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Abstract
Machine learning models often perform poorly on
subgroups that are underrepresented in the train-
ing data. Yet, little is understood on the variation
in mechanisms that cause subpopulation shifts,
and how algorithms generalize across such di-
verse shifts at scale. In this work, we provide a
fine-grained analysis of subpopulation shift. We
first propose a unified framework that dissects and
explains common shifts in subgroups. We then
establish a comprehensive benchmark of 20 state-
of-the-art algorithms evaluated on 12 real-world
datasets in vision, language, and healthcare do-
mains. With results obtained from training over
10,000 models, we reveal intriguing observations
for future progress in this space. First, existing al-
gorithms only improve subgroup robustness over
certain types of shifts but not others. Moreover,
while current algorithms rely on group-annotated
validation data for model selection, we find that a
simple selection criterion based on worst-class ac-
curacy is surprisingly effective even without any
group information. Finally, unlike existing works
that solely aim to improve worst-group accuracy
(WGA), we demonstrate the fundamental trade-
off between WGA and other important metrics,
highlighting the need to carefully choose testing
metrics. Code and data are available at: https:
//github.com/YyzHarry/SubpopBench.

1. Introduction
Machine learning models frequently exhibit drops in perfor-
mance under the presence of distribution shifts (Quinonero-
Candela et al., 2008). Constructing machine learning mod-
els that are robust to these shifts is critical to the safe deploy-
ment of such models in the real-world (Amodei et al., 2016).
One ubiquitous type of distribution shift is subpopulation
shift, which is characterized by changes in the proportion
of some subpopulations between training and deployment
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(Koh et al., 2021). In such settings, models may have high
overall performance but still perform poorly in rare sub-
groups (Hashimoto et al., 2018; Zhang et al., 2020).

A well-studied type of subpopulation shift occurs when data
contains spurious correlations (Geirhos et al., 2020) – non-
causal relationships between the input and the label which
may shift in deployment (Simon, 1954). For example, image
classifiers frequently make use of non-robust features such
as image backgrounds (Xiao et al., 2016), textures (Geirhos
et al., 2018), and erroneous markings (DeGrave et al., 2021).
However, there has been little work in defining subpop-
ulation shift in a holistic way, understanding when these
shifts happen, and how state-of-the-art (SOTA) algorithms
generalize under diverse and realistic shifts. Subpopula-
tion shift can encompass a much wider array of underlying
mechanisms. First, different attributes in data often exhibit
skewed distributions, inevitably causing attribute imbalance
(Martinez et al., 2021). Moreover, certain labels can have
significantly fewer observations, where such long-tailed la-
bel distribution induces severe class imbalance (Liu et al.,
2019b). Finally, certain attributes may have no training data
at all, which motivates the need for attribute generalization
to unseen subpopulations (Santurkar et al., 2020).

In this work, we systematically investigate subpopulation
shift in realistic evaluation settings. We first formalize a
generic framework of subpopulation shift, which decom-
poses attribute and class to enable fine-grained analyses.
We demonstrate that this modeling covers and explains the
aforementioned common subgroup shifts, which are basic
units of building more complex shifts that arise in real data.
Using this framework, we can quantify the type and degree
of different shift components in each given dataset.

We establish a realistic and comprehensive benchmark of
subpopulation shift, consisting of 20 SOTA algorithms that
span different learning strategies and 12 real-world datasets
in vision, language, and healthcare domains. While existing
analysis on subpopulation shift either focus on a single shift
type, or have limited severity, our benchmark provides a
much larger set of datasets that cover different types of real-
istic subgroup shifts. Our experimental framework can be
easily extended to include new methods, shifts, and datasets.

Our work also evaluates current methods across different
settings including attribute availability in training and/or

1

https://github.com/YyzHarry/SubpopBench
https://github.com/YyzHarry/SubpopBench


Change is Hard: A Closer Look at Subpopulation Shift

validation set, model selection strategies, and a wide range
of metrics for understanding subpopulation shift in-depth.
With the established framework and over 10K trained mod-
els, we reveal intriguing observations for future research.

Concretely, we make the following contributions:

• We formalize a unified framework for subpopulation shift
which defines basic types of shift, explains when and why
shifts happen, and quantifies their degrees.

• We set up a comprehensive and realistic benchmark for
systematic subpopulation shift evaluation, with 20 SOTA
methods and 12 diverse datasets across various domains.

• Based on over 10K trained models, we verify that current
algorithms only advance subgroup robustness over certain
types of shift identified by our framework, but not others.

• We confirm that while successful algorithms rely on the
access to group information for model selection, a simple
criterion based on worst-class accuracy is surprisingly
effective even without group-annotated validation data.

• We establish the fundamental tradeoff between worst-
group accuracy (WGA) and important metrics such as
worst-case precision, highlighting the need to rethink eval-
uation metrics in subpopulation shift beyond WGA.

2. Related Work
Subpopulation Shift. Machine learning models frequently
experience performance degradation under subpopulation
shift, where the proportion of some subpopulations differ
between the training and test (Cai et al., 2021; Koh et al.,
2021). Depending on the definition of such subpopulations,
this could lead to vastly different problem settings. Prior
works largely focus on the case of shortcut learning (Geirhos
et al., 2020), where subpopulations are defined as the prod-
uct of attributes and labels. In such settings, models trained
to minimize overall loss tend to learn spurious correlations,
resulting in poor performance in the minority subpopulation
(DeGrave et al., 2021; Joshi et al., 2022). There have been a
large set of methods developed to address this scenario, both
when the attribute is known (Gowda et al., 2021; Izmailov
et al., 2022; Menon et al., 2020; Nam et al., 2022; Sagawa
et al., 2019; Yao et al., 2022), and unknown (Creager et al.,
2021; Han et al., 2022; Idrissi et al., 2022; Liu et al., 2021).

However, subpopulations may also be defined using only the
label. This setting corresponds to class-imbalanced learning,
which has also been well studied with extensive proposed
methods (Cao et al., 2019; Cui et al., 2019; Li et al., 2021;
Yang & Xu, 2020; Yang et al., 2021; 2022).

Finally, when subpopulations are defined based on a partic-
ular attribute (e.g., demographic group) (Pfohl et al., 2022;
Zong et al., 2022), the objective of maximizing performance
for the worst-case group then becomes identical to minimax
fairness (Lahoti et al., 2020; Martinez et al., 2020).

In this work, we present a unified framework of subpopula-
tion shift across these aforementioned scenarios.

Distribution Shift Benchmarks. There have been few
prior works which benchmark the performance of subpopu-
lation shift methods. Koh et al. (2021) proposed the WILDS
benchmark for domain generalization and subpopulation
shift, though they only evaluated four methods over five
datasets. Zhang et al. (2022) and Gulrajani & Lopez-Paz
(2020) proposed the NICO++ and DomainBed benchmarks
respectively for domain generalization, and we adapt ele-
ments of their benchmark into our subpopulation shift evalu-
ation. Santurkar et al. (2020) proposed the BREEDS bench-
mark, which consists of multiple datasets constructed from
ImageNet (Deng et al., 2009) using the WordNet hierarchy
(Miller, 1995), aiming to evaluate generalization across un-
seen attributes. Finally, Wiles et al. (2021) conducted a
similar analysis in the general distribution shift setting on
four synthetic and two real-world datasets.

Our work differs from these prior works by evaluating a
much larger set of algorithms that span different categories
on many more real-world datasets. We further define, dissect
and quantify the type and degree of shift components in each
dataset, and relate it to the performance of each method. In
addition, we analyze important yet overlooked factors such
as model selection criteria and metrics to evaluate against,
and reveal intriguing properties in subpopulation shift.

3. Unified Framework of Subpopulation Shift
Problem Setup. In the general subpopulation shift setting,
given input x ∈ X and label y ∈ Y , the goal is to learn f :
X → Y . In addition, there exist attributes a1, ..., ai, ..., am,
ai ∈ Ai, which may or may not be available when learning
f . Then, discrete subpopulations can be defined based on
the attribute and label, by some function h : A× Y → G.

Let ℓ(y, f(x)) → R be a loss function. Consider the source
distribution where (x, y) are drawn as a mixture of group-
wise distributions: Psrc =

∑
g∈G αgPg, where α ∈ ∆|G|.

Further, consider some target distribution which is not ob-
served: Ptar =

∑
g∈G βgPg, where β ∈ ∆|G|. The objec-

tive of subpopulation shift is to find (Sagawa et al., 2020):

f∗ = argmin
f

sup
β∈∆|G|

E(x,y)∼Ptar
[ℓ(y, f(x))].

This objective is equivalent to minimizing risk for the worst-
case group (Sagawa et al., 2020), i.e.,

f∗ = argmin
f

max
g∈G

E(x,y)∼Pg
[ℓ(y, f(x))].

3.1. A Generic Framework for Subpopulation Shift

As motivated earlier, both attribute a and label y can have
specific skewed distributions, resulting in distinct types of
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Table 1. Formulation summary of basic types of subpopulation shift under our framework.

Subpopulation Shift Type Attribute Bias Class Bias Impact on Classification Model

Spurious Correlations (SC) ptrain(a|y,xcore) ≫ ptrain(a|xcore)
ptest(a|y,xcore) = ptest(a|xcore)

− P(a|y,xcore)
P(a|xcore)

≫ 1 ⇒ P(y|x) ↑

Attribute Imbalance (AI) ptrain(a|y,xcore) ≫ ptrain(a
′|y,xcore)

ptest(a|y,xcore) = ptest(a
′|y,xcore)

− P(a|y,xcore)
P(a|xcore)

≫ P(a′|y,xcore)
P(a′|xcore)

⇒ P(y|xcore, a) ≫ P(y|xcore, a
′)

Class Imbalance (CI) − ptrain(Y = y) ≫ ptrain(Y = y′)
ptest(Y = y) = ptest(Y = y′)

P(y) ≫ P(y′) ⇒ P(y|x) ≫ P(y′|x)

Attribute Generalization (AG) ptrain(a|y,xcore) = 0,∀a ∈ Aunseen

ptest(a|y,xcore) > 0, ∀a ∈ A Unconstrained Generalize to Aunseen

subpopulation shift. To this end, we propose to decompose
the effect of a and y given a multi-group dataset, and char-
acterize general subpopulation shift into several basic shift
components for fine-grained interpretation.

Specifically, we view each input x as being fully described
or generated from a set of underlying core features xcore
(representing the label) and a list of attributes a (Tang et al.,
2022; Wang et al., 2021). Here, xcore denotes the underly-
ing invariant components that are label-specific and support
robust classification, whereas attributes a may have inconsis-
tent distributions and are not label-specific. Such modeling
helps us disentangle the attributes and examine how they
affect the classification results P(y|x). Following Bayes’
theorem, we can rewrite the classification model as:

P(y|x) = P(x|y)
P(x)

· P(y)

=
P(xcore,a|y)
P(xcore,a)

· P(y)

=
P(xcore|y)
P(xcore)︸ ︷︷ ︸

PMI

· P(a|y,xcore)

P(a|xcore)︸ ︷︷ ︸
attribute

· P(y)︸︷︷︸
class

, (1)

where the first term in Eqn. (1) represents the pointwise mu-
tual information (PMI) between xcore and y, the second term
corresponds to the potential bias arising in the attribute
distribution, and the third term explains the potential bias
arising in the class (label) distribution. Given invariant xcore
between training and testing distributions, we can ignore
changes in first term (which is a robust indicator), and focus
on how the second and third term, i.e., the attribute and
class, influence the outcomes under subpopulation shift.

More formally, assuming the mutual independence and con-
ditional independence across different attributes ai (Wiles
et al., 2021), we can further decompose the attribute term
into a fine-grained version:

P(a|y,xcore)

P(a|xcore)
≜

∏
ai∈a

P(ai|y,xcore)

P(ai|xcore)
, (2)

where each ai corresponds to an attribute. Note that for be-
nign attributes that are independent of y (i.e., ai ⊥⊥ y,∀ai ∈
abenign), we have P(ai|y,xcore) = P(ai|xcore), indicating

that the attribute term in Eqn. (2) is only driven by biased
attributes that are label-dependent.

Using the formulation of “attribute-class” decomposition,
we can intuitively explain when do common subpopulation
shifts happen, and how they affect the classification results.

3.2. Characterizing Basic Types of Subpopulation Shift

We formally define and characterize four basic types of sub-
population shift using our framework: spurious correlations,
attribute imbalance, class imbalance, and attribute gener-
alization (see Table 1). In practice, we note that dataset
often consists of multiple types of shift instead of one. The
four cases constitute the basic shift units, and are important
elements to explain complex subgroup shifts in real data.

Spurious Correlations (SC). Spurious correlations happen
when certain a is spuriously correlated with y in training
but not in test data. Under our framework, it implies that
ptrain(a|y,xcore) ≫ ptrain(a|xcore), which is not true of ptest.
As a result, it introduces bias to the attribute term, which
induces higher prediction confidence for certain label once
given its spuriously correlated attribute (details in Table 1).

Attribute Imbalance (AI). Attributes often incur biased
distributions in the wild. In our framework, it happens when
certain attributes are sampled with a much smaller probabil-
ity than others in ptrain, but not in ptest. To disentangle the
effect of labels, we assume no class bias under this basic
shift. As such, it again affects the attribute term in Eqn. (1)
where ptrain(a|y,xcore) ≫ ptrain(a

′|y,xcore), causing lower
prediction confidence for underrepresented attributes.

Class Imbalance (CI). Similarly, class labels can exhibit
imbalanced distributions, causing lower preference for mi-
nority labels. Within our framework, CI can be explained by
biasing the class term in ptrain, leading to higher prediction
confidence for majority classes.

Attribute Generalization (AG). Certain attributes can be
totally missing in ptrain, but present in ptest, which motivates
the need for attribute generalization. In our framework, this
translates to ptrain(a|y,xcore) = 0, a ∈ Aunseen, yet we have
ptest(a|y,xcore) > 0. AG requires learning robust xcore in
order to generalize across unseen attributes, which is harder
but more ubiquitous in real data (Santurkar et al., 2020).
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Table 2. Overview of the datasets for evaluating subpopulation shift. Detailed statistics and example data are provided in Appendix B.

Dataset Data type # Attr. # Classes # Train set # Val. set # Test set Max group Min group
Shift type

SC AI CI AG

Waterbirds Image 2 2 4795 1199 5794 3498 (73.0%) 56 (1.2%) ✓ ✓ ✓
CelebA Image 2 2 162770 19867 19962 71629 (44.0%) 1387 (0.9%) ✓ ✓
MetaShift Image 2 2 2276 349 874 789 (34.7%) 196 (8.6%) ✓
ImageNetBG Image N/A 9 183006 7200 4050 N/A N/A ✓
NICO++ Image 6 60 62657 8726 17483 811 (1.3%) 0 (0.0%) ✓ ✓ ✓
Living17 Image N/A 17 39780 4420 1700 N/A N/A ✓
MultiNLI Text 2 3 206175 82462 123712 67376 (32.7%) 1521 (0.7%) ✓
CivilComments Text 8 2 148304 24278 71854 31282 (21.1%) 1003 (0.7%) ✓ ✓
MIMICNotes Clinical text 2 2 16149 3229 6460 8359 (51.8%) 676 (4.2%) ✓
MIMIC-CXR Chest X-rays 6 2 303591 17859 35717 68575 (22.6%) 7846 (2.6%) ✓
CheXpert Chest X-rays 6 2 167093 22280 33419 51606 (30.9%) 506 (0.3%) ✓ ✓
CXRMultisite Chest X-rays 2 2 338134 19891 39781 299089 (88.5%) 574 (0.2%) ✓ ✓ ✓

4. Benchmarking Subpopulation Shift
Datasets. We explore subpopulation shift using 12 real-
world datasets from a variety of modalities and tasks. First,
for vision datasets, we use Waterbirds (Wah et al., 2011)
and CelebA (Liu et al., 2015), which are commonly used in
the spurious correlation literature (Liu et al., 2021). Simi-
larly, we use the MetaShift cats vs. dogs dataset (Liang &
Zou, 2022). We further convert the ImageNet backgrounds
challenge (ImageNetBG) (Xiao et al., 2020), the NICO++

(Zhang et al., 2022) benchmark, and the Living17 dataset
from the BREEDS benchmark (Santurkar et al., 2020) for
subpopulation shift. Further, for language understanding
datasets, we leverage CivilComments (Borkan et al., 2019)
and MultiNLI (Williams et al., 2017), which are commonly
used text datasets in subpopulation shift. Finally, we curate
4 datasets in the medical domain. We construct MIMIC-CXR
(Johnson et al., 2019) and CheXpert (Irvin et al., 2019) to
predict the presence of any pathology from a chest X-ray.
We also construct MIMICNotes for mortality classification
from clinical notes (Chen et al., 2019). Finally, we follow a
recent work in evaluating subgroup shift and construct the
CXRMultisite dataset (Puli et al., 2021). Table 2 reports
the details of each dataset. We leave full information and
descriptions for each of the datasets in Appendix B.1.

Algorithms. We evaluate 20 algorithms that span a broad
range of learning strategies and categories, and relate their
performance to different shifts defined in our framework.
We believe this is the first work to comprehensively evalu-
ate a large set of diverse algorithms in subpopulation shift.
Concretely, these algorithms cover the following areas: (1)
vanilla: ERM (Vapnik, 1999), (2) subgroup robust methods:
GroupDRO (Sagawa et al., 2020), CVaRDRO (Duchi &
Namkoong, 2018), LfF (Nam et al., 2020), JTT (Liu et al.,
2021), LISA (Yao et al., 2022), DFR (Izmailov et al., 2022),
(3) data augmentation: Mixup (Zhang et al., 2018), (4)
domain-invariant feature learning: IRM (Arjovsky et al.,

2019), CORAL (Sun & Saenko, 2016), MMD (Li et al.,
2018), (5) imbalanced learning: ReSample (Japkowicz,
2000), ReWeight (Japkowicz, 2000), Focal (Lin et al.,
2017), CBLoss (Cui et al., 2019), LDAM (Cao et al., 2019),
BSoftmax (Ren et al., 2020), CRT (Kang et al., 2020),
ReWeightCRT (Kang et al., 2020). Our framework can
be easily extended to include new algorithms. We provide
detailed descriptions for each algorithm in Appendix B.2.

Evaluation Metrics. Existing works on subpopulation
shift mainly report worst-group accuracy (WGA) as the
gold-standard. While WGA faithfully assesses worst-group
performance, other important metrics (e.g., worst-case pre-
cision, calibration error, etc.) are also essential especially
when involving subpopulation shift. Therefore, in our bench-
mark we include a variety of metrics aiming for a thorough
evaluation from different aspects. In particular, besides
Avg Accuracy and Worst Accuracy, we further include
Avg Precision, Worst Precision, Avg F1-score, Worst F1-
score, (Class-)Balanced Accuracy, Adjusted Accuracy
(accuracy on a group-balanced dataset), and expected cali-
bration error (ECE) (Guo et al., 2017). Detailed summaries
of all metrics are in Appendix B.3.

Attribute Availability. Whether attribute is known in both
(1) training set and (2) validation set has long been a vital
factor for almost all subgroup algorithms (Izmailov et al.,
2022). Specifically, classic methods (e.g., GroupDRO) as-
sume access to attributes during training to define meaning-
ful groups. Recently, a number of methods (e.g., JTT, LfF,
DFR) try to improve worst-group accuracy without knowing
the training attributes. Nevertheless, current approaches still
require access to group-annotated validation set for model
selection and hyperparameter tuning (Idrissi et al., 2022).

We systematically investigate this phenomenon by consider-
ing three settings in our benchmark: (1) attributes are known
in both training & validation, (2) attributes are unknown
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Figure 1. Worst-group improvements over ERM across different datasets when attributes are unknown in both training and validation set.
SOTA algorithms only enhance subgroup robustness on certain types of shift (i.e., SC and CI). Complete results are in Appendix D.2.

more spurious

0.0 0.2 0.4 0.6

norm. I(A; Y )

NICO++

Living17

ImageNetBG

CheXpert

MIMICNotes

CXRMultisite

MIMIC-CXR

MultiNLI

CivilComments

MetaShift

CelebA

Waterbirds

0.40.60.81.0

norm. H(A)
0.250.500.751.00

norm. H(Y )
0.0 0.5 1.0

1(Aunseen 6= ?)
0.0 0.2 0.4 0.6

norm. I(A; Y )

NICO++

Living17

ImageNetBG

CheXpert

MIMICNotes

CXRMultisite

MIMIC-CXR

MultiNLI

CivilComments

MetaShift

CelebA

Waterbirds

0.40.60.81.0

norm. H(A)
0.250.500.751.00

norm. H(Y )
0.0 0.5 1.0

1(Aunseen 6= ?)
0.0 0.2 0.4 0.6

norm. I(A; Y )

NICO++

Living17

ImageNetBG

CheXpert

MIMICNotes

CXRMultisite

MIMIC-CXR

MultiNLI

CivilComments

MetaShift

CelebA

Waterbirds

0.40.60.81.0

norm. H(A)
0.250.500.751.00

norm. H(Y )
0.0 0.5 1.0

1(Aunseen 6= ?)
0.0 0.2 0.4 0.6

norm. I(A; Y )

NICO++

Living17

ImageNetBG

CheXpert

MIMICNotes

CXRMultisite

MIMIC-CXR

MultiNLI

CivilComments

MetaShift

CelebA

Waterbirds

0.40.60.81.0

norm. H(A)
0.250.500.751.00

norm. H(Y )
0.0 0.5 1.0

1(Aunseen 6= ?)
0.0 0.2 0.4 0.6

norm. I(A; Y )

NICO++

Living17

ImageNetBG

CheXpert

MIMICNotes

CXRMultisite

MIMIC-CXR

MultiNLI

CivilComments

MetaShift

CelebA

Waterbirds

0.40.60.81.0

norm. H(A)
0.250.500.751.00

norm. H(Y )
0.0 0.5 1.0

1(Aunseen 6= ?)

more imbalance more imbalance need to generalize

SC AI CI AG

Spurious Correlations Attribute Imbalance Class Imbalance Attribute Generalization

Figure 2. Quantification of the degree of different shifts over all
datasets. Additional metrics are provided in Appendix D.1.

in training, but known in validation, and (3) attributes are
unknown in both training & validation. Note that when
training attributes are unknown, methods that operate over
subgroups degenerate to operate over classes. Without fur-
ther specification, we report results under the third setting,
which is the hardest but the most realistic one. We include
full results across all settings in Appendix E.

Model Selection. As mentioned earlier, model selection
becomes essential when attributes are completely unknown.
Significant drop (over 20%) in worst-group test accuracy
has been observed if using the highest average validation
accuracy as the model selection criterion without any group
annotations (Idrissi et al., 2022). To this end, we provide
a rigorous analysis on different model selection strategies,
especially when attributes are fully unknown. Further details
are provided in Appendix B.4.

Implementation. For a fair evaluation, following (Gulra-
jani & Lopez-Paz, 2021), for each algorithm we conduct
a random search of 16 trials over a joint distribution of all
hyperparameters (details are provided in Appendix C). We
then use the validation set to select the best hyperparameters
for each algorithm, fix them and rerun the experiments un-
der three different random seeds to report the final average
results with standard deviation. Such process ensures the
comparison is best-versus-best, and the hyperparameters are
optimized for all algorithms.

5. A Fine-Grained Analysis
5.1. Quantifying Subpopulation Shift

In order to quantify the degree of each shift for each dataset
relative to others, we use several simple metrics. For spuri-
ous correlations, we use the normalized mutual information
between A and Y , where norm I(A;Y ) = 1 means that the
two are perfectly correlated: norm I(A;Y ) = 2I(A;Y )

H(Y )+H(A) .

For attribute and class imbalance, we use the normalized en-
tropy, where norm H(Y ) = 1 indicates that the distribution
is uniform (i.e., no imbalance): norm H(Y ) = H(Y )

log |supp(Y )| .

For attribute generalization, we simply examine whether
there exist any subpopulations in the test set which do not
appear during training via an indicator function (see Fig. 2).
We provide several additional metrics in Appendix D.1.

We find that different datasets exhibit very different types of
shift, and the degrees also greatly vary (Fig. 2). To further
study how algorithms perform across various types of shift,
we categorize each dataset into its most dominant shift type.

5.2. Performance across Different Types of Shift

As described earlier, we run experiments for all algorithms,
datasets, and attribute availability settings. We use worst-
group accuracy as the model selection criterion, and provide
analysis for other metrics in Appendix D.3. When attributes
are unknown in the validation set, this criterion degenerates
to worst-class accuracy. Interestingly, we discover that this
simple method is surprisingly effective (related results in
Sec. 5.4). In total, we trained over 10,000 models.

We study model performance over different shifts. Specifi-
cally, we report results when attributes are unknown in both
training and validation. Results for other settings are in Ap-
pendix D.2. We present main results in Fig. 1 and Table 3,
where we make intriguing observations as follows.

SOTA algorithms only improve subgroup robustness on
certain types of shift, but not others. As Fig. 1 illustrates,
for spurious correlations and class imbalance, existing algo-
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Table 3. Results on all tested subpopulation benchmarks, when attributes are unknown in both training and validation set. Full results for
each dataset and other settings are in Appendix E. Methods that re-train classifier using a two-stage strategy are marked in gray .

Algorithm Waterbirds CelebA CivilComments MultiNLI MetaShift ImageNetBG NICO++ MIMIC-CXR MIMICNotes CXRMultisite CheXpert Living17 Avg

ERM 69.1 ±4.7 57.6 ±0.8 63.2 ±1.2 66.4 ±2.3 82.1 ±0.8 76.8 ±0.9 35.0 ±4.1 68.6 ±0.2 80.4 ±0.2 50.1 ±0.9 41.7 ±3.4 27.7 ±1.1 59.9
Mixup 77.5 ±0.7 57.8 ±0.8 65.8 ±1.5 66.8 ±0.3 79.0 ±0.8 76.9 ±0.7 30.0 ±4.1 66.8 ±0.6 81.6 ±0.6 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 60.0
GroupDRO 73.1 ±0.4 68.3 ±0.9 61.5 ±1.8 64.1 ±0.8 83.1 ±0.7 76.4 ±0.2 31.1 ±0.9 67.4 ±0.5 83.7 ±0.1 59.2 ±0.3 74.7 ±0.3 31.1 ±1.0 64.5
CVaRDRO 75.5 ±2.2 60.2 ±3.0 62.9 ±3.8 48.2 ±3.4 83.5 ±0.5 74.8 ±0.8 27.8 ±2.3 68.0 ±0.2 65.6 ±1.5 50.2 ±0.9 50.2 ±1.8 27.3 ±1.6 57.8
JTT 71.2 ±0.5 48.3 ±1.5 51.0 ±4.2 65.1 ±1.6 82.6 ±0.4 77.0 ±0.4 30.6 ±2.3 64.9 ±0.3 83.8 ±0.1 57.9 ±2.1 60.4 ±4.8 28.3 ±1.1 60.1
LfF 75.0 ±0.7 53.0 ±4.3 42.2 ±7.2 57.3 ±5.7 72.3 ±1.3 70.1 ±1.4 28.8 ±2.0 62.2 ±2.4 84.0 ±0.1 50.1 ±0.9 13.7 ±9.8 26.4 ±1.3 52.9
LISA 77.5 ±0.7 57.8 ±0.8 65.8 ±1.5 66.8 ±0.3 79.0 ±0.8 76.9 ±0.7 30.0 ±4.1 66.8 ±0.6 81.6 ±0.6 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 60.0
ReSample 70.0 ±1.0 74.1 ±2.2 61.0 ±0.6 66.8 ±0.5 81.0 ±1.7 77.7 ±1.1 30.6 ±2.3 67.5 ±0.3 82.6 ±0.6 55.0 ±0.2 74.3 ±0.4 31.4 ±0.6 64.3
ReWeight 71.9 ±0.6 69.6 ±0.2 59.3 ±1.1 64.2 ±1.9 83.1 ±0.7 76.8 ±0.9 25.0 ±0.0 67.0 ±0.4 84.0 ±0.1 61.4 ±1.3 73.7 ±1.0 27.7 ±1.1 63.6
SqrtReWeight 71.0 ±1.4 66.9 ±2.2 68.6 ±1.1 63.8 ±2.4 82.6 ±0.4 76.8 ±0.9 32.8 ±3.5 68.0 ±0.4 83.1 ±0.2 61.2 ±0.6 68.5 ±1.6 27.7 ±1.1 64.2
CBLoss 74.4 ±1.2 65.4 ±1.4 67.3 ±0.2 63.6 ±2.4 83.1 ±0.0 76.8 ±0.9 31.7 ±3.6 67.6 ±0.3 84.0 ±0.1 50.2 ±0.9 74.0 ±0.7 27.7 ±1.1 63.8
Focal 71.6 ±0.8 56.9 ±3.4 61.9 ±1.1 62.4 ±2.0 81.0 ±0.4 71.9 ±1.2 30.6 ±2.3 68.7 ±0.4 70.9 ±9.8 50.0 ±0.9 42.1 ±4.0 26.9 ±0.6 57.9
LDAM 70.9 ±1.7 57.0 ±4.1 28.4 ±7.7 65.5 ±0.8 83.6 ±0.4 76.7 ±0.5 31.7 ±3.6 66.6 ±0.6 81.0 ±0.3 50.1 ±0.9 36.0 ±0.7 24.3 ±0.8 56.0
BSoftmax 74.1 ±0.9 69.6 ±1.2 58.3 ±1.1 63.6 ±2.4 82.6 ±0.4 76.1 ±2.0 35.6 ±1.8 67.6 ±0.6 83.8 ±0.3 58.6 ±1.8 73.8 ±1.0 28.6 ±1.4 64.4
DFR 89.0 ±0.2 73.7 ±0.8 64.4 ±0.1 63.8 ±0.0 81.4 ±0.1 74.4 ±1.8 38.0 ±3.8 67.1 ±0.4 80.2 ±0.0 60.8 ±0.4 75.8 ±0.3 26.3 ±0.4 66.2
CRT 76.3 ±0.8 69.6 ±0.7 67.8 ±0.3 65.4 ±0.2 83.1 ±0.0 78.2 ±0.5 33.3 ±0.0 68.1 ±0.1 83.4 ±0.0 61.8 ±0.1 74.6 ±0.4 31.1 ±0.1 66.1
ReWeightCRT 76.3 ±0.2 70.7 ±0.6 64.7 ±0.2 65.2 ±0.2 85.1 ±0.4 77.5 ±0.7 33.3 ±0.0 67.9 ±0.1 83.4 ±0.0 53.1 ±2.3 75.1 ±0.2 33.1 ±0.1 65.4
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Figure 3. Averaged worst-group accuracy of different manners for representation learning and classifier learning under different shifts.
Within each shift type, we average the results across datasets that belong to this shift to report the final accuracy. As observed, balanced
classifier learning substantially improves the results for SC and CI, while balanced representation learning gives reasonable gains for AI;
Yet, no stratified learning manners lead to performance gains under AG compared to vanilla ERM. Experimental details are in Sec. 5.3.

Table 4. Relative improvements over ERM when using stratified
balanced representation or classifier learning under different shifts.

SC AI CI AG

REPRESENTATION -0.3 +1.1 -0.2 -0.4
CLASSIFIER +8.1 +0.0 +11.9 -0.4

rithms can provide consistent worst-group gains over ERM
even in the absence of validation attributes, indicating that
progress has been made for tackling these two specific shifts.
Interestingly however, when it comes to attribute imbalance,
little improvement is observed across datasets. In addition,
the performance becomes even worse for attribute general-
ization. These findings stress that current advances are only
made for specific shifts (i.e., SC and CI), while no progress
has been made for the more challenging shifts such as AG.

