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Abstract
The mission of active learning is to identify
the most valuable data samples, thus attaining
decent performance with much fewer samples.
The data augmentation techniques seem straight-
forward yet promising to enhance active learn-
ing by extending the exploration of the input
space, which helps locate more valuable sam-
ples. In this work, we thoroughly study the cou-
pling of data augmentation and active learning,
thereby proposing Controllable Augmentation
ManiPulator for Active Learning. In contrast
to the few prior works that touched on this
line, CAMPAL emphasizes a purposeful, tighten,
and better-controlled integration of data augmen-
tation into active learning in three folds: (i)-
carefully designed augmentation policies applied
separately on labeled and unlabeled data pools;
(ii)-controlled and quantifiably optimizable aug-
mentation strengths; (iii)-full and flexible cover-
age for most (if not all) active learning schemes.
Theories are proposed and associated with the
development of key components in CAMPAL.
Through extensive empirical experiments, we
bring the performance of active learning methods
to a new level: an absolute performance boost
of 16.99% on CIFAR-10 and 12.25% on SVHN
with 1,000 annotated samples. Codes are avail-
able at https://github.com/jnzju/CAMPAL.

1. Introduction
The acquisition of labeled data serves as a foundation for
the remarkable successes of deep supervised learning over
the last decade, which also incurs great monetary and time
costs. Active learning (AL) is a pivotal learning paradigm
that puts the data acquisition process into the loop of learn-
ing (Settles, 2009; Zhang et al., 2020; Kim et al., 2021a;
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Wu et al., 2021). By decomposing the learning loop into
several cycles that alternatively accumulate valuable data
samples and update the model, AL attains much-lowered
sample complexity but comparable performance compared
to its supervised counterpart. Owing to this efficacy, active
learning is widely used in real-world applications and ML
productions (Bhattacharjee et al., 2017; Feng et al., 2019;
Hussein et al., 2016). In spite of its meritorious practicality,
active learning often suffers from unreliable data acquisi-
tion, especially from the early stages. Notably, the models
obtained around the early stages are generally raw and un-
developed due to the insufficient data curated and sparse
supervision signal being consumed.

While this problem can probably be mitigated after adequate
cycles are conducted, we argue that the problems at the
early stages of AL cannot be overlooked. Indeed, few works
have resorted to data augmentation techniques to generate
additional data examples for active learning, e.g. GAN-
based (Tran et al., 2019) and STN-based (Kim et al., 2021b)
methods. In this work, we take a further step in investigating
the role of data augmentation for AL.

To begin with, we provide a straightforward quantitative
observation in Figure 1. The setup of these results is rather
simple: we directly apply vanilla data augmentation (DA)
operations, such as flipping and rotation, to data samples
and stack them to increase the augmentation strengths. We
may conclude from these scores as follows. First, the aug-
mentations (loosely) integrated into AL have led to surpris-
ingly enhanced results, albeit their simple designs. Sec-
ondly and perhaps more important, the same augmentation
policy facilitated on different data pools manifests notably
different impacts. As shown in Figure 1, the labeled and
unlabeled data pools achieve the best performance at dif-
ferent levels of augmentation strengths. To incorporate DA
into AL schemes, the augmentation ought to serve differ-
ent objectives on the labeled/unlabeled pools. In particular,
the labeled pool favors label-preserving augmentation in
order to obtain a reliable classifier, when the unlabeled pool
may require relatively more aggressive augmentations to
maximally gauge the unexplored distribution. Noted, this
observation has not been investigated by prior works (Wei
et al., 2020; Gao et al., 2020; Kim et al., 2021b).

Motivated by it, we propose Controllable Augmentation
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Figure 1. A visualization for data augmentation and their corresponding performance change as we stack augmentations over images
when integrating them into active learning cycles, where the strength denotes the number of vanilla augmentations we stack. We test 3
cases where augmentations are applied to 1) unlabeled samples only; 2) labeled samples only; 3) Both. More details are in Appendix B.3.

ManiPulator for Active Learning. Core to our method is a
purposely designed form of better controlled and tightened
integration of data augmentation into active learning. By
proposing CAMPAL, we aim to fill this integration gap and
unlock the full potential of data augmentation methods in
active learning schemes. In particular, CAMPAL integrates
several mechanisms into the whole AL framework:

• CAMPAL constructs separate augmentation flows dis-
tinctly on labeled and unlabeled data pools towards
their own objectives;

• CAMPAL composes a strength optimization procedure
for the applied augmentation policies;

• CAMPAL complies with the most common AL
schemes, with carefully designed acquisition functions
for both score- and representation-based methods;

Besides the theoretical justification of CAMPAL offered in
Section 4, we extensively conduct wide experiments and
analyses on our approach. The empirical results of CAM-
PAL are stunning: a 16.99% absolute improvement at a
1,000-sample cycle and a 13.34% lead with 2,000 samples
on CIFAR-10, compared with previously best methods. As
an extra juice, we demonstrate CAMPAL’s versatility by em-
bedding it into a parallel semi-supervised learning workflow,
which further boosts the performance from the lens of both
paradigms. Arguably, we postulate that these significantly-
enhanced results may well extend the boundary of AL.

2. Methodology
In this section, we describe CAMPAL in detail. CAMPAL
is chiefly composed of two stages. First, CAMPAL con-
trols the augmentations being applied to labeled/unlabeled
data pools with distinct optimization objectives (Section
2.2). Second, CAMPAL provides an enhanced data acqui-
sition system based on the properly-controlled augmenta-
tions (Section 2.3). To this end, we may posit that CAMPAL
forms a much more tightened integration of DA and AL, due
to not only its controllable mechanism on both data pools

but also its full adaptability for all common active learning
schemes. With properly controlled augmentations and en-
hanced acquisitions, CAMPAL completes the integration
of augmentations and active learning. The framework for
CAMPAL is summarized in Figure 2.

2.1. Setup and Definitions

Active learning. The problem of active learning (AL) is
defined with the following setup. Consider D ⊂ Rd as the
underlying dataset consisting of a labeled data pool DL and
an unlabeled data pool DU , with |DU | ≫ |DL|. Based on
a fully-trained classifier fθ that assigns a label to each data
point, a data acquisition function hacq(x, fθ) : DU → R
calculates the score for each data instance. We also use
P(y|x; fθ) to denote the probabilistic label distribution of
x given by fθ. Then AL selects the most valuable sample
batch and updates the labeled set accordingly. In the remain-
der of this paper, we omit parameter fθ in hacq when the
reliance on acquisitions over classifiers is clear.

Data augmentation. We denote the set consisting of
vanilla augmentations (i.e. translation, rotation as shown in
Table 8) by T . Instead of designing new types of augmen-
tations, we optimize the strength of augmentations derived
from T . In practice, several studies provide extended aug-
mentation operators consisting of multiple vanilla operators
(Hendrycks et al., 2019; Xu et al., 2022). Denoting an
augmentation with T , the number of operators s in the com-
position is named the strength of T , then T (s) denotes the
augmentation set with strength s. Intuitively, s also quanti-
fies how far an augmentation drifts images away from their
original counterparts. Given a data point x, we also use
T (s)(x) to denote all its augmented views with strength s.

2.2. Controllable Augmentations for Active Learning

As shown in Figure 1, data augmentations serve different
goals on different data pools for locating valuable samples
with better acquisitions. On labeled data, it targets to im-
prove the model prediction performance, thus providing a
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Figure 2. An active learning cycle for the CAMPAL framework. We optimize strengths su, sl for the unlabeled/labeled pool separately,
then generate the augmented images with the strengths given. We train an enhanced classifier over augmented labeled samples, then deduce
an enhanced acquisition with the augmented unlabeled batch and the enhanced classifier. Valuable samples are selected accordingly.

reliable base model for acquisition. On unlabeled examples,
it enlarges the exposed data distribution to deduce more pre-
cise informativeness evaluation over samples — in turn —
better acquisitions. In this section, we propose a principled
framework that searches for feasible DA configurations for
different data pools in their own natural habits. It is worth
noting that we adopt a dynamic control on the strength of
augmentations across different cycles, making them adapt-
able to changes in AL as the cycle proceeds. It can be
empirically verified that such dynamic control is better than
a fixed augmentation strategy (Section 3.2). Through appro-
priate strength control, we expect to increase the quality of
augmentations for AL.

