) ⊂ T ℓ
sℓ(i) and R′

sℓ(i) ⊂ T ′ℓ
sℓ(i).

Next, we apply Lemma I.8 with Ω = SG(Ck)(i, ℓ),Ω
′ = SG′(Ck)(i, ℓ), k = 2k

′ℓ, S = 6(mp)ℓ, L = 8ew3, and ρ =
1
4w (logm)2. Moreover, we use T ℓ

sℓ(i) and T ′ℓ
sℓ(i) for the partition set of Ω = SG(Ck)(i, ℓ) and Ω′ = SG′(Ck)(i, ℓ). Then,

we can get ∣∣∣∣{sℓ ∈ J : ∃tℓ ∈ J\{sℓ} s.t.
∣∣T ℓ

sℓ(i) ∩ T ′ℓ
tℓ(i)

∣∣ ≥ 48ew3 (mp)ℓ

4k′ℓ

}∣∣∣∣ < 1

2
(logm)2, (G.23)

with probability at least 1− exp
(
−(logm)2/4

)
. In a similar way, the following results can be obtained.∣∣∣∣{sℓ ∈ J : ∃tℓ ∈ J\{sℓ} s.t.
∣∣T ′ℓ

sℓ(i) ∩ T ℓ
tℓ(i)

∣∣ ≥ 48ew3 (mp)ℓ

4k′ℓ

}∣∣∣∣ < 1

2
(logm)2, (G.24)
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with probability at least 1− exp
(
−(logm)2/4

)
. Define

J̃(i) :=

{
sℓ ∈ J : |Rsℓ(i)| ∨ |R′

sℓ(i)| ≤ 96ew4 (mp)ℓ

4k′ℓ

}
.

We can see that J̃(i) is a superset of{
sℓ ∈ J : ∀tℓ ∈ J\{sℓ},

∣∣T ℓ
sℓ(i) ∩ T ′ℓ

tℓ(i)
∣∣ ≤ 48ew3 (mp)ℓ

4k′ℓ

}
⋂{

sℓ ∈ J : ∀tℓ ∈ J\{sℓ},
∣∣T ′ℓ

sℓ(i) ∩ T ℓ
tℓ(i)

∣∣ ≤ 48ew3 (mp)ℓ

4k′ℓ

}
.

By combining the above result with (G.23) and (G.24), we see that (G.1) and (G.2) hold. By taking a union bound over all
i ∈ Ck, we can complete the proof.

G.4. Proof of Condition (B5)

In this subsection, we will show that ‘typical’ vertices, defined Definition F.4, satisfy condition (B5) with high probability,
i.e.,

∣∣T ℓ
sℓ(i) ∩ T ′ℓ

sℓ(i)
∣∣ ≥ (mp/2k

′
)ℓ(1− 6ϵ)k

′ℓ for a constant ϵ and for all sℓ ∈ {−1, 1}k′ℓ with high probability.

Lemma G.5 (Degree correlation between correct pairs of vertices). For any constant ϵ > 0, there exist constants α0, L > 0
depending only on ϵ with the properties below. Consider the two graphs Gπ and G′, which are generated from the correlated
SBMs defined in Sec. 1.1, with correlation 1−α. Suppose that community labels (C1, C2, . . . , Ck) are given in both graphs
and naq ≥ L. If α ∈ (0, α0), then for all i ∈ Ck and any a ∈ [k − 1],

P {Sign(degaG(i)− naq) = Sign(degaG′(i)− naq)} ≥ 1− ϵ. (G.25)

Proof. From Lemma I.2, we can show that there exists a universal constant C > 0 such that for any r > 0,

P
{
|degaG(i)− naq| > r

√
naq(1− q)

}
≥ 1− Cr. (G.26)

By applying Lemma I.7 with J = J ′ = Ca, for any t > 0, we have

P
{
|degaG(i)− degaG′(i)| ≥ 4

(
t+
√
tαqna

)}
≤ 6 exp(−t) + 2 exp

(
− qna

3(1− α)

)
. (G.27)

Let t = r
√

naq(1−q)

8 ∧ r2(1−q)
64α . Then, we can get

4
(
t+
√
tαqna

)
≤ r
√

naq(1− q). (G.28)

From (G.26) and (G.27), we have

P {Sign(degaG(i)− naq) = Sign(degaG′(i)− naq)}

≥ P
{
|degaG(i)− naq| > r

√
naq(1− q) and |degaG(i)− degaG′(i)| < r

√
naq(1− q)

}
≥ 1− Cr − 6 exp(−t)− 2 exp

(
− qna

3(1− α)

)
.

(G.29)

We can take a small enough r to make Cr < ϵ/3. We can also make 2 exp
(
− qna

3(1−α)

)
< ϵ/3 and 6 exp(−t) < ϵ/3 by

setting t =
r
√

naq(1−q)

8 ∧ r2(1−q)
64α , since naq ≥ L for a sufficiently large constant L depending on ϵ and we can take a small

enough α0. Thus, the proof is complete.