Methods that decouple representation and classifier are
more effective. When further zoom into the performance
across all datasets in Table 3, a set of methods that decouple
the training of representation and classifier (Izmailov et al.,
2022; Kang et al., 2020) achieve remarkable gains over all
other algorithms (highlighted in gray). As prior works also
confirmed (Izmailov et al., 2022), features learned by ERM
seem to be good enough under spurious correlations. These

findings inspire us to further understand the role of repre-
sentation and classifier in subpopulation shift, especially
their behaviors under different subgroup shifts.

5.3. The Role of Representation and Classifier

We are motivated to explore the role of representation and
classifier in subpopulation shift. In particular, we separate
the whole network into two parts: the feature extractor and
the classifier. We then employ three training strategies for
representation and classifier learning, respectively: (1) uni-
form, which follows the normal ERM training; (2) balanced
sampling, where balanced samples are drawn from each
group (class if attribute not available) during training, and
(3) re-weighting, where we re-weight all the samples by the
inverse of the sample size of their groups (classes). Note that
classifier re-balancing resembles CRT (Kang et al., 2020)
and DFR (Izmailov et al., 2022). We train models following
the above settings across all datasets, and average the results
over datasets according to the type of shift.

Representation & classifier quality play different roles
under different shifts. As Fig. 3 reveals, for SC and CI,
balanced classifier learning (i.e., both re-sampling and re-
weighting) can substantially improve the performance when
fixing the representation, whereas different representation
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Change is Hard: A Closer Look at Subpopulation Shift

Table 5. Test-set worst-group accuracy difference (%) between each selection strategy on each dataset, relative to the oracle which selects
the best worst-group accuracy. Complete results across all datasets and all selection strategies are provided in Appendix D.3.

Selection Strategy CelebA CheXpert CivilComments MIMIC-CXR MIMICNotes MetaShift Avg

Max Worst-Class Accuracy -5.0 ±6.3 -0.4 ±0.8 -3.2 ±5.2 -0.9 ±1.0 -0.1 ±0.5 -1.5 ±3.0 -1.8
Max Balanced Accuracy -4.4 ±5.4 -1.3 ±2.5 -3.5 ±5.8 -2.9 ±4.9 -2.3 ±6.2 -1.7 ±3.0 -2.7
Min Class Accuracy Diff -6.1 ±9.1 -1.9 ±5.3 -4.1 ±8.0 -1.9 ±5.0 -0.3 ±1.2 -2.2 ±4.6 -2.7
Max Worst-Class F1 -13.4 ±10.4 -5.4 ±6.7 -3.2 ±3.8 -2.5 ±2.2 -4.4 ±8.7 -1.8 ±3.3 -5.1
Max Overall AUROC -12.2 ±10.3 -10.4 ±13.0 -8.2 ±9.0 -6.6 ±9.9 -10.0 ±16.5 -3.2 ±7.0 -8.4
Max Overall Accuracy -18.6 ±12.0 -30.9 ±24.9 -13.7 ±9.5 -5.1 ±6.3 -19.9 ±26.0 -1.9 ±3.3 -15.0
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Figure 4. Averaged worst-group accuracy of various algorithms under different model selection and attribute availability settings.

learning schemes do not lead to notable gains when fixing
the classifier learning manner. Interestingly, for AI, balanc-
ing the classifier does not lead to better performance, while
balanced representation schemes can bring notable gains.

ERM features are not sufficient for subpopulation shift.
Unlike recent works that claim ERM features are sufficient
for out-of-distribution generalization (Izmailov et al., 2022;
Rosenfeld et al., 2022), our above intriguing findings sug-
gest that features learned via ERM may only be good enough
for certain shifts. Concretely, improving the feature extrac-
tor still leads to notable gains especially for AI. The results
in turn well explain the performance differences in Fig. 1,
that SOTA algorithms with two-stage training do not im-
prove worst-case accuracy under AI or AG.

Stratified balanced learning does not outperform ERM
under AG. Finally, no stratified learning manners lead to
performance gains under AG. As Table 4 summarizes, both
stratified representation and classifier learning manners even
exhibit negative gains for datasets that require AG. This re-
veals the intrinsic limitation of SOTA algorithms (Izmailov
et al., 2022) against diverse types of subpopulation shift.

5.4. On Model Selection and Attribute Availability

Model selection (e.g., choice of hyperparameters, training
checkpoints) and attribute availability affect subpopulation
shift evaluation considerably, especially given that almost
all SOTA algorithms need access to a group-annotated val-
idation set for model selection (Idrissi et al., 2022). We
study this problem in-depth, where we follow three settings
mentioned earlier (i.e., the availability of both training and

validation attributes), and summarize the results in Fig. 4.

The importance of training attribute availability relies
on algorithm properties. As Fig. 4 verifies, when training
attribute is available, it can greatly boost the performance of
algorithms that need group information (e.g., GroupDRO),
while it does not bring benefits for attribute-agnostic meth-
ods (e.g., ERM, JTT).

Validation attribute may not be necessary once you have
a good selection metric. We further investigate the perfor-
mance without validation attributes. It is widely known that
SOTA subpopulation shift methods rely on group labels for
validation. Surprisingly however, we observe a relatively
small accuracy drop over all methods when using a sim-
ple worst-class accuracy (degenerated from worst-group
as attributes are unknown in validation) as selection metric.
Specifically, comparing the last two bars across all methods
in Fig. 4, the average accuracy drop is less than merely 2%.
This striking finding contrasts with the literature, where
large degradation (over 20%) is observed when using av-
erage accuracy as the metric without validation attributes.
This suggests that if carefully choosing a metric for model
selection, we can achieve minimal worst-group accuracy
loss even in the absence of any attribute information.

Simple selection criterion using worst-class accuracy is
surprisingly effective even without validation attribute.
We examine different strategies for choosing when to stop
during model training when no attribute annotations are
available in both training and validation. We select six repre-
sentative datasets and six representative selection strategies,
respectively (full results across all datasets and all selection
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(b) Accuracy on the inverse line: Worst-case precision is negatively correlated with WGA.

Figure 5. Fundamental tradeoff between WGA and other evaluation metrics. Complete results for all metrics are in Appendix D.4.

strategies are in Appendix D.3). For each model, we utilize
each stopping criterion over the validation set metrics com-
puted throughout training, to determine its corresponding
stopping point. We evaluate a variety of selection criteria
in this way for a large variety of methods trained on each
dataset. We compare each strategy with the oracle selection
criteria, summarizing our results in Table 5. We observe that
simply stopping when the worst-class accuracy reaches a
maxima achieves the best worst-group accuracy on average.
As expected, any selection criterion based on overall perfor-
mance (e.g., accuracy, AUROC) performs much worse.

5.5. Metrics Beyond Worst-Group Accuracy

Worst-group accuracy (WGA) has long been treated as the
gold-standard for assessing the model performance in sub-
population shift. Recent studies also discovered that WGA
and model average performance are linearly correlated, a
phenomenon called “Accuracy on the line” (Izmailov et al.,
2022; Miller et al., 2021). However, WGA essentially as-
sesses the worst-case (top-1) recall conditioned on attribute
(Yang et al., 2022), which does not reflect other important
metrics such as worst-case precision and calibration error.
Whether models with high WGA will also perform bet-
ter across these metrics remains unknown. Therefore, we
further examine the relationship between WGA and other
evaluation metrics that proposed in our benchmark.

Intrinsic tradeoff: Accuracy can be on the inverse line.
Interestingly, we observe that not all metrics are positively
correlated with WGA. In particular, we show scatter plots
of WGA vs. other metrics for representative datasets. As
Fig. 5(a) confirms, adjusted accuracy is linearly correlated

with WGA, which is well aligned with existing observations
(Izmailov et al., 2022). Interestingly however, for worst-case
precision, the positive correlation does not hold anymore;
instead, we observe a strong negative linear correlation, in-
dicating an intrinsic tradeoff between WGA and worst-case
precision. We show in Appendix D.4 that many metrics also
possess such “accuracy on the inverse line” property, further
verifying the inherent tradeoff between testing metrics.

Fundamental limitations of WGA as the only metric.
The above observations highlight the complex relationship
between WGA and other metrics: Certain metrics display
high positive correlation, while many others show the oppo-
site case. This finding uncovers the fundamental limitation
of using only WGA to assess model performance in subpop-
ulation shift: A well performed model with high WGA can
however have low worst-case precision, which is alarming
especially in critical applications such as medical diagnosis
(e.g., CheXpert). Our observations emphasize the need for
more realistic evaluation metrics in subpopulation shift.

5.6. Further Analysis

Impact of model architecture (Appendix D.5). We study
the effect of different model architectures on subpopulation
shift across various datasets and modalities. In particular,
we employ ResNets and vision transformers (ViTs) for the
image modality, and five different transformer-based lan-
guage models for the text modality. We observe that on text
datasets, base BERT models are already competitive over
other architecture variants (Table 13). Yet, the results on
image datasets are mixed when comparing the worst-group
performance for ResNets and ViTs (Tables 14 and 15).
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Impact of pretraining methods (Appendix D.5). We in-
vestigate how different pretraining methods affect the model
performance under subpopulation shift. We consider both
supervised and self-supervised pretraining using various
SOTA methods. Similar to previous findings (Izmailov et al.,
2022), we observe that supervised pretraining outperforms
self-supervised counterparts for most of the experiments.
The results may also suggest that better self-supervised
schemes could be developed for tackling subgroup shifts.

Impact of pretraining datasets (Appendix D.5). Finally,
we investigate whether increasing the pretraining dataset
size could lead to better subgroup performance. We leverage
ImageNet-21K (Ridnik et al., 2021) and SWAG (Singh et al.,
2022) in addition to the default ImageNet-1K. Interestingly,
we find consistent and significant worst-group performance
gains when going from ImageNet-1K to ImageNet-21K to
SWAG, indicating that larger and more diverse pretraining
datasets seem to increase worst-group performance.

6. Conclusion
We systematically study the subpopulation shift problem,
formalize a unified framework to define and quantify differ-
ent types of subpopulation shift, and further set up a com-
prehensive benchmark for realistic evaluation. Our bench-
mark includes 20 SOTA methods and 12 real-world datasets
across different domains. Based on over 10K trained mod-
els, we reveal several intriguing properties in subpopulation
shift that have implications for future research, including
divergent performance on different shifts, model selection
criteria, and metrics to evaluate against. We hope our bench-
mark and findings will promote realistic and rigorous evalu-
ations and inspire new advances in subpopulation shift.
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A. Limitations and Broader Impacts
Limitations. We acknowledge several limitations of our benchmark and analyses. First, we have used 12 real-world
predictive datasets in our benchmark. However, real-world data can have many complexities including potential mislabelling
in both attributes and labels. We do not consider this effect, though it would be interesting to examine it in a synthetic setting.
Moreover, prior work has shown that in the case of multiple spurious attributes, reducing reliance on one can increase
reliance on another (Li et al., 2022). We only consider a single attribute in this benchmark, though an evaluation of this
effect in the context of model selection criteria would be an interesting direction of future research.

Potential Negative Impacts. There are several potential negative social impacts of our work. First, we assume throughout
the work that we would like to have models that are robust to subpopulation shift. However, in practice, this comes at the cost
of overall accuracy on the training distribution. There may be cases where the practitioner would like to maximize overall
accuracy regardless of spurious correlations, and thus subpopulation shift methods would worsen overall performance and
potentially cause excess harm. Next, we recognize that the large grid of deep models trained for our evaluations likely
resulted in a significant carbon footprint (Anthony et al., 2020). However, we hope that the insights provided in this paper
will reduce the number of models and training steps (and therefore carbon emissions) required by future practitioners.
Finally, we have constructed several models in this paper that utilize clinical data for clinical predictive tasks. We do not
advocate for blind deployment of these models in any way, as there are many issues that need to be verified and resolved
before their deployment, such as real-world clinical testing, privacy, fairness, interpretability, and regulatory requirements
(Maleki et al., 2020; Wiens et al., 2019).

B. Details of the Subpopulation Shift Benchmark
B.1. Dataset Details

We explore subpopulation shift using 12 real-world datasets from a variety of domains including computer vision, natural
language processing, and healthcare applications. We provide example inputs for each dataset in Table 6 and Table 7.
Note that we omit showing examples for MIMIC-CXR, MIMICNotes, and CXRMultisite to comply with the PhysioNet
Credentialed Health Data Use Agreement. Below, we provide detailed descriptions for each dataset in our benchmark.

Waterbirds (Wah et al., 2011). Waterbirds is a commonly used binary classification image dataset in the spurious
correlations setting, constructed by placing images from the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al.,
2011) over backgrounds from the Places dataset (Zhou et al., 2017). The task is to classify whether a bird is a landbird or a
waterbird, where the spurious attribute is the background (water or land). We use standard train/val/test splits given by prior
work (Idrissi et al., 2022).

CelebA (Liu et al., 2015). CelebA is a binary classification image dataset consisting of over 200,000 celebrity face
images. The task, which is also used widely in the spurious correlations literature, is to predict the hair color of the person
(blond vs. non-blond), where the spurious correlation is the gender. We also use standard dataset splits from prior work
(Idrissi et al., 2022). The dataset is licensed under the Creative Commons Attribution 4.0 International license.

MetaShift (Liang & Zou, 2022). MetaShift is a general method of creating image datasets from the Visual Genome
project (Krishna et al., 2016). Here, we make use of the pre-processed Cat vs. Dog dataset, where the goal is to distinguish
between the two animals. The spurious attribute is the image background, where cats and more likely to be indoors, and
dogs are more likely to be outdoors. We use the “unmixed” version generated from the authors’ codebase.

CivilComments (Borkan et al., 2019). CivilComments is a binary classification text dataset, where the goal is to predict
whether a internet comment contains toxic language. The spurious attribute is whether the text contains reference to eight
demographic identities (male, female, LGBTQ, Christian, Muslim, other religions, Black, and White). We use the standard
splits provided by the WILDS benchmark (Koh et al., 2021).

MultiNLI (Williams et al., 2017). MultiNLI is a text classification dataset with 3 classes, where the target is the natural
language inference relationship between the premise and the hypothesis (neutral, contradiction, or entailment). The spurious
attribute is whether negation appears in the text, as negation is highly correlated with the contradiction label. We use
standard train/val/test splits given by prior work (Idrissi et al., 2022).
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Table 6. Example inputs for image datasets in our benchmark. We omit showing samples for MIMIC-CXR and CXRMultisite to comply
with the PhysioNet Credentialed Health Data Use Agreement.

Dataset Examples

Waterbirds

CelebA

MetaShift

CheXpert

NICO++

ImageNetBG

Living17

Table 7. Example inputs for text datasets in our benchmark. We omit showing samples for MIMICNotes to comply with the PhysioNet
Credentialed Health Data Use Agreement.

Dataset Examples

CivilComments
“Munchins looks like a munchins. The man who dont want to show his taxes, will tell you everything...”
“The democratic party removed the filibuster to steamroll its agenda. Suck it up boys and girls.”
“so you dont use oil? no gasoline? no plastic? man you ignorant losers are pathetic.”

MultiNLI
“The analysis proves that there is no link between PM and bronchitis.”
“Postal Service were to reduce delivery frequency.”
“The famous tenements (or lands) began to be built.”

MIMIC-CXR (Johnson et al., 2019). MIMIC-CXR is a chest X-ray dataset originating from the Beth Israel Deaconess
Medical Center from Boston, Massachusetts containing over 300,000 images. We use “No Finding” as the label, where
a positive label means that the patient has no illness. Inspired by prior work (Seyyed-Kalantari et al., 2021), we use the
intersection of race (White, Black, Other) and gender as attributes. We randomly split the dataset into 85% train, 5%
validation, and 10% test splits.

CheXpert (Irvin et al., 2019). CheXpert is a chest X-ray dataset originating from the Stanford University Medical center
containing over 200,000 images. We use the same data processing setup as MIMIC-CXR.

CXRMultisite (Puli et al., 2021). CXRMultisite is a dataset proposed by Puli et al. (2021) which combines MIMIC-
CXR (Johnson et al., 2019) and CheXpert (Irvin et al., 2019) to create a semi-synthetic spurious correlation. The task is to
predict pneumonia, and the dataset is constructed such that 90% of the patients with pnuemonia are from MIMIC-CXR, and
90% of the healthy patients are from CheXpert. Thus, the site where the image was taken is the spurious correlation. We
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Figure 6. Typical label distributions for different types of subpopulation shift.

create this correlation by subsampling. We randomly split the dataset into 85% train, 5% validation, and 10% test splits.

MIMICNotes (Johnson et al., 2016). MIMICNotes is a dataset used in a prior work (Chen et al., 2019) showing differences
in error rate between demographic groups in predicting mortality from clinical notes in MIMIC-III (Johnson et al., 2016).
Following their work, we reproduce their dataset which consists of featurizing the first 48 hours of clinical text from a
patient’s hospital stay using the top 5,000 TF-IDF features. We use gender as the attribute.

NICO++ (Zhang et al., 2022). NICO++ is a large-scale benchmark for domain generalization. Here, we use data from
Track 1 (the common context generalization) of their challenge. We only use their training dataset, which consists of 60
classes and 6 common attributes (autumn, dim, grass, outdoor, rock, water). To transform this dataset into the attribute
generalization setting, we select all (attribute, label) pairs with less than 75 samples, and remove them from our training
split, so they are only used for validation and testing. For each (attribute, label) pair, we use 25 samples for validation and
50 samples for testing, and use the remaining data as training samples.

ImageNetBG (Xiao et al., 2020). ImageNetBG is a benchmark created with the goal of evaluating the reliance of ImageNet
classifiers on the background. The authors first created a subset of ImageNet with 9 classes (ImageNet-9), and annotated
bounding boxes so that backgrounds can be removed. In our setup, we train models on the original IN-9L (with backgrounds),
and evaluate our model on MIXED-RAND. Note that attribute (i.e., the label of the background) is not available for this dataset.
This can be thought of as an attribute generalization setting, as we do not observe test backgrounds during training.

Living17 (Santurkar et al., 2020). Living17 is a dataset created as part of the BREEDS benchmark for subpopulation
shift. Their setup is slightly different from a traditional subpopulation shift setting, where subpopulations are defined using a
WordNet hierarchy, and the goal is to generalize to unseen subclasses in the same hierarchy level. As such, it is difficult to
define the notion of an “attribute” in this setting. In particular, the Living17 dataset consists of images of living objects
across 17 classes. We train our models on the source subclasses and evaluate them on the target subclasses.

Label distribution for different types of subpopulation shift. Finally, we provide typical label distributions for different
subpopulation shift types in Fig. 6. As highlighted, different shifts exhibit distinct types of label distributions, resulting in
different properties in learning. For NICO++ (Fig. 6(d)), certain attributes have no training samples in certain classes.

B.2. Algorithm Details

Our benchmark contains a large number of algorithms that span different learning strategies. We group them according to
their categories, and provide detailed descriptions for each algorithm below.
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• Vanilla: The empirical risk minimization (ERM) (Vapnik, 1999) minimizes the sum of errors across all samples.

• Subgroup robust methods: Group distributionally robust optimization (GroupDRO) (Sagawa et al., 2020) performs
ERM while increasing the importance of groups with larger errors. CVaRDRO (Duchi & Namkoong, 2018) proposes
a variant of GroupDRO that dynamically weights data samples that have the highest losses. LfF (Nam et al., 2020)
trains two models simultaneously, where the first model is biased and the second one is debiased by re-weighting the
gradient of the loss. Just train twice (JTT) (Liu et al., 2021) first trains an ERM model to identify minority groups in
the training set and then trains a second ERM model with the identified samples being re-weighted. LISA (Yao et al.,
2022) learns invariant predictors through data interpolation within and across attributes. Deep feature re-weighting
(DFR) (Izmailov et al., 2022) first trains an ERM model, then retrains the last layer of the model using a balanced
validation set with group annotations.

• Data augmentation: Mixup (Zhang et al., 2018) performs ERM on linear interpolations of randomly sampled training
examples and their labels.

• Domain-invariant representation learning: Invariant risk minimization (IRM) (Arjovsky et al., 2019) learns a feature
representation such that the optimal linear classifier on top of that representation matches across domains. Deep
correlation alignment (CORAL) (Sun & Saenko, 2016) matches the mean and covariance of feature distributions.
Maximum mean discrepancy (MMD) (Li et al., 2018) matches the MMD (Gretton et al., 2012) of feature distributions.
Note that all methods in this category require group annotations during training.

• Imbalanced learning: ReSample (Japkowicz, 2000) and ReWeight (Japkowicz, 2000) simply re-sample or re-weight
the inputs according to the number of samples per class. Focal loss (Focal) (Lin et al., 2017) reduces the relative loss
for well-classified samples and focuses on difficult samples. Class-balanced loss (CBLoss) (Cui et al., 2019) proposes
re-weighting by the inverse effective number of samples. The LDAM loss (LDAM) (Cao et al., 2019) employs a
modified marginal loss that favors minority samples more. Balanced-Softmax (BSoftmax) (Ren et al., 2020) extends
Softmax to an unbiased estimation that considers the number of samples in each class. Classifier re-training (CRT)
(Kang et al., 2020) decomposes the representation and classifier learning into two stages, where it fine-tunes the
classifier using class-balanced sampling with representation fixed in the second stage. ReWeightCRT (Kang et al.,
2020) is a re-weighting variant of CRT.

B.3. Evaluation Metrics

We describe in detail all the evaluation metrics we used in our experiments.

Average & Worst Accuracy. The average accuracy is defined as the accuracy over all samples. For worst-group accuracy
(WGA), we compute the accuracy over all subgroups in the test set and report the worst one. When viewing each class as a
subgroup, WGA degenerates to the worst-class accuracy.

Average & Worst Precision. Precision is defined as TP/(TP + FP), where TP is the number of true positives and FP the
number of false positives. Average precision simply takes the average precision score over all classes, whereas the worst
precision reports the lowest precision value across classes.

Average & Worst F1-score. The F1-score is defined as the harmonic mean of precision and recall. Average F1-score simply
takes the average F1-score over all classes, whereas the worst F1-score reports the lowest value across all classes.

Adjusted Accuracy. Adjusted accuracy is defined as the average accuracy on a group-balanced dataset, which accounts for
the data imbalance over subgroups.

Balanced Accuracy. Balanced accuracy is defined as the average of recall obtained on each class, taking the imbalance over
classes into account.

AUROC. Following the common evaluation practice for the medical datasets used in our benchmark (Irvin et al., 2019;
Johnson et al., 2019), we also include the area under the receiver operating characteristic curve (AUROC) for evaluation.

ECE (Guo et al., 2017). The expected calibration error (ECE) is defined as the difference in expected accuracy and expected
confidence, which measures how close the output pseudo-probabilities match with the actual probabilities of a correct
prediction (lower the better).
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B.4. Model Selection Protocol

There has been an increasing interest in model selection within the literature on out-of-distribution generalization (Gulrajani
& Lopez-Paz, 2021). In subpopulation shift, model selection becomes essential especially when attributes are completely
unknown in both training and validation set. Significant drop (over 20%) in worst-group test accuracy has been reported if
using the highest average validation accuracy as the model selection criterion without any group annotations (Izmailov et al.,
2022).

Our benchmark provides different model selection strategies based on various evaluation metrics as described in Appendix
B.3. Throughout the paper, we mainly use worst-group accuracy as the metric for model selection (which degenerates to
worst-class accuracy when attributes are unknown in the validation set). Nevertheless, one can specify any aforementioned
metric during model selection stage for experimenting with different selection strategies.

C. Experimental Settings
C.1. Implementation Details

Following (Gulrajani & Lopez-Paz, 2021; Izmailov et al., 2022), we use pretrained ResNet-50 model (He et al., 2016) as
the backbone network for image datasets (except for Living17, which we train from scratch), and use pretrained BERT
model (Idrissi et al., 2022) for all text datasets. We employ a three-layer MLP for MIMICNotes dataset given its simplicity.
For all image datasets, we follow standard pre-processing steps (Idrissi et al., 2022): resize and center crop the image to
224× 224 pixels, and perform normalization using the ImageNet channel statistics. Following the literature (Idrissi et al.,
2022; Izmailov et al., 2022), we use the AdamW optimizer (Kingma & Ba, 2015) for all text datasets, and use SGD with
momentum for all image datasets. We train all models for 5,000 steps on Waterbirds and MetaShift, 10,000 steps on
MIMICNotes and ImageNetBG, 20,000 steps on CheXpert and CXRMultisite, and 30,000 steps on all other datasets to
ensure convergence.

C.2. Hyperparameters Search Protocol

For a fair evaluation across different algorithms, following the training protocol in (Gulrajani & Lopez-Paz, 2021), for
each algorithm we conduct a random search of 16 trials over a joint distribution of its all hyperparameters. We then
use the validation set to select the best hyperparameters for each algorithm, fix them and rerun the experiments under 3
different random seeds to report the final average results (and standard deviation). Such process ensures the comparison is
best-versus-best, and the hyperparameters are optimized for all algorithms.

We detail the hyperparameter choices for each algorithm in Table 8.

D. Additional Analysis and Studies
D.1. Quantifying the Degree of Different Shifts

In order to quantify the degree of each shift for each dataset relative to others, we use several simple metrics (see Table 9,
Table 10, and Table 11). For spurious correlations, we use:

• The Mutual Information (MI) between A and Y , I(A;Y ).

• The Normalized Mutual Information (NMI) between A and Y , where norm I(A;Y ) = 1 indicates that the two are
perfectly correlated:

norm I(A;Y ) =
2I(A;Y )

H(Y ) +H(A)
.

• Cramer’s V, which is an association measure based on the Chi-squared test statistic. It has a range of [0, 1], where 1
indicates perfect correlation.

• Tschuprow’s T, which is closely related to Cramer’s V. It also has a range of [0, 1].

Note that we only examine the correlation between A and Y , but not the degree of effectiveness to which A can be inferred
from X . This is an important component, as the model can not take advantage of the spurious correlation if it could not

18



Change is Hard: A Closer Look at Subpopulation Shift

Table 8. Hyperparameters search space for all experiments.

Condition Parameter Default value Random distribution

General:

ResNet learning rate 0.001 10Uniform(−4,−2)

batch size 108 2Uniform(6,7)

BERT
learning rate 0.00001 10Uniform(−5.5,−4)

batch size 32 2Uniform(3,5.5)

dropout 0.5 RandomChoice([0, 0.1, 0.5])

MLP learning rate 0.001 10Uniform(−4,−2)

batch size 256 2Uniform(7,10)

Algorithm-specific:

IRM lambda 100 10Uniform(−1,5)

iterations of penalty annealing 500 10Uniform(0,4)

GroupDRO eta 0.01 10Uniform(−3,−1)

Mixup alpha 0.2 10Uniform(0,4)

CVaRDRO alpha 0.1 10Uniform(−2,0)

JTT first stage step fraction 0.5 Uniform(0.2, 0.8)

lambda 10 10Uniform(0,2.5)

LISA alpha 2 10Uniform(−1,1)

p select 0.5 Uniform(0, 1)

LfF q 0.7 Uniform(0.05, 0.95)

DFR regularization 0.1 10Uniform(−2,0.5)

CORAL, MMD gamma 1 10Uniform(−1,1)

Focal gamma 1 0.5 ∗ 10Uniform(0,1)

CBLoss beta 0.9999 1− 10Uniform(−5,−2)

LDAM max m 0.5 10Uniform(−1,−0.1)

scale 30 RandomChoice([10, 30])

be learnt easily. However, we would expect that most attributes (e.g., words in text, image backgrounds) should be easily
inferred from the inputs for the datasets we examine.

For attribute and class imbalance, we use the following metrics (shown for the class imbalance case):

• Entropy: H(Y ).

• Normalized Entropy, where norm H(Y ) = 1 means that the distribution is uniform (i.e., no imbalance):

norm H(Y ) =
H(Y )

log |supp(Y )| .

• Difference between the probability of the most frequent class and the probability of the least frequent class (pmax−pmin).

For attribute generalization, we simply examine whether there exist any subpopulations in the test set which do not appear
during training.
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Table 9. Metrics for quantifying the degree of spurious correlations.

Dataset MI↑ NMI↑ Cramer↑ Tschuprow↑

Waterbirds 0.37 0.67 0.87 0.87
CelebA 0.06 0.11 0.31 0.31
MetaShift 0.09 0.13 0.41 0.41
CivilComments 0.02 0.02 0.19 0.11
MultiNLI 0.03 0.04 0.25 0.21
MIMIC-CXR 0.01 0.01 0.15 0.10
MIMICNotes < 1e−4 < 1e−4 0.01 0.01
CXRMultisite 0.03 0.13 0.32 0.32
CheXpert < 1e−3 < 1e−3 0.03 0.02
NICO++ 0.11 0.04 0.20 0.11
ImageNetBG − − − −
Living17 − − − −

Table 10. Metrics for quantifying the degree of attribute imbalance.

Dataset Entropy↓ N. Entropy↓ pmax − pmin
↑

Waterbirds 0.82 0.82 0.48
CelebA 0.98 0.98 0.16
MetaShift 0.99 0.99 0.14
CivilComments 2.78 0.93 0.20
MultiNLI 0.37 0.37 0.86
MIMIC-CXR 2.33 0.90 0.27
MIMICNotes 0.99 0.99 0.14
CXRMultisite 0.51 0.51 0.77
CheXpert 2.20 0.85 0.32
NICO++ 2.47 0.96 0.17
ImageNetBG − − −
Living17 − − −

Table 11. Metrics for quantifying the degree of class imbalance.

Dataset Entropy↓ N. Entropy↓ pmax − pmin
↑

Waterbirds 0.78 0.78 0.54
CelebA 0.61 0.61 0.70
MetaShift 0.99 0.99 0.13
CivilComments 0.67 0.67 0.65
MultiNLI 1.58 0.99 0.001
MIMIC-CXR 0.97 0.97 0.20
MIMICNotes 0.45 0.45 0.81
CXRMultisite 0.12 0.12 0.97
CheXpert 0.47 0.47 0.80
NICO++ 5.81 0.98 0.03
ImageNetBG 3.17 1 0
Living17 4.09 1 0

D.2. Improvements across Different Shifts & Settings

We show in Fig. 7 the complete results on worst-group performance improvements over ERM under different settings. As
can be observed from all figures, algorithmic advances have been made for spurious correlations and class imbalance, where
consistent improvements can be obtained across different training & validation settings. Yet, small overall improvements are
observed for attribute imbalance, while almost no performance gains can be obtained for attribute generalization, indicating
the limitation of SOTA algorithms on tackling these types of subpopulation shift.
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(a) Train & validation attributes both known (oracle selection).
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(b) Train attributes unknown, but validation attributes known (worst-group accuracy selection).
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(c) Train & validation attributes both unknown (worst-class accuracy selection).

Figure 7. Complete results on worst-group performance improvements over ERM under different settings.

Table 12. Test-set worst-group accuracy difference (%) between each selection strategy on each dataset, relative to the oracle which selects
the best test-set worst-group accuracy. Note that we have only defined AUPRC and Brier score for the binary classification case.