Strength for unlabeled data. The primary goal for aug-
menting unlabeled data is to offer precise informativeness
evaluation with enriched data distribution, thus inducing
more reliable acquisitions. A problem is that the weak
augmentations contain trivial augmentations that contribute
little to the distribution enrichment, while drastic augmenta-
tions introduce excessive distribution drifts that mislead the
acquisition. We resolve this problem by proposing a proper
strength that maximizes the overall informativeness of the
unlabeled pool:

su = argmax
s

∑
xU∈DU

min

{
H(x̃U ),

where x̃U ∈ T (s)(xU ) and fθ(x̃U ) = fθ(xU )

}
,

(1)

where H denotes the entropy. By adopting a max-min op-
timization procedure, we eliminate the potential harmful
distribution drift caused by over-aggressively augmented
samples with min{H(x̃U )}, while also maximizing the over-
all informativeness of unlabeled data with argmax.

Strength for labeled data. By involving augmentations
in model training, we aim at obtaining a dependable base
model from limited labeled data and further enhance the

acquisition. Different from the augmentations for unlabeled
data that maximize overall informativeness, the augmen-
tations for labeled data are prone to training stability and
convergence. To give out proper control over labeled aug-
mentations while avoiding extra training costs, we introduce
a virtual loss term Lf and search the proper strength sl for
labeled samples by minimizing it:

sl = argmin
s

1

|DL|
∑

xL∈DL

Lf (xL, s),

where Lf (x, s)=L(x)+λ JS
(
{P(y | x̃; fθ) | x̃ ∈ T (s)(x)}

)
(2)

where L(x),Lf (x) denotes the normal loss term and the
augmented loss respectively, and λ denotes a fixed weight.
Since we focus on training stability and convergence at
this stage, we integrate the augmented information into the
model by making them produce similar outputs, in which
the dissimilarity is quantified with a Jensen-Shannon (JS)
divergence term.

With the strengths su, sl given above, we locate augmen-
tations Tu that effectively enlarge the distribution, and the
augmentations Tl that help deduce dependable classifiers.
The combination of the two enables us to enhance acquisi-
tions by making classifiers and informativeness evaluations
in the AL framework work collaboratively. We will show
how augmentations for unlabeled (UA) and labeled samples
(LA) contribute to the acquisition in Section 3.2.

2.3. Controllable Augmentation-induced Acquisition for
Active Learning

With the properly-controlled augmentations in Section 2.2,
we proceed to integrate the augmentations into the data
acquisition stage within active learning and propose control-
lable augmentation-induced acquisition. A key challenge
for inducing the enhanced acquisition hacq arises from the
complicated forms for hbase, which denotes basic acquisi-
tions and varies across different studies. In this section, we
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highlight two types of acquisitions, i.e., score-based acqui-
sition and representation-based acquisition and treat them
differently. Since training a classifier fθ with augmenta-
tions is straightforward, we focus on formulating enhanced
acquisition of unlabeled data.

Integrating augmentations into score-based acquisitions.
For score-based acquisitions, hbase provides an informa-
tion score for each data point, according to which we se-
lect valuable samples with the highest score, like Max En-
tropy (Settles, 2009). To integrate data augmentations into
score-based acquisitions , we calculate an information score
hbase(x̃) for every augmented counterpart x̃ ∈ T (x) and
aggregate them into one score. We propose several variants
of hacq , including:

1. hacq(x) = minx̃∈Tu(x) hbase(x̃) provides the minimum ac-
quisition score across all the augmented counterparts;
2. hacq(x) =

∑
x̃∈Tu(x) hbase(x̃) sums up all the information

score provided by augmentations;
3. hacq(x) =

∑
x̃∼Tu(x) sim(x, x̃)hbase(x) weights the informa-

tiveness of x̃ by its similarity to its non-augmented counterpart.

Integrating augmentations into representation-based ac-
quisitions. For representation-based acquisitions, hbase

provides a feature vector embedded into a representation
space and performs sampling according to this space, like
Core-set (Sener et al., 2018). Notice that representation-
based methods rely on a distance function to measure the
correlation between instances, we generalize the distance
functions between individual samples to point-set distance
functions between augmented sample batches. By adopting
set distance functions, we enhance the acquisition process
by taking the correlation across augmentations over differ-
ent samples into consideration. To this end, we focus on
well-defined set distance functions and propose the corre-
sponding variants as follows:

1. Standard distance d(x, z) = minx̃∈Tu(x),z̃∈Tu(z) ∥x̃− z̃∥22;

2. Chamfer distance d(x, z) =
∑

x̃∈Tu(x) minz̃∈Tu(z) ∥x̃−z̃∥22+∑
z̃∈Tu(z) minx̃∈Tu(x) ∥x̃ − z̃∥22 considers pairwise similarities

for the augmented views from two samples;
3. Pompeiu–Hausdorff distance that highlights the maximal
potential difference between two samples is d(x, z) =
max{maxx̃∈Tu(x) d (x̃, Tu(z)) ,maxz̃∈Tu(z) d (Tu(x), z̃)}.

Controllable DA-driven active learning cycles. With
those augmentation-induced acquisitions, we complete the
active learning cycle within CAMPAL. First, we gener-
ate the labeled augmentations Tl with properly controlled
strength sl, then produce an enhanced classifier fθ trained
over them. This makes up for the insufficient labeled in-
formation and further brings a reliable model. Second, we
generate the unlabeled augmentations with an optimized
strength su and induce the enhanced acquisition hacq with

Tu and fθ. Notably, CAMPAL offers a dynamic strength
control on augmentations across cycles, which also leads to
a controllable acquisition adapting itself to the changing data
pools. This augmentation-induced acquisition step provides
precise information evaluation and guarantees the positive
impact of augmentations, which finally helps produce better
querying results. As a result, these two steps jointly ensure
the quality of data to label at the end of the active learning
cycle, largely boosting the performance. Our experiments
in Section 3 show their separate effects as well as the com-
bined impacts in detail. We summarize the pseudo-code of
our CAMPAL in Algorithm 1 as in the Appendix B.

3. Experiments
3.1. Baselines and Datasets

We instantiated our proposed CAMPAL with several exist-
ing strategies, including 1) Entropy, 2) Least Confidence
(LC), 3) Margin, 4) Core-set (Sener et al., 2018), and 5)
BADGE (Ash et al., 2020). We also implement several
augmentation-aggregation modes that integrate augmen-
tations into an enhanced acquisition, including 1) MIN,
2) SUM, 3) DENSITY for Entropy, LC, Margin, and 1)
STANDARD, 2) CHAMFER, 3) HAUSDORFF for Core-
set, BADGE, as shown in Section 2.3 and Table 2. In
this section, we specify the instantiated augmentation-
acquisition with basic strategy hbase as its subscript and
the augmentation-aggregation mode as its superscript, e.g.
CAMPALMIN

Entropy. We also denote the optimal version of
CAMPAL, i.e. CAMPALCHAMFER

BADGE as CAMPAL* in Table
2. We conduct experiments on four benchmark datasets:
FashionMNIST, SVHN, CIFAR-10, and CIFAR-100.