We will prove condition (B5) using the above results. Similar to Proposition 5.1 in (Mao et al., 2021a), we prove that there
exists a significant overlap between the partitioning nodes of a correct pair.
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Proposition G.6 (Overlap between the partitioning nodes of a correct pair). For any constants D, δ, ϵ > 0, there exist
constants m0, Q, k1 and α1, which depend only on D, δ and ϵ, with the properties below. Consider the two graphs G and
G′, which are generated from the correlated SBMs defined in Sec. 1.1, with correlation 1− α. Suppose that community
labels (C1, C2, . . . , Ck) are given. Assume a given instance of G0. For a fixed positive integer ℓ, assume that

m ≥ m0, (logm)1+δ ≤ mp/(1− α) ≤ m1/20, k′ ≤ k1 logmp, mq ≥ Qk′2, α ∈ (0, α1).

Then, for every vertex i ∈ TypG0(Ck)
(ℓ, ϵ), satisfying Definition F.4, and for any sℓ ∈ {−1, 1}k′ℓ,∣∣T ℓ

sℓ(i, G) ∩ T ℓ
sℓ (i, G

′)
∣∣ ≥ (mp

2k′

)ℓ
(1− 6ϵ)k

′ℓ,

with probability at least 1−m−D.

Proof. Let P0 represent the conditional probability given an instance of G0. Fix a vertex i ∈ TypG0(Ck)
(ℓ, ϵ), and let

d ∈ {0, 1, . . . , ℓ− 1}. For any ϵ > 0 and j ∈ SG0(Ck)(i, d) , we have

P0{degG∩G′(Ck)
(j) ≤ (1− 3ϵ)mp}

≤ P0{(1− α)2 degG0(Ck)
(j)− degG∩G′(Ck)

(j) > (1− α)2 degG0(Ck)
(j)− (1− 3ϵ)mp}

(a)

≤ P0{(1− α)2 degG0(Ck)
(j)− degG∩G′(Ck)

(j) > ϵmp}
(b)

≤ exp (−Kmp) ≤ m−D−2,

(G.30)

where (a) holds from condition (A3) and by choosing α < ϵ. We have that degG0(Ck)
(j) ≤ 2m p

1−α by condition

(A2) and degG∩G′(Ck)
(j) is Binomial

(
degG0(Ck)

(j), (1− α)2
)

. Therefore, using Bernstein’s inequality (Lemma I.5),
it can be confirmed that the inequality (b) holds for a constant K depending only on ϵ. The last inequality holds since
mp/(1− α) ≥ (logm)1+δ , α < ϵ and m ≥ m0(D, δ, ϵ).

Define an event
F(i, d) :=

{
degG∩G′(Ck)

(j) ≥ (1− 3ϵ)mp, ∀j ∈ SG0(Ck)(i, d)
}
. (G.31)

By applying a union bound over j ∈ SG0(Ck)(i, d) and d ∈ {0, . . . , ℓ− 1}, we can obtain

P0

{
∩ℓ−1
d=0F(i, d)

}
≥ 1−m−D−1. (G.32)

On the event ∩ℓ−1
d=0F(i, d), we will prove that∣∣T d

sd(i, G) ∩ T d
sd (i, G

′)
∣∣ ≥ (mp

2k′

)d
(1− 6ϵ)k

′d (G.33)

for all d ∈ {0, 1, . . . , ℓ} and sd ∈ {−1, 1}k′d. The case where d = 0 holds trivially. Assume that (G.33) holds for
d ∈ {0, 1, . . . , ℓ − 1} and sd ∈ {−1, 1}k′d. For any sd ∈ {−1, 1}k′d and sd+1 ∈ {−1, 1}k

′
, let sd+1 = (sd, sd+1) ∈

{−1, 1}k′(d+1). On the event ∩ℓ−1
d=0F(i, d), we also have that∣∣NG∩G′(Ck)

(
T d
sd(i, G) ∩ T d

sd (i, G
′)
)
∩ SG0(Ck)(i, d+ 1)

∣∣ ≥ (1− 4ϵ)mp
∣∣(T d

sd(i, G) ∩ T d
sd (i, G

′)
)∣∣ (G.34)

because of the condition (A1). For any j ∈ NG∩G′(Ck)

(
T d
sd(i, G) ∩ T d

sd (i, G
′)
)
∩ SG0(Ck)(i, d+ 1), we have

P0

{
j ∈ T d+1

sd+1(i, G) ∩ T d+1
sd+1 (i, G

′)
}
≥ (1− ϵ)k

′

2k′

(
1− 2Ck′
√
mq

)
≥ (1− ϵ)k

′

2k′ · (1− ϵ) (G.35)

for a universal constant C and α ∈ (0, α0) because of Lemma G.5 and (F.8) with (1− x)n ≥ 1− nx. The last inequality
holds from mq ≥ Qk′2 for a sufficiently large constant Q depending on ϵ. Therefore, by Hoeffding’s inequality (Lemma
I.4), we obtain