Selection Strategy CXRMultisite CelebA CheXpert CivilComments ImageNetBG Living17 MIMIC-CXR MIMICNotes MetaShift MultiNLI NICO++ Waterbirds Avg

Max Worst-Class Accuracy -6.9 ±10.7 -5.0 ±6.3 -0.4 ±0.8 -3.2 ±5.2 -0.7 ±1.3 -1.6 ±2.3 -0.9 ±1.0 -0.1 ±0.5 -1.5 ±3.0 -1.9 ±2.9 -5.3 ±5.6 -0.8 ±1.4 -2.4
Max Balanced Accuracy -6.9 ±10.7 -4.4 ±5.4 -1.3 ±2.5 -3.5 ±5.8 -0.9 ±1.6 -4.5 ±5.4 -2.9 ±4.9 -2.3 ±6.2 -1.7 ±3.0 -3.7 ±3.9 -7.0 ±5.8 -1.3 ±1.9 -3.4
Min Class Accuracy Diff -6.2 ±10.3 -6.1 ±9.1 -1.9 ±5.3 -4.1 ±8.0 -2.8 ±13.0 -5.1 ±10.0 -1.9 ±5.0 -0.3 ±1.2 -2.2 ±4.6 -5.7 ±8.6 -27.2 ±15.4 -2.4 ±4.8 -5.5
Max Worst-Class F1 -7.7 ±11.3 -13.4 ±10.4 -5.4 ±6.7 -3.2 ±3.8 -0.8 ±1.2 -3.5 ±4.4 -2.5 ±2.2 -4.4 ±8.7 -1.8 ±3.3 -2.3 ±3.0 -6.7 ±6.3 -2.6 ±3.5 -4.5
Max Macro Avg F1 -8.2 ±11.6 -14.3 ±10.6 -7.7 ±9.8 -5.1 ±4.7 -0.9 ±1.5 -4.4 ±5.3 -2.8 ±4.5 -8.2 ±13.2 -1.8 ±2.9 -3.3 ±3.4 -7.0 ±5.8 -3.1 ±4.0 -5.6
Min Per-Class Recall Stdev. -6.2 ±10.3 -6.1 ±9.1 -1.9 ±5.3 -4.1 ±8.0 -2.3 ±11.5 -5.5 ±9.1 -1.9 ±5.0 -0.3 ±1.2 -2.2 ±4.6 -5.6 ±8.7 -29.7 ±14.3 -2.4 ±4.8 -5.7
Max Weighted Avg Precision -8.3 ±11.5 -13.5 ±10.1 -6.3 ±11.1 -5.7 ±8.6 -0.8 ±1.3 -7.5 ±7.8 -4.3 ±6.4 -12.6 ±21.5 -3.3 ±8.0 -3.4 ±4.7 -6.8 ±5.5 -4.9 ±10.1 -6.5
Max Overall AUROC -10.0 ±12.5 -12.2 ±10.3 -10.4 ±13.0 -8.2 ±9.0 -1.1 ±2.1 -5.5 ±6.7 -6.6 ±9.9 -10.0 ±16.5 -3.2 ±7.0 -4.4 ±5.8 -6.9 ±6.3 -2.6 ±6.1 -6.7
Max Overall AUPRC -10.0 ±12.5 -13.0 ±10.3 -11.6 ±11.9 -8.1 ±8.9 - - -7.3 ±10.2 -9.6 ±16.3 -2.7 ±6.2 - - -4.0 ±9.5 -8.3
Min Overall BCE -8.2 ±11.5 -18.1 ±13.2 -18.7 ±16.4 -13.1 ±12.3 -0.9 ±1.6 -7.2 ±7.3 -7.2 ±12.0 -14.3 ±20.7 -3.7 ±7.7 -6.2 ±7.8 -7.6 ±6.1 -12.5 ±18.4 -9.8
Max Per-class Precision -8.2 ±11.7 -3.0 ±8.9 -6.8 ±12.5 -14.8 ±24.3 -7.6 ±18.4 -19.3 ±15.9 -9.4 ±12.7 -12.6 ±22.4 -9.9 ±17.4 -6.6 ±10.1 -14.8 ±11.8 -5.3 ±12.4 -9.8
Max Overall Accuracy -8.2 ±11.4 -18.6 ±12.0 -30.9 ±24.9 -13.7 ±9.5 -0.9 ±1.6 -4.5 ±5.4 -5.1 ±6.3 -19.9 ±26.0 -1.9 ±3.3 -3.7 ±3.9 -7.1 ±5.8 -7.2 ±11.7 -10.2
Min Overall Brier Score -8.2 ±11.5 -18.8 ±13.1 -19.6 ±16.6 -13.5 ±12.3 - - -7.1 ±12.0 -15.1 ±21.6 -2.7 ±5.3 - - -6.9 ±11.0 -11.5
Min Overall ECE -8.2 ±11.5 -20.5 ±15.7 -20.3 ±17.4 -14.4 ±13.5 -16.9 ±33.6 -28.8 ±19.6 -12.3 ±18.2 -16.2 ±22.7 -20.9 ±28.8 -24.6 ±19.0 -20.0 ±14.3 -11.0 ±17.9 -17.9

D.3. Model Selection without Validation Attributes

In the main paper, we examine the feasibility of different metrics for model selection without group-annotated validation
data. We further confirm this in Table 12 by showing the results for more selection strategies with all metrics across all
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Figure 8. Accuracy on the line. We show metrics that are positively correlated with worst-group accuracy.
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Figure 9. Accuracy on the inverse line. We show metrics that are negatively correlated with worst-group accuracy.

datasets in our benchmark. Specifically, when using worst-class accuracy as the model selection criterion, on average we
achieve only 2.4% degrade of worst-group accuracy compared to oracle selection method. The selection criterion also
performs the best over all other selection metrics on 10 out of 12 datasets, indicating its effectiveness for reliable model
selection without any attribute information.

D.4. Rethinking Evaluation Metrics in Subpopulation Shift

We provide complete results on the correlation between worst-group accuracy (WGA) and other metrics we consider in our
benchmark.

Accuracy on the line. In the main paper we show that certain metrics exhibit high linear correlation with WGA. We further
show in Fig. 8 with a full list of metrics that exhibit consistent positive correlation across diverse datasets. Specifically, both
adjusted accuracy and balanced accuracy display the “accuracy on the line” property, which has also been confirmed in
prior work (Izmailov et al., 2022).
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Figure 10. Accuracy not on the line. We show metrics that do not demonstrate consistent correlations across datasets with worst-group
accuracy.

Accuracy on the inverse line. More interestingly, we further establish the intrinsic tradeoff between WGA and certain
metrics. Fig. 9 shows that both worst-case precision and ECE exhibit clear negative correlation with WGA, demonstrating
the fundamental tradeoff between WGA and several important metrics in subpopulation shift. These intriguing observations
highlight the need for considering more realistic evaluation metrics in subpopulation shift beyond just using WGA.

Accuracy not on the line. Finally, we display also other metrics that do not show either positive or negative correlation with
WGA (Fig. 10). As observed, the correlation between these metrics and WGA shows inconsistent behavior across datasets.
Interestingly, this phenomenon also indicates the potential bad performance on these metrics when merely optimizing for
better WGA. We leave the exploration of other metrics and the rationale behind these behaviors for future work.

D.5. Impact of Architecture, Pretraining Method, and Pretraining Dataset

In this section, we examine the impact of model architecture and the source of the initial model weights on the worst group
accuracy. Similar to the experiments above, we consider the following settings:
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• Known Attributes. Attributes are known in both training and validation, and validation set worst-group accuracy is
used as the model selection criteria.

• Unknown Attributes. Attributes are unknown during training and validation. Following our findings in Sec. 5.4, we
use worst-class accuracy as the model selection criteria.

We experiment with ERM, JTT, and DFR as representative methods; CivilComments as the representative text dataset, and
Waterbirds, CheXpert, and NICO++ as representative image datasets.

For the text modality, we consider the following architectures and initial weights:

• BERTBASE (Devlin et al., 2018): A contextual language model based on the transformer architecture pretrained on
BookCorpus and English Wikipedia data using the masked language model and next sentence prediction tasks.

• SciBERT (Beltagy et al., 2019): Same architecture as BERTBASE, but pretrained on scientific papers from Semantic
Scholar, and has higher reported performance on scientific NLP tasks.

• DistilBERT (Sanh et al., 2019): A knowledge distilled (Hinton et al., 2015) version of BERTBASE with 40% fewer
parameters, pretrained using the same datasets as BERTBASE.

• GPT-2 (Radford et al., 2019): An autoregressive language model based on the transformer decoder, pretrained using
text from webpages upvoted on Reddit.

• RoBERTaBASE (Liu et al., 2019a): Same architecture as BERTBASE, but pretrained with a more efficient procedure and
using a collection of corpora much larger than BERTBASE.

For the image modality, we consider ResNet-50 (He et al., 2016) and vision transformers (ViT-B) (Steiner et al., 2021). We
consider model weights initialized with the following pretraining methods that span supervised and self-supervised manners:

• Supervised pretraining (Kornblith et al., 2019).

• SimCLR (Chen et al., 2020): Self-supervised contrastive pretraining using image augmentations.

• Barlow Twins (Zbontar et al., 2021): Self-supervised pretraining via redundancy reduction.

• DINO (Caron et al., 2021): Self-distillation with no labels.

• CLIP (Radford et al., 2021): Using associated text as supervision. We select only the vision encoder.

We consider model weights initialized using the above pretraining methods on the following pretraining datasets:

• ImageNet-1K (Deng et al., 2009): 1.2 million images belonging to 1,000 classes, introduced as part of the ILSVRC2012
visual recognition challenge (Russakovsky et al., 2015).

• ImageNet-21K (Ridnik et al., 2021): A superset of ImageNet-1K, consisting of 14 million images belonging to 21,841
classes.

• SWAG (Singh et al., 2022): 3.6 billion images collected from public Instagram posts, weakly supervised using their
associated hashtags.

• LAION-2B (Schuhmann et al., 2022): 2.32 billion English image-text pairs constructed from Common Crawl.

• OpenAI-CLIP (Radford et al., 2021): 400 million image-text pairs collected by OpenAI in training their CLIP model.

As model weights for many combinations of the above architectures, pretraining methods, and pretraining datasets are not
available, we only experiment with the subset of combinations of weights that exist in public repositories.

Based on our experimental results on CivilComments (Table 13), we find that BERTBASE is competitive in performance,
even outperforming its successor RoBERTaBASE on many tasks. In addition, DistilBERT and GPT-2 exhibits much worse
performance especially on ERM models.

Based on our experimental results on image datasets (Tables 14 and 15), we find the following:
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• Optimal architecture is dataset dependent. Contrary to prior work (Paul & Chen, 2022), we find mixed results
when comparing the worst-group performance for ResNet and ViT-B. Specifically, ResNets seem to work better on
CheXpert and Waterbirds, while vision transformers work better on NICO++.

• Supervised pretraining outperforms others. Similar to prior work (Izmailov et al., 2022), we find that supervised
pretraining outperforms self-supervised learning for the most part, though some self-supervised pretraining methods
are still competitive. The results also warrant better self-supervised schemes for subgroup shifts (Yang et al., 2023).

• Larger pretraining datasets yield better results. The biggest impact on worst-group accuracy by far appears to be
the dataset on which the initial model weights are derived. This is especially true for NICO++ and Waterbirds, where
going from ImageNet-1K to ImageNet-21K to SWAG almost always leads to a significant increase in worst-group
accuracy, indicating that larger and more diverse pretraining datasets seem to increase performance. The effectiveness
of SWAG-pretrained ViTs on Waterbirds has also been discussed in prior work (Mehta et al., 2022).

Table 13. Test-set worst-group accuracy on CivilComments for different text architectures and pretraining methods.

Arch
Unknown Attributes Known Attributes

ERM JTT DFR ERM JTT DFR

BERT 65.6 69.6 62.4 66.2 65.0 69.7
SciBERT 61.1 58.3 62.5 61.1 58.3 68.0
DistilBERT 51.8 55.1 61.8 59.6 66.2 67.6
GPT-2 14.7 49.0 51.7 14.7 49.0 51.9
RoBERTa 61.0 58.0 61.6 63.1 66.7 68.2

Table 14. Test-set worst-group accuracy for three image datasets with known attributes, varying the model architecture and source of
model initial weights. Best results of each column are in bold and the second best are underlined.

Arch Pretrain Method Pretrain Dataset
CheXpert NICO++ Waterbirds

Avg
ERM JTT DFR ERM JTT DFR ERM JTT DFR

ResNet

Barlow ImageNet-1K 46.2 66.0 74.7 40.0 40.0 20.0 67.3 72.4 88.3 57.2
DINO ImageNet-1K 43.0 71.5 72.8 39.5 40.0 4.0 72.9 72.5 89.1 56.1
SimCLR ImageNet-1K 47.9 72.3 74.8 30.0 30.0 16.0 70.1 68.1 81.2 54.5
Supervised ImageNet-1K 59.2 61.7 72.2 25.0 30.0 20.0 76.5 74.3 90.2 56.6
Supervised ImageNet-21K 51.4 68.0 70.0 40.0 46.0 40.0 74.5 75.9 90.2 61.8

ViT-B

CLIP Laion-2B 49.2 58.5 69.1 33.3 40.0 33.3 39.6 46.9 75.5 49.5
CLIP OpenAI-CLIP 42.2 55.8 68.8 33.3 40.0 30.0 40.4 40.4 78.2 47.7
DINO ImageNet-1K 43.4 71.8 72.4 30.0 40.0 32.0 63.9 64.6 90.2 56.5
Supervised ImageNet-1K 40.4 64.5 70.1 20.0 33.3 0.0 51.2 52.6 80.4 45.8
Supervised ImageNet-21K 47.5 69.1 69.1 48.0 50.0 18.0 69.9 73.8 87.2 59.2
Supervised SWAG 48.7 67.3 72.5 50.0 50.0 34.0 82.7 81.2 87.5 63.8

Table 15. Test-set worst-group accuracy for three image datasets with unknown attributes, varying the model architecture and source of
model initial weights. Best results of each column are in bold and the second best are underlined.

Arch Pretrain Method Pretrain Dataset
CheXpert NICO++ Waterbirds

Avg
ERM JTT DFR ERM JTT DFR ERM JTT DFR

ResNet

Barlow ImageNet-1K 46.2 66.0 73.7 33.3 40.0 40.0 67.3 72.4 89.8 58.7
DINO ImageNet-1K 43.0 71.5 73.3 39.5 40.0 12.0 72.9 72.5 87.9 57.0
SimCLR ImageNet-1K 47.9 72.3 74.6 30.0 30.0 26.0 70.1 69.0 79.2 55.5
Supervised ImageNet-1K 59.2 61.7 75.4 40.0 30.0 33.3 67.0 74.3 89.6 58.9
Supervised ImageNet-21K 45.3 69.3 69.9 40.0 40.0 40.0 74.5 75.9 88.3 60.4

ViT-B

CLIP Laion-2B 49.2 58.5 69.7 30.0 30.0 40.0 45.2 46.9 78.4 49.8
CLIP OpenAI-CLIP 42.2 57.4 70.4 33.3 40.0 40.0 26.5 44.4 77.4 48.0
DINO ImageNet-1K 43.4 69.4 72.3 40.0 41.2 37.5 63.9 64.6 90.0 58.0
Supervised ImageNet-1K 40.4 69.5 71.5 33.3 33.3 16.7 49.4 52.6 81.2 49.8
Supervised ImageNet-21K 47.5 69.7 71.3 50.0 50.0 38.0 69.9 73.8 88.9 62.1
Supervised SWAG 52.5 63.8 71.3 50.0 50.0 50.0 82.7 81.2 88.6 65.6
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E. Complete Results
We provide complete evaluation results in this section. As confirmed earlier, model selection and attribute availability play
critical roles in subpopulation shift evaluation. To provide a thorough analysis, we investigate the following three settings:

• Attributes are known in both training & validation (Appendix E.1). When attributes are known in both training and
validation set, which corresponds to the most ideal scenario, we use “test set worst-group accuracy” as an oracle selection
method to identify the best possible performance for each algorithm.

• Attributes are unknown in training, but known in validation (Appendix E.2). When attributes are still known in
validation, we use “validation set worst-group accuracy” to select models. We ignore algorithms that require attribute
information in the training set (i.e., IRM, MMD, CORAL) when reporting results under this setting.

• Attributes are unknown in both training & validation (Appendix E.3). When attributes are completely unknown, we
still use “validation set worst-group accuracy” for model selection, which however degenerates to “worst-class accuracy”.
We again ignore algorithms that require attribute information in the training set.

E.1. Attributes Known in Both Training & Validation

E.1.1. WATERBIRDS

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 84.1 ±1.7 69.1 ±4.7 77.4 ±2.0 60.7 ±3.2 79.4 ±2.1 69.5 ±2.9 83.1 ±2.0 83.1 ±2.0 91.0 ±1.4 12.9 ±1.7

Mixup 89.5 ±0.4 78.2 ±0.4 83.9 ±0.6 71.6 ±1.3 85.9 ±0.4 78.8 ±0.6 88.9 ±0.3 88.9 ±0.3 94.7 ±0.2 7.0 ±0.6

GroupDRO 88.8 ±1.8 78.6 ±1.0 83.6 ±2.4 70.9 ±5.0 85.3 ±2.0 78.1 ±2.6 88.5 ±0.8 88.5 ±0.8 95.5 ±0.5 9.1 ±2.2

IRM 88.4 ±0.1 74.5 ±1.5 82.5 ±0.2 69.5 ±0.6 84.3 ±0.1 76.4 ±0.1 87.1 ±0.3 87.1 ±0.3 94.0 ±0.3 9.5 ±0.2

CVaRDRO 89.8 ±0.4 75.5 ±2.2 84.5 ±0.7 73.2 ±1.7 86.1 ±0.3 79.0 ±0.4 88.5 ±0.3 88.5 ±0.3 95.4 ±0.2 8.2 ±0.2

JTT 88.8 ±0.6 72.0 ±0.3 83.1 ±0.8 71.2 ±1.5 84.7 ±0.6 76.9 ±0.8 86.9 ±0.3 86.9 ±0.3 94.1 ±0.1 9.0 ±0.4

LfF 87.0 ±0.3 75.2 ±0.7 80.7 ±0.3 66.2 ±0.5 82.8 ±0.3 74.3 ±0.5 86.2 ±0.3 86.2 ±0.3 93.3 ±0.3 9.4 ±0.5

LISA 92.8 ±0.2 88.7 ±0.6 88.4 ±0.4 79.5 ±0.8 90.0 ±0.3 84.8 ±0.4 92.0 ±0.1 92.0 ±0.1 97.0 ±0.1 5.4 ±0.3

MMD 93.0 ±0.1 83.9 ±1.4 89.5 ±0.4 83.1 ±1.1 90.0 ±0.1 84.5 ±0.1 90.5 ±0.2 90.5 ±0.2 96.2 ±0.1 6.4 ±0.5

ReSample 89.4 ±0.9 77.7 ±1.2 84.0 ±1.4 72.1 ±3.1 85.7 ±1.0 78.4 ±1.4 88.3 ±0.4 88.3 ±0.4 95.2 ±0.3 8.0 ±1.1

ReWeight 91.8 ±0.2 86.9 ±0.7 87.1 ±0.3 77.5 ±0.8 88.7 ±0.2 82.7 ±0.3 90.7 ±0.1 90.7 ±0.1 95.8 ±0.1 7.0 ±0.6

SqrtReWeight 88.7 ±0.3 78.6 ±0.1 82.8 ±0.4 69.6 ±1.1 84.9 ±0.3 77.3 ±0.4 88.1 ±0.2 88.1 ±0.2 94.5 ±0.1 8.2 ±0.7

CBLoss 91.3 ±0.7 86.2 ±0.3 86.5 ±1.1 76.4 ±2.3 88.2 ±0.7 82.0 ±1.0 90.4 ±0.1 90.4 ±0.1 95.7 ±0.0 8.2 ±1.4

Focal 89.3 ±0.2 71.6 ±0.8 83.7 ±0.3 72.4 ±0.5 85.2 ±0.3 77.5 ±0.4 87.1 ±0.3 87.1 ±0.3 94.2 ±0.2 6.9 ±0.1

LDAM 87.3 ±0.5 71.0 ±1.8 81.2 ±0.6 67.7 ±1.5 83.0 ±0.5 74.4 ±0.6 85.7 ±0.2 85.7 ±0.2 93.3 ±0.2 13.7 ±2.2

BSoftmax 88.4 ±1.3 74.1 ±0.9 82.7 ±1.6 70.1 ±3.0 84.4 ±1.5 76.5 ±2.1 87.0 ±1.0 87.0 ±1.0 94.1 ±1.0 9.8 ±1.2

DFR 92.3 ±0.2 91.0 ±0.3 87.5 ±0.3 77.5 ±0.6 89.5 ±0.2 84.1 ±0.3 92.1 ±0.1 92.1 ±0.1 97.4 ±0.1 7.1 ±0.6

CRT 90.5 ±0.0 79.7 ±0.3 85.3 ±0.0 74.5 ±0.0 87.0 ±0.1 80.3 ±0.1 89.3 ±0.1 89.3 ±0.1 95.7 ±0.0 7.9 ±0.1

ReWeightCRT 91.2 ±0.1 78.4 ±0.1 86.4 ±0.2 76.8 ±0.3 87.7 ±0.1 81.2 ±0.2 89.4 ±0.1 89.4 ±0.1 95.8 ±0.1 6.3 ±0.2

E.1.2. CELEBA

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 95.1 ±0.2 62.6 ±1.5 87.5 ±0.5 76.4 ±1.2 90.1 ±0.3 83.1 ±0.5 86.9 ±0.2 93.4 ±0.2 98.4 ±0.1 3.3 ±0.5

Mixup 95.4 ±0.1 57.8 ±0.8 88.4 ±0.3 78.5 ±0.7 90.6 ±0.2 83.8 ±0.3 85.8 ±0.2 93.1 ±0.1 98.4 ±0.1 2.5 ±0.2

GroupDRO 91.4 ±0.6 89.0 ±0.7 80.4 ±0.8 61.5 ±1.7 84.9 ±0.8 74.9 ±1.2 92.6 ±0.1 93.3 ±0.2 98.1 ±0.0 8.0 ±0.9

IRM 94.7 ±0.8 63.0 ±2.5 87.0 ±1.9 75.3 ±3.9 89.6 ±1.1 82.2 ±1.8 86.9 ±0.5 93.3 ±0.3 98.5 ±0.0 3.4 ±1.3

CVaRDRO 95.2 ±0.1 64.1 ±2.8 88.4 ±0.6 78.6 ±1.4 90.1 ±0.1 83.0 ±0.2 86.7 ±0.9 92.2 ±0.7 98.2 ±0.1 2.6 ±0.3

JTT 90.4 ±2.3 70.0 ±10.2 80.5 ±4.2 62.5 ±8.7 83.4 ±3.3 72.6 ±5.1 86.4 ±1.6 90.3 ±1.1 93.2 ±2.2 4.1 ±1.4

LfF 81.1 ±5.6 53.0 ±4.3 71.8 ±4.1 45.2 ±8.3 73.2 ±5.6 59.0 ±7.3 78.3 ±3.0 85.3 ±2.9 94.1 ±1.2 27.9 ±5.5

LISA 92.6 ±0.1 86.5 ±1.2 82.2 ±0.2 65.1 ±0.4 86.6 ±0.2 77.6 ±0.3 92.0 ±0.3 94.0 ±0.1 98.5 ±0.0 7.7 ±0.3

MMD 92.5 ±0.7 24.4 ±2.0 91.4 ±1.4 90.1 ±2.2 79.8 ±2.1 63.7 ±3.9 68.5 ±0.7 74.3 ±2.1 96.0 ±0.9 3.6 ±0.2

ReSample 92.0 ±0.8 87.4 ±0.8 81.4 ±1.2 63.6 ±2.6 85.6 ±1.0 76.0 ±1.5 92.0 ±0.2 93.1 ±0.1 98.1 ±0.0 7.4 ±1.1

ReWeight 91.9 ±0.5 89.7 ±0.2 81.2 ±0.8 63.2 ±1.8 85.4 ±0.7 75.7 ±1.0 92.6 ±0.2 93.0 ±0.2 98.0 ±0.1 7.9 ±0.9

SqrtReWeight 93.6 ±0.1 82.4 ±0.5 84.0 ±0.2 69.0 ±0.3 87.9 ±0.2 79.6 ±0.3 91.2 ±0.1 93.8 ±0.1 98.4 ±0.1 5.8 ±0.2

CBLoss 91.2 ±0.7 89.4 ±0.7 80.2 ±1.1 61.0 ±2.3 84.6 ±1.0 74.5 ±1.6 92.6 ±0.2 93.2 ±0.3 98.0 ±0.1 8.4 ±1.0

Focal 94.9 ±0.3 59.1 ±2.0 87.5 ±0.8 76.7 ±1.7 89.7 ±0.4 82.4 ±0.6 85.6 ±0.5 92.5 ±0.4 98.2 ±0.1 3.2 ±0.4

LDAM 94.5 ±0.2 59.6 ±2.4 86.5 ±0.8 74.7 ±1.9 89.0 ±0.2 81.3 ±0.3 85.6 ±0.8 92.3 ±0.7 98.0 ±0.1 28.3 ±2.7

BSoftmax 91.9 ±0.1 83.3 ±0.5 81.1 ±0.2 62.9 ±0.4 85.6 ±0.2 76.1 ±0.3 91.1 ±0.2 93.9 ±0.1 98.6 ±0.0 8.4 ±0.2

DFR 91.9 ±0.1 90.4 ±0.1 81.2 ±0.2 63.2 ±0.3 85.5 ±0.1 75.8 ±0.2 92.3 ±0.0 93.1 ±0.1 97.9 ±0.0 8.9 ±0.1

CRT 92.7 ±0.1 87.2 ±0.3 82.4 ±0.1 65.7 ±0.2 86.5 ±0.1 77.4 ±0.1 91.8 ±0.1 93.4 ±0.0 98.2 ±0.0 6.6 ±0.1

ReWeightCRT 92.5 ±0.2 87.2 ±0.3 82.1 ±0.3 65.1 ±0.6 86.3 ±0.2 77.1 ±0.3 91.8 ±0.0 93.4 ±0.0 98.2 ±0.0 7.1 ±0.3
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E.1.3. CIVILCOMMENTS

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 85.4 ±0.2 63.7 ±1.1 75.4 ±0.2 57.8 ±0.6 77.0 ±0.0 63.1 ±0.1 77.7 ±0.2 79.2 ±0.3 90.0 ±0.0 8.1 ±0.2

Mixup 84.9 ±0.3 66.1 ±1.3 74.8 ±0.4 56.4 ±0.9 76.6 ±0.2 62.7 ±0.2 77.9 ±0.3 79.3 ±0.3 89.7 ±0.0 8.4 ±1.0

GroupDRO 81.8 ±0.6 70.6 ±1.2 72.0 ±0.5 49.6 ±1.1 74.2 ±0.5 60.3 ±0.6 78.5 ±0.2 79.9 ±0.2 88.8 ±0.2 12.2 ±0.9

IRM 85.5 ±0.0 63.2 ±0.8 75.5 ±0.1 57.8 ±0.2 77.1 ±0.0 63.3 ±0.1 77.8 ±0.1 79.4 ±0.1 89.9 ±0.1 7.4 ±0.6

CVaRDRO 83.5 ±0.3 68.7 ±1.3 73.5 ±0.3 52.8 ±0.6 75.9 ±0.2 62.4 ±0.2 78.6 ±0.2 80.7 ±0.1 89.8 ±0.1 32.9 ±0.4

JTT 83.3 ±0.1 64.3 ±1.5 72.8 ±0.1 52.4 ±0.3 74.8 ±0.1 60.3 ±0.2 76.8 ±0.2 78.4 ±0.2 88.2 ±0.1 10.2 ±0.3

LfF 65.5 ±5.6 51.0 ±6.1 60.4 ±3.5 31.2 ±5.6 58.5 ±5.0 41.9 ±5.6 64.8 ±4.2 65.6 ±4.5 69.2 ±6.5 26.4 ±2.4

LISA 82.7 ±0.1 73.7 ±0.3 72.6 ±0.1 51.1 ±0.2 75.0 ±0.1 61.1 ±0.1 78.7 ±0.2 80.1 ±0.1 89.1 ±0.1 11.7 ±0.3

MMD 84.6 ±0.2 54.5 ±1.4 73.9 ±0.4 56.7 ±0.7 74.4 ±0.4 58.2 ±0.7 73.6 ±0.6 74.9 ±0.5 86.1 ±0.7 5.0 ±1.5

ReSample 82.2 ±0.0 73.3 ±0.5 72.4 ±0.0 50.2 ±0.1 74.8 ±0.0 61.1 ±0.0 79.2 ±0.0 80.6 ±0.0 89.3 ±0.1 12.2 ±0.2

ReWeight 82.5 ±0.0 72.5 ±0.0 72.6 ±0.1 50.8 ±0.1 75.0 ±0.1 61.4 ±0.1 79.1 ±0.1 80.6 ±0.1 89.5 ±0.0 12.0 ±0.2

SqrtReWeight 83.3 ±0.5 71.7 ±0.4 73.3 ±0.4 52.5 ±1.0 75.7 ±0.4 62.0 ±0.4 78.9 ±0.1 80.4 ±0.1 89.7 ±0.0 10.3 ±0.8

CBLoss 82.9 ±0.1 73.3 ±0.2 72.9 ±0.1 51.5 ±0.2 75.4 ±0.1 61.7 ±0.1 79.2 ±0.1 80.6 ±0.1 89.6 ±0.1 11.1 ±0.3

Focal 85.5 ±0.2 62.0 ±1.0 75.5 ±0.4 58.5 ±0.8 76.8 ±0.3 62.5 ±0.4 76.9 ±0.4 78.4 ±0.4 89.1 ±0.3 6.7 ±0.4

LDAM 81.9 ±2.2 37.4 ±8.1 69.6 ±3.5 49.9 ±5.9 69.7 ±3.4 50.6 ±5.5 67.5 ±4.0 70.0 ±3.3 79.7 ±4.2 21.1 ±0.3

BSoftmax 83.8 ±0.0 71.2 ±0.4 73.8 ±0.0 53.5 ±0.0 76.1 ±0.0 62.5 ±0.0 78.7 ±0.1 80.4 ±0.0 89.8 ±0.0 10.3 ±0.1

DFR 83.3 ±0.0 69.6 ±0.2 73.2 ±0.0 52.3 ±0.1 75.6 ±0.0 61.8 ±0.0 78.1 ±0.0 80.2 ±0.0 89.5 ±0.0 16.6 ±0.3

CRT 83.8 ±0.0 71.1 ±0.1 73.8 ±0.0 53.5 ±0.0 76.1 ±0.0 62.5 ±0.0 78.6 ±0.0 80.4 ±0.0 89.4 ±0.0 11.2 ±0.3

ReWeightCRT 83.8 ±0.1 71.0 ±0.1 73.8 ±0.1 53.5 ±0.2 76.1 ±0.0 62.4 ±0.0 78.5 ±0.0 80.4 ±0.1 89.6 ±0.0 10.7 ±0.1

E.1.4. MULTINLI

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 80.9 ±0.1 66.8 ±0.5 81.1 ±0.1 76.0 ±0.2 80.9 ±0.1 77.8 ±0.1 79.7 ±0.0 80.9 ±0.1 93.6 ±0.1 8.1 ±0.3

Mixup 81.4 ±0.3 68.5 ±0.6 81.6 ±0.3 76.0 ±0.5 81.4 ±0.3 78.0 ±0.2 80.1 ±0.3 81.4 ±0.3 93.6 ±0.1 9.4 ±0.9

GroupDRO 81.1 ±0.3 76.0 ±0.7 81.4 ±0.3 74.7 ±0.5 81.1 ±0.3 77.8 ±0.1 80.8 ±0.3 81.1 ±0.3 93.7 ±0.1 9.8 ±1.0

IRM 77.8 ±0.6 63.6 ±1.3 78.3 ±0.5 71.0 ±1.1 77.9 ±0.6 74.8 ±0.4 76.6 ±0.5 77.8 ±0.6 91.5 ±0.3 11.2 ±1.8

CVaRDRO 75.1 ±0.1 63.0 ±1.5 76.2 ±0.2 65.6 ±0.2 75.2 ±0.1 72.1 ±0.2 74.2 ±0.4 75.1 ±0.1 86.3 ±0.2 41.4 ±0.1

JTT 80.9 ±0.5 69.1 ±0.1 81.3 ±0.4 74.3 ±1.1 81.0 ±0.5 77.6 ±0.5 80.0 ±0.4 80.9 ±0.5 93.7 ±0.2 7.0 ±1.5

LfF 71.7 ±1.1 63.6 ±2.9 71.8 ±1.1 68.7 ±0.7 71.7 ±1.1 68.5 ±1.8 70.8 ±1.4 71.7 ±1.1 87.0 ±0.8 4.4 ±0.6