In this work, we compare our method to 1) Random, 2)
Coreset, 3) BADGE (Ash et al., 2020), 4) Max Entropy, 5)
Least Confidence 6) Margin. We also compare our method
with other active learning strategies with data augmenta-
tions, including 1) BGADL (Tran et al., 2019), 2) CAL
(Gao et al., 2020), and 3) LADA (Kim et al., 2021b) in Ta-
ble 1. For a fair comparison, CAL does not use its original
semi-supervised setting but uses a supervised procedure.
Since LADA has multiple versions, we choose the one with
the best performance for comparison in Table 1. We further
prove the efficacy of CAMPAL by comparing its perfor-
mance with its baseline versions in Table 3.

3.2. Main Empirical Results

CAMPAL achieves SOTA results. As shown in Table 1
and Figure 3, CAMPAL significantly outperforms their ri-
vals on many datasets and data scales. Specifically, on the
CIFAR-10 dataset, we improve upon the best baseline by
8.08%, 16.99%, 15.11%, 13.34%, where the labeled set has
500, 1000, 1500, 2000 instances respectively. Moreover,
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Table 1. Comparison of the averaged test accuracy on benchmark datasets and different AL strategies. Since CAMPAL has multiple
versions, we use CAMPALCHAMFER

BADGE for comparison and denote it with CAMPAL*. The best performance in each category is indicated
in boldface. NL denotes the number of labeled samples at the end of active learning.

Dataset Method NL = 500 NL = 1, 000 NL = 1, 500 NL = 2, 000

SVHN

Random 52.42±2.10 64.38±1.91 68.55±1.30 71.43±1.34
Entropy 55.86±1.66 66.42±2.49 73.08±2.84 75.40±2.43
BADGE 56.19±1.97 67.30±2.19 76.35±0.57 80.03±1.68

BGADL 40.18±0.43 50.58±1.30 64.56±1.34 69.73±1.34
CAL 56.98±1.07 66.22±0.92 72.09±1.83 75.22±2.11

LADA 56.61±1.50 66.56±1.21 72.48±1.66 75.84±1.12

CAMPAL* 61.34±4.26 78.81±0.93 82.86±0.42 85.66±0.79

CIFAR-10

Random 38.54±2.28 49.77±3.08 58.61±2.75 61.49±2.06
Entropy 39.80±1.60 55.43±1.71 60.76±2.64 65.95±1.36
BADGE 44.18±2.09 55.97±1.57 62.40±2.15 67.03±0.62

BGADL 37.54±1.88 47.57±1.38 51.81±1.00 56.73±0.75
CAL 40.05±1.68 54.24±2.30 59.83±2.66 64.24±0.91

LADA 41.87±2.33 56.37±2.24 62.76±1.99 66.26±1.29

CAMPAL* 52.26±2.01 73.36±1.11 77.87±0.61 80.37±0.86

(a) SVHN (b) CIFAR-10 (c) CIFAR-100

Figure 3. Test accuracy on the number of labeled samples over different datasets.

Table 2. Performance of CAMPAL with different hbase and aggre-
gation modes. The experiment is conducted over CIFAR-10 with
2,000 labeled samples.

Method Aggregation Mode

Type of hbase hbase MIN SUM DENSITY

Score
Entropy 76.90±0.76 75.87±0.32 78.89±0.74

LC 76.82±0.62 72.74±1.31 76.76±0.54
Margin 78.70±0.58 71.33±0.76 79.16±0.48

Type of hbase hbase STANDARD CHAMFER HAUSDORFF

Representation Core-set 78.20±0.28 79.67±0.68 78.49±0.51
BADGE 79.71±0.51 80.37±0.86 79.84±0.24

CAMPAL exhibits the most significant performance boost
with a moderately small NL, which is approximately around
1,000 for CIFAR-10 and SVHN. Besides, we can see that
different versions of CAMPAL consistently achieve supe-
rior results on CIFAR-10, as shown in Table 2. As shown
in Table 3, in all combinations of baselines and datasets,
CAMPAL variations exhibit the best performance. Notably,
CAMPAL also brings a consistent performance boost.

In addition, it is worth noting that previous works (Tran
et al., 2019; Kim et al., 2021a) are typically evaluated with
a large number of labeled samples (e.g., 10% ∼ 40% of

labeled samples for CIFAR-10). We also challenge this by
querying fewer samples over benchmark datasets, shown in
Table 1. When NL = 500 or 2,000 on CIFAR-10, recent
augmentation-based AL strategies fail to outperform other
simple baselines like BADGE. Notably, BGADL performs
the worst, because of the inadequate training with insuffi-
cient instances in the current active learning setting. Since
CAL is originally designed for a semi-supervised setting, it
fails to outperform simple baselines like BADGE under our
supervised setting. LADA outperforms other baselines on
CIFAR-10 but fails on SVHN since maximal-entropy aug-
mentations can easily change the semantics of the digit data.
In contrast, our proposed CAMPAL remains competitive at
different data scales, indicating its superiority.

The learnt augmentation strength differs for unla-
beled/labeled data. In Figure 4, we visualize the dynamics
of the learnt strength s∗u, s

∗
l across active learning cycles. In

particular, we conduct the experiment 5 times on CIFAR-10
with CAMPALMIN

Entropy and CAMPALSTANDATD
BADGE and figure

out the average optimal strength value. We can observe that
the s∗u is generally larger in comparison with s∗l across the
AL cycles. This verifies our postulations that labeled data
requires moderate augmentation for label preserving. In con-
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Table 3. Comparison of CAMPAL with its non-augmented counterpart with different AL strategies. ∆ indicates the performance
boost brought by CAMPAL. Specifically, the versions of CAMPAL for comparing with 5 basic acquisitions are: CAMPALDENSITY

Entropy ,
CAMPALMIN

LC , CAMPALDENSITY
Margin , CAMPALCHAMFER

Coreset , CAMPALCHAMFER
BADGE , which do not change across datasets.

Dataset Method Entropy LC Margin Coreset BADGE

Fashion
baseline 81.33±0.86 81.15±1.16 80.71±1.16 83.36±0.82 82.89±0.95
+CAMPAL 85.89±0.29 84.63±1.31 84.82±0.62 84.36±0.48 86.24±1.04
∆ +4.56±0.91 +3.48±1.75 +4.11±1.32 +1.00±0.95 +3.35±1.41

SVHN
baseline 75.40±2.43 76.39±1.30 76.32±1.87 77.81±0.93 80.03±1.68
+CAMPAL 85.36±0.45 84.34±0.62 84.90±0.57 84.35±0.81 85.66±0.79
∆ +9.96±2.47 +7.95±1.44 +8.58±1.95 +6.54±1.23 +5.63±1.86

CIFAR-10
baseline 65.95±1.36 66.97±1.87 66.76±1.77 66.90±0.93 67.03±0.62
+CAMPAL 78.89±0.74 76.82±0.62 79.16±0.48 79.67±0.68 80.37±0.86
∆ +12.94±1.55 +9.85±1.97 +12.40±1.83 +12.77±1.15 +13.34±1.06

CIFAR-100
baseline 45.18±0.13 45.70±0.18 45.64±0.25 46.52±0.21 47.75±0.09
+CAMPAL 48.76±0.30 49.24±0.70 49.63±0.65 46.80±0.27 49.46±0.65
∆ +3.58±0.33 +3.54±0.72 +3.99±0.70 +0.28±0.34 +1.71±0.66

Table 4. Test accuracy of CAMPAL when UA or LA are individually applied over CIFAR-10 with 2,000 labeled samples. The results
are produced over 5 different AL strategies. The versions of CAMPAL for comparing with 5 basic acquisitions are: CAMPALMIN

Entropy,
CAMPALMIN

LC , CAMPALMIN
Margin, CAMPALSTANDARD

Coreset , CAMPALSTANDARD
BADGE .