P0

{∣∣T d+1
sd+1(i, G) ∩ T d+1

sd+1(i, G
′)
∣∣ ≥ (1− 6ϵ

2

)k′

mp
∣∣T d

sd(i, G) ∩ T d
sd (i, G

′)
∣∣}

≥ 1− exp

(
−K ′

(
1− 6ϵ

2

)2k′

mp
∣∣T d

sd(i, G) ∩ T d
sd (i, G

′)
∣∣)

≥ 1−m−D−1

(G.36)
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for a positive constant K ′, which depends on ϵ. The last inequality holds since k′ ≤ k1 logmp for a constant k1 depending
on ϵ, δ such that

(
1−6ϵ
2

)2k1 logmp ≥ (logm)−0.5δ/(1+δ) and m ≥ m0(D, δ, ϵ). Let α1 = α0 ∧ ϵ. Taking a union bound
over d ∈ {0, 1, . . . , ℓ− 1} and sd ∈ {−1, 1}k′d, we have∣∣T ℓ

sℓ(i, G) ∩ T ℓ
sℓ (i, G

′)
∣∣ ≥ (mp

2k′

)ℓ
(1− 6ϵ)k

′ℓ (G.37)

with probability at least 1−m−D.

H. Proof of Lemma E.2
Consider a random subset J uniformly drawn from {−1, 1}k′ℓ with cardinality 2w, where w is an integer satisfying
2w > logm. We define the eventH to be true if and only if there exist positive constants K and K ′ such that the following
conditions hold:(

max
sℓ∈J

|Lsℓ (i, i′)|
)
∨
(
max
sℓ∈J

|L′
sℓ (i, i

′)|
)
≤ K

(mp)ℓ

2k′ℓ
, (H.1)∑

sℓ∈J

|Lsℓ (i, i′)|

 ∨
∑

sℓ∈J

|L′
sℓ (i, i

′)|

 ≤ K
(mp)ℓ

2k′ℓ

(
w

mp(1− α)ℓ−1
+
√

w logm

)
, (H.2)

where

Lsℓ (i, i′) := T ℓ
sℓ(i) ∩ BG0(Ck) (i

′, ℓ) , (H.3)

L′
sℓ (i, i

′) := T ′ℓ
sℓ (i

′) ∩ BG0(Ck)(i, ℓ) (H.4)

and (
max
sℓ∈J

|ζsℓ (i, i′)|
)
∨
(
max
sℓ∈J

|ζ ′sℓ (i, i
′)|
)
≤ K ′ (mp)(ℓ+1)/2

2k′ℓ/2

√
logm, (H.5)

where

ζsℓ (i, i′) :=
∑

j∈L
sℓ

(i,i′)

(
degG(Ck)

(j)− 1−mp
)

and ζ ′sℓ (i, i
′) :=

∑
j∈L′

sℓ
(i,i′)

(
degG′(Ck)

(j)− 1−mp
)
. (H.6)

Let us define the four conditions (D1)− (D4) as follows.

(D1) G0

(
BG0(Ck)(i, ℓ) ∪ BG0(Ck) (i

′, ℓ)
)

forms a tree or a forest of two trees.

(D2)
∣∣BG0(Ck)(i, ℓ)

∣∣+ ∣∣BG0(Ck) (i
′, ℓ)
∣∣ ≤ m0.1.

(D3) EventH holds.

(D4)
∣∣T ℓ

sℓ(i)
∣∣ ∧ ∣∣T ′ℓ

sℓ (i
′)
∣∣ ≥ (mp/2k

′
)ℓ(1− 6ϵ)k

′ℓ, for a sufficiently small positive constant ϵ and for all sℓ ∈ {−1, 1}k
′ℓ.

We will show that there exists a sufficiently large vertex set I ⊂ Ck such that conditions (D1)− (D4) hold for every pair
of i, i′ ∈ I , i ̸= i′, and for all such wrong pairs (E.2) holds with high probability. The conditions (D1), (D2) and (D4) will
be shown to be held with high probability by using the analysis from Sec. F and Sec.G.4, and the condition (D3) will be
proven in Sec. H.3.