LISA 80.3 ±0.4 73.3 ±1.0 80.4 ±0.4 75.9 ±0.3 80.3 ±0.4 76.7 ±0.4 79.8 ±0.5 80.3 ±0.4 92.7 ±0.2 4.3 ±0.4

MMD 78.8 ±0.1 69.1 ±1.5 79.3 ±0.2 71.7 ±0.7 78.9 ±0.1 75.5 ±0.1 78.0 ±0.4 78.8 ±0.1 91.7 ±0.1 11.6 ±0.3

ReSample 77.2 ±0.2 72.3 ±0.8 77.6 ±0.0 70.7 ±1.0 77.3 ±0.1 73.8 ±0.1 77.6 ±0.3 77.2 ±0.2 90.9 ±0.0 10.8 ±0.2

ReWeight 81.0 ±0.2 68.8 ±0.4 81.1 ±0.2 76.0 ±0.7 81.0 ±0.2 77.4 ±0.1 79.6 ±0.1 81.0 ±0.2 93.5 ±0.1 8.1 ±0.1

SqrtReWeight 80.7 ±0.3 69.5 ±0.7 81.0 ±0.3 74.6 ±0.5 80.8 ±0.3 77.5 ±0.3 79.9 ±0.4 80.7 ±0.3 93.4 ±0.2 9.2 ±1.0

CBLoss 80.6 ±0.1 72.2 ±0.3 80.8 ±0.1 74.9 ±0.3 80.6 ±0.1 77.5 ±0.1 80.1 ±0.1 80.6 ±0.1 93.4 ±0.1 7.5 ±0.5

Focal 80.7 ±0.2 69.4 ±0.7 81.2 ±0.2 73.7 ±0.6 80.8 ±0.2 77.3 ±0.1 79.6 ±0.2 80.7 ±0.2 93.6 ±0.1 4.4 ±1.0

LDAM 80.7 ±0.3 69.6 ±1.6 81.1 ±0.1 73.9 ±0.9 80.8 ±0.2 77.4 ±0.2 79.7 ±0.3 80.7 ±0.3 93.5 ±0.1 33.4 ±0.3

BSoftmax 80.9 ±0.1 66.9 ±0.4 81.1 ±0.1 75.9 ±0.3 80.9 ±0.1 77.7 ±0.1 79.7 ±0.0 80.9 ±0.1 93.6 ±0.1 8.1 ±0.2

DFR 81.7 ±0.0 68.5 ±0.2 82.1 ±0.0 75.6 ±0.2 81.7 ±0.0 77.9 ±0.0 81.2 ±0.0 81.7 ±0.0 93.2 ±0.0 8.8 ±0.3

CRT 81.9 ±0.0 70.7 ±0.1 82.2 ±0.0 75.9 ±0.1 82.0 ±0.0 78.3 ±0.0 81.1 ±0.0 81.9 ±0.0 93.9 ±0.0 11.5 ±0.0

ReWeightCRT 81.3 ±0.0 69.0 ±0.2 81.4 ±0.0 77.0 ±0.1 81.3 ±0.0 77.6 ±0.0 80.5 ±0.0 81.3 ±0.0 93.7 ±0.0 6.9 ±0.1

E.1.5. METASHIFT
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 91.3 ±0.3 82.6 ±0.4 91.2 ±0.3 90.6 ±0.4 91.2 ±0.3 90.7 ±0.3 89.3 ±0.3 91.2 ±0.3 97.3 ±0.2 6.3 ±0.9

Mixup 91.6 ±0.3 81.0 ±0.8 91.7 ±0.3 90.6 ±0.2 91.6 ±0.3 91.0 ±0.3 89.4 ±0.3 91.6 ±0.3 97.3 ±0.1 2.3 ±0.1

GroupDRO 91.0 ±0.1 85.6 ±0.4 90.9 ±0.1 90.0 ±0.6 90.9 ±0.1 90.4 ±0.0 89.8 ±0.1 91.0 ±0.1 97.5 ±0.0 3.2 ±0.5

IRM 91.8 ±0.4 83.0 ±0.1 91.8 ±0.4 90.5 ±1.0 91.7 ±0.4 91.3 ±0.4 89.7 ±0.5 91.7 ±0.4 97.6 ±0.2 5.3 ±0.2

CVaRDRO 92.1 ±0.2 84.6 ±0.0 92.1 ±0.2 90.8 ±0.6 92.1 ±0.2 91.6 ±0.2 90.4 ±0.2 92.1 ±0.2 97.7 ±0.0 4.9 ±0.3

JTT 91.2 ±0.5 83.6 ±0.4 91.3 ±0.6 89.3 ±1.1 91.1 ±0.5 90.6 ±0.4 89.6 ±0.8 91.1 ±0.5 97.4 ±0.0 5.9 ±0.7

LfF 80.2 ±0.3 73.1 ±1.6 80.5 ±0.3 77.2 ±1.3 80.1 ±0.3 78.8 ±0.3 80.3 ±0.6 80.1 ±0.1 90.6 ±0.6 8.3 ±1.5

LISA 89.5 ±0.4 84.1 ±0.4 89.6 ±0.4 88.4 ±0.3 89.5 ±0.5 88.8 ±0.6 88.5 ±0.3 89.5 ±0.5 96.0 ±0.1 25.4 ±0.2

MMD 89.4 ±0.1 85.9 ±0.7 89.5 ±0.2 88.3 ±0.2 89.3 ±0.1 88.4 ±0.1 89.4 ±0.0 89.2 ±0.1 95.4 ±0.3 3.2 ±0.3

ReSample 91.2 ±0.1 85.6 ±0.4 91.1 ±0.1 90.8 ±0.1 91.1 ±0.1 90.5 ±0.1 90.0 ±0.2 91.1 ±0.1 97.4 ±0.1 5.2 ±0.2

ReWeight 91.7 ±0.4 85.6 ±0.4 91.8 ±0.4 90.2 ±0.6 91.7 ±0.3 91.1 ±0.3 90.6 ±0.5 91.6 ±0.3 97.5 ±0.1 4.2 ±0.2

SqrtReWeight 91.5 ±0.2 84.6 ±0.7 91.5 ±0.2 89.7 ±0.2 91.5 ±0.2 91.1 ±0.2 89.7 ±0.3 91.6 ±0.2 97.7 ±0.0 3.6 ±0.6

CBLoss 91.7 ±0.4 85.5 ±0.4 91.8 ±0.4 90.2 ±0.7 91.6 ±0.3 91.1 ±0.3 90.6 ±0.4 91.6 ±0.3 97.5 ±0.1 4.1 ±0.2

Focal 91.7 ±0.2 81.5 ±0.0 91.7 ±0.2 91.1 ±0.6 91.7 ±0.2 91.2 ±0.2 89.5 ±0.2 91.7 ±0.2 97.7 ±0.0 5.2 ±1.6

LDAM 91.5 ±0.1 83.6 ±0.4 91.5 ±0.1 90.7 ±0.3 91.5 ±0.1 90.9 ±0.1 89.8 ±0.1 91.5 ±0.1 97.5 ±0.1 10.8 ±0.6

BSoftmax 91.6 ±0.2 83.1 ±0.7 91.6 ±0.2 89.8 ±0.3 91.6 ±0.2 91.2 ±0.2 89.4 ±0.3 91.7 ±0.1 97.7 ±0.0 4.0 ±0.6

DFR 88.4 ±0.3 85.4 ±0.4 88.4 ±0.3 86.8 ±0.3 88.4 ±0.3 87.8 ±0.4 87.7 ±0.3 88.5 ±0.3 95.6 ±0.1 5.7 ±0.2

CRT 91.3 ±0.2 84.1 ±0.4 91.3 ±0.2 90.2 ±0.2 91.3 ±0.2 90.8 ±0.2 89.6 ±0.2 91.3 ±0.2 97.3 ±0.0 7.4 ±0.1

ReWeightCRT 91.2 ±0.1 85.6 ±0.4 91.1 ±0.1 90.1 ±0.1 91.2 ±0.1 90.7 ±0.0 89.8 ±0.1 91.2 ±0.0 96.8 ±0.1 7.8 ±0.1

E.1.6. IMAGENETBG

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 88.4 ±0.1 81.0 ±0.9 88.5 ±0.1 80.4 ±0.1 88.4 ±0.1 81.3 ±0.1 88.4 ±0.1 88.4 ±0.1 99.0 ±0.0 5.8 ±0.2

Mixup 88.5 ±0.3 82.4 ±0.3 88.7 ±0.2 80.4 ±1.3 88.5 ±0.3 81.9 ±0.8 88.5 ±0.3 88.5 ±0.3 98.8 ±0.1 3.3 ±1.0

GroupDRO 87.3 ±0.2 78.2 ±0.3 87.5 ±0.2 77.9 ±1.1 87.3 ±0.2 80.0 ±0.9 87.3 ±0.2 87.3 ±0.2 98.9 ±0.0 4.3 ±0.5

IRM 88.7 ±0.1 81.3 ±0.3 88.8 ±0.1 81.6 ±0.2 88.7 ±0.1 81.7 ±0.1 88.7 ±0.1 88.7 ±0.1 99.1 ±0.0 5.2 ±0.1

CVaRDRO 88.2 ±0.1 80.7 ±1.1 88.4 ±0.1 78.6 ±1.9 88.3 ±0.1 80.7 ±0.5 88.2 ±0.1 88.2 ±0.1 99.0 ±0.0 4.9 ±0.4

JTT 87.2 ±0.1 80.5 ±0.3 87.5 ±0.2 78.0 ±0.7 87.2 ±0.1 80.2 ±0.6 87.2 ±0.1 87.2 ±0.1 98.9 ±0.0 2.4 ±0.5

LfF 85.3 ±0.3 76.7 ±0.5 85.6 ±0.3 74.0 ±2.2 85.3 ±0.3 75.8 ±1.3 85.3 ±0.3 85.3 ±0.3 98.5 ±0.0 2.6 ±0.4

LISA 86.2 ±0.3 76.1 ±0.8 86.3 ±0.3 75.5 ±1.0 86.2 ±0.3 77.1 ±0.5 86.2 ±0.3 86.2 ±0.3 98.3 ±0.1 4.2 ±0.2

MMD 88.2 ±0.2 80.8 ±0.5 88.4 ±0.2 80.0 ±1.1 88.2 ±0.2 80.7 ±0.3 88.2 ±0.2 88.2 ±0.2 99.0 ±0.0 5.8 ±0.2

ReSample 88.5 ±0.2 81.0 ±0.4 88.7 ±0.2 79.9 ±1.0 88.5 ±0.2 81.5 ±0.4 88.5 ±0.2 88.5 ±0.2 99.0 ±0.0 6.0 ±0.2

ReWeight 88.4 ±0.1 81.0 ±0.9 88.5 ±0.1 80.4 ±0.1 88.4 ±0.1 81.3 ±0.1 88.4 ±0.1 88.4 ±0.1 99.0 ±0.0 5.8 ±0.2

SqrtReWeight 88.3 ±0.1 80.1 ±0.2 88.4 ±0.1 80.5 ±0.5 88.3 ±0.1 80.9 ±0.4 88.3 ±0.1 88.3 ±0.1 99.0 ±0.0 5.3 ±0.3

CBLoss 88.4 ±0.1 81.0 ±0.9 88.5 ±0.1 80.4 ±0.1 88.4 ±0.1 81.3 ±0.1 88.4 ±0.1 88.4 ±0.1 99.0 ±0.0 5.8 ±0.2

Focal 87.2 ±0.1 78.4 ±0.1 87.3 ±0.2 78.7 ±0.7 87.2 ±0.1 78.9 ±0.5 87.2 ±0.1 87.2 ±0.1 98.8 ±0.0 4.4 ±1.1

LDAM 88.0 ±0.1 80.1 ±0.3 88.3 ±0.0 80.1 ±0.6 88.1 ±0.1 81.4 ±0.3 88.0 ±0.1 88.0 ±0.1 98.7 ±0.1 48.3 ±1.9

BSoftmax 88.3 ±0.1 80.7 ±0.7 88.4 ±0.1 79.4 ±0.9 88.3 ±0.1 80.8 ±0.4 88.3 ±0.1 88.3 ±0.1 99.0 ±0.0 6.0 ±0.2

DFR 87.2 ±0.2 78.5 ±0.6 87.2 ±0.3 78.2 ±1.2 87.2 ±0.2 78.8 ±0.9 87.2 ±0.2 87.2 ±0.2 98.8 ±0.0 9.9 ±1.3

CRT 88.4 ±0.1 80.2 ±0.3 88.4 ±0.1 80.4 ±0.8 88.3 ±0.1 80.7 ±0.3 88.4 ±0.1 88.4 ±0.1 99.0 ±0.0 4.5 ±0.5

ReWeightCRT 88.6 ±0.0 79.4 ±0.2 88.7 ±0.0 81.6 ±0.7 88.6 ±0.0 81.5 ±0.2 88.6 ±0.0 88.6 ±0.0 99.1 ±0.0 4.5 ±0.8

E.1.7. NICO++

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 84.5 ±0.5 37.6 ±2.0 85.5 ±0.3 54.5 ±2.8 84.6 ±0.4 65.8 ±1.1 84.0 ±0.5 84.3 ±0.5 99.3 ±0.0 10.4 ±0.1

Mixup 84.0 ±0.6 42.7 ±1.4 85.2 ±0.5 53.0 ±1.6 84.2 ±0.6 63.4 ±1.1 83.7 ±0.6 83.9 ±0.6 99.3 ±0.0 2.5 ±1.0

GroupDRO 83.2 ±0.4 37.8 ±1.8 84.5 ±0.4 55.5 ±1.0 83.3 ±0.4 63.6 ±0.6 82.7 ±0.4 83.0 ±0.4 99.3 ±0.0 8.7 ±0.6

IRM 84.4 ±0.7 40.0 ±0.0 85.1 ±0.5 63.0 ±2.0 84.4 ±0.6 65.9 ±1.2 83.9 ±0.7 84.3 ±0.7 99.4 ±0.0 7.0 ±1.4

CVaRDRO 83.6 ±0.6 36.7 ±2.7 85.0 ±0.4 55.7 ±2.3 83.8 ±0.6 64.3 ±1.5 83.2 ±0.6 83.5 ±0.6 99.4 ±0.0 7.9 ±1.1

JTT 85.1 ±0.3 40.0 ±0.0 86.0 ±0.3 54.8 ±2.7 85.2 ±0.3 65.4 ±1.8 84.7 ±0.3 85.0 ±0.3 99.4 ±0.0 10.2 ±0.2

LfF 78.3 ±0.4 30.4 ±1.3 80.7 ±0.2 45.6 ±1.3 78.6 ±0.4 52.5 ±0.6 78.0 ±0.3 78.3 ±0.4 99.2 ±0.0 1.4 ±0.3

LISA 84.7 ±0.3 42.7 ±2.2 85.7 ±0.2 54.7 ±1.4 84.8 ±0.3 65.4 ±1.2 84.2 ±0.3 84.6 ±0.3 99.2 ±0.0 11.9 ±1.6

MMD 84.9 ±0.1 40.7 ±0.5 85.8 ±0.1 57.0 ±1.2 85.0 ±0.1 66.3 ±0.7 84.5 ±0.1 84.8 ±0.1 99.4 ±0.0 9.2 ±0.4

ReSample 84.8 ±0.3 40.0 ±0.0 85.8 ±0.3 58.6 ±2.6 84.9 ±0.4 65.4 ±1.7 84.4 ±0.4 84.7 ±0.4 99.4 ±0.0 8.8 ±0.2

ReWeight 85.7 ±0.2 41.9 ±1.6 86.6 ±0.1 57.3 ±3.8 85.8 ±0.1 65.0 ±1.7 85.3 ±0.2 85.6 ±0.2 99.4 ±0.0 9.8 ±0.3

SqrtReWeight 84.7 ±0.7 40.0 ±0.0 85.7 ±0.4 57.5 ±1.3 84.8 ±0.6 65.7 ±1.5 84.2 ±0.6 84.6 ±0.7 99.4 ±0.0 8.1 ±1.1

CBLoss 84.5 ±0.4 37.8 ±1.8 85.2 ±0.5 61.1 ±0.8 84.5 ±0.5 66.1 ±1.4 84.0 ±0.4 84.3 ±0.4 99.4 ±0.0 8.3 ±1.2

Focal 83.8 ±1.4 36.7 ±2.7 85.0 ±1.1 54.2 ±3.7 83.9 ±1.4 63.8 ±3.0 83.3 ±1.4 83.6 ±1.4 99.4 ±0.1 4.8 ±0.7

LDAM 82.8 ±0.4 42.0 ±0.9 84.4 ±0.3 51.1 ±2.7 83.0 ±0.4 62.0 ±1.6 82.4 ±0.4 82.7 ±0.4 98.7 ±0.1 68.7 ±2.2

BSoftmax 84.0 ±0.5 40.4 ±0.3 84.8 ±0.3 61.4 ±1.1 84.1 ±0.4 65.2 ±1.1 83.7 ±0.5 84.0 ±0.5 99.4 ±0.0 7.0 ±1.2

DFR 75.6 ±0.5 23.7 ±0.7 77.4 ±0.4 37.7 ±3.2 75.8 ±0.4 46.0 ±2.6 75.3 ±0.5 75.5 ±0.5 98.6 ±0.0 19.4 ±0.5

CRT 85.2 ±0.3 43.3 ±2.7 85.7 ±0.2 64.6 ±0.6 85.2 ±0.3 69.2 ±0.3 84.7 ±0.3 85.0 ±0.3 99.4 ±0.0 7.9 ±0.6

ReWeightCRT 85.0 ±0.1 23.3 ±1.4 85.5 ±0.1 61.6 ±0.3 85.0 ±0.1 67.0 ±0.1 84.3 ±0.1 84.8 ±0.1 99.3 ±0.0 3.6 ±0.3
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Change is Hard: A Closer Look at Subpopulation Shift

E.1.8. MIMIC-CXR

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 78.2 ±0.1 68.9 ±0.3 77.3 ±0.1 71.1 ±0.1 77.5 ±0.1 73.6 ±0.1 77.2 ±0.0 77.8 ±0.1 85.2 ±0.1 3.4 ±0.2

Mixup 78.3 ±0.0 68.1 ±0.9 77.4 ±0.0 71.6 ±0.2 77.5 ±0.0 73.4 ±0.1 77.2 ±0.1 77.8 ±0.1 85.1 ±0.1 3.6 ±0.2

GroupDRO 76.9 ±0.3 74.4 ±0.2 76.1 ±0.2 68.7 ±0.5 76.3 ±0.2 72.7 ±0.1 76.7 ±0.1 76.9 ±0.2 83.7 ±0.1 4.7 ±0.1

IRM 78.2 ±0.0 67.7 ±0.2 77.3 ±0.0 71.4 ±0.1 77.5 ±0.0 73.5 ±0.1 77.2 ±0.1 77.8 ±0.1 85.2 ±0.1 3.4 ±0.2

CVaRDRO 78.3 ±0.1 68.6 ±0.4 77.4 ±0.1 71.1 ±0.3 77.7 ±0.1 73.9 ±0.0 77.4 ±0.0 78.1 ±0.0 85.1 ±0.0 7.8 ±0.3

JTT 78.1 ±0.0 67.3 ±0.7 77.1 ±0.0 71.4 ±0.2 77.3 ±0.0 73.2 ±0.1 77.0 ±0.0 77.5 ±0.1 84.9 ±0.0 3.4 ±0.1

LfF 73.3 ±0.9 62.6 ±2.6 72.3 ±1.0 65.2 ±1.0 72.4 ±1.0 67.7 ±1.4 72.4 ±1.1 72.8 ±1.1 79.3 ±1.3 12.3 ±0.7

LISA 77.9 ±0.1 70.4 ±0.2 77.0 ±0.1 70.6 ±0.3 77.2 ±0.1 73.3 ±0.1 77.2 ±0.1 77.6 ±0.1 84.9 ±0.1 4.0 ±0.6

MMD 76.8 ±0.2 68.0 ±0.6 75.9 ±0.2 70.2 ±0.4 76.0 ±0.2 71.5 ±0.3 76.0 ±0.3 76.2 ±0.2 83.4 ±0.2 8.8 ±2.0

ReSample 78.1 ±0.1 71.9 ±0.2 77.3 ±0.1 70.7 ±0.3 77.5 ±0.1 73.8 ±0.2 77.6 ±0.1 78.0 ±0.1 85.0 ±0.1 5.5 ±0.8

ReWeight 78.2 ±0.1 71.6 ±0.3 77.4 ±0.1 70.9 ±0.3 77.6 ±0.1 73.8 ±0.1 77.6 ±0.1 78.0 ±0.1 85.1 ±0.1 4.2 ±0.2

SqrtReWeight 78.2 ±0.2 70.3 ±0.2 77.3 ±0.2 71.0 ±0.3 77.5 ±0.2 73.6 ±0.2 77.3 ±0.3 77.9 ±0.2 85.2 ±0.2 4.1 ±0.2

CBLoss 78.4 ±0.1 70.7 ±0.1 77.5 ±0.1 71.6 ±0.2 77.7 ±0.1 73.8 ±0.1 77.6 ±0.1 78.0 ±0.1 85.2 ±0.0 4.1 ±0.4

Focal 78.3 ±0.1 68.7 ±0.4 77.4 ±0.1 70.8 ±0.2 77.6 ±0.1 73.9 ±0.0 77.4 ±0.1 78.1 ±0.0 85.4 ±0.0 10.1 ±0.6

LDAM 77.7 ±0.6 68.6 ±1.1 76.8 ±0.6 70.4 ±0.9 77.0 ±0.6 73.1 ±0.7 76.9 ±0.6 77.4 ±0.6 84.6 ±0.6 22.0 ±0.2

BSoftmax 77.8 ±0.2 68.4 ±0.2 76.9 ±0.2 70.2 ±0.3 77.1 ±0.2 73.3 ±0.2 77.0 ±0.2 77.6 ±0.2 84.9 ±0.2 5.0 ±0.2

DFR 78.0 ±0.0 68.9 ±0.0 77.1 ±0.0 70.9 ±0.0 77.3 ±0.0 73.3 ±0.0 77.0 ±0.0 77.6 ±0.0 84.9 ±0.0 7.0 ±0.1

CRT 78.5 ±0.0 71.0 ±0.0 77.6 ±0.0 71.5 ±0.1 77.9 ±0.0 74.0 ±0.0 77.7 ±0.0 78.2 ±0.0 85.4 ±0.0 4.1 ±0.1

ReWeightCRT 78.5 ±0.0 70.8 ±0.0 77.6 ±0.0 71.5 ±0.1 77.8 ±0.0 73.9 ±0.0 77.7 ±0.0 78.2 ±0.0 85.4 ±0.0 4.3 ±0.0

E.1.9. MIMICNOTES

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 91.1 ±0.1 18.7 ±2.7 77.6 ±0.9 63.1 ±2.0 63.2 ±1.6 31.2 ±3.1 59.7 ±1.3 59.9 ±1.3 85.3 ±0.1 2.1 ±0.8

Mixup 91.1 ±0.0 22.7 ±3.2 76.8 ±0.7 61.2 ±1.6 65.1 ±1.6 35.0 ±3.2 61.5 ±1.6 61.7 ±1.7 85.4 ±0.0 2.0 ±0.8

GroupDRO 76.1 ±0.7 72.6 ±0.5 61.3 ±0.1 25.7 ±0.4 61.8 ±0.4 38.6 ±0.3 76.2 ±0.3 76.5 ±0.2 85.0 ±0.1 22.2 ±0.6

IRM 91.0 ±0.0 22.5 ±2.5 76.3 ±0.5 60.1 ±1.2 65.2 ±1.2 35.3 ±2.4 61.5 ±1.2 61.7 ±1.2 85.3 ±0.0 1.9 ±0.2

CVaRDRO 90.9 ±0.1 23.0 ±4.6 76.5 ±1.2 60.6 ±2.9 64.6 ±2.4 34.0 ±4.8 61.4 ±2.3 61.6 ±2.4 85.1 ±0.1 4.2 ±1.6

JTT 71.3 ±3.7 65.9 ±2.8 60.3 ±0.7 23.4 ±1.9 58.6 ±2.3 36.0 ±1.8 75.5 ±0.4 75.6 ±0.4 84.9 ±0.1 27.5 ±3.9

LfF 84.0 ±1.2 62.7 ±2.1 64.6 ±0.7 33.6 ±1.6 67.1 ±0.8 43.6 ±0.8 74.7 ±0.4 74.7 ±0.5 85.1 ±0.0 12.5 ±1.2

LISA 85.2 ±1.4 58.0 ±3.1 65.5 ±0.9 35.7 ±2.1 68.0 ±0.9 44.5 ±0.9 74.0 ±0.6 74.2 ±0.7 85.3 ±0.0 15.5 ±1.5

MMD 91.2 ±0.1 23.0 ±0.5 76.8 ±0.3 61.0 ±0.5 65.9 ±0.5 36.5 ±0.9 61.9 ±0.4 62.1 ±0.4 85.3 ±0.0 1.4 ±0.1

ReSample 80.4 ±1.8 68.0 ±3.0 63.0 ±0.8 29.7 ±1.8 64.9 ±1.2 41.6 ±1.2 75.8 ±0.4 76.1 ±0.4 85.3 ±0.0 18.8 ±2.2

ReWeight 84.8 ±0.8 60.5 ±2.5 65.2 ±0.6 34.8 ±1.3 67.8 ±0.5 44.4 ±0.5 74.5 ±0.5 74.7 ±0.5 85.2 ±0.0 14.1 ±0.9

SqrtReWeight 90.1 ±0.3 37.2 ±4.5 71.8 ±1.1 49.9 ±2.5 69.1 ±0.9 43.7 ±1.9 67.6 ±1.7 67.8 ±1.7 85.2 ±0.1 4.2 ±1.0

CBLoss 83.2 ±1.2 63.3 ±2.2 64.1 ±0.6 32.5 ±1.5 66.6 ±0.8 43.0 ±0.8 74.8 ±0.4 74.9 ±0.5 85.2 ±0.1 14.7 ±1.3

Focal 91.0 ±0.0 19.1 ±2.3 77.1 ±0.6 62.1 ±1.4 63.6 ±1.3 31.9 ±2.6 59.9 ±1.1 60.2 ±1.1 85.3 ±0.1 8.1 ±0.7

LDAM 90.6 ±0.1 5.3 ±2.4 84.4 ±0.8 78.1 ±1.7 52.5 ±2.1 10.0 ±4.1 52.7 ±1.2 52.7 ±1.2 84.9 ±0.1 28.9 ±1.0

BSoftmax 76.9 ±0.9 73.1 ±1.0 61.7 ±0.2 26.5 ±0.6 62.5 ±0.5 39.3 ±0.4 76.6 ±0.2 76.7 ±0.2 85.4 ±0.0 23.5 ±1.1

DFR 43.1 ±19.8 6.7 ±5.5 51.9 ±2.8 7.3 ±3.0 28.3 ±9.1 7.2 ±5.8 53.4 ±2.8 53.4 ±2.8 84.5 ±0.0 40.1 ±0.3

CRT 82.1 ±3.5 56.2 ±13.8 65.9 ±3.5 36.8 ±8.2 63.4 ±0.5 37.5 ±1.4 70.9 ±4.0 71.0 ±4.0 84.3 ±0.0 28.3 ±4.3

ReWeightCRT 83.5 ±2.6 58.7 ±6.8 64.6 ±1.5 33.9 ±3.5 66.1 ±1.5 42.0 ±1.2 72.9 ±1.5 73.0 ±1.5 84.3 ±0.0 28.9 ±2.2

E.1.10. CXRMULTISITE
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 93.1 ±0.1 0.3 ±0.1

Mixup 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 92.9 ±0.1 0.3 ±0.0

GroupDRO 84.0 ±10.9 19.3 ±13.7 55.7 ±2.0 12.7 ±4.1 51.2 ±5.0 12.4 ±2.9 55.9 ±2.5 59.7 ±2.5 79.4 ±2.9 29.3 ±6.3

IRM 77.5 ±17.0 8.8 ±7.2 49.6 ±0.3 0.7 ±0.5 42.4 ±5.9 1.3 ±1.0 51.1 ±0.9 51.8 ±1.5 64.2 ±7.3 47.3 ±1.1

CVaRDRO 98.3 ±0.0 0.0 ±0.0 61.2 ±4.9 24.0 ±9.8 50.7 ±0.7 2.2 ±1.5 50.2 ±0.2 50.6 ±0.4 93.0 ±0.0 0.9 ±0.3

JTT 94.1 ±0.9 0.0 ±0.0 59.0 ±0.7 18.5 ±1.4 62.9 ±0.8 28.9 ±1.2 55.2 ±0.9 82.2 ±2.4 93.2 ±0.1 6.4 ±0.5

LfF 9.9 ±6.7 5.4 ±4.4 17.4 ±13.5 0.6 ±0.5 8.5 ±5.6 1.2 ±1.0 50.5 ±0.4 51.7 ±1.4 60.6 ±1.6 82.6 ±12.8

LISA 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 90.3 ±0.0 8.9 ±1.6

MMD 87.4 ±8.9 12.8 ±10.4 49.6 ±0.4 0.8 ±0.6 47.0 ±2.1 1.4 ±1.2 50.6 ±0.5 52.0 ±1.7 56.5 ±1.9 15.4 ±12.5

ReSample 96.4 ±0.3 1.1 ±0.5 57.9 ±0.3 17.1 ±0.5 59.8 ±0.1 21.4 ±0.3 54.0 ±0.1 63.4 ±1.2 89.7 ±0.1 4.1 ±0.2

ReWeight 88.0 ±5.3 19.4 ±7.9 52.9 ±0.7 6.9 ±1.4 52.0 ±2.2 10.8 ±2.1 56.7 ±1.7 64.1 ±4.4 75.7 ±2.4 37.2 ±4.1

SqrtReWeight 98.0 ±0.1 0.0 ±0.0 65.5 ±0.3 32.4 ±0.6 60.7 ±1.8 22.5 ±3.7 53.4 ±0.7 58.9 ±2.1 92.9 ±0.1 4.1 ±0.9

CBLoss 98.0 ±0.0 0.0 ±0.0 64.7 ±0.3 30.9 ±0.6 59.2 ±1.0 19.4 ±1.9 52.5 ±0.3 56.9 ±1.0 92.5 ±0.0 6.0 ±0.8

Focal 98.3 ±0.0 0.0 ±0.0 55.4 ±5.1 12.5 ±10.2 49.7 ±0.1 0.3 ±0.2 50.0 ±0.0 50.1 ±0.1 93.2 ±0.0 11.5 ±0.6

LDAM 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 92.9 ±0.0 33.3 ±0.0

BSoftmax 89.1 ±0.2 0.5 ±0.1 56.2 ±0.1 12.5 ±0.2 58.1 ±0.2 22.0 ±0.3 50.4 ±0.0 90.0 ±0.1 92.9 ±0.1 19.9 ±1.3

DFR 79.3 ±8.8 22.2 ±9.9 54.9 ±2.7 10.9 ±5.6 48.2 ±3.5 9.0 ±1.4 55.5 ±1.8 63.9 ±4.7 78.9 ±5.3 41.5 ±1.9

CRT 87.0 ±2.7 17.2 ±6.5 54.2 ±1.4 9.1 ±2.8 54.2 ±2.9 15.5 ±4.2 58.2 ±1.5 73.4 ±3.0 81.5 ±4.1 35.1 ±3.4

ReWeightCRT 82.5 ±6.3 27.8 ±11.4 56.0 ±3.5 13.0 ±7.1 51.8 ±4.1 13.6 ±4.5 58.7 ±2.1 66.8 ±2.8 81.1 ±4.8 29.9 ±8.6