Components Entropy LC Margin Core-set BADGE
UA LA

65.95±1.36 66.97±1.87 66.76±1.77 66.90±0.93 67.03±0.62
✓ 67.49±1.87 69.59±2.55 71.86±3.16 68.83±1.29 71.24±0.75

✓ 74.30±0.94 75.92±0.85 77.73±0.44 77.73±0.20 78.89±0.22
✓ ✓ 76.90±0.76 76.82±0.62 78.70±0.58 78.20±0.28 79.71±0.51

trast, unlabeled data prefers relatively stronger augmenta-
tions to enrich the data distribution such that a wider range of
informative regions can be explored. We conclude that AL
is better enhanced by DA with a combinatorial scheme of
weak and strong augmentations applied to labeled/unlabeled
data, corroborating to our theoretical findings in Section 4.

Impact of unlabeled/labeled augmentations. Here, we
compare the performance boost of augmentation-induced
acquisitions based on different AL strategies and the results
are reported in Table 4. We can see that without augmented
labeled information, the enhanced acquisition gives out a
consistent performance boost over several strategies, and
the maximal boost is presented by Margin (∆5.10%). The
enhanced training process also plays an important role in
promoting the performance of the existing strategies by
8.35% ∼ 11.86%. A combination of these two components
also shows consistently best performance compared to other
ablation versions. Additionally, we also compare CAMPAL
with fixed augmentation strengths in Figure 4 and also see
that the classifier fθ prefers weakly labeled augmentations
when stronger unlabeled augmentations induce better acqui-
sitions, even without a dynamic strength control. We can
also see that augmentations can be inefficient when strengths
are not chosen appropriately. At last, we can conclude that

both the augmented unlabeled information and the labeled
ones help resolve the problem of unreliable judgment in AL.

3.3. Further Extension: Integrating w/ SSL

Semi-supervised learning (SSL) is another hallmark in the
history of machine learning. As is widely acknowledged,
despite the similarity of AL and SSL from a high-level stand-
point, their primary goals differ greatly in hindsight: the
AL paradigms focus on enhancing the quality of unlabeled
data queries and lowering the annotation cost, while SSL
involves painstakingly proposed algorithms towards improv-
ing the representation learning by utilizing the unlabeled
data during the training stage (Li et al., 2019; Zhang et al.,
2021; Zheng et al., 2022; Wang et al., 2022b).

Regardless, as a versatile scheme, we entertain the prob-
ability of combining CAMPAL into the scope of several
iconic SSL frameworks. In particular, we pick 1) FixMatch
(Sohn et al., 2020); 2) Mean Teacher (Tarvainen & Valpola,
2017); 3) Pseudo Labeling; 4) UDA (Xie et al., 2020). In
Table 5, we compare these SSL methods in their vanilla
form with the CAMPAL-augmented counterpart. We see
that CAMPAL yields a consistent performance boost, even
on some very competitive baselines such as FixMatch.
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(a) The learned strength on CIFAR-10,
with CAMPAL instantiated with En-
tropy/BADGE.

(b) A heatmap visualization of perfor-
mance boost brought by augmentations
of different strengths.

Figure 4. Experiments that focus on the strengths of augmentations being applied to the labeled and unlabeled pool. The experiments are
performed over CIFAR-10 with 2,000 labeled samples over Entropy.

Table 5. Comparison of SSL methods with its CAMPAL*-
augmented counterpart when integrating them into AL strategies
on CIFAR-10. We present our results with different sizes of DL.
Since the labeled pool is not carefully selected and balanced as
FixMatch did in an AL setting, the accuracy of FixMatch is not as
high as the original paper claimed at the same data scale.

Method NL = 40 NL = 250 NL = 1, 000

FixMatch 67.89±0.22 82.37±0.05 92.13±0.13
+CAMPAL* 68.34±0.10 82.98±0.07 92.28±0.09
∆ +0.55±0.24 +0.61±0.09 +0.15±0.16

Mean Teacher 28.79±2.03 60.79±1.80 83.35±0.85
+CAMPAL* 33.24±1.05 63.22±1.28 84.40±0.99
∆ +4.45±2.29 +2.43±2.05 +1.05±1.30

Pseudo Label 25.73±0.83 41.19±1.83 64.48±0.73
+CAMPAL* 30.78±1.01 54.39±1.33 74.46±0.88
∆ +5.05±1.31 +13.20±2.26 +9.98±1.14

UDA 56.34±1.34 77.57±1.08 82.66±0.17
+CAMPAL* 58.35±0.78 79.33±0.92 83.35±0.09
∆ +1.99±1.55 +1.76±1.42 +0.79±0.19

Table 6. Comparison of performance on CAMPAL*, FixMatch,
and the framework integrated with both of them when applying
them on imbalanced CIFAR-10. We present our results with differ-
ent imbalance factors IF with 1,000 samples.

Method IF = 0.2 IF = 0.1 IF = 0.01

Baseline 58.82±1.24 54.72±0.34 46.74±0.18
+CAMPAL* 65.74±0.21 63.82±0.22 51.02±0.26
+FixMatch 68.41±0.77 64.18±0.12 50.34±0.37
+Both 71.14±0.45 67.34±0.15 53.83±0.14

In spite of the decent performance attained from advanced
SSL methods like FixMatch, they often assume an underly-
ing balanced distribution in the labeled sample pool. How-
ever, in real-world applications, this balancing condition can
hardly be satisfied (Wei et al., 2022b; Wang et al., 2022b;
Wei et al., 2022a). As such, in an imbalanced setup, the
FixMatch algorithm plummets as displayed in Table 6. In
hindsight, we may posit that this is very much due to an

inherent but indispensable lack of data querying/selection
mechanism to form the labeled data pool. To fill this void,
we integrate CAMPAL (see Appendix B.4 for implemen-
tation details) with the FixMatch algorithm. The results
are summarized in Table 6. We observe that CAMPAL per-
forms synergistically with FixMatch, respectively attaining
12.48% and 7.09% performance gain over the baseline,
under an imbalancing factor of 0.1 and 0.01.

Remark. The paradigm of SSL has marked a few mile-
stones in recent years. Nevertheless, as is analyzed previ-
ously, we postulate that its methodology remains room to
progress. In particular, its innate lack of appropriate data
selection mechanism evidently causes performance plunge
in certain scenarios. In that regard, CAMPAL is justified
and capable to interplay with the iconic SSL framework
in a holistic manner. We believe the complementing mar-
riage of the AL and SSL frameworks can further foster their
deployment towards real-world applications.

4. Theoretical Analysis
In this section, we theoretically analyze why weak and
strong augmentations being strategically applied to labeled
and unlabeled data exhibit the best performance. Follow-
ing the previous sections, we use fθ to denote the model
fully trained. When an unlabeled sample lies within the
augmented region for a particular labeled sample, we can
propagate the labeled information to the corresponding un-
labeled samples. Formally, with a feature map f emb

θ derived
from fθ we define a covering relation:

Definition 4.1. Given an augmentation set T , we say that
an image x is covered by xi with respect to the augmen-
tation set T , if f emb

θ (x) lies within the convex hull of the
augmented views of xi: f emb

θ (x) ∈ conv
(
f emb
θ (T (xi))

)
.

We denote the covering relation by x ◁ xi.

Without loss of generality, assume there are L labeled sam-
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ples x1, . . . , xL, together with the unlabeled samples cov-
ered by its augmentations, constituting L components. For
each component Ci(i = 1, . . . , L), let Pi be a probability
that a data point sampled from the underlying data distri-
bution covered by Ci. To make the analysis tractable, we
assume that the properly controlled augmentations for la-
beled samples never overlaps:

Assumption 4.2. With moderately weak augmentations for
labeled samples, Ci’s do not overlap with each other, i.e.
∀i ̸= j, P(Ci ∩ Cj ̸= ∅) = 0.