H.1. Proof of Lemma E.2

We consider a fixed distinct pair i, i′ ∈ Ck and a subset J uniformly drawn from {−1, 1}k′ℓ with |J | = 2w. In addition, we
condition on the subgraphs

G0

(
BG0(Ck)(i, ℓ) ∪ BG0(Ck) (i

′, ℓ)
)
, G
(
BG0(Ck)(i, ℓ) ∪ BG0

(Ck) (i
′, ℓ)
)
, G′ (BG0(Ck)(i, ℓ) ∪ BG0(Ck) (i

′, ℓ)
)

as well as every edge between

SG0(Ck)(i
′, ℓ) ∩ BG0(Ck)(i, ℓ) and SG0(Ck)(i

′, ℓ+ 1)
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in G0(Ck), G(Ck) and G′(Ck), and also every edge between

SG0(Ck)(i, ℓ) ∩ BG0(Ck)(i
′, ℓ) and SG0(Ck)(i, ℓ+ 1)

in graphs G0(Ck), G(Ck) and G′(Ck) such that conditions (D1) − (D4) hold. Under these conditions, ζsℓ(i, i′) and
ζ ′sℓ(i, i

′) are deterministic quantities defined in (H.6). Furthermore, we assume that the remaining edges are randomly
generated. Denote the conditional probability and expectation as P and E, respectively. By conditions (D1) and (D2), we
can see that degG(Ck)

(j)− 1 follows a binomial distribution with parameters m̄ and p, where

m̄ := m−
∣∣BG0(Ck)(i, ℓ) ∪ BG0(Ck)(i

′, ℓ)
∣∣ ≥ m−m0.1,

for any j ∈ SG0(Ck)(i, ℓ)\BG0(Ck)(i
′, ℓ). The same statement holds for degG′(Ck)

(j)− 1. Furthermore, it is independent
for each j ∈ SG0(Ck)(i, ℓ)\BG0(Ck)(i

′, ℓ). Since vertices i and i′ are fixed, we omit (i, i′) from ζsℓ(i, i′) and ζ ′sℓ(i, i
′)

defined in (H.6) for notational simplicity. We also use Lsℓ and L′
sℓ for the quantities defined in (H.3) and (H.4).

Lemma H.1 (Similar to Lemma 6.3 in (Mao et al., 2021a)). For each sℓ ∈ J , we can express the difference between fsℓ(i)
and f ′

sℓ (i
′) as

fsℓ(i)− f ′
sℓ (i

′) = Zsℓ +∆sℓ

where Zsℓ is a random variable and ∆sℓ is a deterministic value that satisfy the following:

• E [Zsℓ ] = 0;

• vsℓ(i) + v′sℓ (i
′)− 2m0.2p− p(1− p)m̄

(
|Lsℓ |+

∣∣L′
sℓ

∣∣) ≤ E
[
Z2
sℓ

]
≤ vsℓ(i) + v′sℓ (i

′);

• P {|Zsℓ | ≥ t} ≤ 2 exp

(
−t2/2

E
[
Z2

sℓ

]
+t/3

)
;

• |∆sℓ | ≤ |ζsℓ |+
∣∣ζ ′sℓ

∣∣+ 2m0.2p.

Furthermore, the random variables Zsℓ are conditionally independent for different sℓ ∈ J .

Proof. The proof of Lemma H.1 follows a similar approach to that of Lemma 6.3 in (Mao et al., 2021a). The key observation
is that we can express fsℓ(i)− f ′

sℓ(i
′) as the sum of Zsℓ and ∆sℓ , where

Zsℓ :=
∑

j∈T ℓ

sℓ
(i)\BG0(Ck)(i′,ℓ)

(
degG(Ck)

(j)− 1− m̄p
)

−
∑

j∈ T ′ℓ
sℓ

(i′)\BG0(Ck)(i,ℓ)

(
degG′(Ck)

(j)− 1− m̄p
)

and
∆sℓ := ζsℓ − ζ ′sℓ + (m̄−m)p

(∣∣T ℓ
sℓ(i)

∣∣− ∣∣T ′ℓ
sℓ(i

′)
∣∣) .

Lemma H.2 (Lower bound on the normalized distance of sparsified signature vectors for a wrong pair). For any constants
C,D,K,K ′, δ > 0, there exist constants m0, ϵ > 0 with the properties below. Let m ≥ m0, α ∈ (0, ϵ), w ≥

⌊
(logm)5

⌋
,

and

(logm)1+δ ≤ m
p

1− α
≤ m1/20, k′ℓ ≤ C log logm.

Furthermore, let conditions (D1) − (D4) hold with constants K,K ′, ϵ > 0, and consider a subset J of cardinality 2w.
Then, with a conditional probability larger than 1−m−D, the following statement holds:

∑
sℓ∈J

(
fsℓ(i)− f ′

sℓ (i
′)
)2

vsℓ(i) + v′
sℓ (i′)

≥ 2w

(
1− 1

(logm)0.9

)
.
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Lemma H.2 will be proven in Section H.2.

Proof of Lemma E.2. First, we will establish the existence of a subset I ⊂ Ck of cardinality |I| > m−m1−c such that for
any i, i′ ∈ I, i ̸= i′, conditions (D1)− (D4) are satisfied with a probability of at least 1−m−D−1.