E.1.11. CHEXPERT

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 86.9 ±0.5 50.2 ±3.8 66.3 ±0.3 37.6 ±0.8 68.6 ±0.2 44.6 ±0.5 72.5 ±1.1 72.8 ±1.1 84.8 ±0.3 8.6 ±0.4

Mixup 81.9 ±6.2 37.4 ±3.5 63.5 ±5.0 33.9 ±9.3 62.5 ±5.9 35.7 ±7.6 63.8 ±4.7 64.1 ±4.6 76.1 ±8.5 16.1 ±9.0

GroupDRO 78.9 ±0.3 74.5 ±0.2 62.8 ±0.1 28.3 ±0.3 64.4 ±0.2 41.7 ±0.3 78.4 ±0.1 79.0 ±0.1 86.0 ±0.1 21.1 ±1.0

IRM 89.8 ±0.3 34.4 ±1.7 70.1 ±0.7 46.5 ±1.6 68.6 ±0.1 42.7 ±0.3 67.5 ±0.6 67.5 ±0.6 85.8 ±0.3 4.4 ±1.2

CVaRDRO 66.2 ±2.7 57.9 ±0.4 56.4 ±0.5 17.7 ±1.0 52.9 ±1.6 27.9 ±1.1 66.1 ±0.6 67.0 ±0.6 73.0 ±0.6 40.4 ±0.0

JTT 73.0 ±1.9 61.3 ±4.9 58.6 ±1.1 21.6 ±1.7 57.9 ±1.7 32.8 ±2.4 69.8 ±2.6 71.0 ±2.5 77.6 ±2.3 26.3 ±2.0

LfF 22.3 ±10.2 13.7 ±9.8 37.3 ±5.8 9.0 ±0.7 19.5 ±8.3 8.8 ±3.9 46.2 ±2.9 46.2 ±3.1 30.5 ±10.1 65.7 ±10.2

LISA 79.2 ±0.8 75.6 ±0.6 63.1 ±0.4 28.8 ±0.8 64.8 ±0.6 42.3 ±0.7 78.8 ±0.3 79.4 ±0.1 86.5 ±0.1 21.5 ±1.2

MMD 86.9 ±0.5 50.2 ±3.8 66.3 ±0.3 37.6 ±0.8 68.6 ±0.2 44.6 ±0.5 72.5 ±1.1 72.8 ±1.1 84.8 ±0.3 8.6 ±0.4

ReSample 79.0 ±0.8 75.3 ±0.5 62.8 ±0.3 28.4 ±0.7 64.5 ±0.6 41.7 ±0.7 78.4 ±0.0 78.7 ±0.1 85.7 ±0.2 20.1 ±1.4

ReWeight 78.7 ±0.4 75.7 ±0.1 62.7 ±0.1 28.2 ±0.3 64.3 ±0.3 41.6 ±0.3 78.5 ±0.1 78.9 ±0.0 86.3 ±0.0 20.9 ±0.5

SqrtReWeight 82.1 ±1.5 70.0 ±2.3 64.3 ±0.7 31.8 ±1.7 66.7 ±1.1 44.1 ±1.2 77.7 ±0.5 78.3 ±0.5 86.5 ±0.1 18.8 ±2.2

CBLoss 79.1 ±0.1 74.7 ±0.3 62.7 ±0.0 28.3 ±0.1 64.3 ±0.1 41.4 ±0.1 77.9 ±0.0 78.4 ±0.1 85.7 ±0.1 22.1 ±0.5

Focal 89.3 ±0.3 42.1 ±4.0 69.6 ±0.4 44.7 ±1.1 69.8 ±0.4 45.5 ±1.0 70.4 ±1.1 70.4 ±1.3 86.5 ±0.1 16.1 ±1.7

LDAM 90.1 ±0.0 36.4 ±0.3 70.6 ±0.1 47.5 ±0.1 68.9 ±0.2 43.3 ±0.3 67.3 ±0.3 67.6 ±0.2 86.0 ±0.1 32.3 ±0.3

BSoftmax 79.1 ±0.4 75.4 ±0.5 63.0 ±0.2 28.6 ±0.4 64.7 ±0.3 42.1 ±0.4 78.4 ±0.2 79.2 ±0.1 86.4 ±0.1 23.9 ±0.2

DFR 78.2 ±0.4 71.7 ±0.2 62.4 ±0.2 27.6 ±0.4 63.8 ±0.3 40.9 ±0.3 77.5 ±0.1 78.6 ±0.0 85.5 ±0.0 39.5 ±0.1

CRT 79.1 ±0.2 74.6 ±0.3 62.8 ±0.1 28.4 ±0.2 64.4 ±0.2 41.6 ±0.3 78.0 ±0.2 78.6 ±0.2 85.8 ±0.2 21.2 ±0.3

ReWeightCRT 80.4 ±0.0 76.0 ±0.1 63.5 ±0.0 29.8 ±0.1 65.6 ±0.1 43.0 ±0.1 78.8 ±0.1 79.1 ±0.1 86.3 ±0.0 20.2 ±0.1

E.1.12. LIVING17

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 28.2 ±1.5 8.7 ±1.0 29.5 ±1.1 9.0 ±1.2 27.8 ±1.3 10.0 ±1.5 28.2 ±1.5 28.2 ±1.5 77.9 ±1.2 53.5 ±2.5

Mixup 29.8 ±1.8 9.3 ±1.4 32.5 ±2.3 9.5 ±1.3 29.8 ±1.8 10.1 ±1.5 29.8 ±1.8 29.8 ±1.8 78.3 ±1.2 34.6 ±1.7

GroupDRO 27.2 ±1.5 9.7 ±0.7 29.8 ±0.7 7.8 ±0.9 27.3 ±1.1 9.1 ±0.8 27.2 ±1.5 27.2 ±1.5 77.8 ±0.6 55.8 ±0.5

IRM 28.2 ±1.5 8.7 ±1.0 29.5 ±1.1 9.0 ±1.2 27.8 ±1.3 10.0 ±1.5 28.2 ±1.5 28.2 ±1.5 77.9 ±1.2 53.5 ±2.5

CVaRDRO 28.3 ±0.7 8.3 ±0.7 30.0 ±0.7 7.9 ±0.2 27.9 ±0.8 8.0 ±0.2 28.3 ±0.7 28.3 ±0.7 81.0 ±0.1 33.2 ±4.1

JTT 28.8 ±1.1 8.7 ±1.0 29.8 ±1.8 8.3 ±1.5 28.3 ±1.4 9.1 ±1.6 28.8 ±1.1 28.8 ±1.1 80.2 ±1.1 38.0 ±5.8

LfF 26.2 ±1.1 8.7 ±0.3 28.3 ±0.9 8.8 ±1.1 26.0 ±1.1 9.3 ±0.6 26.2 ±1.1 26.2 ±1.1 76.6 ±0.7 56.4 ±3.3

LISA 29.8 ±0.9 11.3 ±0.3 32.0 ±0.4 9.4 ±0.4 29.9 ±0.7 10.4 ±0.3 29.8 ±0.9 29.8 ±0.9 78.2 ±0.6 30.3 ±0.6

MMD 26.6 ±1.8 8.3 ±0.3 28.9 ±1.1 9.5 ±1.1 26.5 ±1.5 9.5 ±0.9 26.6 ±1.8 26.6 ±1.8 78.5 ±1.0 48.4 ±6.7

ReSample 30.7 ±2.1 10.3 ±2.3 33.1 ±1.2 10.5 ±1.3 30.7 ±2.0 11.2 ±1.4 30.7 ±2.1 30.7 ±2.1 80.9 ±0.4 47.5 ±3.1

ReWeight 28.2 ±1.5 8.7 ±1.0 29.5 ±1.1 9.0 ±1.2 27.8 ±1.3 10.0 ±1.5 28.2 ±1.5 28.2 ±1.5 77.9 ±1.2 53.5 ±2.5

SqrtReWeight 28.2 ±1.5 8.7 ±1.0 29.5 ±1.1 9.0 ±1.2 27.8 ±1.3 10.0 ±1.5 28.2 ±1.5 28.2 ±1.5 77.9 ±1.2 53.5 ±2.5

CBLoss 28.2 ±1.5 8.7 ±1.0 29.5 ±1.1 9.0 ±1.2 27.8 ±1.3 10.0 ±1.5 28.2 ±1.5 28.2 ±1.5 77.9 ±1.2 53.5 ±2.5

Focal 28.0 ±1.2 8.0 ±0.5 28.8 ±1.3 7.8 ±1.1 27.1 ±1.0 8.3 ±1.0 28.0 ±1.2 28.0 ±1.2 79.5 ±1.1 48.6 ±1.0

LDAM 24.7 ±0.8 7.0 ±0.5 28.3 ±0.6 6.0 ±0.4 24.5 ±0.6 6.7 ±0.3 24.7 ±0.8 24.7 ±0.8 78.1 ±1.2 9.7 ±2.7

BSoftmax 27.5 ±0.8 8.7 ±0.7 28.6 ±1.0 8.5 ±0.7 27.0 ±0.8 9.4 ±1.0 27.5 ±0.8 27.5 ±0.8 78.1 ±1.0 54.7 ±3.1

DFR 29.0 ±0.2 10.0 ±0.0 31.6 ±0.3 10.8 ±0.5 28.8 ±0.2 11.6 ±0.5 29.0 ±0.2 29.0 ±0.2 82.8 ±0.0 3.4 ±0.4

CRT 33.9 ±0.1 10.7 ±0.3 34.5 ±0.2 10.0 ±0.2 33.3 ±0.1 10.3 ±0.2 33.9 ±0.1 33.9 ±0.1 83.2 ±0.1 32.8 ±1.4

ReWeightCRT 33.7 ±0.1 7.7 ±0.3 33.9 ±0.1 15.3 ±0.6 33.1 ±0.1 11.5 ±0.4 33.7 ±0.1 33.7 ±0.1 82.5 ±0.0 41.4 ±0.2
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E.1.13. OVERALL

Algorithm Waterbirds CelebA CivilComments MultiNLI MetaShift ImageNetBG NICO++ MIMIC-CXR MIMICNotes CXRMultisite CheXpert Living17 Avg

ERM 69.1 ±4.7 62.6 ±1.5 63.7 ±1.1 66.8 ±0.5 82.6 ±0.4 81.0 ±0.9 37.6 ±2.0 68.9 ±0.3 83.1 ±0.1 50.1 ±0.9 50.2 ±3.8 28.2 ±1.5 62.0
Mixup 78.2 ±0.4 57.8 ±0.8 66.1 ±1.3 68.5 ±0.6 81.0 ±0.8 82.4 ±0.3 42.7 ±1.4 68.1 ±0.9 82.0 ±0.4 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 62.0
GroupDRO 78.6 ±1.0 89.0 ±0.7 70.6 ±1.2 76.0 ±0.7 85.6 ±0.4 78.2 ±0.3 37.8 ±1.8 74.4 ±0.2 83.7 ±0.1 59.6 ±1.0 74.5 ±0.2 27.2 ±1.5 69.6
IRM 74.5 ±1.5 63.0 ±2.5 63.2 ±0.8 63.6 ±1.3 83.0 ±0.1 81.3 ±0.3 40.0 ±0.0 67.7 ±0.2 83.2 ±0.2 47.9 ±1.1 34.4 ±1.7 28.2 ±1.5 60.8
CVaRDRO 75.5 ±2.2 64.1 ±2.8 68.7 ±1.3 63.0 ±1.5 84.6 ±0.0 80.7 ±1.1 36.7 ±2.7 68.6 ±0.4 81.9 ±0.1 50.2 ±0.9 57.9 ±0.4 28.3 ±0.7 63.3
JTT 72.0 ±0.3 70.0 ±10.2 64.3 ±1.5 69.1 ±0.1 83.6 ±0.4 80.5 ±0.3 40.0 ±0.0 67.3 ±0.7 83.8 ±0.1 50.1 ±0.9 61.3 ±4.9 28.8 ±1.1 64.2
LfF 75.2 ±0.7 53.0 ±4.3 51.0 ±6.1 63.6 ±2.9 73.1 ±1.6 76.7 ±0.5 30.4 ±1.3 62.6 ±2.6 84.0 ±0.1 50.1 ±0.9 13.7 ±9.8 26.2 ±1.1 55.0
LISA 88.7 ±0.6 86.5 ±1.2 73.7 ±0.3 73.3 ±1.0 84.1 ±0.4 76.1 ±0.8 42.7 ±2.2 70.4 ±0.2 83.6 ±0.2 48.9 ±1.3 75.6 ±0.6 29.8 ±0.9 69.5
MMD 83.9 ±1.4 24.4 ±2.0 54.5 ±1.4 69.1 ±1.5 85.9 ±0.7 80.8 ±0.5 40.7 ±0.5 68.0 ±0.6 82.0 ±0.5 50.1 ±0.9 50.2 ±3.8 26.6 ±1.8 59.7
ReSample 77.7 ±1.2 87.4 ±0.8 73.3 ±0.5 72.3 ±0.8 85.6 ±0.4 81.0 ±0.4 40.0 ±0.0 71.9 ±0.2 83.9 ±0.1 59.0 ±1.1 75.3 ±0.5 30.7 ±2.1 69.8
ReWeight 86.9 ±0.7 89.7 ±0.2 72.5 ±0.0 68.8 ±0.4 85.6 ±0.4 81.0 ±0.9 41.9 ±1.6 71.6 ±0.3 83.6 ±0.3 64.2 ±0.7 75.7 ±0.1 28.2 ±1.5 70.8
SqrtReWeight 78.6 ±0.1 82.4 ±0.5 71.7 ±0.4 69.5 ±0.7 84.6 ±0.7 80.1 ±0.2 40.0 ±0.0 70.3 ±0.2 83.1 ±0.1 50.0 ±1.0 70.0 ±2.3 28.2 ±1.5 67.4
CBLoss 86.2 ±0.3 89.4 ±0.7 73.3 ±0.2 72.2 ±0.3 85.5 ±0.4 81.0 ±0.9 37.8 ±1.8 70.7 ±0.1 83.2 ±0.1 50.1 ±0.9 74.7 ±0.3 28.2 ±1.5 69.4
Focal 71.6 ±0.8 59.1 ±2.0 62.0 ±1.0 69.4 ±0.7 81.5 ±0.0 78.4 ±0.1 36.7 ±2.7 68.7 ±0.4 71.1 ±9.9 50.0 ±0.9 42.1 ±4.0 28.0 ±1.2 59.9
LDAM 71.0 ±1.8 59.6 ±2.4 37.4 ±8.1 69.6 ±1.6 83.6 ±0.4 80.1 ±0.3 42.0 ±0.9 68.6 ±1.1 81.0 ±0.3 50.0 ±0.0 36.4 ±0.3 24.7 ±0.8 58.7
BSoftmax 74.1 ±0.9 83.3 ±0.5 71.2 ±0.4 66.9 ±0.4 83.1 ±0.7 80.7 ±0.7 40.4 ±0.3 68.4 ±0.2 83.4 ±0.3 50.1 ±1.1 75.4 ±0.5 27.5 ±0.8 67.0
DFR 91.0 ±0.3 90.4 ±0.1 69.6 ±0.2 68.5 ±0.2 85.4 ±0.4 78.5 ±0.6 23.7 ±0.7 68.9 ±0.0 83.6 ±0.0 53.5 ±0.2 71.7 ±0.2 29.0 ±0.2 67.8
CRT 79.7 ±0.3 87.2 ±0.3 71.1 ±0.1 70.7 ±0.1 84.1 ±0.4 80.2 ±0.3 43.3 ±2.7 71.0 ±0.0 83.4 ±0.0 65.2 ±0.1 74.6 ±0.3 33.9 ±0.1 70.4
ReWeightCRT 78.4 ±0.1 87.2 ±0.3 71.0 ±0.1 69.0 ±0.2 85.6 ±0.4 79.4 ±0.2 23.3 ±1.4 70.8 ±0.0 83.4 ±0.0 60.9 ±0.8 76.0 ±0.1 33.7 ±0.1 68.2

E.2. Attributes Unknown in Training, but Known in Validation

E.2.1. WATERBIRDS

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 84.1 ±1.7 69.1 ±4.7 77.4 ±2.0 60.7 ±3.2 79.4 ±2.1 69.5 ±2.9 83.1 ±2.0 83.1 ±2.0 91.0 ±1.4 12.9 ±1.7

Mixup 89.5 ±0.4 78.2 ±0.4 83.9 ±0.6 71.6 ±1.3 85.9 ±0.4 78.8 ±0.6 88.9 ±0.3 88.9 ±0.3 94.7 ±0.2 7.0 ±0.6

GroupDRO 86.9 ±0.9 73.1 ±0.4 80.7 ±1.1 66.1 ±2.2 82.8 ±0.9 74.4 ±1.2 86.3 ±0.5 86.3 ±0.5 94.0 ±0.3 10.5 ±0.8

CVaRDRO 89.9 ±0.4 75.5 ±2.2 84.5 ±0.7 73.2 ±1.7 86.2 ±0.3 79.0 ±0.4 88.5 ±0.3 88.5 ±0.3 95.4 ±0.2 8.3 ±0.2

JTT 88.9 ±0.6 71.0 ±0.5 83.2 ±0.8 71.5 ±1.7 84.7 ±0.6 76.8 ±0.8 86.8 ±0.2 86.8 ±0.2 94.2 ±0.1 9.1 ±0.3

LfF 86.5 ±0.6 74.7 ±1.0 80.1 ±0.7 64.7 ±1.4 82.3 ±0.6 73.8 ±0.8 86.2 ±0.3 86.2 ±0.3 93.5 ±0.2 9.9 ±0.8

LISA 89.5 ±0.4 78.2 ±0.4 83.9 ±0.6 71.6 ±1.3 85.9 ±0.4 78.8 ±0.6 88.9 ±0.3 88.9 ±0.3 94.7 ±0.2 7.0 ±0.6

ReSample 86.2 ±0.5 70.0 ±1.0 79.8 ±0.6 64.9 ±1.4 81.7 ±0.5 72.7 ±0.7 85.0 ±0.2 85.0 ±0.2 92.8 ±0.1 11.3 ±0.3

ReWeight 86.9 ±0.5 72.5 ±0.3 80.7 ±0.6 66.1 ±1.3 82.7 ±0.5 74.2 ±0.6 86.1 ±0.1 86.1 ±0.1 93.9 ±0.1 10.6 ±0.3

SqrtReWeight 89.7 ±0.4 71.3 ±1.4 84.3 ±0.6 73.6 ±0.9 85.7 ±0.6 78.2 ±0.8 87.4 ±0.5 87.4 ±0.5 94.5 ±0.4 8.8 ±0.4

CBLoss 86.8 ±0.6 74.4 ±1.2 80.4 ±0.7 65.5 ±1.3 82.6 ±0.7 74.0 ±1.0 86.2 ±0.6 86.2 ±0.6 93.5 ±0.4 11.3 ±0.4

Focal 89.3 ±0.2 71.6 ±0.8 83.7 ±0.3 72.4 ±0.5 85.2 ±0.3 77.5 ±0.4 87.1 ±0.3 87.1 ±0.3 94.2 ±0.2 6.9 ±0.1

LDAM 87.3 ±0.5 71.0 ±1.8 81.2 ±0.6 67.7 ±1.5 83.0 ±0.5 74.4 ±0.6 85.7 ±0.2 85.7 ±0.2 93.3 ±0.2 13.7 ±2.2

BSoftmax 88.4 ±1.2 74.1 ±0.9 82.6 ±1.6 69.9 ±2.9 84.4 ±1.5 76.4 ±2.0 87.0 ±1.0 87.0 ±1.0 94.0 ±0.9 9.9 ±1.2

DFR 92.2 ±0.2 89.0 ±0.2 87.7 ±0.3 78.4 ±0.5 89.2 ±0.2 83.6 ±0.3 91.2 ±0.1 91.2 ±0.1 96.8 ±0.1 6.8 ±0.4

CRT 89.2 ±0.1 76.3 ±0.8 83.5 ±0.1 71.3 ±0.4 85.3 ±0.1 77.8 ±0.1 87.9 ±0.1 87.9 ±0.1 94.8 ±0.0 9.2 ±0.2

ReWeightCRT 89.4 ±0.3 76.3 ±0.2 83.8 ±0.3 71.9 ±0.7 85.6 ±0.3 78.1 ±0.4 88.0 ±0.2 88.0 ±0.2 94.9 ±0.1 8.8 ±0.2

E.2.2. CELEBA

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 95.0 ±0.1 57.6 ±0.8 87.4 ±0.2 76.3 ±0.3 89.9 ±0.1 82.7 ±0.2 85.6 ±0.2 93.0 ±0.0 98.4 ±0.0 2.9 ±0.1

Mixup 95.4 ±0.1 57.8 ±0.8 88.4 ±0.3 78.5 ±0.7 90.6 ±0.2 83.8 ±0.3 85.8 ±0.2 93.1 ±0.1 98.4 ±0.1 2.5 ±0.2

GroupDRO 92.4 ±0.2 78.5 ±1.1 81.9 ±0.3 64.5 ±0.5 86.3 ±0.2 77.1 ±0.4 90.1 ±0.3 93.9 ±0.1 98.5 ±0.0 7.4 ±0.5

CVaRDRO 95.1 ±0.1 62.2 ±3.1 87.8 ±0.2 77.1 ±0.5 90.2 ±0.1 83.2 ±0.1 86.8 ±0.7 93.2 ±0.2 98.4 ±0.1 3.0 ±0.2

JTT 88.1 ±0.5 66.0 ±11.9 75.2 ±1.1 54.1 ±1.0 76.7 ±3.3 60.5 ±6.6 81.7 ±5.5 82.7 ±6.7 91.3 ±0.2 5.0 ±1.0

LfF 81.1 ±5.6 53.0 ±4.3 71.8 ±4.1 45.2 ±8.3 73.2 ±5.6 59.0 ±7.3 78.3 ±3.0 85.3 ±2.9 94.1 ±1.2 27.9 ±5.5

LISA 95.4 ±0.1 57.8 ±0.8 88.4 ±0.3 78.5 ±0.7 90.6 ±0.2 83.8 ±0.3 85.8 ±0.2 93.1 ±0.1 98.4 ±0.1 2.5 ±0.2

ReSample 92.2 ±0.4 82.2 ±1.2 81.5 ±0.6 63.7 ±1.3 85.9 ±0.5 76.6 ±0.8 90.8 ±0.1 93.8 ±0.1 98.5 ±0.0 7.4 ±0.8

ReWeight 92.0 ±0.4 81.5 ±0.9 81.3 ±0.6 63.2 ±1.4 85.7 ±0.6 76.3 ±0.8 90.7 ±0.2 93.8 ±0.1 98.4 ±0.1 7.8 ±0.8

SqrtReWeight 93.7 ±0.2 72.0 ±2.2 84.3 ±0.5 69.4 ±1.1 88.1 ±0.4 80.0 ±0.6 89.0 ±0.5 94.0 ±0.0 98.4 ±0.0 5.3 ±0.4

CBLoss 93.8 ±0.3 75.0 ±2.4 84.5 ±0.7 69.9 ±1.6 88.3 ±0.5 80.3 ±0.8 89.8 ±0.5 94.0 ±0.1 98.5 ±0.0 5.1 ±0.6

Focal 94.9 ±0.3 59.1 ±2.0 87.5 ±0.8 76.7 ±1.7 89.7 ±0.4 82.4 ±0.6 85.6 ±0.5 92.5 ±0.4 98.2 ±0.1 3.2 ±0.4

LDAM 94.5 ±0.2 59.3 ±2.3 86.5 ±0.8 74.7 ±1.9 89.1 ±0.2 81.4 ±0.3 85.6 ±0.8 92.5 ±0.7 98.2 ±0.1 28.0 ±2.6

BSoftmax 91.9 ±0.1 83.3 ±0.5 81.1 ±0.2 62.9 ±0.4 85.6 ±0.2 76.1 ±0.3 91.1 ±0.2 93.9 ±0.1 98.6 ±0.0 8.4 ±0.2

DFR 91.2 ±0.1 86.3 ±0.3 80.0 ±0.1 61.0 ±0.2 84.4 ±0.1 74.1 ±0.1 90.8 ±0.0 92.6 ±0.0 97.9 ±0.0 14.1 ±0.0

CRT 94.1 ±0.1 70.4 ±0.4 85.1 ±0.2 71.3 ±0.5 88.6 ±0.1 80.6 ±0.2 88.5 ±0.1 93.5 ±0.1 98.4 ±0.0 4.5 ±0.2

ReWeightCRT 94.2 ±0.1 71.1 ±0.5 85.3 ±0.1 71.8 ±0.3 88.7 ±0.1 80.9 ±0.1 88.7 ±0.1 93.6 ±0.1 98.4 ±0.0 4.6 ±0.2

E.2.3. CIVILCOMMENTS
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 85.4 ±0.2 63.2 ±1.2 75.4 ±0.3 57.6 ±0.7 77.0 ±0.1 63.2 ±0.1 77.7 ±0.1 79.4 ±0.2 89.8 ±0.1 7.8 ±0.4

Mixup 84.9 ±0.3 66.1 ±1.3 74.8 ±0.3 56.2 ±0.8 76.7 ±0.2 62.8 ±0.3 78.0 ±0.1 79.6 ±0.1 89.8 ±0.1 9.0 ±0.6

GroupDRO 83.1 ±0.3 69.5 ±0.7 73.2 ±0.2 52.0 ±0.6 75.7 ±0.2 62.2 ±0.2 79.1 ±0.1 80.9 ±0.1 89.9 ±0.1 12.3 ±0.5

CVaRDRO 83.5 ±0.3 68.7 ±1.3 73.5 ±0.3 52.8 ±0.6 75.9 ±0.2 62.4 ±0.2 78.6 ±0.2 80.7 ±0.1 89.8 ±0.1 32.9 ±0.4

JTT 83.3 ±0.1 64.3 ±1.5 72.8 ±0.1 52.4 ±0.3 74.8 ±0.1 60.3 ±0.2 76.8 ±0.2 78.4 ±0.2 88.2 ±0.1 10.2 ±0.3

LfF 68.2 ±5.0 50.3 ±5.9 62.9 ±3.5 34.1 ±5.4 61.5 ±4.7 45.8 ±5.5 68.5 ±4.4 69.8 ±4.8 75.0 ±6.5 30.8 ±2.7

LISA 84.9 ±0.3 66.1 ±1.3 74.8 ±0.3 56.2 ±0.8 76.7 ±0.2 62.8 ±0.3 78.0 ±0.1 79.6 ±0.1 89.8 ±0.1 9.0 ±0.6

ReSample 82.5 ±0.6 68.2 ±0.7 72.7 ±0.5 51.0 ±1.3 75.0 ±0.5 61.2 ±0.5 78.4 ±0.1 80.3 ±0.1 89.3 ±0.1 13.8 ±1.0

ReWeight 83.1 ±0.1 69.9 ±0.6 73.2 ±0.1 52.0 ±0.1 75.6 ±0.1 62.1 ±0.1 78.8 ±0.1 80.7 ±0.1 89.8 ±0.0 11.0 ±0.2

SqrtReWeight 83.6 ±0.1 70.1 ±0.3 73.6 ±0.1 52.9 ±0.2 76.0 ±0.1 62.4 ±0.2 78.7 ±0.2 80.7 ±0.2 89.9 ±0.1 10.1 ±0.1

CBLoss 84.1 ±0.7 67.0 ±0.1 74.1 ±0.7 54.3 ±1.6 76.2 ±0.5 62.6 ±0.5 78.4 ±0.1 80.2 ±0.2 90.0 ±0.0 9.1 ±1.0

Focal 85.6 ±0.3 61.9 ±1.1 75.6 ±0.4 58.5 ±0.9 77.0 ±0.3 62.9 ±0.5 77.3 ±0.3 78.7 ±0.3 89.4 ±0.4 7.7 ±0.4

LDAM 81.8 ±2.2 37.0 ±7.9 69.4 ±3.4 49.7 ±5.8 69.4 ±3.3 49.9 ±5.2 67.1 ±3.9 69.5 ±3.2 79.0 ±3.8 21.0 ±0.2

BSoftmax 83.0 ±0.4 69.4 ±1.2 73.1 ±0.3 51.8 ±0.7 75.5 ±0.3 61.9 ±0.3 78.7 ±0.3 80.6 ±0.3 89.7 ±0.2 12.1 ±0.9

DFR 81.3 ±0.0 66.5 ±0.2 71.2 ±0.0 48.6 ±0.0 73.4 ±0.0 59.0 ±0.0 76.8 ±0.0 78.8 ±0.0 86.7 ±0.1 19.6 ±0.1

CRT 83.0 ±0.0 68.5 ±0.0 73.0 ±0.0 51.7 ±0.1 75.4 ±0.0 61.8 ±0.0 78.6 ±0.0 80.6 ±0.0 89.4 ±0.1 12.5 ±0.1

ReWeightCRT 83.4 ±0.0 68.2 ±0.4 73.3 ±0.0 52.5 ±0.1 75.7 ±0.0 62.0 ±0.0 78.3 ±0.0 80.4 ±0.0 89.4 ±0.0 11.5 ±0.2

E.2.4. MULTINLI

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 80.9 ±0.3 69.5 ±0.3 81.3 ±0.3 73.7 ±0.4 81.0 ±0.3 77.6 ±0.3 79.7 ±0.3 80.9 ±0.3 93.6 ±0.1 10.7 ±0.5

Mixup 81.4 ±0.3 68.5 ±0.6 81.6 ±0.3 76.0 ±0.5 81.4 ±0.3 78.0 ±0.2 80.1 ±0.3 81.4 ±0.3 93.6 ±0.1 9.4 ±0.9

GroupDRO 81.0 ±0.0 69.3 ±1.5 81.3 ±0.1 74.9 ±0.6 81.1 ±0.1 77.7 ±0.1 79.5 ±0.3 81.0 ±0.0 93.8 ±0.0 8.7 ±0.4

CVaRDRO 75.1 ±0.1 63.0 ±1.5 76.2 ±0.2 65.6 ±0.2 75.2 ±0.1 72.1 ±0.2 74.2 ±0.4 75.1 ±0.1 86.3 ±0.2 41.4 ±0.1

JTT 81.4 ±0.1 68.4 ±0.6 81.6 ±0.1 75.7 ±0.3 81.5 ±0.1 78.1 ±0.1 80.2 ±0.2 81.4 ±0.1 93.9 ±0.0 9.4 ±0.5

LfF 71.7 ±1.1 63.6 ±2.9 71.8 ±1.1 68.7 ±0.7 71.7 ±1.1 68.5 ±1.8 70.8 ±1.4 71.7 ±1.1 87.0 ±0.8 4.4 ±0.6

LISA 81.4 ±0.3 68.5 ±0.6 81.6 ±0.3 76.0 ±0.5 81.4 ±0.3 78.0 ±0.2 80.1 ±0.3 81.4 ±0.3 93.6 ±0.1 9.4 ±0.9

ReSample 81.4 ±0.3 67.5 ±0.4 81.7 ±0.3 74.7 ±0.6 81.4 ±0.3 77.8 ±0.3 79.9 ±0.2 81.4 ±0.3 93.8 ±0.1 11.3 ±1.3

ReWeight 79.2 ±0.4 67.8 ±1.2 79.5 ±0.3 73.0 ±0.5 79.3 ±0.4 75.7 ±0.3 78.4 ±0.2 79.2 ±0.4 92.5 ±0.1 13.1 ±1.5

SqrtReWeight 80.9 ±0.1 66.6 ±0.4 81.1 ±0.1 76.0 ±0.3 80.9 ±0.1 77.7 ±0.1 79.6 ±0.0 80.9 ±0.1 93.6 ±0.1 8.1 ±0.2