With Assumption 4.2, the error for fθ can be estimated by
how these components cover the data space. To further
illustrate this, we provide a comparison between different
augmentations in Figure 5. The following proposition char-
acterizes the relationship between error and components.

Proposition 4.3. Let E denote the probability that the fθ
cannot infer the correct label of a test example. Then E is
upper bounded:

E ≤
∑L

i=1
Pi(1− Pi)

m +

(
1−

∑L

i=1
Pi

)
, (3)

where m denotes the number of samples that lie within the
labeled components.

In Eq. (3), the first term denotes the risk brought by ill-
defined augmentations, while the second term denotes sub-
sample empirical risk. With Eq. (3), we continue to reduce
the error as much as possible by acquiring informative sam-
ples. By adding a newly queried sample xL+1, the error
reduction is estimated as follows:

∆E(∆m,PL+1)≈
∑L

i=1
Pi(1− Pi)

m
(
1− (1− Pi)

∆m
)

−PL+1

(
1−(1− PL+1)

m+∆m
)
,

(4)
where ∆m is the number of samples newly covered.

We take a step further by illustrating two terms in Eq. 4.
The first term denotes the performance boost brought by
newly-annotated samples. Specifically, the samples that
drift farthest from the existing components better cover the
under-explored data space, indicating a larger ∆m – in
turn – the performance boost. This is also consistent with
the max-min optimization objective for unlabeled samples
described in Eq. (1), with the intuition provided in Figure
5(c),(d). The second term characterizes the potential error
induced from augmentations on unlabeled samples, i.e.,
too strong augmentation excessively increases the value of
PL+1, leading to its increase. Therefore, it is important to
locate moderately strong augmentations for unlabeled data.

Theorem 4.4. With properly selected augmentation sets
and sufficient large L, the maximal value for error reduc-
tion ∆E(∆m,PL+1) with newly-annotated samples can be

estimated as follows:

∆E(∆m,PL+1) ⪅ E
(
1−Ke−m/L

)
, (5)

where U denotes the number of unlabeled samples, with
K = m+L(log(L+U)−logL−1)

L+U .

From the theorem, we can see that properly selected sam-
ples and augmentations give out a significant error reduction.
Specifically, m/L denotes the average number of samples
covered by each component, which indicates better cover-
age induced from properly controlled components when
being larger. With all the discussions above, augmentation-
acquisition integration effectively relies on the quality of
augmentations, where better augmentations result in more
dependable classifiers and larger error reduction.

5. Related Works
Data augmentation is a technique that improves the gener-
alization ability of models by increasing the number of im-
ages in a dataset (Xu et al., 2022). The most commonly used
augmentation techniques include geometric transformations
(Shorten & Khoshgoftaar, 2019), generative adversarial net-
works (Bowles et al., 2018), and image mixing (Zhang et al.,
2018; Yun et al., 2019). Instead of designing new types of
augmentations, recent studies optimize the strength of an
augmentation group (Cubuk et al., 2020).

Active learning is a machine learning paradigm that ac-
tively selects the data it wants to learn from the unlabeled
data sources (Ren et al., 2021). The most crucial part of ac-
tive learning is exactly the data acquisition. Current studies
can be roughly categorized as follows: (a) Uncertainty-
based methods that prefer the hardest samples (Mai et al.,
2022; Wang et al., 2022a); (b) Representation-based meth-
ods searching for the samples that are the most representa-
tive of the underlying data distribution (Sener et al., 2018;
Ash et al., 2020). To date, the unreliable informativeness
evaluation with few samples remains a critical issue.

6. Conclusions
In this work, we propose a novel active learning framework
CAMPAL. By devising adaptable control policies on data
augmentation integrated for active learning, CAMPAL at-
tains state-of-the-art performance with a significant boost.
Our theoretical analysis further justifies the innate reliance
of AL on the quality of introduced augmentations. In ad-
dition, we evidently exhibit that CAMPAL is capable to
enhance popular semi-supervised learning frameworks, ex-
pressing as a holistic system. In the future, we hope to
generalize CAMPAL to more tasks.
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(a) (b) (c) (d)

Figure 5. The coverage on the data space presented by augmentations, where colored circles are labeled samples, white circles are
unlabeled samples and the colored shade denotes the region covered by corresponding augmentations. A double circle denotes the
unlabeled sample to be annotated. The figures above show: a) Proper augmentation for labeled samples; b) Drastic augmentation
for labeled samples; c) Sub-optimal unlabeled sample with the corresponding augmentation; d) A proper unlabeled sample with the
corresponding augmentation.

A. Theoretical Analysis
This section provides a complete derivation for the analysis given in Section 4. An intuition for this is given in Figure 5.
Before the actual acquisition process, we must ensure convergence for the underlying classifier. Specifically, with proper
augmentations over labeled data and the approximate loss term in (3), we can deduce the upper bound for Pr(A) and
guarantee the convergence for training, shown as follows:

Theorem A.1. Under the setting for CAMPAL, Let E denote the probability that the classifier cannot infer the label of newly
given samples drawn from the underlying data space, with L labeled samples given in DL and augmentation set T . Then E
is upper bounded by Ê as follows:

E ≤ Ê(DL, fθ, T ) =
L∑

l=1

Pi(1− Pi)
m +

(
1−

L∑
i=1

Pi

)
, (6)

With properly selected augmentation set T and sufficient large L, Ê can be estimated by O(ε) with O(L/ε) samples covered
by labeled components, i.e.

m = O(L/ε)⇒ Ê ⪅ O(ε)⇒ E ≤ O(ε). (7)

Proof. With proper control over augmentations, we assume that each component does not overlaps with at most one
other component in Proposition 3, which can be controlled with appropriate augmentations, and generalizable to multiple
components. Let x be the sampled example, the probability of x not covered only in one of Ci’s is

Ê = P (∃i ̸= j, x′ ∈ Ci ∩ Cj) + P (x′ is uncovered)

=

L∑
l=1

Pi(1− Pi)
m +

(
1−

L∑
i=1

Pi

)

With sufficiently large L, we can also have a component set that covers the entire dataset, leading to
∑

i Pi = 1. Now it
remains to find the maximum value of

∑L
l=1 Pi(1−Pi)

m to bound the error term, with the following optimization objective:

min
C
−
∑
i

Pi(1− Pi)
m, s.t.

∑
i

Pi = 1.

With the KKT condition, we attain its maximum value when all Pi is set to 1
L , i.e. Ê ⪅ (1 − 1

L )
m. With O(L/ε) and

sufficiently large L, we have

Ê ⪅ exp
(
−m

L

)
= exp

(
−O(

1

ε
)

)
≤ O(ε).
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With the conditions in theorem A.1, it remains to consider the approximate boost provided by the reduction on upper bound
Ê :

∆Ê(∆m,PL+1) = Ê(DL ∪ {xL+1}, fθ, T })− Ê(DL, fθ, T ))

=

L∑
i=1

Pi(1− Pi)
m
(
1− (1− Pi)

∆m
)
− PL+1

(
1− (1− PL+1)

m+∆m
)
.

where ∆m is the number of samples newly covered after labeling xL+1.

Theorem A.2. With the conditions given in Theorem A.1, the maximal value for error bound reduction ∆Ê(∆m,PL+1)
with newly-annotated samples can be estimated as follows:

∆E(∆m,PL+1) ⪅ E
(
1−Ke−m/L

)
, (8)

where U denotes the number of unlabeled samples, with

K =
m log(L+ U)− L (logL− 1)

L+ U

.