• Using Proposition F.6, we can deduce that with a probability of at least 1 − m−D−2 (by choosing a sufficiently
large constant R), there exists a subset TypG0(Ck)

(3ℓ, ϵ) such that |TypG0(Ck)
(3ℓ, ϵ)| ≥ m − m1−c1 , where

c1 ∈ (0, 0.5) is a constant. For any distinct vertices i and i′ in TypG0(Ck)
(3ℓ, ϵ), condition (D1) holds be-

cause if distG0(Ck)(i, i
′) ≤ 2ℓ, G0

(
BG0(Ck)(i, ℓ) ∪ BG0(Ck) (i

′, ℓ)
)

becomes a forest, and if distG0(Ck)(i, i
′) > 2ℓ,

G0

(
BG0(Ck)(i, ℓ) ∪ BG0(Ck) (i

′, ℓ)
)

becomes two trees.

• By Lemma F.2, we have |BG0(Ck)(i, ℓ)| = O
(
(mp)ℓ

)
≤ 1

2m
0.1 for all i ∈ Ck and ℓ ≤ logm

11 logmp , with probability at
least 1−m−D−2. Thus, the condition (D2) holds for all i ∈ Ck with probability at least 1−m−D−2.

• We can assert that the condition (D3) holds with I ⊂ Ck of cardinality at least m−m1−c2 for a constant c2 ∈ (0, 0.5)
with probability at least 1−m−D−2 by Lemma H.4.

• By Proposition F.6, |TypG0(Ck)
(ℓ, ϵ)| ≥ m−m1−c3 for a constant c3 ∈ (0, 0.5) with probability at least 1−m−D−2.

Thus, the condition (D4) holds for at least m −m1−c3 vertices i ∈ Ck with probability at least 1 − 2m−D−2 by
Lemma G.6 since

∣∣T ℓ
sℓ(i)

∣∣ ≥ ∣∣T ℓ
sℓ(i, G) ∩ T ℓ

sℓ (i, G
′)
∣∣.

The proof is complete by applying Lemma H.2 .

H.2. Proof of Lemma H.2

Proof of Lemma H.2. For fixed distinct vertices i, i′ ∈ Ck, by condition (D4), we have

|T ℓ
sℓ(i)| ∧ |T ′ℓ

sℓ(i
′)| ≥ (mp/2k

′
)ℓ(1− 6ϵ)k

′ℓ (H.7)

for any sℓ ∈ {−1, 1}k′ℓ. Thus, we obtain

vsℓ(i) = mp(1− p)
∣∣T ℓ

sℓ(i)
∣∣ ≥ mp(1− p)

(
|T ℓ

sℓ(i)| ∧ |T ′ℓ
sℓ(i

′)|
)

≥ (1− p)

(
1− 6ϵ

2

)k′ℓ

(mp)ℓ+1.
(H.8)

Similarly, we obtain

v′sℓ(i
′) ≥ (1− p)

(
1− 6ϵ

2

)k′ℓ

(mp)ℓ+1. (H.9)

One can see from Lemma H.1 that for a wrong pair of vertices the difference between the entries of signatures fsℓ(i) and
f ′
sℓ(i

′) at some sℓ ∈ {−1, 1}k′ℓ can be decomposed into the random variable part Zsℓ and the deterministic part ∆sℓ .
Define

Xsℓ :=
fsℓ(i)− f ′

sℓ (i
′)√

vsℓ(i) + v′
sℓ (i′)

=
Zsℓ +∆sℓ√

vsℓ(i) + v′
sℓ (i′)

,

where Zsℓ and ∆sℓ are defined in Lemma H.1.

We will first estimate expectation and variance of Xsℓ . By Lemma H.1, (H.5), and (H.8), we can have

∣∣E [Xsℓ ]
∣∣ = |∆sℓ |√

vsℓ(i) + v′
sℓ (i′)

≤
2K ′ (mp)(ℓ+1)/2

2k′ℓ/2

√
logm+ 2m0.2p√

2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ
≤ 6K ′√logm

(1− 6ϵ)k′ℓ/2
(H.10)

and

Var (Xsℓ) =
E
[
Z2
sℓ

]
vsℓ(i) + v′

sℓ (i′)
≥

vsℓ(i) + v′sℓ (i
′)− 2m0.2p− p(1− p)m̄

(
|Lsℓ |+

∣∣L′
sℓ

∣∣)
vsℓ(i) + v′

sℓ (i′)

≥ 1−
2m0.2p+ p(1− p)m̄

(
|Lsℓ |+

∣∣L′
sℓ

∣∣)
2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ

,

(H.11)
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for any sℓ ∈ J . Moreover, we have that P
{∣∣Xsℓ − E [Xsℓ ]