CBLoss 81.1 ±0.2 66.2 ±0.7 81.2 ±0.2 76.6 ±0.3 81.1 ±0.2 77.8 ±0.1 79.7 ±0.0 81.1 ±0.2 93.7 ±0.1 8.9 ±0.4

Focal 80.7 ±0.2 69.3 ±0.8 81.2 ±0.2 73.5 ±0.5 80.8 ±0.2 77.4 ±0.2 79.5 ±0.1 80.7 ±0.2 93.6 ±0.1 4.5 ±1.1

LDAM 80.7 ±0.3 69.6 ±1.6 81.1 ±0.1 73.9 ±0.9 80.8 ±0.2 77.4 ±0.2 79.7 ±0.3 80.7 ±0.3 93.5 ±0.1 33.4 ±0.3

BSoftmax 80.9 ±0.1 66.9 ±0.4 81.1 ±0.1 75.9 ±0.3 80.9 ±0.1 77.7 ±0.1 79.7 ±0.0 80.9 ±0.1 93.6 ±0.1 8.1 ±0.2

DFR 80.2 ±0.0 63.8 ±0.0 80.3 ±0.0 75.2 ±0.0 80.3 ±0.0 76.2 ±0.0 78.5 ±0.0 80.2 ±0.0 92.9 ±0.0 5.7 ±0.0

CRT 80.2 ±0.0 65.4 ±0.1 80.3 ±0.0 74.4 ±0.1 80.2 ±0.0 76.4 ±0.0 78.6 ±0.0 80.2 ±0.0 92.9 ±0.0 14.9 ±0.1

ReWeightCRT 80.2 ±0.0 65.3 ±0.1 80.3 ±0.0 74.4 ±0.0 80.2 ±0.0 76.4 ±0.0 78.6 ±0.0 80.2 ±0.0 92.9 ±0.0 15.0 ±0.2

E.2.5. METASHIFT

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 91.5 ±0.2 82.1 ±0.8 91.5 ±0.1 90.7 ±0.3 91.4 ±0.2 90.9 ±0.2 89.4 ±0.3 91.4 ±0.2 97.5 ±0.1 5.7 ±0.4

Mixup 91.4 ±0.2 79.0 ±0.8 91.4 ±0.2 90.9 ±0.2 91.3 ±0.2 90.8 ±0.2 88.7 ±0.1 91.3 ±0.2 97.2 ±0.0 1.7 ±0.2

GroupDRO 91.5 ±0.3 82.6 ±1.1 91.5 ±0.3 90.8 ±0.3 91.5 ±0.3 91.0 ±0.3 89.5 ±0.4 91.5 ±0.3 97.5 ±0.1 5.9 ±0.5

CVaRDRO 91.5 ±0.2 82.6 ±1.1 91.5 ±0.2 90.7 ±0.5 91.5 ±0.2 91.0 ±0.2 89.5 ±0.4 91.5 ±0.2 97.5 ±0.1 7.8 ±2.1

JTT 91.5 ±0.2 82.6 ±0.4 91.5 ±0.2 91.0 ±0.1 91.5 ±0.2 90.9 ±0.3 89.6 ±0.1 91.4 ±0.3 97.6 ±0.1 6.5 ±0.1

LfF 80.3 ±0.4 72.6 ±1.2 80.6 ±0.3 77.5 ±1.4 80.2 ±0.3 78.9 ±0.4 80.4 ±0.6 80.2 ±0.2 90.7 ±0.6 8.0 ±1.3

LISA 91.4 ±0.2 79.0 ±0.8 91.4 ±0.2 90.9 ±0.2 91.3 ±0.2 90.8 ±0.2 88.7 ±0.1 91.3 ±0.2 97.2 ±0.0 1.7 ±0.2

ReSample 92.1 ±0.3 80.5 ±1.5 92.1 ±0.3 91.4 ±0.4 92.1 ±0.3 91.6 ±0.3 89.5 ±0.1 92.1 ±0.3 97.5 ±0.1 6.7 ±0.4

ReWeight 91.2 ±0.5 83.1 ±0.7 91.1 ±0.5 90.2 ±0.4 91.1 ±0.5 90.6 ±0.6 89.3 ±0.5 91.1 ±0.5 97.4 ±0.2 6.6 ±0.8

SqrtReWeight 91.1 ±0.2 82.1 ±0.8 91.1 ±0.2 90.5 ±0.2 91.1 ±0.2 90.5 ±0.2 89.1 ±0.3 91.1 ±0.2 97.4 ±0.1 6.7 ±0.3

CBLoss 91.2 ±0.1 82.6 ±0.4 91.2 ±0.1 90.7 ±0.2 91.2 ±0.1 90.6 ±0.1 89.3 ±0.2 91.1 ±0.1 97.4 ±0.0 6.7 ±0.1

Focal 91.6 ±0.2 81.0 ±0.4 91.6 ±0.3 91.2 ±0.4 91.6 ±0.2 91.0 ±0.2 89.5 ±0.2 91.5 ±0.2 97.6 ±0.0 3.3 ±0.4

LDAM 91.7 ±0.0 83.6 ±0.4 91.7 ±0.0 90.9 ±0.3 91.7 ±0.0 91.2 ±0.0 90.0 ±0.1 91.7 ±0.0 97.5 ±0.1 9.9 ±0.7

BSoftmax 91.2 ±0.3 82.6 ±0.4 91.1 ±0.3 90.2 ±0.2 91.2 ±0.3 90.7 ±0.3 89.2 ±0.3 91.2 ±0.3 97.4 ±0.1 6.8 ±0.3

DFR 90.5 ±0.4 81.5 ±0.0 90.5 ±0.4 89.2 ±0.3 90.5 ±0.4 90.0 ±0.4 88.2 ±0.3 90.6 ±0.4 96.7 ±0.0 3.2 ±0.2

CRT 91.5 ±0.0 83.1 ±0.0 91.4 ±0.0 90.6 ±0.1 91.4 ±0.0 90.9 ±0.0 89.5 ±0.0 91.4 ±0.0 97.3 ±0.0 6.8 ±0.0

ReWeightCRT 91.3 ±0.1 85.1 ±0.4 91.2 ±0.1 90.1 ±0.3 91.2 ±0.1 90.8 ±0.1 89.7 ±0.2 91.3 ±0.1 96.8 ±0.1 8.1 ±0.1

E.2.6. IMAGENETBG
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

Mixup 87.9 ±0.2 76.9 ±0.7 88.4 ±0.1 76.6 ±2.6 88.0 ±0.2 80.5 ±1.0 87.9 ±0.2 87.9 ±0.2 98.7 ±0.0 4.7 ±1.6

GroupDRO 87.7 ±0.1 76.4 ±0.2 87.9 ±0.1 76.2 ±0.5 87.6 ±0.1 81.1 ±0.3 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

CVaRDRO 87.8 ±0.2 74.8 ±0.8 88.0 ±0.1 79.9 ±0.9 87.8 ±0.2 79.5 ±0.3 87.8 ±0.2 87.8 ±0.2 99.0 ±0.0 5.6 ±0.2

JTT 87.6 ±0.4 77.0 ±0.4 87.8 ±0.3 78.3 ±3.0 87.5 ±0.3 80.4 ±0.6 87.6 ±0.4 87.6 ±0.4 99.0 ±0.0 3.7 ±0.2

LfF 84.7 ±0.5 70.1 ±1.4 85.4 ±0.3 72.1 ±3.1 84.7 ±0.5 76.2 ±0.6 84.7 ±0.5 84.7 ±0.5 98.6 ±0.0 1.8 ±0.4

LISA 87.9 ±0.2 76.9 ±0.7 88.4 ±0.1 76.6 ±2.6 88.0 ±0.2 80.5 ±1.0 87.9 ±0.2 87.9 ±0.2 98.7 ±0.0 4.7 ±1.6

ReSample 88.2 ±0.4 77.7 ±1.1 88.4 ±0.4 79.7 ±1.0 88.2 ±0.4 80.6 ±1.0 88.2 ±0.4 88.2 ±0.4 99.0 ±0.0 5.4 ±0.5

ReWeight 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

SqrtReWeight 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

CBLoss 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

Focal 86.7 ±0.2 71.9 ±1.2 87.1 ±0.2 74.2 ±1.3 86.6 ±0.2 77.6 ±0.7 86.7 ±0.2 86.7 ±0.2 98.9 ±0.0 2.8 ±0.6

LDAM 88.2 ±0.1 76.7 ±0.5 88.5 ±0.1 77.6 ±1.1 88.1 ±0.1 81.3 ±0.4 88.2 ±0.1 88.2 ±0.1 98.8 ±0.0 45.9 ±0.7

BSoftmax 87.7 ±0.1 76.1 ±2.0 88.0 ±0.1 77.7 ±1.3 87.7 ±0.1 80.4 ±0.8 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.6 ±0.5

DFR 86.8 ±0.5 74.4 ±1.8 86.9 ±0.5 78.9 ±1.6 86.7 ±0.5 78.1 ±1.3 86.8 ±0.5 86.8 ±0.5 98.8 ±0.1 8.9 ±1.4

CRT 88.3 ±0.1 78.2 ±0.5 88.3 ±0.1 82.7 ±0.4 88.3 ±0.1 80.9 ±0.2 88.3 ±0.1 88.3 ±0.1 99.1 ±0.0 5.6 ±0.2

ReWeightCRT 88.4 ±0.1 77.5 ±0.7 88.5 ±0.1 82.1 ±0.4 88.4 ±0.1 81.2 ±0.3 88.4 ±0.1 88.4 ±0.1 99.1 ±0.0 5.4 ±0.2

E.2.7. NICO++

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 85.3 ±0.3 40.0 ±0.0 86.2 ±0.2 59.2 ±1.1 85.4 ±0.3 66.0 ±0.6 84.8 ±0.3 85.2 ±0.3 99.4 ±0.0 9.6 ±0.2

Mixup 85.5 ±0.2 30.0 ±4.1 86.5 ±0.1 55.7 ±2.5 85.7 ±0.2 66.5 ±1.6 85.0 ±0.2 85.4 ±0.2 99.1 ±0.0 2.0 ±0.3

GroupDRO 83.0 ±0.3 31.1 ±0.9 84.5 ±0.2 54.4 ±3.9 83.2 ±0.3 64.9 ±0.9 82.6 ±0.3 82.9 ±0.3 99.3 ±0.0 7.4 ±0.5

CVaRDRO 84.4 ±0.6 31.7 ±3.6 85.5 ±0.5 57.1 ±1.6 84.6 ±0.6 66.6 ±1.5 84.0 ±0.6 84.3 ±0.6 99.4 ±0.0 7.8 ±1.3

JTT 85.4 ±0.2 32.2 ±0.9 86.2 ±0.2 57.8 ±4.6 85.5 ±0.2 65.1 ±2.8 84.9 ±0.2 85.3 ±0.2 99.4 ±0.0 10.2 ±0.2

LfF 78.5 ±0.6 28.3 ±1.7 80.9 ±0.3 44.3 ±0.8 78.8 ±0.6 54.4 ±1.3 78.1 ±0.6 78.4 ±0.6 99.2 ±0.0 1.8 ±0.2

LISA 85.5 ±0.2 30.0 ±4.1 86.5 ±0.1 55.7 ±2.5 85.7 ±0.2 66.5 ±1.6 85.0 ±0.2 85.4 ±0.2 99.1 ±0.0 2.0 ±0.3

ReSample 84.8 ±0.4 23.3 ±1.4 85.7 ±0.3 58.9 ±2.7 84.9 ±0.4 65.5 ±1.1 84.2 ±0.4 84.7 ±0.4 99.3 ±0.0 10.1 ±0.0

ReWeight 85.8 ±0.1 25.0 ±0.0 86.6 ±0.1 59.8 ±1.1 85.9 ±0.1 69.1 ±0.5 85.3 ±0.1 85.7 ±0.1 99.4 ±0.0 9.4 ±0.2

SqrtReWeight 85.4 ±0.2 35.6 ±1.8 86.4 ±0.1 57.5 ±1.4 85.6 ±0.1 66.7 ±1.2 84.9 ±0.2 85.3 ±0.2 99.4 ±0.0 9.3 ±0.0

CBLoss 85.1 ±0.4 34.4 ±2.4 85.9 ±0.3 56.9 ±1.1 85.2 ±0.4 64.9 ±0.1 84.7 ±0.4 85.1 ±0.4 99.4 ±0.0 9.1 ±0.7

Focal 85.1 ±0.5 29.4 ±2.0 86.0 ±0.3 58.1 ±2.2 85.3 ±0.4 65.0 ±0.8 84.6 ±0.5 85.0 ±0.5 99.4 ±0.0 4.6 ±1.1

LDAM 84.7 ±0.4 26.7 ±1.4 85.6 ±0.3 60.4 ±1.4 84.8 ±0.4 65.3 ±0.7 84.2 ±0.4 84.6 ±0.4 98.9 ±0.1 62.6 ±2.0

BSoftmax 85.2 ±0.3 29.4 ±2.0 85.9 ±0.2 57.6 ±2.1 85.3 ±0.3 66.9 ±0.7 84.8 ±0.3 85.1 ±0.3 99.4 ±0.0 8.4 ±0.9

DFR 82.5 ±0.0 39.3 ±2.4 83.3 ±0.0 55.3 ±1.3 82.6 ±0.0 63.7 ±0.9 82.1 ±0.0 82.4 ±0.0 99.2 ±0.0 11.7 ±0.1

CRT 85.7 ±0.0 33.3 ±0.0 86.1 ±0.0 64.4 ±0.2 85.7 ±0.0 69.1 ±0.1 85.2 ±0.0 85.6 ±0.0 99.4 ±0.0 4.7 ±0.0

ReWeightCRT 85.8 ±0.1 33.3 ±0.0 86.1 ±0.1 66.1 ±0.5 85.8 ±0.1 69.9 ±0.2 85.4 ±0.1 85.7 ±0.1 99.4 ±0.0 6.2 ±0.2

E.2.8. MIMIC-CXR

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 78.6 ±0.2 68.5 ±0.4 77.7 ±0.2 72.2 ±0.5 77.8 ±0.2 73.7 ±0.2 77.5 ±0.2 78.1 ±0.2 85.5 ±0.2 2.6 ±0.2

Mixup 78.5 ±0.1 67.2 ±1.1 77.5 ±0.1 72.3 ±0.5 77.6 ±0.0 73.4 ±0.1 77.2 ±0.1 77.8 ±0.1 85.3 ±0.1 2.4 ±0.7

GroupDRO 78.3 ±0.1 67.4 ±0.9 77.4 ±0.1 71.9 ±0.2 77.6 ±0.1 73.4 ±0.1 77.2 ±0.1 77.8 ±0.1 85.1 ±0.0 3.7 ±0.4

CVaRDRO 78.4 ±0.3 67.5 ±0.1 77.4 ±0.3 72.1 ±0.6 77.6 ±0.3 73.4 ±0.2 77.2 ±0.2 77.7 ±0.2 84.9 ±0.2 5.7 ±0.3

JTT 78.2 ±0.1 66.6 ±0.8 77.3 ±0.1 71.9 ±0.3 77.4 ±0.1 73.2 ±0.1 77.0 ±0.1 77.6 ±0.1 85.0 ±0.1 3.3 ±0.1

LfF 73.9 ±1.1 62.1 ±2.4 72.9 ±1.1 66.5 ±1.1 73.0 ±1.2 68.0 ±1.6 72.9 ±1.2 73.2 ±1.2 79.9 ±1.5 11.3 ±0.3

LISA 78.5 ±0.1 67.2 ±1.1 77.5 ±0.1 72.3 ±0.5 77.6 ±0.0 73.4 ±0.1 77.2 ±0.1 77.8 ±0.1 85.3 ±0.1 2.4 ±0.7

ReSample 78.7 ±0.1 68.9 ±0.3 77.8 ±0.1 72.2 ±0.1 78.0 ±0.1 74.0 ±0.1 77.7 ±0.1 78.2 ±0.1 85.4 ±0.1 3.6 ±0.1

ReWeight 78.0 ±0.1 67.4 ±0.3 77.1 ±0.0 70.9 ±0.2 77.3 ±0.0 73.3 ±0.0 77.0 ±0.0 77.6 ±0.0 84.9 ±0.0 4.1 ±0.6

SqrtReWeight 78.5 ±0.2 68.9 ±0.5 77.6 ±0.2 71.6 ±0.3 77.7 ±0.2 73.8 ±0.2 77.4 ±0.2 78.1 ±0.2 85.4 ±0.1 3.6 ±0.4

CBLoss 78.6 ±0.1 67.8 ±0.6 77.6 ±0.1 72.3 ±0.4 77.8 ±0.1 73.6 ±0.2 77.4 ±0.1 78.0 ±0.1 85.4 ±0.1 3.2 ±0.3

Focal 78.3 ±0.1 67.3 ±1.2 77.4 ±0.1 71.6 ±0.1 77.5 ±0.1 73.5 ±0.2 77.2 ±0.2 77.8 ±0.1 85.3 ±0.1 10.0 ±0.6

LDAM 78.5 ±0.1 68.2 ±1.4 77.6 ±0.1 72.0 ±0.4 77.7 ±0.1 73.6 ±0.3 77.5 ±0.2 78.0 ±0.2 85.3 ±0.1 22.2 ±0.1

BSoftmax 78.2 ±0.2 67.2 ±0.2 77.3 ±0.2 71.9 ±0.5 77.4 ±0.2 73.2 ±0.1 77.1 ±0.1 77.6 ±0.1 85.1 ±0.1 3.6 ±0.5

DFR 78.3 ±0.0 67.1 ±0.4 77.3 ±0.0 72.0 ±0.2 77.5 ±0.0 73.2 ±0.1 77.1 ±0.0 77.6 ±0.1 85.0 ±0.0 20.0 ±0.1

CRT 78.3 ±0.0 69.1 ±0.2 77.4 ±0.0 71.1 ±0.1 77.6 ±0.0 73.7 ±0.0 77.4 ±0.0 78.0 ±0.0 85.3 ±0.0 4.7 ±0.1

ReWeightCRT 77.9 ±0.0 68.9 ±0.0 77.0 ±0.0 70.5 ±0.0 77.3 ±0.0 73.4 ±0.0 77.0 ±0.0 77.7 ±0.0 85.0 ±0.0 4.9 ±0.3

E.2.9. MIMICNOTES
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 91.1 ±0.1 24.2 ±2.8 76.4 ±0.9 60.3 ±2.1 65.8 ±1.2 36.5 ±2.5 62.2 ±1.3 62.4 ±1.4 85.2 ±0.1 2.2 ±0.1

Mixup 91.1 ±0.0 22.7 ±3.2 76.8 ±0.7 61.2 ±1.6 65.1 ±1.6 35.0 ±3.2 61.5 ±1.6 61.7 ±1.7 85.4 ±0.0 2.0 ±0.8

GroupDRO 83.2 ±2.4 62.6 ±6.3 64.7 ±1.4 33.7 ±3.4 66.4 ±1.3 42.8 ±1.1 74.3 ±1.5 74.4 ±1.5 85.1 ±0.1 13.8 ±3.2

CVaRDRO 90.2 ±0.0 0.0 ±0.0 45.1 ±0.0 0.0 ±0.0 47.4 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 71.6 ±0.4 40.2 ±0.0

JTT 71.3 ±3.7 65.9 ±2.8 60.3 ±0.7 23.4 ±1.9 58.6 ±2.3 36.0 ±1.8 75.5 ±0.4 75.6 ±0.4 84.9 ±0.1 27.5 ±3.9

LfF 84.0 ±1.2 62.7 ±2.1 64.6 ±0.7 33.6 ±1.6 67.1 ±0.8 43.6 ±0.8 74.7 ±0.4 74.7 ±0.5 85.1 ±0.0 12.5 ±1.2

LISA 91.1 ±0.0 22.7 ±3.2 76.8 ±0.7 61.2 ±1.6 65.1 ±1.6 35.0 ±3.2 61.5 ±1.6 61.7 ±1.7 85.4 ±0.0 2.0 ±0.8

ReSample 81.4 ±1.5 67.1 ±2.6 63.3 ±0.6 30.5 ±1.5 65.4 ±1.0 42.0 ±1.0 75.4 ±0.3 75.6 ±0.4 85.1 ±0.0 17.4 ±1.9

ReWeight 82.7 ±0.7 65.5 ±1.3 63.8 ±0.4 31.7 ±0.9 66.3 ±0.5 42.8 ±0.5 75.3 ±0.2 75.4 ±0.3 85.2 ±0.1 15.9 ±0.7

SqrtReWeight 90.3 ±0.2 35.7 ±4.0 72.4 ±0.9 51.3 ±2.1 68.7 ±0.9 42.8 ±2.1 66.7 ±1.6 66.8 ±1.6 85.2 ±0.1 3.7 ±0.7

CBLoss 78.2 ±1.0 72.3 ±1.3 61.9 ±0.3 27.3 ±0.8 63.2 ±0.7 39.8 ±0.6 76.1 ±0.2 76.2 ±0.2 85.0 ±0.0 20.6 ±1.3

Focal 91.0 ±0.0 19.1 ±2.3 77.1 ±0.6 62.1 ±1.4 63.6 ±1.3 31.9 ±2.6 59.9 ±1.1 60.2 ±1.1 85.3 ±0.1 8.1 ±0.7

LDAM 90.6 ±0.1 5.3 ±2.4 84.4 ±0.8 78.1 ±1.7 52.5 ±2.1 10.0 ±4.1 52.7 ±1.2 52.7 ±1.2 84.9 ±0.1 28.9 ±1.0

BSoftmax 76.9 ±0.9 73.1 ±1.0 61.7 ±0.2 26.5 ±0.6 62.5 ±0.5 39.3 ±0.4 76.6 ±0.2 76.7 ±0.2 85.4 ±0.0 23.5 ±1.1

DFR 69.2 ±1.3 67.3 ±1.7 58.8 ±0.2 21.0 ±0.5 56.5 ±0.8 33.1 ±0.5 73.1 ±0.0 73.1 ±0.0 81.0 ±0.0 38.4 ±0.1

CRT 77.8 ±0.0 73.1 ±0.0 61.6 ±0.0 26.7 ±0.0 62.8 ±0.0 39.2 ±0.0 75.9 ±0.0 75.9 ±0.0 84.3 ±0.0 23.0 ±0.1

ReWeightCRT 81.2 ±2.8 63.9 ±7.6 63.6 ±1.6 31.4 ±3.9 64.7 ±1.6 40.7 ±1.3 73.8 ±1.6 73.9 ±1.6 84.3 ±0.0 26.5 ±2.4

E.2.10. CXRMULTISITE

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 93.1 ±0.1 0.3 ±0.1

Mixup 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 92.9 ±0.1 0.3 ±0.0

GroupDRO 90.2 ±0.1 0.0 ±0.0 56.7 ±0.1 13.6 ±0.1 59.2 ±0.1 23.7 ±0.2 50.2 ±0.1 90.4 ±0.0 92.8 ±0.2 13.5 ±0.7

CVaRDRO 98.3 ±0.0 0.0 ±0.0 61.2 ±4.9 24.0 ±9.8 50.7 ±0.7 2.2 ±1.5 50.2 ±0.2 50.6 ±0.4 93.0 ±0.0 0.9 ±0.3

JTT 94.1 ±0.9 0.0 ±0.0 59.0 ±0.7 18.5 ±1.4 62.9 ±0.8 28.9 ±1.2 55.2 ±0.9 82.2 ±2.4 93.2 ±0.1 6.4 ±0.5

LfF 9.9 ±6.7 5.4 ±4.4 17.4 ±13.5 0.6 ±0.5 8.5 ±5.6 1.2 ±1.0 50.5 ±0.4 51.7 ±1.4 60.6 ±1.6 82.6 ±12.8

LISA 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 92.9 ±0.1 0.3 ±0.0

ReSample 88.3 ±1.6 0.1 ±0.1 55.9 ±0.6 12.0 ±1.2 57.3 ±1.4 20.9 ±1.8 50.3 ±0.5 88.1 ±0.7 92.3 ±0.1 13.0 ±2.8

ReWeight 89.5 ±0.0 0.3 ±0.1 56.4 ±0.0 13.0 ±0.0 58.5 ±0.0 22.7 ±0.0 50.5 ±0.2 90.3 ±0.0 93.2 ±0.1 17.7 ±1.7

SqrtReWeight 94.5 ±0.4 0.0 ±0.0 59.4 ±0.2 19.3 ±0.6 63.7 ±0.3 30.2 ±0.4 56.3 ±0.1 82.3 ±1.6 93.3 ±0.0 6.0 ±0.2

CBLoss 1.7 ±0.0 0.0 ±0.0 0.8 ±0.0 0.0 ±0.0 1.7 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 62.7 ±1.5 98.3 ±0.0

Focal 98.3 ±0.0 0.0 ±0.0 55.4 ±5.1 12.5 ±10.2 49.7 ±0.1 0.3 ±0.2 50.0 ±0.0 50.1 ±0.1 93.2 ±0.0 11.5 ±0.6

LDAM 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 93.1 ±0.1 0.3 ±0.1

BSoftmax 89.1 ±0.2 0.5 ±0.1 56.2 ±0.1 12.5 ±0.2 58.1 ±0.2 22.0 ±0.3 50.4 ±0.0 90.0 ±0.1 92.9 ±0.1 19.9 ±1.3

DFR 89.7 ±0.1 0.6 ±0.1 56.5 ±0.0 13.2 ±0.1 58.7 ±0.1 23.0 ±0.1 50.4 ±0.0 90.4 ±0.0 92.8 ±0.1 47.3 ±0.1

CRT 90.4 ±0.1 1.1 ±0.5 56.9 ±0.0 13.9 ±0.1 59.5 ±0.1 24.2 ±0.1 51.2 ±0.1 90.2 ±0.1 93.3 ±0.0 15.7 ±0.9

ReWeightCRT 89.9 ±0.1 1.4 ±0.6 56.6 ±0.0 13.4 ±0.1 59.0 ±0.1 23.3 ±0.1 51.1 ±0.3 90.4 ±0.0 93.1 ±0.1 15.5 ±0.7

E.2.11. CHEXPERT

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 88.6 ±0.7 41.7 ±3.4 68.3 ±1.1 42.3 ±2.4 68.7 ±0.2 43.8 ±0.7 69.5 ±1.3 70.0 ±1.5 85.4 ±0.4 5.0 ±1.1

Mixup 81.9 ±6.2 37.4 ±3.5 63.5 ±5.0 33.9 ±9.3 62.5 ±5.9 35.7 ±7.6 63.8 ±4.7 64.1 ±4.6 76.1 ±8.5 16.1 ±9.0

GroupDRO 79.0 ±0.3 75.1 ±0.6 62.9 ±0.1 28.5 ±0.3 64.6 ±0.2 42.0 ±0.3 78.6 ±0.0 79.3 ±0.1 86.3 ±0.1 22.0 ±0.4

CVaRDRO 73.7 ±1.0 50.2 ±1.8 57.3 ±0.1 20.1 ±0.3 56.8 ±0.4 29.9 ±0.2 65.7 ±0.6 67.0 ±0.4 72.9 ±0.4 40.4 ±0.0

JTT 75.2 ±0.8 60.4 ±4.8 59.4 ±1.1 23.0 ±1.5 59.6 ±1.4 34.4 ±2.3 70.7 ±2.6 72.0 ±2.5 79.0 ±2.5 24.4 ±0.5

LfF 22.3 ±10.2 13.7 ±9.8 37.3 ±5.8 9.0 ±0.7 19.5 ±8.3 8.8 ±3.9 46.2 ±2.9 46.2 ±3.1 30.5 ±10.1 65.7 ±10.2

LISA 81.9 ±6.2 37.4 ±3.5 63.5 ±5.0 33.9 ±9.3 62.5 ±5.9 35.7 ±7.6 63.8 ±4.7 64.1 ±4.6 76.1 ±8.5 16.1 ±9.0

ReSample 77.6 ±0.4 73.0 ±0.6 62.3 ±0.1 27.2 ±0.3 63.4 ±0.3 40.6 ±0.3 78.0 ±0.3 78.7 ±0.3 85.9 ±0.4 19.1 ±1.0

ReWeight 79.2 ±0.5 73.8 ±1.0 62.9 ±0.3 28.6 ±0.5 64.6 ±0.4 42.0 ±0.5 78.5 ±0.3 79.0 ±0.2 86.2 ±0.1 20.6 ±0.4

SqrtReWeight 83.5 ±0.3 68.5 ±1.6 65.0 ±0.2 33.3 ±0.4 67.9 ±0.2 45.5 ±0.3 77.8 ±0.4 78.5 ±0.3 86.3 ±0.3 15.6 ±1.1

CBLoss 80.0 ±0.5 74.0 ±0.7 63.3 ±0.2 29.4 ±0.5 65.2 ±0.4 42.6 ±0.5 78.6 ±0.2 79.0 ±0.2 86.1 ±0.3 19.6 ±0.6

Focal 89.3 ±0.3 42.1 ±4.0 69.6 ±0.4 44.7 ±1.1 69.8 ±0.4 45.5 ±1.0 70.4 ±1.1 70.4 ±1.3 86.5 ±0.1 16.1 ±1.7

LDAM 90.1 ±0.0 34.5 ±1.5 70.6 ±0.1 47.6 ±0.1 68.6 ±0.3 42.5 ±0.7 66.8 ±0.5 67.0 ±0.5 85.5 ±0.3 31.7 ±0.4

BSoftmax 79.5 ±0.2 74.2 ±1.1 63.2 ±0.1 29.0 ±0.2 65.0 ±0.2 42.5 ±0.2 78.7 ±0.2 79.6 ±0.1 86.6 ±0.1 21.9 ±0.2

DFR 78.9 ±0.2 75.4 ±0.6 62.9 ±0.1 28.5 ±0.1 64.5 ±0.1 42.0 ±0.1 78.9 ±0.1 79.3 ±0.0 86.0 ±0.1 26.2 ±0.5

CRT 79.1 ±0.1 74.0 ±0.2 62.9 ±0.0 28.6 ±0.1 64.6 ±0.1 42.0 ±0.1 78.7 ±0.1 79.1 ±0.1 86.2 ±0.0 21.9 ±0.1

ReWeightCRT 79.0 ±0.0 73.9 ±0.2 62.9 ±0.0 28.5 ±0.0 64.5 ±0.0 41.9 ±0.0 78.8 ±0.1 79.2 ±0.1 86.3 ±0.1 22.3 ±0.1

E.2.12. LIVING17
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

Mixup 29.8 ±1.8 8.7 ±1.4 30.9 ±2.2 9.5 ±1.3 29.3 ±1.9 9.7 ±1.5 29.8 ±1.8 29.8 ±1.8 78.2 ±1.2 34.1 ±1.9

GroupDRO 31.1 ±1.0 6.0 ±1.4 32.1 ±0.9 9.6 ±0.2 30.8 ±0.7 7.6 ±0.8 31.1 ±1.0 31.1 ±1.0 80.1 ±0.8 53.5 ±0.8

CVaRDRO 27.3 ±1.6 4.0 ±0.5 29.2 ±1.7 5.1 ±0.8 26.5 ±1.5 4.8 ±0.6 27.3 ±1.6 27.3 ±1.6 81.0 ±0.2 28.8 ±6.8

JTT 28.3 ±1.1 5.7 ±2.2 31.1 ±0.9 8.0 ±1.7 28.3 ±1.3 7.2 ±2.3 28.3 ±1.1 28.3 ±1.1 81.0 ±0.8 36.9 ±3.2

LfF 26.4 ±1.3 7.0 ±1.2 28.3 ±0.8 9.6 ±1.8 26.1 ±1.2 8.7 ±1.7 26.4 ±1.3 26.4 ±1.3 76.6 ±0.6 61.0 ±0.7