Proof. Under this setting, PL+1 appears to be proportional to ∆m, when no unnecessary overlap appears across components
(guaranteed by Theorem A.1). Therefore, we can estimate PL+1 ≈ ∆m/(L+U), where U denotes the number of unlabeled
samples. With those conditions, we estimate the relative error reduction as follows:

∆Ê
Ê

=

∑L
i=1 Pi(1− Pi)

m
(
1− (1− Pi)

∆m
)
− PL+1

(
1− (1− PL+1)

m+∆m
)

∑L
i=1 Pi(1− Pi)m +

(
1−

∑L
i=1 Pi

)
⪅

(
1−

(
1− 1

L

)∆m
)
− exp

(
−m

L

) ∆m

L+ U

(
1−

(
1− ∆m

L+ U

)m+∆m
)

Since m is large with sufficient labeled samples, we can further estimate this term as:

∆Ê
Ê

⪅ 1−
(
1− 1

L

)∆m

− exp(−m

L
)

∆m

L+ U
.

Then the maximum value for this is attained when ∆m reaches

∆m∗ =
1

log
(
1− 1

L

) (m

L
− log

(
1

L+ U

)
− log

(
− log

(
1− 1

L

)))
≈ L

(
m

L
− log

(
1

L+ U

)
+ log(

1

L
)

)
= m+ L (log (L+ U)− logL)

Then

∆Ê
Ê
≈ 1 +

1

L+ U

(
1

log(1− 1
L )
−∆m∗

)
exp

(
−m

L

)
≈ 1− m+ L (log(L+ U)− logL− 1)

L+ U
exp

(
−m

L

)
.
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Algorithm 1 An active learning cycle for CAMPAL.

Input: Labeled data pool D̂L, Unlabeled data pool DU , Model fθ.
θ ← argminθ

1
|DL|

∑
x∈DL

L (fθ(x), y);
ml = argminm

1
|DL|

∑
xL∈DL

Lf (xL,m), where Lf is shown in (9);

Generate an augmentation set T (ml) with strength ml;
θ ← argminθ

1
|T (mlab)(DL)|

∑
x∈T (ml)(DL) L (fθ(x), y);

mu = argmaxm
∑

xU∈DU
min{H(x̃U ) | x̃U ∈ T (m)(xU ), fθ(x̃U ) = fθ(xU )};

Generate an augmentation set T (mu) with strength mu;
Deduce the enhanced acquisition hacq with T (mu) and fθ as shown in Section 2.3;
Q according to hacq;
DU ← DU −Q;
DL ← DL ∪Q.

Table 7. The list of all the hyper-parameters used in the experiments across different SSL algorithms.

Parameters FixMatch Mean Teacher Pseudo Label UDA
unlabeled data ratio 7 1 1 7
unlabeled loss ratio 1.0 50.0 1.0 1.0

temperature 0.5 None None 0.4

B. Additional Experimental Setups and Results
B.1. Pseudo Code of CAMPAL

We given the pseudo code of CAMPAL as shown in algorithm 1.

B.2. Implementation Details

We conduct experiments on four benchmark datasets: FashionMNIST, SVHN, CIFAR-10, and CIFAR-100. We will
construct a random initial dataset with 100 instances for FashionMNIST, SVHN, and CIFAR-10, and 1,000 instances for
CIFAR-100. Then we acquire 100 instances for FashionMNIST, SVHN, and CIFAR-10, and 500 instances for CIFAR-100 at
each cycle. We repeat the cycle 20 times. Then we generate 10 single-image augmentations and 5 mix-up augmentations for
each sample. We normalize the images with the channel mean and standard deviation over all the datasets. For CIFAR-10
and CIFAR-100, we apply a standard augmentation after conducting augmentations in the pipeline. We adopt ResNet-18 as
the architecture and train the model for 300 epochs with an SGD optimizer of learning rate 0.01, momentum 0.9, and weight
decay 5e-4. For the virtual loss term in (9), we also set λ = 1.

B.3. Implementation Details for the Simple Application of DA for AL in Figure 1

We integrate DA into AL with fixed augmentations T as follows. This experiment is also conducted on dataset CIFAR-10
with a ResNet-18 architecture. The basic acquisition here is Max Entropy. First, we augment the labeled pool with T , and
train the classifier fθ accordingly. Then we augment the unlabeled pool with T and perform acquisitions directly on the
augmented unlabeled pool. Other settings are the same as the main empirical experiments.

B.4. Implementation Details for Integrating Semi-supervised Learning into CAMPAL

Active learning and semi-supervised learning are two different paradigms that serve different purposes. Specifically, active
learning aims at selecting and querying the most efficient samples from unlabeled data pools and labeling them, emphasizing
the quality of selected samples. The performance of the classifier or other types of models trained accordingly serves as a
type of quality evaluation for those samples. In SSL, the labeled pool and the unlabeled pool are fixed, and researchers
hope to design a training procedure that maximally utilizes unlabeled samples to boost performance. Therefore, the quality
of SSL depends on the design of training algorithms. Since both of them have a labeled pool and an unlabeled pool, it is
natural to consider a combination of them, constituting another subject: semi-supervised active learning. Contrary to typical
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active learning that doesn’t involve unlabeled samples in training, Semi-supervised Active Learning involves the unlabeled
data pool DU in classifier training.

By adopting the semi-supervised training paradigm into active learning, i.e. involving unlabeled samples in classifier training,
we can easily make our work incorporate with recent SSL works. In detail, the labeled pool is exactly the augmented labeled
pool produced by CAMPAL, when we do not involve augmented unlabeled samples in training. For works like MeanTeacher
and Pseudo Labeling that are not guided augmentations, we simply apply their training paradigms into an active learning
framework. For UDA, since it involves augmentation for unlabeled samples into training, we use the augmented unlabeled
samples optimized by CAMPAL when integrating them. For FixMatch, we refer augmentations with strength 2 as weak
augmentations and those with strength 4 as strong augmentations. For other hyper-parameters, we follow the work of
FlexMatch (Zhang et al., 2021), which is a comprehensive SSL framework that contains several SSL baselines mentioned
above. Specifically, all the experiments run 1048576 training iterations with a batch size 64, the model of ResNet-18, an
optimizer of SGD of learning rate 0.03, momentum 0.9 and weight decay 0.0005. Some different parameters across these
algorithms are shown in Table 7.

For SSL and AL under imbalanced settings, we delete samples from the original balanced set CIFAR-10 and make
imbalanced datasets with EXP algorithm presented by (Cao et al., 2019) and it is commonly used to make imbalanced
datasets from balanced ones. Other settings are just the same as aforementioned. The imbalance factor (IF ) is the most
commonly used measure to describe the imbalance extent of a dataset. IF is defined as IR = Nmaj/Nmin, where Nmaj is
the sample size of the majority class and Nmin is the sample size of the minority class.

B.5. Augmentations Included

The details of the 19 augmentations in the (CAMPAL) with their parameters are shown in Table 8. In brief, the augmentations
we use can be categorized into single-image augmentations and image-mixing. Formally, we provide an augmentation
functional set that covers (i)-singular input augmentation means such as rotation for low-level image processing. The
corresponding functional set is denoted by Tsingle = {ω(x;λ)} where ω points to an instantiated augmentation function.
The sample x is taken as an input to ω together with varying augmentation hyper-parameters λ, such as the angle in the
image rotation function. Similarly, we also construct a combinatorial augmentation functional set, Tmix = {γ(x, x′;λ)},
where the augmentation function γ takes two input samples x and x′ together with hyper-parameter. With slight abuse of
notations, we uniformly use λ to refer to augmentation-related hyper-parameters. In the implementation of CAMPAL, we
simply adopt MixUp for combinatorial augmentation. As we can see, upon fixed input, both singular and combinatorial
augmentation functional sets can be arbitrarily expanded, by varying λ in a continuous scalar space.

B.6. Additional Results Compared to RandAugment.