∣∣ ≥ t
}
≤ 2 exp

(
−t2/2
1+t/3

)
since P {|Zsℓ | ≥ t} ≤

2 exp

(
−t2/2

E
[
Z2

sℓ

]
+t/3

)
and Var (Xsℓ) =

E[Z2

sℓ
]

v
sℓ

(i)+v′
sℓ

(i′) ≤ 1 hold from Lemma H.1. Therefore, applying Lemma I.9,

we can obtain ∑
sℓ∈J

X2
sℓ ≥

∑
sℓ∈J

E
[
X2

sℓ

]
− C1

√
w(logm)3/2 − C1

(
max
sℓ∈J

∣∣E [Xsℓ ]
∣∣) (

√
w logm+ logm) (H.12)

with conditional probability at least 1−m−D for J ⊂ {−1, 1}k′ℓ such that |J | = 2w and a sufficiently large constant C1

depending on D. By (H.2) in condition (D3), we can get

∑
sℓ∈J

E
[
X2

sℓ

]
≥
∑
sℓ∈J

Var(Xsℓ) ≥ 2w −
∑
sℓ∈J

2m0.2p+ p(1− p)m̄
(
|Lsℓ |+

∣∣L′
sℓ

∣∣)
2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ

≥ 2w −m−0.7 − p(1− p)m̄

2(1− p)(mp)ℓ+1((1− 6ϵ)/2)k′ℓ
· 2K (mp)ℓ

2k′ℓ

(
w

mp(1− α)ℓ−1
+
√

w logm

)
≥ 2w

(
1− K1

(1− 7ϵ)k′ℓ logm

) (H.13)

for a sufficiently large constant K1 depending on K, if w ≥ (logm)3, α < ϵ, mp/(1− α) ≥ (logm)1+δ and m ≥ m0(ϵ).
Finally, by (H.10), (H.12) and (H.13), we can obtain∑

sℓ∈J

X2
sℓ ≥ 2w

(
1− K1

(1− 7ϵ)k′ℓ logm

)
− C1

√
w(logm)3/2 − C1

6K ′√logm
(1− 6ϵ)k′ℓ/2

(
√
w logm+ logm)

(a)

≥ 2w

(
1− K2

(1− 7ϵ)k′ℓ logm

)
≥ 2w

(
1− 1

(logm)0.9

)
.

The inequality (a) holds by w ≥
⌊
(logm)5

⌋
and the last inequality holds since k′ℓ ≤ C log logm and ϵ > 0 is a sufficiently

small constant, which depends on C. This completes the proof.

H.3. Proof of Condition (D3)

As in the analysis for correct pairs, we consider the sparsification for a distinct pair of vertices (i, i′) in the lemma below
(similar to Lemma 6.1 in (Mao et al., 2021a)).

Lemma H.3. For constants K1, D > 0, there exists K > 0 with the properties below. Consider a random subset J
uniformly drawn from {−1, 1}k′ℓ with cardinality 2w, where w is an integer satisfying 2w ≥ logm. Then, for any distinct
vertices i, i′ ∈ Ck if (i, i′) satisfies that

(E1) G0

(
BG0(Ck)(i, ℓ)

)
and G0

(
BG0(Ck) (i

′, ℓ)
)

form trees;

(E2)
∣∣T ℓ

sℓ(i)
∣∣ ∨ ∣∣T ′ℓ

sℓ (i
′)
∣∣ ≤ 6

(mp

2k′

)ℓ
for all sℓ ∈ {−1, 1}k

′ℓ;

(E3)
∣∣BG0(Ck)(i, ℓ) ∩ BG0(Ck) (i

′, ℓ)
∣∣ ≤ K1

(
mp

1− α

)ℓ−1

,

then Lsℓ (i, i′) and L′
sℓ (i, i

′) defined in (H.3) and (H.4) satisfy (H.1) and (H.2) with probability at least 1−m−D.

Proof. For fixed vertices i, i′ ∈ Ck, i ̸= i′, let

asℓ := |Lsℓ (i, i′)| , a′sℓ := |L′
sℓ (i, i

′)| .

Since Lsℓ(i, i′) ⊂ T ℓ
sℓ(i), L′

sℓ(i, i
′) ⊂ T ′ℓ

sℓ(i) and from the condition (E2), we get

asℓ ∨ a′sℓ ≤ 6
(mp

2k′

)ℓ
. (H.14)
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Therefore, (H.1) holds. By conditions (E1) and (E3), we can obtain that∑
sℓ∈{−1,1}k′ℓ

asℓ ≤
∣∣BG0(Ck)(i, ℓ) ∩ BG0(Ck) (i

′, ℓ)
∣∣ ≤ K1

(
mp

1− α

)ℓ−1

.

For a random subset J uniformly drawn from {−1, 1}k′ℓ with cardinality 2w ≥ 2 logm, by applying Lemma I.6 we have

∑
sℓ∈J

asℓ ≤ |J |
2k′ℓ

∑
sℓ∈{−1,1}k′ℓ

asℓ +K2

√√√√ |J |
2k′ℓ

∑
sℓ∈{−1,1}k′ℓ

a2
sℓ · logm+K2 max

sℓ∈{−1,1}k′ℓ
|asℓ | · logm

≤ K3
|J |
2k′ℓ

(
mp

1− α

)ℓ−1

+K3
(mp)ℓ

2k′ℓ

√
|J | · logm+K3

(mp)ℓ

2k′ℓ
logm

≤ 3K3
(mp)ℓ

2k′ℓ

(
w

mp(1− α)ℓ−1
+
√
w logm

)
,

(H.15)

with probability at least 1−m−D−3 for sufficiently large constants K2,K3 depending on K1, and D. Similarly, we obtain∑
sℓ∈J

a′sℓ ≤ 3K3
(mp)ℓ

2k′ℓ

(
w

mp(1− α)ℓ−1
+
√
w logm

)
. (H.16)

Hence, (H.2) holds from (H.15) and (H.16). By applying a union bound over all distinct vertex pairs i, i′ ∈ Ck, the proof is
completed.