LISA 29.8 ±1.8 8.7 ±1.4 30.9 ±2.2 9.5 ±1.3 29.3 ±1.9 9.7 ±1.5 29.8 ±1.8 29.8 ±1.8 78.2 ±1.2 34.1 ±1.9

ReSample 31.4 ±0.6 6.7 ±1.5 33.0 ±0.6 11.0 ±0.6 31.0 ±0.6 8.3 ±1.2 31.4 ±0.6 31.4 ±0.6 81.0 ±0.7 46.6 ±3.1

ReWeight 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

SqrtReWeight 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

CBLoss 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

Focal 26.9 ±0.6 5.3 ±0.3 28.8 ±1.0 7.1 ±1.0 27.0 ±0.7 6.3 ±0.5 26.9 ±0.6 26.9 ±0.6 78.7 ±0.5 49.9 ±1.9

LDAM 24.3 ±0.8 4.0 ±0.8 28.0 ±1.2 6.6 ±1.4 24.0 ±0.8 5.1 ±0.3 24.3 ±0.8 24.3 ±0.8 79.1 ±1.0 12.4 ±0.5

BSoftmax 28.6 ±1.4 6.7 ±0.7 30.7 ±1.0 8.2 ±0.8 28.3 ±1.3 7.3 ±0.5 28.6 ±1.4 28.6 ±1.4 78.0 ±1.0 56.5 ±1.7

DFR 26.3 ±0.4 6.0 ±0.9 27.4 ±0.3 8.6 ±0.8 25.7 ±0.2 7.5 ±1.1 26.3 ±0.4 26.3 ±0.4 79.4 ±0.1 13.8 ±0.4

CRT 31.1 ±0.1 6.3 ±0.3 31.8 ±0.0 7.5 ±0.3 30.5 ±0.1 6.8 ±0.3 31.1 ±0.1 31.1 ±0.1 80.3 ±0.1 49.6 ±1.7

ReWeightCRT 33.1 ±0.1 9.3 ±0.3 33.4 ±0.1 11.3 ±0.3 32.6 ±0.0 10.8 ±0.2 33.1 ±0.1 33.1 ±0.1 82.0 ±0.0 40.0 ±0.4

E.2.13. OVERALL

Algorithm Waterbirds CelebA CivilComments MultiNLI MetaShift ImageNetBG NICO++ MIMIC-CXR MIMICNotes CXRMultisite CheXpert Living17 Avg

ERM 69.1 ±4.7 57.6 ±0.8 63.2 ±1.2 69.5 ±0.3 82.1 ±0.8 76.8 ±0.9 40.0 ±0.0 68.5 ±0.4 80.4 ±0.2 50.1 ±0.9 41.7 ±3.4 27.7 ±1.1 60.5
Mixup 78.2 ±0.4 57.8 ±0.8 66.1 ±1.3 68.5 ±0.6 79.0 ±0.8 76.9 ±0.7 30.0 ±4.1 67.2 ±1.1 81.6 ±0.6 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 60.2
GroupDRO 73.1 ±0.4 78.5 ±1.1 69.5 ±0.7 69.3 ±1.5 82.6 ±1.1 76.4 ±0.2 31.1 ±0.9 67.4 ±0.9 83.7 ±0.0 49.2 ±0.5 75.1 ±0.6 31.1 ±1.0 65.6
CVaRDRO 75.5 ±2.2 62.2 ±3.1 68.7 ±1.3 63.0 ±1.5 82.6 ±1.1 74.8 ±0.8 31.7 ±3.6 67.5 ±0.1 65.6 ±1.5 50.2 ±0.9 50.2 ±1.8 27.3 ±1.6 59.9
JTT 71.0 ±0.5 66.0 ±11.9 64.3 ±1.5 68.4 ±0.6 82.6 ±0.4 77.0 ±0.4 32.2 ±0.9 66.6 ±0.8 83.8 ±0.1 50.1 ±0.9 60.4 ±4.8 28.3 ±1.1 62.6
LfF 74.7 ±1.0 53.0 ±4.3 50.3 ±5.9 63.6 ±2.9 72.6 ±1.2 70.1 ±1.4 28.3 ±1.7 62.1 ±2.4 84.1 ±0.0 50.1 ±0.9 13.7 ±9.8 26.4 ±1.3 54.1
LISA 78.2 ±0.4 57.8 ±0.8 66.1 ±1.3 68.5 ±0.6 79.0 ±0.8 76.9 ±0.7 30.0 ±4.1 67.2 ±1.1 81.6 ±0.6 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 60.2
ReSample 70.0 ±1.0 82.2 ±1.2 68.2 ±0.7 67.5 ±0.4 80.5 ±1.5 77.7 ±1.1 23.3 ±1.4 68.9 ±0.3 82.4 ±0.5 47.8 ±2.5 73.0 ±0.6 31.4 ±0.6 64.4
ReWeight 72.5 ±0.3 81.5 ±0.9 69.9 ±0.6 67.8 ±1.2 83.1 ±0.7 76.8 ±0.9 25.0 ±0.0 67.4 ±0.3 84.0 ±0.1 51.9 ±2.3 73.8 ±1.0 27.7 ±1.1 65.1
SqrtReWeight 71.3 ±1.4 72.0 ±2.2 70.1 ±0.3 66.6 ±0.4 82.1 ±0.8 76.8 ±0.9 35.6 ±1.8 68.9 ±0.5 83.1 ±0.2 50.2 ±0.9 68.5 ±1.6 27.7 ±1.1 64.4
CBLoss 74.4 ±1.2 75.0 ±2.4 67.0 ±0.1 66.2 ±0.7 82.6 ±0.4 76.8 ±0.9 34.4 ±2.4 67.8 ±0.6 83.9 ±0.1 50.2 ±0.9 74.0 ±0.7 27.7 ±1.1 65.0
Focal 71.6 ±0.8 59.1 ±2.0 61.9 ±1.1 69.3 ±0.8 81.0 ±0.4 71.9 ±1.2 29.4 ±2.0 67.3 ±1.2 70.3 ±9.6 50.0 ±0.9 42.1 ±4.0 26.9 ±0.6 58.4
LDAM 71.0 ±1.8 59.3 ±2.3 37.0 ±7.9 69.6 ±1.6 83.6 ±0.4 76.7 ±0.5 26.7 ±1.4 68.2 ±1.4 81.0 ±0.3 50.1 ±0.9 34.5 ±1.5 24.3 ±0.8 56.8
BSoftmax 74.1 ±0.9 83.3 ±0.5 69.4 ±1.2 66.9 ±0.4 82.6 ±0.4 76.1 ±2.0 29.4 ±2.0 67.2 ±0.2 83.7 ±0.3 50.1 ±1.1 74.2 ±1.1 28.6 ±1.4 65.5
DFR 89.0 ±0.2 86.3 ±0.3 66.5 ±0.2 63.8 ±0.0 81.5 ±0.0 74.4 ±1.8 39.3 ±2.4 67.1 ±0.4 80.2 ±0.0 56.1 ±3.5 75.4 ±0.6 26.3 ±0.4 67.2
CRT 76.3 ±0.8 70.4 ±0.4 68.5 ±0.0 65.4 ±0.1 83.1 ±0.0 78.2 ±0.5 33.3 ±0.0 69.1 ±0.2 83.4 ±0.0 56.5 ±3.5 74.0 ±0.2 31.1 ±0.1 65.8
ReWeightCRT 76.3 ±0.2 71.1 ±0.5 68.2 ±0.4 65.3 ±0.1 85.1 ±0.4 77.5 ±0.7 33.3 ±0.0 68.9 ±0.0 83.4 ±0.0 55.4 ±4.9 73.9 ±0.2 33.1 ±0.1 66.0

E.3. Attributes Unknown in Both Training & Validation

E.3.1. WATERBIRDS

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 84.1 ±1.7 69.1 ±4.7 77.4 ±2.0 60.7 ±3.2 79.4 ±2.1 69.5 ±2.9 83.1 ±2.0 83.1 ±2.0 91.0 ±1.4 12.9 ±1.7

Mixup 89.2 ±0.6 77.5 ±0.7 83.5 ±0.8 70.6 ±1.9 85.6 ±0.7 78.4 ±0.9 88.9 ±0.2 88.9 ±0.2 94.9 ±0.1 8.0 ±1.1

GroupDRO 86.9 ±0.9 73.1 ±0.4 80.7 ±1.1 66.1 ±2.2 82.8 ±0.9 74.4 ±1.2 86.3 ±0.5 86.3 ±0.5 94.0 ±0.3 10.5 ±0.8

CVaRDRO 89.9 ±0.4 75.5 ±2.2 84.5 ±0.7 73.2 ±1.7 86.2 ±0.3 79.0 ±0.4 88.5 ±0.3 88.5 ±0.3 95.4 ±0.2 8.3 ±0.2

JTT 88.9 ±0.6 71.2 ±0.5 83.2 ±0.8 71.4 ±1.6 84.7 ±0.6 76.8 ±0.8 86.8 ±0.2 86.8 ±0.2 94.2 ±0.1 9.2 ±0.3

LfF 86.6 ±0.5 75.0 ±0.7 80.3 ±0.6 65.1 ±1.1 82.5 ±0.5 74.0 ±0.7 86.3 ±0.3 86.3 ±0.3 93.4 ±0.2 10.0 ±0.8

LISA 89.2 ±0.6 77.5 ±0.7 83.5 ±0.8 70.6 ±1.9 85.6 ±0.7 78.4 ±0.9 88.9 ±0.2 88.9 ±0.2 94.9 ±0.1 8.0 ±1.1

ReSample 86.2 ±0.5 70.0 ±1.0 79.8 ±0.6 64.9 ±1.4 81.7 ±0.5 72.7 ±0.7 85.0 ±0.2 85.0 ±0.2 92.8 ±0.1 11.3 ±0.3

ReWeight 86.2 ±0.6 71.9 ±0.6 79.9 ±0.7 64.3 ±1.6 82.1 ±0.6 73.5 ±0.7 86.2 ±0.1 86.2 ±0.1 94.0 ±0.1 10.8 ±0.4

SqrtReWeight 89.4 ±0.4 71.0 ±1.4 83.9 ±0.6 72.8 ±0.9 85.3 ±0.6 77.7 ±0.9 87.2 ±0.6 87.2 ±0.6 94.4 ±0.5 9.0 ±0.5

CBLoss 86.8 ±0.6 74.4 ±1.2 80.4 ±0.7 65.5 ±1.3 82.6 ±0.7 74.0 ±1.0 86.2 ±0.6 86.2 ±0.6 93.5 ±0.4 11.3 ±0.4

Focal 89.3 ±0.2 71.6 ±0.8 83.7 ±0.3 72.4 ±0.5 85.2 ±0.3 77.5 ±0.4 87.1 ±0.3 87.1 ±0.3 94.2 ±0.2 6.9 ±0.1

LDAM 87.9 ±0.2 70.9 ±1.7 81.9 ±0.3 69.1 ±0.8 83.6 ±0.1 75.2 ±0.1 86.0 ±0.2 86.0 ±0.2 93.5 ±0.1 11.8 ±1.7

BSoftmax 88.4 ±1.2 74.1 ±0.9 82.6 ±1.6 69.9 ±2.9 84.4 ±1.5 76.4 ±2.0 87.0 ±1.0 87.0 ±1.0 94.0 ±0.9 9.9 ±1.2

DFR 92.2 ±0.2 89.0 ±0.2 87.6 ±0.3 78.3 ±0.6 89.2 ±0.2 83.5 ±0.4 91.2 ±0.1 91.2 ±0.1 96.8 ±0.0 6.9 ±0.4

CRT 89.2 ±0.1 76.3 ±0.8 83.5 ±0.1 71.3 ±0.4 85.3 ±0.1 77.8 ±0.1 87.9 ±0.1 87.9 ±0.1 94.8 ±0.0 9.2 ±0.2

ReWeightCRT 89.4 ±0.3 76.3 ±0.2 83.8 ±0.3 71.9 ±0.7 85.6 ±0.3 78.1 ±0.4 88.0 ±0.2 88.0 ±0.2 94.9 ±0.1 8.8 ±0.2

E.3.2. CELEBA
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 95.0 ±0.1 57.6 ±0.8 87.4 ±0.2 76.3 ±0.3 89.9 ±0.1 82.7 ±0.2 85.6 ±0.2 93.0 ±0.0 98.4 ±0.0 2.9 ±0.1

Mixup 95.4 ±0.1 57.8 ±0.8 88.4 ±0.3 78.5 ±0.7 90.6 ±0.2 83.8 ±0.3 85.8 ±0.2 93.1 ±0.1 98.4 ±0.1 2.5 ±0.2

GroupDRO 94.4 ±0.0 68.3 ±0.9 85.8 ±0.1 72.7 ±0.1 89.2 ±0.1 81.7 ±0.1 88.4 ±0.2 93.9 ±0.1 98.6 ±0.0 4.1 ±0.0

CVaRDRO 95.1 ±0.1 60.2 ±3.0 87.7 ±0.3 76.9 ±0.6 90.1 ±0.1 83.1 ±0.2 86.3 ±0.7 93.1 ±0.1 98.4 ±0.0 3.1 ±0.1

JTT 95.9 ±0.0 48.3 ±1.5 90.5 ±0.1 82.9 ±0.3 91.4 ±0.1 85.2 ±0.1 83.4 ±0.4 92.4 ±0.2 98.6 ±0.0 1.3 ±0.1

LfF 81.1 ±5.6 53.0 ±4.3 71.8 ±4.1 45.2 ±8.3 73.2 ±5.6 59.0 ±7.3 78.3 ±3.0 85.3 ±2.9 94.1 ±1.2 27.9 ±5.5

LISA 95.4 ±0.1 57.8 ±0.8 88.4 ±0.3 78.5 ±0.7 90.6 ±0.2 83.8 ±0.3 85.8 ±0.2 93.1 ±0.1 98.4 ±0.1 2.5 ±0.2

ReSample 94.1 ±0.1 74.1 ±2.2 85.0 ±0.1 71.1 ±0.2 88.6 ±0.1 80.7 ±0.2 89.5 ±0.5 93.8 ±0.1 98.4 ±0.0 4.8 ±0.1

ReWeight 94.1 ±0.1 69.6 ±0.2 85.1 ±0.1 71.2 ±0.2 88.7 ±0.1 81.0 ±0.2 88.6 ±0.0 94.0 ±0.1 98.5 ±0.0 4.6 ±0.0

SqrtReWeight 94.0 ±0.2 66.9 ±2.2 85.0 ±0.4 71.0 ±0.9 88.6 ±0.3 80.7 ±0.4 87.9 ±0.5 93.9 ±0.1 98.4 ±0.0 4.8 ±0.2

CBLoss 94.4 ±0.0 65.4 ±1.4 85.9 ±0.1 72.9 ±0.2 89.2 ±0.1 81.7 ±0.1 87.6 ±0.3 93.8 ±0.1 98.5 ±0.0 4.4 ±0.1

Focal 94.9 ±0.3 56.9 ±3.4 87.4 ±0.7 76.4 ±1.5 89.7 ±0.4 82.4 ±0.7 85.2 ±0.8 92.6 ±0.3 98.3 ±0.1 3.1 ±0.4

LDAM 94.7 ±0.3 57.0 ±4.1 86.7 ±0.9 74.8 ±2.0 89.5 ±0.5 82.1 ±0.8 85.5 ±0.9 93.2 ±0.2 98.4 ±0.0 30.7 ±0.5

BSoftmax 94.5 ±0.1 69.6 ±1.2 85.9 ±0.2 72.9 ±0.4 89.4 ±0.2 82.0 ±0.3 88.8 ±0.3 94.2 ±0.1 98.6 ±0.0 4.6 ±0.0

DFR 93.6 ±0.0 73.7 ±0.8 84.1 ±0.1 69.4 ±0.2 87.8 ±0.1 79.4 ±0.1 89.0 ±0.2 93.2 ±0.0 98.2 ±0.0 14.8 ±0.5

CRT 94.1 ±0.1 69.6 ±0.7 85.1 ±0.3 71.4 ±0.5 88.6 ±0.2 80.7 ±0.3 88.4 ±0.1 93.6 ±0.0 98.4 ±0.0 4.6 ±0.2

ReWeightCRT 94.2 ±0.1 70.7 ±0.6 85.4 ±0.1 71.9 ±0.3 88.8 ±0.1 81.1 ±0.2 88.7 ±0.1 93.6 ±0.0 98.4 ±0.0 4.7 ±0.1

E.3.3. CIVILCOMMENTS

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 85.4 ±0.2 63.2 ±1.2 75.4 ±0.3 57.6 ±0.7 77.0 ±0.1 63.2 ±0.1 77.7 ±0.1 79.4 ±0.2 89.8 ±0.1 7.8 ±0.4

Mixup 84.6 ±0.1 65.8 ±1.5 74.4 ±0.2 55.3 ±0.3 76.4 ±0.1 62.6 ±0.2 78.0 ±0.2 79.7 ±0.0 89.7 ±0.1 9.3 ±0.4

GroupDRO 81.2 ±0.3 61.5 ±1.8 71.9 ±0.2 48.6 ±0.5 74.2 ±0.3 60.9 ±0.3 78.9 ±0.1 81.3 ±0.1 89.8 ±0.1 15.7 ±0.6

CVaRDRO 81.6 ±0.7 62.9 ±3.8 72.1 ±0.5 49.3 ±1.2 74.4 ±0.6 60.9 ±0.6 78.4 ±0.4 80.8 ±0.1 89.6 ±0.1 31.9 ±0.1

JTT 79.0 ±1.8 51.0 ±4.2 69.7 ±1.3 45.5 ±2.8 71.4 ±1.6 56.6 ±1.8 75.0 ±0.8 77.7 ±0.8 86.5 ±1.0 14.0 ±1.6

LfF 69.1 ±4.3 42.2 ±7.2 62.6 ±3.2 33.9 ±4.5 62.0 ±4.3 45.7 ±5.2 67.2 ±4.0 69.7 ±4.7 75.0 ±6.6 27.9 ±1.6

LISA 84.6 ±0.1 65.8 ±1.5 74.4 ±0.2 55.3 ±0.3 76.4 ±0.1 62.6 ±0.2 78.0 ±0.2 79.7 ±0.0 89.7 ±0.1 9.3 ±0.4

ReSample 80.4 ±0.2 61.0 ±0.6 71.2 ±0.1 47.2 ±0.2 73.4 ±0.1 59.8 ±0.2 78.3 ±0.1 80.7 ±0.1 89.3 ±0.1 17.0 ±0.6

ReWeight 80.6 ±0.3 59.3 ±1.1 71.5 ±0.2 47.6 ±0.5 73.7 ±0.2 60.3 ±0.2 78.7 ±0.1 81.3 ±0.0 89.9 ±0.1 14.9 ±0.5

SqrtReWeight 82.9 ±0.5 68.6 ±1.1 73.0 ±0.4 51.7 ±0.9 75.4 ±0.4 61.8 ±0.4 78.6 ±0.2 80.6 ±0.2 89.8 ±0.1 10.9 ±0.7

CBLoss 84.0 ±0.8 67.3 ±0.2 74.0 ±0.7 54.1 ±1.8 76.2 ±0.6 62.5 ±0.5 78.5 ±0.2 80.3 ±0.3 90.0 ±0.0 9.5 ±1.4

Focal 85.6 ±0.3 61.9 ±1.1 75.6 ±0.4 58.5 ±0.9 77.0 ±0.3 62.9 ±0.5 77.3 ±0.3 78.7 ±0.3 89.4 ±0.4 7.7 ±0.4

LDAM 80.2 ±2.1 28.4 ±7.7 67.8 ±3.3 46.2 ±5.6 68.3 ±3.1 48.9 ±5.0 66.1 ±3.6 69.5 ±3.2 77.4 ±4.0 20.7 ±0.5

BSoftmax 80.3 ±0.2 58.3 ±1.1 71.3 ±0.1 47.2 ±0.3 73.5 ±0.2 60.0 ±0.1 78.4 ±0.1 81.1 ±0.1 89.8 ±0.1 16.5 ±0.8

DFR 80.7 ±0.0 64.4 ±0.1 70.9 ±0.0 47.6 ±0.1 73.1 ±0.0 58.7 ±0.0 76.8 ±0.0 79.0 ±0.0 86.9 ±0.0 20.4 ±0.1

CRT 82.7 ±0.1 67.8 ±0.3 72.8 ±0.1 51.1 ±0.2 75.2 ±0.1 61.6 ±0.1 78.7 ±0.0 80.7 ±0.0 89.5 ±0.1 13.0 ±0.1

ReWeightCRT 82.4 ±0.0 64.7 ±0.2 72.6 ±0.0 50.5 ±0.1 75.0 ±0.0 61.4 ±0.0 78.4 ±0.0 80.7 ±0.0 89.5 ±0.0 12.6 ±0.1

E.3.4. MULTINLI

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 81.0 ±0.3 66.4 ±2.3 81.3 ±0.3 74.2 ±0.4 81.1 ±0.3 77.6 ±0.2 79.4 ±0.8 81.0 ±0.3 93.6 ±0.1 11.1 ±0.6

Mixup 81.7 ±0.1 66.8 ±0.3 81.9 ±0.1 75.8 ±0.1 81.8 ±0.1 78.3 ±0.1 80.1 ±0.2 81.7 ±0.1 93.7 ±0.0 10.9 ±0.2

GroupDRO 81.1 ±0.2 64.1 ±0.8 81.3 ±0.2 74.8 ±0.1 81.1 ±0.2 77.9 ±0.1 79.4 ±0.2 81.1 ±0.2 93.7 ±0.1 9.1 ±0.9

CVaRDRO 75.4 ±0.2 48.2 ±3.4 75.8 ±0.3 68.9 ±0.1 75.5 ±0.3 72.0 ±0.1 72.3 ±0.8 75.4 ±0.2 87.3 ±0.2 41.8 ±0.2

JTT 81.4 ±0.0 65.1 ±1.6 81.7 ±0.0 75.0 ±0.1 81.5 ±0.0 77.8 ±0.1 79.8 ±0.3 81.4 ±0.0 93.9 ±0.0 9.4 ±0.4

LfF 71.4 ±1.6 57.3 ±5.7 71.5 ±1.7 67.1 ±2.0 71.4 ±1.7 68.4 ±2.7 69.3 ±2.9 71.4 ±1.6 86.6 ±1.4 6.2 ±0.5

LISA 81.7 ±0.1 66.8 ±0.3 81.9 ±0.1 75.8 ±0.1 81.8 ±0.1 78.3 ±0.1 80.1 ±0.2 81.7 ±0.1 93.7 ±0.0 10.9 ±0.2

ReSample 81.5 ±0.0 66.8 ±0.5 81.9 ±0.1 74.2 ±0.2 81.6 ±0.0 78.0 ±0.1 79.9 ±0.1 81.5 ±0.0 93.9 ±0.0 12.2 ±0.6

ReWeight 79.4 ±0.2 64.2 ±1.9 79.6 ±0.2 72.9 ±0.3 79.4 ±0.2 75.8 ±0.1 78.0 ±0.2 79.4 ±0.2 92.6 ±0.1 14.2 ±0.6

SqrtReWeight 80.6 ±0.2 63.8 ±2.4 80.8 ±0.2 75.1 ±0.2 80.6 ±0.2 77.5 ±0.2 78.8 ±0.5 80.6 ±0.2 93.5 ±0.1 7.8 ±0.2

CBLoss 80.6 ±0.3 63.6 ±2.4 80.8 ±0.2 75.1 ±0.3 80.6 ±0.3 77.5 ±0.2 78.7 ±0.5 80.6 ±0.3 93.5 ±0.1 7.8 ±0.2

Focal 80.9 ±0.2 62.4 ±2.0 81.2 ±0.2 74.3 ±0.1 81.0 ±0.2 77.4 ±0.2 78.7 ±0.3 80.9 ±0.2 93.7 ±0.1 5.3 ±0.8

LDAM 80.9 ±0.1 65.5 ±0.8 81.1 ±0.1 74.6 ±0.3 80.9 ±0.1 77.4 ±0.0 79.2 ±0.2 80.9 ±0.1 93.5 ±0.0 33.2 ±0.4

BSoftmax 80.6 ±0.2 63.6 ±2.4 80.8 ±0.2 75.1 ±0.2 80.7 ±0.2 77.6 ±0.2 78.7 ±0.5 80.6 ±0.2 93.5 ±0.1 7.8 ±0.2

DFR 80.2 ±0.0 63.8 ±0.0 80.3 ±0.0 75.2 ±0.0 80.3 ±0.0 76.2 ±0.0 78.5 ±0.0 80.2 ±0.0 92.9 ±0.0 5.8 ±0.0

CRT 80.2 ±0.0 65.4 ±0.2 80.3 ±0.0 74.3 ±0.0 80.2 ±0.0 76.4 ±0.0 78.6 ±0.0 80.2 ±0.0 92.8 ±0.0 14.9 ±0.1

ReWeightCRT 80.2 ±0.0 65.2 ±0.2 80.3 ±0.0 74.4 ±0.0 80.2 ±0.0 76.4 ±0.0 78.6 ±0.0 80.2 ±0.0 92.9 ±0.0 14.7 ±0.1

E.3.5. METASHIFT
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 91.2 ±0.4 82.1 ±0.8 91.1 ±0.4 90.4 ±0.5 91.1 ±0.4 90.6 ±0.4 89.1 ±0.5 91.1 ±0.4 97.4 ±0.1 6.1 ±0.7

Mixup 91.4 ±0.1 79.0 ±0.8 91.4 ±0.1 90.6 ±0.4 91.4 ±0.1 90.9 ±0.1 88.5 ±0.2 91.4 ±0.1 97.3 ±0.0 1.9 ±0.4

GroupDRO 91.5 ±0.3 83.1 ±0.7 91.4 ±0.3 90.1 ±0.6 91.4 ±0.3 91.0 ±0.3 89.4 ±0.5 91.5 ±0.3 97.6 ±0.1 5.5 ±1.0

CVaRDRO 91.2 ±1.0 83.5 ±0.5 91.2 ±1.0 89.4 ±1.8 91.1 ±1.0 90.7 ±0.9 89.2 ±1.0 91.2 ±0.9 97.5 ±0.2 13.0 ±5.9

JTT 91.2 ±0.1 82.6 ±0.4 91.1 ±0.1 90.6 ±0.2 91.1 ±0.1 90.6 ±0.1 89.2 ±0.1 91.1 ±0.1 97.6 ±0.0 7.2 ±0.2

LfF 80.4 ±0.4 72.3 ±1.3 80.7 ±0.3 76.9 ±1.7 80.4 ±0.4 79.7 ±0.4 80.5 ±0.6 80.6 ±0.3 91.5 ±0.1 8.5 ±1.1

LISA 91.4 ±0.1 79.0 ±0.8 91.4 ±0.1 90.6 ±0.4 91.4 ±0.1 90.9 ±0.1 88.5 ±0.2 91.4 ±0.1 97.3 ±0.0 1.9 ±0.4

ReSample 92.2 ±0.3 81.0 ±1.7 92.1 ±0.3 91.4 ±0.4 92.2 ±0.3 91.7 ±0.3 89.6 ±0.1 92.2 ±0.2 97.5 ±0.1 6.8 ±0.4

ReWeight 91.5 ±0.4 83.1 ±0.7 91.5 ±0.4 90.6 ±0.3 91.5 ±0.4 91.0 ±0.4 89.5 ±0.4 91.5 ±0.4 97.5 ±0.1 5.8 ±0.6

SqrtReWeight 91.3 ±0.1 82.6 ±0.4 91.2 ±0.1 90.3 ±0.2 91.2 ±0.1 90.7 ±0.2 89.2 ±0.2 91.3 ±0.1 97.5 ±0.1 5.6 ±1.0

CBLoss 91.4 ±0.1 83.1 ±0.0 91.3 ±0.1 90.4 ±0.4 91.4 ±0.1 90.9 ±0.2 89.4 ±0.1 91.4 ±0.2 97.4 ±0.1 6.3 ±0.4

Focal 91.6 ±0.2 81.0 ±0.4 91.7 ±0.2 90.9 ±0.6 91.6 ±0.2 91.1 ±0.2 89.4 ±0.2 91.6 ±0.2 97.6 ±0.0 4.9 ±1.2

LDAM 91.6 ±0.1 83.6 ±0.4 91.6 ±0.0 90.9 ±0.3 91.6 ±0.1 91.1 ±0.1 89.9 ±0.1 91.6 ±0.1 97.5 ±0.1 9.5 ±1.0

BSoftmax 91.3 ±0.3 82.6 ±0.4 91.3 ±0.3 89.9 ±0.3 91.3 ±0.3 90.9 ±0.3 89.2 ±0.3 91.4 ±0.3 97.5 ±0.1 5.7 ±0.8

DFR 90.2 ±0.2 81.4 ±0.1 90.2 ±0.2 88.1 ±0.5 90.2 ±0.2 89.8 ±0.2 88.0 ±0.2 90.3 ±0.2 96.7 ±0.0 3.2 ±0.2

CRT 91.5 ±0.0 83.1 ±0.0 91.4 ±0.0 90.6 ±0.1 91.4 ±0.0 90.9 ±0.0 89.5 ±0.0 91.4 ±0.0 97.3 ±0.0 6.8 ±0.0

ReWeightCRT 91.3 ±0.1 85.1 ±0.4 91.2 ±0.1 90.1 ±0.3 91.2 ±0.1 90.8 ±0.1 89.7 ±0.2 91.3 ±0.1 96.8 ±0.1 8.1 ±0.1

E.3.6. IMAGENETBG

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

Mixup 87.9 ±0.2 76.9 ±0.7 88.4 ±0.1 76.6 ±2.6 88.0 ±0.2 80.5 ±1.0 87.9 ±0.2 87.9 ±0.2 98.7 ±0.0 4.7 ±1.6

GroupDRO 87.7 ±0.1 76.4 ±0.2 87.9 ±0.1 76.2 ±0.5 87.6 ±0.1 81.1 ±0.3 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

CVaRDRO 87.8 ±0.2 74.8 ±0.8 88.0 ±0.1 79.9 ±0.9 87.8 ±0.2 79.5 ±0.3 87.8 ±0.2 87.8 ±0.2 99.0 ±0.0 5.6 ±0.2

JTT 87.6 ±0.4 77.0 ±0.4 87.8 ±0.3 78.3 ±3.0 87.5 ±0.3 80.4 ±0.6 87.6 ±0.4 87.6 ±0.4 99.0 ±0.0 3.7 ±0.2

LfF 84.7 ±0.5 70.1 ±1.4 85.4 ±0.3 72.1 ±3.1 84.7 ±0.5 76.2 ±0.6 84.7 ±0.5 84.7 ±0.5 98.6 ±0.0 1.8 ±0.4

LISA 87.9 ±0.2 76.9 ±0.7 88.4 ±0.1 76.6 ±2.6 88.0 ±0.2 80.5 ±1.0 87.9 ±0.2 87.9 ±0.2 98.7 ±0.0 4.7 ±1.6

ReSample 88.2 ±0.4 77.7 ±1.1 88.4 ±0.4 79.7 ±1.0 88.2 ±0.4 80.6 ±1.0 88.2 ±0.4 88.2 ±0.4 99.0 ±0.0 5.4 ±0.5

ReWeight 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

SqrtReWeight 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

CBLoss 87.7 ±0.1 76.8 ±0.9 87.9 ±0.1 78.3 ±1.3 87.7 ±0.1 80.7 ±0.4 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.1 ±0.1

Focal 86.7 ±0.2 71.9 ±1.2 87.1 ±0.2 74.2 ±1.3 86.6 ±0.2 77.6 ±0.7 86.7 ±0.2 86.7 ±0.2 98.9 ±0.0 2.8 ±0.6