Since CAMPAL locate feasible augmentations guided by their strength, we also compare CAMPAL with RandAugment
(Cubuk et al., 2020). To show the effectiveness of a separate control on unlabeled/labeled data in CAMPAL, we trained
RandAugment on the labeled data within each AL cycle, then applied the optimized augmentation to both the labeled pool
and unlabeled pool. As shown in Table 9, CAMPAL shows better performance than the RandAugment, indicating the
superiority of the separate control. It should be noted that RandAugment is originally designed for training over full labeled
data, but is obliged to be conducted over the labeled pool with limited samples under the AL setting. Therefore, directly
adopting RandAugment to AL is infeasible, since it can be heavily biased towards limited labeled data, contributing little to
the distribution enrichment on unlabeled data.

We also supplemented a set of experiments on CIFAR-10 and observe their full-cycle performances. Table 10 shows
comparative results on CIFAR-10 with fewer samples, showing the performance boost is significant with 200 annotated
samples (6.30%). Since CAMPAL optimizes augmentation strengths for labeled/unlabeled samples at each cycle towards
their own objectives, it does not rely on data quantity and is much more flexible than RandAugment which relies on fixed
parameters. The performance difference seems to amplify especially with fewer labeled samples at early stages for AL. For
approaches like RandAugment, there are normally two ways of specific implementation: For one thing, one can always
obtain a new RandAugment policy on the provided task associated with the dataset. However, this is not quite realistic in
the active learning setup where the labeled data is limited and every step of label acquisition extracts a toll. What is more
adverse is that the original RandAugment approach evidently requires a large number of validation samples (e.g. 10,000
samples on CIFAR-10) to be involved. For the other, one can obtain a policy from external source then transfer it to the
current setting. While this is functionally feasible, we do observe no strong performance gain from the above table. While
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Table 8. The list of all the augmentations used in the experiments. The letter x or x∗ denotes given images. U(a, b) denotes a continuous
uniform distribution at interval [a, b], when B(a, b) denotes a beta distribution with parameters a and b.

Augmentation Parameters Description
AutoContrast(x) Maximizing the (normalize) image contrast
Brightness(x,v) v ∼ U(1, 1.18): an enhancing factor Enhancing the brightness of a given image

Color(x,v) v ∼ U(1, 1.18): an adjustment factor Adjust the color balance of a given image
Contrast(x,v) v ∼ U(1, 1.18): Enhancing the contrast of a given image
CutOut(x,v) v ∼ U(0.09, 0.11): CutOut ratio Cut out a part of image and fill with black

CutOutAbs(x,v) v ∼ U(0.09, 0.11): CutOut ratio Cut out a part of image and fill with gray
Equalize(x) Equalize the image histogram
Identity(x) Return the image itself
Invert(x) Invert all pixel values

Posterize(x,v) v ∼ U(6.0, 6.4): Posterizing degree Posterizing the image
Rotate(x,v) v ∼ U(20, 30): Rotation degree Rotating the image

Sharpness(x,v) v ∼ U(1, 1.18): Sharpen degree Sharpen the image
ShearX(x,v) v ∼ U(0.15, 0.18): Affinity degree Affine transformation in x-axis
ShearY(x,v) v ∼ U(0.15, 0.18): Affinity degree Affine transformation in y-axis
Solarize(x,v) v ∼ U(96, 128): Solarization degree Solarizing the image

SolarizeAdd(x,v) v ∼ U(50, 60): Solarization degree Solarizing the image and add back
TranslateX(x,v) v ∼ U(0.1, 0.15): translation ratio Translating the image in x-axis
TranslateY(x,v) v ∼ U(0.1, 0.15): translation ratio Translating the image in y-axis
MixUp(x,x∗, λ) λ: the mixing ratio Mix up the two given images

Table 9. Test accuracy of CAMPAL and augmentation-induced acquisition with learned RandAugment.

Method Fashion SVHN CIFAR-10 CIFAR-100

Ent w. RA 86.15±0.89 82.84±1.12 76.83±0.82 46.70±0.34
CAMPALDENSITY

Entropy 86.17±0.58 83.49±0.96 78.89±0.74 48.76±0.30

this way of transferring a pre-trained RandAugment policy is promising, we believe it is also pivotal in terms of how to
transfer/fine-tune it in the course of an AL setting. This may have gone beyond the scope of this paper.

B.7. Ablation Studies over Types of Augmentations

The impact of each single-image augmentation operator on CAMPAL. To further dive into the impact of the con-
tribution of augmentations, we also provide the results when each augmentation is separately applied to CAMPAL with
different strengths, shown in Table 11 on CIFAR-10 with CAMPALDENSITY

Entropy . We can see the impact of different types of
single-image augmentations varies. An interesting observation is that different augmentation operator does not contribute
equally at the different AL cycles. For example, Sharpness performs better than Rotate when NL = 500, but underperforms
Rotate when NL = 2000. It reveals a sophisticated mechanism of the benefit of these augmentation operators on AL.
However, the profound theory behind why data augmentation works have not been fully revealed to date, making it difficult
to principally pick up the best optimal augmentation type. Hence, we naively adopt a simple strategy that uniformly selects
and stacks these operators to enjoy their mixed benefits to AL.

Effect of single-image augmentations and mix-up. To prove the efficacy of including both single-image augmentations
of image-mixing into one query batch, we further explore the effect of these two kinds of augmentations separately. To verify
this, we conduct experiments over two variants of CAMPAL that only use one type of augmentations, i.e. single-image
augmentations and MixUp. The tests are performed by the ResNet-18 model with 4% (2000) data from CIFAR-10. For
fairness, when only one kind of augmentation is used, we generate 15 augmented samples of this type. In Table 12, we can
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Table 10. Test accuracy of CAMPAL and augmentation-induced acquisition on CIFAR-10 with different pretrained parameters and data
scales.

Method NL = 200 NL = 500 NL = 1, 000 NL = 2, 000

Ent w. RA(CIFAR-10) 33.96 55.55 68.17 76.83
Ent w. RA(ImageNet) 34.39 53.14 66.90 77.85

CAMPAL 40.26 58.06 71.40 78.89

Table 11. Comparison of the averaged test accuracy when each type of augmentation is separately integrated into CAMPAL. We ran each
experiment on CIFAR-10 with 2,000 samples annotated at the last cycle, and repeat them 5 times. NL denotes the number of labeled
samples.

Augmentation NL = 500 NL = 1, 000 NL = 1, 500 NL = 2, 000

None 39.80±1.60 55.43±1.71 60.76±2.64 65.95±1.36
AutoContrast 48.59±1.12 63.35±0.30 72.77±0.12 76.36±0.28

Brightness 45.63±0.26 60.16±2.25 69.50±0.26 74.25±0.16
Color 50.84±3.50 62.04±1.75 72.24±0.25 76.64±0.46

Contrast 49.77±3.91 56.52±1.32 68.95±1.61 74.47±0.63
CutOut 47.91±2.66 62.29±3.69 71.37±1.19 76.62±0.34

CutOutAbs 53.59±0.30 63.96±0.57 67.94±0.19 71.94±0.18
Equalize 49.38±1.93 63.18±1.86 69.86±0.78 74.25±0.27

Invert 51.73±0.29 63.65±0.12 71.89±0.33 75.98±0.28
Posterize 49.02±1.16 64.24±1.30 72.25±0.90 75.62±0.64

Rotate 44.60±1.39 56.47±0.21 63.08±1.22 67.60±0.45
Sharpness 47.31±2.35 62.40±1.15 70.98±1.26 74.38±2.46

ShearX 45.19±0.39 58.22±0.99 67.96±0.54 72.16±1.20
ShearY 48.09±4.96 62.13±1.98 70.98±0.05 76.75±0.96
Solarize 48.72±1.55 63.58±1.12 70.14±0.73 73.94±0.02

SolarizeAdd 52.48±2.06 64.95±0.34 69.17±0.20 71.91±0.49
TranslateX 41.41±1.39 54.97±0.94 64.88±0.39 70.03±0.68
TranslateY 55.12±1.12 68.23±0.53 73.44±0.02 76.98±0.48

see a consistent performance boost when using both kinds of augmentations over Entropy (∆ 1.03), LC (∆ 0.78), Margin
(∆ 0.94), Coreset (∆ 1.58), and BADGE (∆ 1.93). In conclusion, an integration of both single-image augmentations and
image-mixing better unleash the potential information of each sample than they separately do.