Lemma H.4 (Similar to Lemma 6.2 in (Mao et al., 2021a)). For any constants D, δ > 0, there exists c ∈ (0, 1/2) and
R,Q1, Q2,K,K ′,m0, which depend on D, δ, with the properties below. Consider a random subset J uniformly drawn
from {−1, 1}k′ℓ with cardinality 2w, where w is an integer satisfying 2w > logm. Suppose that

m ≥ m0, (logm)1+δ ≤ mp/(1− α) ≤ m1/20, mq ≥ Q1k
′2ℓ2, k′ ≤ Q2 logmp, ℓ ≤ logm

R logmp
. (H.17)

Then, there exists a subset I ⊂ Ck with |I| ≥ m−m1−c such that the eventH (or condition (D3)) holds for every pair
i, i′ ∈ I, where i ̸= i′, with probability at least 1−m−D.

Proof. To apply Lemma H.3, we first show the existence of a subset I ⊂ Ck with |I| ≥ m−m1−c such that conditions
(E1), (E2) and (E3) are satisfied for all pairs of i, i′ ∈ I, where i ̸= i′.

• By Proposition F.6, there exists a subset TypG0(Ck)
(3ℓ, ϵ) such that

∣∣∣TypG0(Ck)
(3ℓ, ϵ)

∣∣∣ ≥ m−m1−c for c ∈ (0, 0.5)

with probability at least 1−m−D−2. Since G0

(
BG0(Ck)(i, 3ℓ)

)
and G0

(
BG0(Ck)(i

′, 3ℓ)
)

form trees for any i, i′ ∈
TypG0(Ck)

(3ℓ, ϵ), the condition (E3) holds with probability at least 1−m−D−2 for K1 depending on D by Lemma
F.2. (Since 3ℓ is greater than or equal to 3, in order to apply Proposition F.6, we have set mp/(1− α) ≤ m1/20.)

• The condition (E1) is directly satisfied since G0

(
BG0(Ck)(i, 3ℓ)

)
and G0

(
BG0(Ck)(i

′, 3ℓ)
)

form trees for any i, i′ ∈ I .

• By Lemma F.3, the condition (E2) holds with probability at least 1−m−D−2 for any i, i′ ∈ I.

Thus, by applying Lemma H.3, we can have (H.1) and (H.2) for all pairs of i, i′ ∈ I, where i ̸= i′, with probability at least
1− 2m−D−1. The verification of (H.5) follows a similar approach as presented in Lemma 6.2 of (Mao et al., 2021a); thus,
we omit the detailed explanation.

I. Technical Tools
Theorem I.1 (Tail bounds on binomial distribution (Okamoto, 1959)). Let X ∼ Bin(n, p). It holds that

P{X ≤ nt} ≤ exp
(
−n(√p−

√
t)2
)
, ∀0 ≤ t ≤ p

P{X ≥ nt} ≤ exp
(
−2n(

√
t−√p)2

)
, ∀p ≤ t ≤ 1
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Lemma I.2 (Lemma 22 in (Mao et al., 2021b)). Let X ∼ Bin(n, p) with real number p ∈ (0, 1). For any t, r > 0, it holds
that

P{X ∈ [t, t+ r]} ≤ Cr√
np(1− p)

with a universal constant C > 0 .

Lemma I.3 (Lemma 23 in (Mao et al., 2021b)). Let X ∼ Bin(n, p) with real number p ∈ (0, 1). If np(1− p) ≥ C then for
any r ≥ 2, it holds that

P{X > np− r} ≥ 1

2
+ c

(
r√

np(1− p)
∧ 1

)
, P{X < np+ r} ≥ 1

2
+ c

(
r√

np(1− p)
∧ 1

)
with universal constants C, c > 0.

Lemma I.4 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi. Define
Sn := X1 + . . .+Xn. Then, for all t > 0, we have

P {Sn − E[Sn] ≥ t} ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
,

P {|Sn − E[Sn]| ≥ t} ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

(I.1)

Lemma I.5 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables such that a ≤ Xi ≤ b. Define
σ2 := 1

n

∑n
i=1 E

[
(Xi − E [Xi])

2
]
. Then, for any t > 0, we have

P

{∣∣∣∣∣
n∑

i=1

(Xi − E [Xi])

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
−t2/2

σ2n+ (b− a)t/3

)
Lemma I.6 (Bernstein’s inequality for sampling without replacement). Let {x1, . . . , xN} be given for a finite positive
integer N . For a positive integer n < N , let X1, . . . , Xn be drawn from {x1, . . . , xN} without replacement. Define

a := min
i∈[N ]

xi, b := max
i∈[N ]

xi, x̄ :=
1

N

N∑
i=1

xi, σ2 :=
1

N

N∑
i=1

(xi − x̄)
2
.