LDAM 88.2 ±0.1 76.7 ±0.5 88.5 ±0.1 77.6 ±1.1 88.1 ±0.1 81.3 ±0.4 88.2 ±0.1 88.2 ±0.1 98.8 ±0.0 45.9 ±0.7

BSoftmax 87.7 ±0.1 76.1 ±2.0 88.0 ±0.1 77.7 ±1.3 87.7 ±0.1 80.4 ±0.8 87.7 ±0.1 87.7 ±0.1 99.0 ±0.0 5.6 ±0.5

DFR 86.8 ±0.5 74.4 ±1.8 86.9 ±0.5 78.9 ±1.6 86.7 ±0.5 78.1 ±1.3 86.8 ±0.5 86.8 ±0.5 98.8 ±0.1 8.9 ±1.4

CRT 88.3 ±0.1 78.2 ±0.5 88.3 ±0.1 82.7 ±0.4 88.3 ±0.1 80.9 ±0.2 88.3 ±0.1 88.3 ±0.1 99.1 ±0.0 5.6 ±0.2

ReWeightCRT 88.4 ±0.1 77.5 ±0.7 88.5 ±0.1 82.1 ±0.4 88.4 ±0.1 81.2 ±0.3 88.4 ±0.1 88.4 ±0.1 99.1 ±0.0 5.4 ±0.2

E.3.7. NICO++

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 85.3 ±0.3 35.0 ±4.1 86.3 ±0.2 56.3 ±4.9 85.4 ±0.3 64.9 ±2.3 84.9 ±0.3 85.2 ±0.3 99.4 ±0.0 9.4 ±0.1

Mixup 85.4 ±0.1 30.0 ±4.1 86.2 ±0.1 62.2 ±0.5 85.5 ±0.1 69.4 ±0.4 85.0 ±0.1 85.3 ±0.1 99.2 ±0.0 2.3 ±0.5

GroupDRO 83.7 ±0.5 31.1 ±0.9 84.6 ±0.4 58.2 ±1.5 83.8 ±0.5 66.7 ±0.9 83.3 ±0.4 83.6 ±0.5 99.3 ±0.0 7.0 ±0.2

CVaRDRO 85.8 ±0.1 27.8 ±2.3 86.5 ±0.1 61.5 ±0.7 85.8 ±0.1 67.3 ±0.5 85.2 ±0.1 85.7 ±0.1 99.4 ±0.0 9.9 ±0.0

JTT 85.7 ±0.1 30.6 ±2.3 86.4 ±0.1 60.9 ±1.2 85.8 ±0.1 66.7 ±0.4 85.2 ±0.1 85.6 ±0.1 99.4 ±0.0 9.5 ±0.2

LfF 78.7 ±0.6 28.8 ±2.0 81.0 ±0.3 45.1 ±1.2 79.0 ±0.6 54.2 ±1.4 78.4 ±0.5 78.6 ±0.6 99.2 ±0.0 1.5 ±0.3

LISA 85.4 ±0.1 30.0 ±4.1 86.2 ±0.1 62.2 ±0.5 85.5 ±0.1 69.4 ±0.4 85.0 ±0.1 85.3 ±0.1 99.2 ±0.0 2.3 ±0.5

ReSample 84.9 ±0.2 30.6 ±2.3 85.6 ±0.1 62.9 ±1.6 84.9 ±0.2 67.1 ±0.3 84.3 ±0.2 84.8 ±0.2 99.3 ±0.0 10.2 ±0.4

ReWeight 85.5 ±0.2 25.0 ±0.0 86.4 ±0.1 59.0 ±1.3 85.6 ±0.2 67.6 ±0.4 84.9 ±0.2 85.4 ±0.2 99.4 ±0.0 9.7 ±0.0

SqrtReWeight 85.5 ±0.1 32.8 ±3.5 86.5 ±0.1 55.9 ±2.1 85.6 ±0.1 66.4 ±1.3 85.0 ±0.1 85.4 ±0.1 99.4 ±0.0 9.4 ±0.1

CBLoss 85.9 ±0.1 31.7 ±3.6 86.6 ±0.1 59.3 ±3.0 86.0 ±0.1 67.2 ±0.7 85.4 ±0.1 85.8 ±0.0 99.4 ±0.0 10.1 ±0.1

Focal 85.7 ±0.1 30.6 ±2.3 86.5 ±0.1 58.5 ±0.6 85.8 ±0.1 66.7 ±0.8 85.2 ±0.1 85.6 ±0.1 99.5 ±0.0 6.3 ±0.3

LDAM 85.4 ±0.4 31.7 ±3.6 86.1 ±0.3 62.4 ±1.0 85.5 ±0.4 68.1 ±1.3 84.9 ±0.5 85.3 ±0.4 99.1 ±0.0 56.9 ±1.4

BSoftmax 85.8 ±0.0 35.6 ±1.8 86.4 ±0.1 60.7 ±1.4 85.8 ±0.0 69.2 ±0.6 85.3 ±0.0 85.7 ±0.0 99.4 ±0.0 9.4 ±0.1

DFR 82.7 ±0.1 38.0 ±3.8 83.2 ±0.1 58.5 ±1.6 82.7 ±0.1 65.1 ±0.2 82.4 ±0.1 82.6 ±0.1 99.2 ±0.0 11.7 ±0.2

CRT 85.8 ±0.1 33.3 ±0.0 86.1 ±0.0 65.3 ±0.6 85.8 ±0.1 69.9 ±0.4 85.3 ±0.1 85.6 ±0.1 99.4 ±0.0 6.0 ±0.6

ReWeightCRT 85.8 ±0.1 33.3 ±0.0 86.1 ±0.1 64.3 ±0.7 85.8 ±0.1 69.7 ±0.4 85.4 ±0.1 85.7 ±0.1 99.4 ±0.0 6.1 ±0.8

E.3.8. MIMIC-CXR
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 78.3 ±0.1 68.6 ±0.2 77.4 ±0.1 71.2 ±0.1 77.6 ±0.1 73.7 ±0.1 77.3 ±0.1 78.0 ±0.1 85.4 ±0.1 3.8 ±0.2

Mixup 77.9 ±0.3 66.8 ±0.6 77.0 ±0.3 70.7 ±0.6 77.2 ±0.3 73.2 ±0.3 76.9 ±0.3 77.5 ±0.3 84.9 ±0.3 3.6 ±0.5

GroupDRO 77.9 ±0.0 67.4 ±0.5 77.1 ±0.0 70.2 ±0.1 77.4 ±0.0 73.7 ±0.0 77.3 ±0.0 77.9 ±0.0 85.2 ±0.1 5.5 ±0.3

CVaRDRO 78.2 ±0.1 68.0 ±0.2 77.3 ±0.1 70.7 ±0.2 77.6 ±0.1 73.8 ±0.1 77.3 ±0.1 78.0 ±0.1 85.1 ±0.0 6.8 ±0.7

JTT 77.4 ±0.3 64.9 ±0.3 76.5 ±0.3 70.1 ±0.7 76.7 ±0.2 72.8 ±0.2 76.4 ±0.2 77.1 ±0.2 84.5 ±0.2 4.2 ±0.4

LfF 73.2 ±0.9 62.2 ±2.4 72.3 ±1.0 65.1 ±0.9 72.5 ±1.0 67.8 ±1.5 72.4 ±1.1 72.9 ±1.1 79.3 ±1.3 11.3 ±0.8

LISA 77.9 ±0.3 66.8 ±0.6 77.0 ±0.3 70.7 ±0.6 77.2 ±0.3 73.2 ±0.3 76.9 ±0.3 77.5 ±0.3 84.9 ±0.3 3.6 ±0.5

ReSample 78.4 ±0.1 67.5 ±0.3 77.6 ±0.1 70.8 ±0.1 77.8 ±0.1 74.2 ±0.1 77.6 ±0.1 78.3 ±0.1 85.4 ±0.1 5.3 ±0.0

ReWeight 77.6 ±0.0 67.0 ±0.4 76.8 ±0.0 69.7 ±0.0 77.1 ±0.0 73.4 ±0.0 76.9 ±0.1 77.6 ±0.0 84.9 ±0.0 5.2 ±0.4

SqrtReWeight 78.3 ±0.0 68.0 ±0.4 77.5 ±0.0 70.6 ±0.0 77.8 ±0.0 74.2 ±0.0 77.6 ±0.0 78.3 ±0.0 85.6 ±0.0 5.2 ±0.3

CBLoss 78.3 ±0.2 67.6 ±0.3 77.4 ±0.2 70.8 ±0.2 77.7 ±0.2 74.0 ±0.2 77.5 ±0.1 78.2 ±0.2 85.5 ±0.1 4.7 ±0.3

Focal 78.3 ±0.1 68.7 ±0.4 77.4 ±0.1 70.8 ±0.2 77.6 ±0.1 73.9 ±0.0 77.4 ±0.1 78.1 ±0.0 85.4 ±0.0 10.1 ±0.6

LDAM 78.0 ±0.1 66.6 ±0.6 77.2 ±0.2 70.4 ±0.2 77.4 ±0.2 73.7 ±0.2 77.2 ±0.2 77.9 ±0.2 85.2 ±0.1 22.5 ±0.2

BSoftmax 78.0 ±0.1 67.6 ±0.6 77.1 ±0.1 70.4 ±0.1 77.3 ±0.1 73.6 ±0.1 77.2 ±0.1 77.8 ±0.1 85.1 ±0.1 5.2 ±0.4

DFR 78.3 ±0.0 67.1 ±0.4 77.4 ±0.0 72.1 ±0.2 77.5 ±0.0 73.2 ±0.1 77.1 ±0.0 77.6 ±0.1 85.1 ±0.0 20.0 ±0.1

CRT 78.0 ±0.0 68.1 ±0.1 77.2 ±0.0 70.1 ±0.0 77.4 ±0.0 73.9 ±0.0 77.3 ±0.0 78.0 ±0.0 85.3 ±0.0 6.2 ±0.0

ReWeightCRT 77.8 ±0.0 67.9 ±0.1 77.0 ±0.0 70.0 ±0.0 77.2 ±0.0 73.6 ±0.0 77.0 ±0.0 77.8 ±0.0 85.0 ±0.0 5.4 ±0.0

E.3.9. MIMICNOTES

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 91.1 ±0.1 24.2 ±2.8 76.4 ±0.9 60.3 ±2.1 65.8 ±1.2 36.5 ±2.5 62.2 ±1.3 62.4 ±1.4 85.2 ±0.1 2.2 ±0.1

Mixup 91.1 ±0.0 22.7 ±3.2 76.8 ±0.7 61.2 ±1.6 65.1 ±1.6 35.0 ±3.2 61.5 ±1.6 61.7 ±1.7 85.4 ±0.0 2.0 ±0.8

GroupDRO 83.2 ±2.4 62.6 ±6.3 64.7 ±1.4 33.7 ±3.4 66.4 ±1.3 42.8 ±1.1 74.3 ±1.5 74.4 ±1.5 85.1 ±0.1 13.8 ±3.2

CVaRDRO 90.2 ±0.0 0.0 ±0.0 45.1 ±0.0 0.0 ±0.0 47.4 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 71.6 ±0.4 40.2 ±0.0

JTT 71.3 ±3.7 65.9 ±2.8 60.3 ±0.7 23.4 ±1.9 58.6 ±2.3 36.0 ±1.8 75.5 ±0.4 75.6 ±0.4 84.9 ±0.1 27.5 ±3.9

LfF 84.0 ±1.2 62.7 ±2.1 64.6 ±0.7 33.6 ±1.6 67.1 ±0.8 43.6 ±0.8 74.7 ±0.4 74.7 ±0.5 85.1 ±0.0 12.5 ±1.2

LISA 91.1 ±0.0 22.7 ±3.2 76.8 ±0.7 61.2 ±1.6 65.1 ±1.6 35.0 ±3.2 61.5 ±1.6 61.7 ±1.7 85.4 ±0.0 2.0 ±0.8

ReSample 81.4 ±1.5 67.1 ±2.6 63.3 ±0.6 30.5 ±1.5 65.4 ±1.0 42.0 ±1.0 75.4 ±0.3 75.6 ±0.4 85.1 ±0.0 17.4 ±1.9

ReWeight 82.7 ±0.7 65.5 ±1.3 63.8 ±0.4 31.7 ±0.9 66.3 ±0.5 42.8 ±0.5 75.3 ±0.2 75.4 ±0.3 85.2 ±0.1 15.9 ±0.7

SqrtReWeight 90.3 ±0.2 35.7 ±4.0 72.4 ±0.9 51.3 ±2.1 68.7 ±0.9 42.8 ±2.1 66.7 ±1.6 66.8 ±1.6 85.2 ±0.1 3.7 ±0.7

CBLoss 78.2 ±1.0 72.3 ±1.3 61.9 ±0.3 27.3 ±0.8 63.2 ±0.7 39.8 ±0.6 76.1 ±0.2 76.2 ±0.2 85.0 ±0.0 20.6 ±1.3

Focal 91.0 ±0.0 19.1 ±2.3 77.1 ±0.6 62.1 ±1.4 63.6 ±1.3 31.9 ±2.6 59.9 ±1.1 60.2 ±1.1 85.3 ±0.1 8.1 ±0.7

LDAM 90.6 ±0.1 5.3 ±2.4 84.4 ±0.8 78.1 ±1.7 52.5 ±2.1 10.0 ±4.1 52.7 ±1.2 52.7 ±1.2 84.9 ±0.1 28.9 ±1.0

BSoftmax 76.9 ±0.9 73.1 ±1.0 61.7 ±0.2 26.5 ±0.6 62.5 ±0.5 39.3 ±0.4 76.6 ±0.2 76.7 ±0.2 85.4 ±0.0 23.5 ±1.1

DFR 69.2 ±1.3 67.3 ±1.7 58.8 ±0.2 21.0 ±0.5 56.5 ±0.8 33.1 ±0.5 73.1 ±0.0 73.1 ±0.0 81.0 ±0.0 38.4 ±0.1

CRT 77.8 ±0.0 73.1 ±0.0 61.6 ±0.0 26.7 ±0.0 62.8 ±0.0 39.2 ±0.0 75.9 ±0.0 75.9 ±0.0 84.3 ±0.0 23.0 ±0.1

ReWeightCRT 81.2 ±2.8 63.9 ±7.6 63.6 ±1.6 31.4 ±3.9 64.7 ±1.6 40.7 ±1.3 73.8 ±1.6 73.9 ±1.6 84.3 ±0.0 26.5 ±2.4

E.3.10. CXRMULTISITE

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 93.1 ±0.1 0.3 ±0.1

Mixup 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 92.9 ±0.1 0.3 ±0.0

GroupDRO 90.2 ±0.1 0.0 ±0.0 56.7 ±0.1 13.6 ±0.1 59.2 ±0.1 23.7 ±0.2 50.2 ±0.1 90.4 ±0.0 92.8 ±0.2 13.5 ±0.7

CVaRDRO 98.3 ±0.0 0.0 ±0.0 61.2 ±4.9 24.0 ±9.8 50.7 ±0.7 2.2 ±1.5 50.2 ±0.2 50.6 ±0.4 93.0 ±0.0 0.9 ±0.3

JTT 94.1 ±0.9 0.0 ±0.0 59.0 ±0.7 18.5 ±1.4 62.9 ±0.8 28.9 ±1.2 55.2 ±0.9 82.2 ±2.4 93.2 ±0.1 6.4 ±0.5

LfF 9.9 ±6.7 5.4 ±4.4 17.4 ±13.5 0.6 ±0.5 8.5 ±5.6 1.2 ±1.0 50.5 ±0.4 51.7 ±1.4 60.6 ±1.6 82.6 ±12.8

LISA 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 92.9 ±0.1 0.3 ±0.0

ReSample 88.3 ±1.6 0.1 ±0.1 55.9 ±0.6 12.0 ±1.2 57.3 ±1.4 20.9 ±1.8 50.3 ±0.5 88.1 ±0.7 92.3 ±0.1 13.0 ±2.8

ReWeight 89.5 ±0.0 0.3 ±0.1 56.4 ±0.0 13.0 ±0.0 58.5 ±0.0 22.7 ±0.0 50.5 ±0.2 90.3 ±0.0 93.2 ±0.1 17.7 ±1.7

SqrtReWeight 94.5 ±0.4 0.0 ±0.0 59.4 ±0.2 19.3 ±0.6 63.7 ±0.3 30.2 ±0.4 56.3 ±0.1 82.3 ±1.6 93.3 ±0.0 6.0 ±0.2

CBLoss 1.7 ±0.0 0.0 ±0.0 0.8 ±0.0 0.0 ±0.0 1.7 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 62.7 ±1.5 98.3 ±0.0

Focal 98.3 ±0.0 0.0 ±0.0 55.4 ±5.1 12.5 ±10.2 49.7 ±0.1 0.3 ±0.2 50.0 ±0.0 50.1 ±0.1 93.2 ±0.0 11.5 ±0.6

LDAM 98.3 ±0.0 0.0 ±0.0 49.2 ±0.0 0.0 ±0.0 49.6 ±0.0 0.0 ±0.0 50.0 ±0.0 50.0 ±0.0 93.1 ±0.1 0.3 ±0.1

BSoftmax 89.1 ±0.2 0.5 ±0.1 56.2 ±0.1 12.5 ±0.2 58.1 ±0.2 22.0 ±0.3 50.4 ±0.0 90.0 ±0.1 92.9 ±0.1 19.9 ±1.3

DFR 89.7 ±0.1 0.6 ±0.1 56.5 ±0.0 13.2 ±0.1 58.7 ±0.1 23.0 ±0.1 50.4 ±0.0 90.4 ±0.0 92.8 ±0.1 47.3 ±0.1

CRT 90.4 ±0.1 1.1 ±0.5 56.9 ±0.0 13.9 ±0.1 59.5 ±0.1 24.2 ±0.1 51.2 ±0.1 90.2 ±0.1 93.3 ±0.0 15.7 ±0.9

ReWeightCRT 89.9 ±0.1 1.4 ±0.6 56.6 ±0.0 13.4 ±0.1 59.0 ±0.1 23.3 ±0.1 51.1 ±0.3 90.4 ±0.0 93.1 ±0.1 15.5 ±0.7

E.3.11. CHEXPERT
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Change is Hard: A Closer Look at Subpopulation Shift

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 88.6 ±0.7 41.7 ±3.4 68.3 ±1.1 42.3 ±2.4 68.7 ±0.2 43.8 ±0.7 69.5 ±1.3 70.0 ±1.5 85.4 ±0.4 5.0 ±1.1

Mixup 81.9 ±6.2 37.4 ±3.5 63.5 ±5.0 33.9 ±9.3 62.5 ±5.9 35.7 ±7.6 63.8 ±4.7 64.1 ±4.6 76.1 ±8.5 16.1 ±9.0

GroupDRO 79.2 ±0.2 74.7 ±0.3 62.9 ±0.1 28.6 ±0.2 64.7 ±0.2 42.0 ±0.2 78.4 ±0.2 79.1 ±0.1 86.2 ±0.0 21.3 ±0.8

CVaRDRO 73.7 ±1.0 50.2 ±1.8 57.3 ±0.1 20.1 ±0.3 56.8 ±0.4 29.9 ±0.2 65.7 ±0.6 67.0 ±0.4 72.9 ±0.4 40.4 ±0.0

JTT 75.2 ±0.8 60.4 ±4.8 59.4 ±1.1 23.0 ±1.5 59.6 ±1.4 34.4 ±2.3 70.7 ±2.6 72.0 ±2.5 79.0 ±2.5 24.4 ±0.5

LfF 22.3 ±10.2 13.7 ±9.8 37.3 ±5.8 9.0 ±0.7 19.5 ±8.3 8.8 ±3.9 46.2 ±2.9 46.2 ±3.1 30.5 ±10.1 65.7 ±10.2

LISA 81.9 ±6.2 37.4 ±3.5 63.5 ±5.0 33.9 ±9.3 62.5 ±5.9 35.7 ±7.6 63.8 ±4.7 64.1 ±4.6 76.1 ±8.5 16.1 ±9.0

ReSample 79.6 ±0.6 74.3 ±0.4 63.1 ±0.3 29.0 ±0.6 65.0 ±0.5 42.3 ±0.6 78.3 ±0.3 79.0 ±0.2 86.3 ±0.2 20.1 ±1.4

ReWeight 79.6 ±0.5 73.7 ±1.0 63.1 ±0.2 29.0 ±0.5 65.0 ±0.4 42.4 ±0.5 78.4 ±0.3 79.1 ±0.2 86.2 ±0.1 21.0 ±0.7

SqrtReWeight 83.5 ±0.3 68.5 ±1.6 65.0 ±0.2 33.3 ±0.4 67.9 ±0.2 45.5 ±0.3 77.8 ±0.4 78.5 ±0.3 86.3 ±0.3 15.6 ±1.1

CBLoss 80.0 ±0.5 74.0 ±0.7 63.3 ±0.2 29.4 ±0.5 65.2 ±0.4 42.6 ±0.5 78.6 ±0.2 79.0 ±0.2 86.1 ±0.3 19.6 ±0.6

Focal 89.3 ±0.3 42.1 ±4.0 69.6 ±0.4 44.7 ±1.1 69.8 ±0.4 45.5 ±1.0 70.4 ±1.1 70.4 ±1.3 86.5 ±0.1 16.1 ±1.7

LDAM 90.0 ±0.0 36.0 ±0.7 70.6 ±0.1 47.3 ±0.2 69.1 ±0.1 43.6 ±0.1 67.8 ±0.2 67.9 ±0.1 86.1 ±0.1 32.3 ±0.2

BSoftmax 79.9 ±0.2 73.8 ±1.0 63.3 ±0.0 29.4 ±0.1 65.3 ±0.1 42.8 ±0.0 78.6 ±0.2 79.5 ±0.1 86.6 ±0.1 21.3 ±0.4

DFR 79.1 ±0.0 75.8 ±0.3 63.0 ±0.0 28.6 ±0.0 64.7 ±0.0 42.1 ±0.0 78.8 ±0.0 79.3 ±0.0 86.0 ±0.0 25.6 ±0.1

CRT 79.3 ±0.1 74.6 ±0.4 62.9 ±0.1 28.7 ±0.1 64.7 ±0.1 42.0 ±0.1 78.5 ±0.1 79.0 ±0.1 86.1 ±0.1 21.7 ±0.1

ReWeightCRT 79.3 ±0.1 75.1 ±0.2 63.0 ±0.0 28.7 ±0.0 64.7 ±0.0 42.0 ±0.0 78.6 ±0.1 79.0 ±0.1 86.2 ±0.0 21.7 ±0.1

E.3.12. LIVING17

Algorithm Avg Acc. Worst Acc. Avg Prec. Worst Prec. Avg F1 Worst F1 Adjusted Acc. Balanced Acc. AUROC ECE

ERM 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

Mixup 29.8 ±1.8 8.7 ±1.4 30.9 ±2.2 9.5 ±1.3 29.3 ±1.9 9.7 ±1.5 29.8 ±1.8 29.8 ±1.8 78.2 ±1.2 34.1 ±1.9

GroupDRO 31.1 ±1.0 6.0 ±1.4 32.1 ±0.9 9.6 ±0.2 30.8 ±0.7 7.6 ±0.8 31.1 ±1.0 31.1 ±1.0 80.1 ±0.8 53.5 ±0.8

CVaRDRO 27.3 ±1.6 4.0 ±0.5 29.2 ±1.7 5.1 ±0.8 26.5 ±1.5 4.8 ±0.6 27.3 ±1.6 27.3 ±1.6 81.0 ±0.2 28.8 ±6.8

JTT 28.3 ±1.1 5.7 ±2.2 31.1 ±0.9 8.0 ±1.7 28.3 ±1.3 7.2 ±2.3 28.3 ±1.1 28.3 ±1.1 81.0 ±0.8 36.9 ±3.2

LfF 26.4 ±1.3 7.0 ±1.2 28.3 ±0.8 9.6 ±1.8 26.1 ±1.2 8.7 ±1.7 26.4 ±1.3 26.4 ±1.3 76.6 ±0.6 61.0 ±0.7

LISA 29.8 ±1.8 8.7 ±1.4 30.9 ±2.2 9.5 ±1.3 29.3 ±1.9 9.7 ±1.5 29.8 ±1.8 29.8 ±1.8 78.2 ±1.2 34.1 ±1.9

ReSample 31.4 ±0.6 6.7 ±1.5 33.0 ±0.6 11.0 ±0.6 31.0 ±0.6 8.3 ±1.2 31.4 ±0.6 31.4 ±0.6 81.0 ±0.7 46.6 ±3.1

ReWeight 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

SqrtReWeight 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

CBLoss 27.7 ±1.1 5.7 ±1.5 28.2 ±1.0 8.2 ±1.6 27.1 ±1.1 6.9 ±1.7 27.7 ±1.1 27.7 ±1.1 77.3 ±1.3 59.6 ±0.5

Focal 26.9 ±0.6 5.3 ±0.3 28.8 ±1.0 7.1 ±1.0 27.0 ±0.7 6.3 ±0.5 26.9 ±0.6 26.9 ±0.6 78.7 ±0.5 49.9 ±1.9

LDAM 24.3 ±0.8 4.0 ±0.8 28.0 ±1.2 6.6 ±1.4 24.0 ±0.8 5.1 ±0.3 24.3 ±0.8 24.3 ±0.8 79.1 ±1.0 12.4 ±0.5

BSoftmax 28.6 ±1.4 6.7 ±0.7 30.7 ±1.0 8.2 ±0.8 28.3 ±1.3 7.3 ±0.5 28.6 ±1.4 28.6 ±1.4 78.0 ±1.0 56.5 ±1.7

DFR 26.3 ±0.4 6.0 ±0.9 27.4 ±0.3 8.6 ±0.8 25.7 ±0.2 7.5 ±1.1 26.3 ±0.4 26.3 ±0.4 79.4 ±0.1 13.8 ±0.4

CRT 31.1 ±0.1 6.3 ±0.3 31.8 ±0.0 7.5 ±0.3 30.5 ±0.1 6.8 ±0.3 31.1 ±0.1 31.1 ±0.1 80.3 ±0.1 49.6 ±1.7

ReWeightCRT 33.1 ±0.1 9.3 ±0.3 33.4 ±0.1 11.3 ±0.3 32.6 ±0.0 10.8 ±0.2 33.1 ±0.1 33.1 ±0.1 82.0 ±0.0 40.0 ±0.4

E.3.13. OVERALL

Algorithm Waterbirds CelebA CivilComments MultiNLI MetaShift ImageNetBG NICO++ MIMIC-CXR MIMICNotes CXRMultisite CheXpert Living17 Avg

ERM 69.1 ±4.7 57.6 ±0.8 63.2 ±1.2 66.4 ±2.3 82.1 ±0.8 76.8 ±0.9 35.0 ±4.1 68.6 ±0.2 80.4 ±0.2 50.1 ±0.9 41.7 ±3.4 27.7 ±1.1 59.9
Mixup 77.5 ±0.7 57.8 ±0.8 65.8 ±1.5 66.8 ±0.3 79.0 ±0.8 76.9 ±0.7 30.0 ±4.1 66.8 ±0.6 81.6 ±0.6 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 60.0
GroupDRO 73.1 ±0.4 68.3 ±0.9 61.5 ±1.8 64.1 ±0.8 83.1 ±0.7 76.4 ±0.2 31.1 ±0.9 67.4 ±0.5 83.7 ±0.1 59.2 ±0.3 74.7 ±0.3 31.1 ±1.0 64.5
CVaRDRO 75.5 ±2.2 60.2 ±3.0 62.9 ±3.8 48.2 ±3.4 83.5 ±0.5 74.8 ±0.8 27.8 ±2.3 68.0 ±0.2 65.6 ±1.5 50.2 ±0.9 50.2 ±1.8 27.3 ±1.6 57.8
JTT 71.2 ±0.5 48.3 ±1.5 51.0 ±4.2 65.1 ±1.6 82.6 ±0.4 77.0 ±0.4 30.6 ±2.3 64.9 ±0.3 83.8 ±0.1 57.9 ±2.1 60.4 ±4.8 28.3 ±1.1 60.1
LfF 75.0 ±0.7 53.0 ±4.3 42.2 ±7.2 57.3 ±5.7 72.3 ±1.3 70.1 ±1.4 28.8 ±2.0 62.2 ±2.4 84.0 ±0.1 50.1 ±0.9 13.7 ±9.8 26.4 ±1.3 52.9
LISA 77.5 ±0.7 57.8 ±0.8 65.8 ±1.5 66.8 ±0.3 79.0 ±0.8 76.9 ±0.7 30.0 ±4.1 66.8 ±0.6 81.6 ±0.6 50.1 ±0.9 37.4 ±3.5 29.8 ±1.8 60.0
ReSample 70.0 ±1.0 74.1 ±2.2 61.0 ±0.6 66.8 ±0.5 81.0 ±1.7 77.7 ±1.1 30.6 ±2.3 67.5 ±0.3 82.6 ±0.6 55.0 ±0.2 74.3 ±0.4 31.4 ±0.6 64.3
ReWeight 71.9 ±0.6 69.6 ±0.2 59.3 ±1.1 64.2 ±1.9 83.1 ±0.7 76.8 ±0.9 25.0 ±0.0 67.0 ±0.4 84.0 ±0.1 61.4 ±1.3 73.7 ±1.0 27.7 ±1.1 63.6
SqrtReWeight 71.0 ±1.4 66.9 ±2.2 68.6 ±1.1 63.8 ±2.4 82.6 ±0.4 76.8 ±0.9 32.8 ±3.5 68.0 ±0.4 83.1 ±0.2 61.2 ±0.6 68.5 ±1.6 27.7 ±1.1 64.2
CBLoss 74.4 ±1.2 65.4 ±1.4 67.3 ±0.2 63.6 ±2.4 83.1 ±0.0 76.8 ±0.9 31.7 ±3.6 67.6 ±0.3 84.0 ±0.1 50.2 ±0.9 74.0 ±0.7 27.7 ±1.1 63.8
Focal 71.6 ±0.8 56.9 ±3.4 61.9 ±1.1 62.4 ±2.0 81.0 ±0.4 71.9 ±1.2 30.6 ±2.3 68.7 ±0.4 70.9 ±9.8 50.0 ±0.9 42.1 ±4.0 26.9 ±0.6 57.9
LDAM 70.9 ±1.7 57.0 ±4.1 28.4 ±7.7 65.5 ±0.8 83.6 ±0.4 76.7 ±0.5 31.7 ±3.6 66.6 ±0.6 81.0 ±0.3 50.1 ±0.9 36.0 ±0.7 24.3 ±0.8 56.0
BSoftmax 74.1 ±0.9 69.6 ±1.2 58.3 ±1.1 63.6 ±2.4 82.6 ±0.4 76.1 ±2.0 35.6 ±1.8 67.6 ±0.6 83.8 ±0.3 58.6 ±1.8 73.8 ±1.0 28.6 ±1.4 64.4
DFR 89.0 ±0.2 73.7 ±0.8 64.4 ±0.1 63.8 ±0.0 81.4 ±0.1 74.4 ±1.8 38.0 ±3.8 67.1 ±0.4 80.2 ±0.0 60.8 ±0.4 75.8 ±0.3 26.3 ±0.4 66.2
CRT 76.3 ±0.8 69.6 ±0.7 67.8 ±0.3 65.4 ±0.2 83.1 ±0.0 78.2 ±0.5 33.3 ±0.0 68.1 ±0.1 83.4 ±0.0 61.8 ±0.1 74.6 ±0.4 31.1 ±0.1 66.1
ReWeightCRT 76.3 ±0.2 70.7 ±0.6 64.7 ±0.2 65.2 ±0.2 85.1 ±0.4 77.5 ±0.7 33.3 ±0.0 67.9 ±0.1 83.4 ±0.0 53.1 ±2.3 75.1 ±0.2 33.1 ±0.1 65.4
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