A more detailed exploration of the virtual loss term. Since single-image augmentations and image-mixing have different
impacts over CAMPAL, we also examine whether it is necessary to assign different weights for them within our virtual loss
term, which we formulate as follows:

sl = argmin
s

1

|DL|
∑

xL∈DL

Lf (xL, s),

where Lf (x, s)=L(x)+λ1 JS
(
{P(y | x̃; fθ) | x̃ ∈ T (s)

single(x)}
)
+λ2 JS

(
{P(y | x̃; fθ) | x̃ ∈ T (s)

mix(x)}
) (9)

To optimize ml, i.e. the strength for augmentations performed over labeled samples, we use λ1, λ2 to trade off the impact
of single-image augmentations and image mixing. We dive deeper into this scheme by applying different combinations
of λ1, λ2, shown in Table 13. Specifically, the experiment is conducted on the following versions: 1) CAMPALMIN

Entropy;
2) CAMPALMIN

LC ; 3) CAMPALMIN
Margin; 4) CAMPALSTANDARD

Coreset ; 5) CAMPALSTANDARD
BADGE . Since we constantly achieve

superior results with λ1 = λ2 = 1, we may conclude that single-image augmentations and image-mixing are rough of the
same impact over CAMPAL. Therefore, we do not distinguish between these two types of augmentations within our main
context.
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Table 12. Test accuracy of CAMPAL when integrated with different combinations of single-image augmentations and the MixUp.

Augmentations Entropy LC Margin Core-set BADGE
Single MixUp

✓ 75.87±0.32 76.04±0.41 77.61±0.91 76.62±0.50 77.78±0.45
✓ 75.41±0.25 74.89±0.64 77.76±0.48 75.21±0.32 75.69±0.62

✓ ✓ 76.90±0.76 76.82±0.62 78.70±0.58 78.20±0.28 79.71±0.51

Table 13. Test accuracy of CAMPAL when integrated with different combinations of λ1, λ2.

Coefficients Entropy LC Margin Core-set BADGE
λ1 λ2

1.0 0 75.87±0.32 73.36±2.25 70.15±2.19 76.62±0.50 77.78±0.45
1.0 0.5 75.62±0.76 75.89±0.73 77.20±0.52 79.23±0.51 77.07±0.38
0 1.0 75.41±0.25 72.93±0.65 67.69±0.72 73.99±0.03 75.69±0.62

0.5 1.0 75.95±0.62 76.55±0.62 76.25±0.60 75.21±0.32 74.88±0.14
1.0 1.0 76.90±0.76 76.82±0.62 78.70±0.58 78.20±0.28 79.71±0.51

B.8. Further Extension: Augmentations vs. Unsupervised Training

Recall that several studies tried to involve unlabeled samples in training auxiliary networks to assist querying(Sinha et al.,
2019; Zhang et al., 2020; Kim et al., 2021a; Caramalau et al., 2021), which inevitably brings high computational costs. We
claim that data augmentations are sufficient to enforce the acquisition process without much extra cost over unsupervised
training. To verify this, we compare the running time and performance of augmentation-based strategies and those utilizing
extra unsupervised architectures, shown in Table 14. We can see that augmentation-based methods with the best performance
consistently outperform other strategies when becoming computationally efficient. Since active learning usually faces the
problem of heavy computational cost in acquisitions, data augmentation may serve as an effective tool for both boosting
the speed and performance at once. More importantly, this thought restricts the training process merely over labeled data,
thus reducing the need for numerous unlabeled data in AL and making AL paradigms more applicable. We also adopt
augmentations for labeled samples for methods with unsupervised representations.

Table 14. Comparison of the averaged test accuracy and the run-time of a single AL cycle over CIFAR-10. The run-time is calculated as
the ratio to Random Sampling. Bold indicates the best performance of different data scales within each category.

Method NL = 500 NL = 1, 000 NL = 1, 500 NL = 2, 000 Time

Random 38.54±2.28 49.77±3.08 58.61±2.75 61.49±2.06 1
Entropy 39.80±1.60 55.43±1.71 60.76±2.64 65.95±1.36 1.03

LC 38.50±1.10 53.83±2.71 59.74±2.12 66.97±1.87 1.01
Margin 40.03±2.49 54.22±2.47 62.61±1.91 66.76±1.77 1.07
Core-set 43.42±2.09 53.54±2.74 62.00±1.44 66.90±0.93 1.33
BADGE 44.18±2.09 55.97±1.57 62.40±2.15 67.03±0.62 1.28

Unsupervised
Representation

TA-VAAL 61.72±0.47 66.67±0.92 70.53±0.50 74.41±0.70 5.82
SRAAL 60.53±0.89 67.08±0.28 71.02±0.66 75.05±0.15 6.04

CoreGCN 56.03±1.73 59.81±1.31 65.19±1.49 69.61±2.34 2.73

CAMPAL-based
Augmentation

Entropy 62.78±1.33 69.34±1.35 71.84±1.35 76.90±0.76 5.13
LC 61.89±0.80 69.06±1.00 73.49±0.92 76.82±0.62 5.08

Margin 65.46±0.63 72.77±0.55 75.96±0.85 78.70±0.58 5.10
Core-set 62.59±0.89 71.55±0.29 75.69±0.62 78.20±0.28 5.42
BADGE 66.40±1.01 73.48±0.42 77.38±0.53 79.71±0.51 5.54
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(a) Least-Confidence (b) Margin

(c) Core-set (d) BADGE

Figure 6. A heatmap visualization of performance boost brought by augmentations of different strengths, when attached to the labeled and
unlabeled pool. The experiments are performed over CIFAR-10 with 2,000 labeled samples and are conducted over LC, Margin, Core-set
and BADGE.

B.9. Addtional Results for Ablation Studies over Strengths

Compare with fixed augmentation strengths. Since we emphasize the importance of a strength control over sl, su in
Section 2.2, we will provide more details here. In brief, augmentations with various strengths contribute to the performance
but can be inefficient when strengths are not chosen appropriately. To further look at the impact of augmentation sets
with different strengths, we fix the value for sl, su and see how they decide the final performance. Specifically, we test
different combinations of sl and su in the range [0, 4], with other settings following the main empirical studies. The relative
performance boost compared to their non-augmented counterparts is shown in Figure 6. Without proper strength control,
the performance boost can decrease. For instance, CAMPALMIN

Margin with sl = 3, su = 1 leads to a 4.32% performance
drop compared to the optimal one, when the worst case in CAMPALMIN

Entropy causes a 3.28% drop. In addition, we can
also see a trend similar to Section 3.2 that the classifier fθ prefers weakly labeled augmentations when stronger unlabeled
augmentations induce better acquisitions, even without a dynamic strength control.
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(a) CAMPALMIN
Entropy (b) CAMPALSUM

Entropy (c) CAMPALDENISTY
Entropy

(d) CAMPALMIN
LC (e) CAMPALSUM

LC (f) CAMPALDENISTY
LC

(g) CAMPALMIN
Margin (h) CAMPALSUM

Margin (i) CAMPALDENISTY
Margin

(j) CAMPALSTANDARD
Coreset (k) CAMPALCHAMFER

Coreset (l) CAMPALHAUSDORFF
Coreset

(m) CAMPALSTANDARD
BADGE (n) CAMPALCHAMFER

BADGE (o) CAMPALHAUSDORFF
BADGE

Figure 7. The average optimal strength ml,mu across different AL cycles on CIFAR-10 with different instantiated versions for CAMPAL.
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