Then, for any t > 0, we have

P

{∣∣∣∣∣
n∑

i=1

Xi − nx̄

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
−t2/2

σ2n+ (b− a)t/3

)
.

Lemma I.7 (Lemma 13 in (Mao et al., 2021b)). Fix k ∈ N+, p ∈ (0, 1) and α ∈ [0, 1− p]. Let Γ0 ∼ G
(
k, p

1−α

)
. We can

get two subgraphs Γ and Γ′ by independently subsampling every edge of Γ0 with probability 1− α. Fix subsets J, J ′ ⊂ [k]

and a vertex i ∈ [k]\ (J ∪ J ′). For any t > 0, we have that with probability at least 1− 6 exp(−t)− 2 exp

(
−p|J∩J′|
3(1−α)

)
,

||NΓ(i; J)| − p|J | − |NΓ′ (i; J ′) |+ p|J ′|| ≤ 4
(
t+

√
tαp |J ∩ J ′|+

√
tp |J△J ′|

)
where NΓ(i; J) is the set of neighbors of i within J ⊂ [n] in a graph Γ.

Lemma I.8 (Lemma 5.5 in (Mao et al., 2021a)). Given a constant S > 0 and an even integer k ∈ N, let Ω and Ω′ be two
finite sets that can be expressed as Ω =

⋃k
i=1 Ωi and Ω′ =

⋃k
i=1 Ω

′
i where |Ω′

i| ≤ S/k for all i ∈ [k]. Additionally, let
w ∈ {2, 3, . . . , k/2}, and I be a random subset uniformly drawn from [k] with a cardinality of 2w. Then, for any given
values of L ≥ 1 and ρ ∈ (0, 1/4), where ρw is an integer, we have that

P
{
|
{
i ∈ I : ∃j ∈ I\{i} s.t.

∣∣Ωi ∩ Ω′
j

∣∣ ≥ LS/k2
}
|≥ 2ρw

}
≤
(
8w3

L

)ρw

.
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Lemma I.9 (Hoeffding’s inequality with truncation (Lemma 5.10 in (Mao et al., 2021a))). Let X1, . . . , XN be independent
random variables such that |E [Xi]| ≤ τ for τ > 0, and that

P {|Xi − E [Xi]| ≥ t} ≤ 2 exp

(
−ct2

1 + t

)
, ∀t > 0,

for a constant c > 0 for each i ∈ [N ]. Then there exists a constant C > 0 depending only on c such that, for any ϵ ∈ (0, 0.1),

P

{∣∣∣∣∣
N∑
i=1

(
X2

i − E
[
X2

i

])∣∣∣∣∣ ≥ C log(N/ϵ)
√
N log(1/ϵ) + Cτ(

√
N log(1/ϵ) + log(1/ϵ))

}
≤ ϵ.

Lemma I.10. Let n be a positive integer and x be a positive real number. If nx ≤ 1, then (1 + x)n ≤ 1 + 2nx.

Proof. For k = 1, . . . , n− 1, we have(
n

k + 1

)
xk+1 =

(
n

k

)
xk (n− k)x

k + 1
≤ 1

2

(
n

k

)
xk (I.2)

since nx ≤ 1. Thus, we get

(1 + x)n = 1 +

n∑
k=1

(
n

k

)
xk ≤ 1 + 2nx. (I.3)

J. Refinement Matching Algorithm
The refinement matching algorithm from Mao et al. (2021a) is summarized below.

Algorithm 4 RefinementMatching (Mao et al., 2021a)

Input: two graphs Γ and Γ′ on [n], a permutation π̃ : [n]→ [n], and a parameter ϵ > 0
Output: a permutation π̂ : [n]→ [n]
π0 ← π̃
for t = 1, . . . , ⌈log2 n⌉ do

for i = 1, . . . , n do
if there is a vertex i′ ∈ [n] such that then
• |π−1

t−1 (NΓ(i)) ∩NΓ′(j′)| ≥ ϵ2pn/512 for all j′ ∈ [n]\{i′}
• |π−1

t−1 (NΓ(i)) ∩NΓ′(j′)| ≥ ϵ2pn/512 for all j′ ∈ [n]\{i′}
• |π−1

t−1 (NΓ(j)) ∩NΓ′(i′)| ≥ ϵ2pn/512 for all j ∈ [n]\{i}
end if

end for
extend πt to a permutation on [n] in an arbitrary manner

end for
π̂← π⌈log2 n⌉
return π̂
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