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Abstract
Personalized federated learning (FL) aims to col-
laboratively train a personalized model for each
client. Previous methods do not adaptively deter-
mine who to collaborate at a fine-grained level,
making them difficult to handle diverse data het-
erogeneity levels and those cases where malicious
clients exist. To address this issue, our core idea is
to learn a collaboration graph, which models the
benefits from each pairwise collaboration and al-
locates appropriate collaboration strengths. Based
on this, we propose a novel personalized FL algo-
rithm, pFedGraph, which consists of two key mod-
ules: (1) inferring the collaboration graph based
on pairwise model similarity and dataset size at
server to promote fine-grained collaboration and
(2) optimizing local model with the assistance of
aggregated model at client to promote personal-
ization. The advantage of pFedGraph is flexibly
adaptive to diverse data heterogeneity levels and
model poisoning attacks, as the proposed collabo-
ration graph always pushes each client to collabo-
rate more with similar and beneficial clients. Ex-
tensive experiments show that pFedGraph consis-
tently outperforms the other 14 baseline methods
across various heterogeneity levels and multiple
cases where malicious clients exist. Code will
be available at https://github.com/MediaBrain-
SJTU/pFedGraph.

1. Introduction
As an emerging collaborative machine learning frame-
work with privacy-preserving properties, federated learn-
ing (FL) (McMahan et al., 2017) has attracted much at-
tention from both industries (Yang et al., 2018; Li et al.,
2020a) and academia (Yang et al., 2019; Wang et al., 2021).
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Figure 1. Inferred collaboration graph guides the server to coor-
dinate which pairs of clients should collaborate at what intensity
level, enabling the proposed pFedGraph to be adaptive to diverse
data heterogeneity levels.

In the conventional paradigm, multiple clients collabora-
tively train a shared global model without transmitting local
datasets (McMahan et al., 2017). However, due to data het-
erogeneity across clients, the global model trained with all
data from all clients might not cater to the utility of each
individual client. To promote better customization to each
client, personalized FL has been proposed and allows each
client to train a personalized model that is adapted to its
local data (Smith et al., 2017; Li et al., 2021b).

A fundamental challenge in personalized FL is an appropri-
ate tradeoff between the individual utilities and the benefits
through collaboration. When all clients have similar data
distributions, they should get much improvements through
collaborating with each other; while when each client’s
data distribution is different, collaboration would bring less
benefits to each client. Therefore, the optimal individual
and collaboration tradeoff depends on data heterogeneity
level. However, in practice, data heterogeneity level is un-
known since data is not communicated in FL, which makes
this tradeoff hard to handle. To handle this issue, previous
works have put forth solutions from several perspectives.
For example, Ditto (Li et al., 2021b) and pFedMe (T Dinh
et al., 2020) regularizes the ℓ2 distance between the local
and global models. L2GD (Hanzely & Richtárik, 2020) and
APFL (Deng et al., 2020) consider linear interpolation be-
tween local and global models. FedPer (Arivazhagan et al.,
2019), FedRep (Collins et al., 2021), and FedRoD (Chen
& Chao, 2021) share the same aggregated shallow model
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layers and hold the localized deep layer. CFL (Sattler et al.,
2020) proposes clustering and FedAMP (Huang et al., 2021)
proposes neighbor weights optimizing that rely on manual
tuning to adjust collaboration strategy.

However, all previous methods do not specifically determine
which pairs of clients should collaborate at what intensity
level. This weakness makes those methods less flexible to
handle diverse data heterogeneity levels at various clients,
and cases when malicious clients exist. To address this issue,
our core idea is to learn a collaboration graph, revealing who
to collaborate for each client at each communication round.
In this graph, each node denotes the personalized model
of a client and each edge weight reflects the collaboration
intensity between two personalized models and is updated
at each communication round. Intuitively, when two clients
have similar data distributions, their personalized models
tend to be similar and there would be more benefits for
them to collaborate. Thus, the pairwise connectivity in this
collaboration graph could serve as a proxy to reflect the
benefits brought by each collaboration.

With this graph-based design rationale, we formulate a novel
optimization problem for personalized FL, which simultane-
ously optimizes personalized models and the collaboration
graph. Our formulation naturally captures the fundamental
tradeoff between the individual utilities and the collabora-
tion benefits modeled by the proposed collaboration graph.
To solve this optimization problem, we propose a novel per-
sonalized FL algorithm, pFedGraph, which consists of two
main steps: inferring a collaboration graph at the server side
and optimizing personalized models at the client side. The
server learns a collaboration graph by promoting the correla-
tion with model similarity, and then, obtains an aggregated
model for each client according to the learned collaboration
graph. At the client side, a personalized model is optimized
through balancing between empirical task-driven loss and
the similarity between the local personalized model and the
aggregated model sent from the server.

The advantage of the proposed pFedGraph is adaptivity to
diverse data heterogeneity levels, because the inferred col-
laboration graph can determine who to collaborate and push
each client to work with other clients with similar data dis-
tributions, maintaining local data homogeneity. Specifically,
compared to Ditto (Li et al., 2021b) and pFedMe (T Dinh
et al., 2020), which regularizes personalized models to be
close to the shared global model, the proposed pFedGraph
can distinguish beneficial collaborators from irrelevant or
malicious users, avoiding blind collaboration. Compared to
CFL (Sattler et al., 2020), which clusters similar clients into
groups, pFedGraph can reflect each pairwise collaboration
relationship, which is much more fine-grained.

We compare our proposed pFedGraph with 14 representa-
tive baselines on diverse tasks (including image and text

classification), datasets (Fashion-MNIST (Xiao et al., 2017),
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and Ya-
hoo! Answers (Zhang et al., 2015)) and scenarios (different
heterogeneous levels and model poisoning settings). The
results show that pFedGraph is robust towards i) different
levels of data heterogeneity and ii) model poisoning attack
compared to these existing personalized FL methods.

Our contribution is summarized as follows:

•We formulate a novel personalized FL optimization prob-
lem, which tackles the tradeoff between the individual utili-
ties and the collaboration benefits modeled by the proposed
collaboration graph.

•We propose pFedGraph algorithm, which infers the collab-
oration graph at the server side and optimizes personalized
models at the client side. pFedGraph is adaptive to diverse
data heterogeneity levels.

• We conduct extensive experiments to show pFedGraph
outperforms the other 14 personalized FL methods across
various data heterogeneity levels as well as multiple model
poisoning attack settings.

2. Related Work
In this section, we discuss related work from the perspec-
tives of both general federated learning and personalized
federated learning. We also provide more detailed compar-
isons with several methods in Appendix B.

2.1. Federated Learning

The goal of federated learning is to enable collaborative
training of machine learning models at multiple clients in
a privacy-preserving manner. As the pioneering work, Fe-
dAvg (McMahan et al., 2017) is the template of most ex-
isting FL methods. After that, FedProx (Li et al., 2020b)
and FedDyn (Acar et al., 2020) focus on model-level regu-
larization by restricting the ℓ2 distance between each local
model and global model. MOON (Li et al., 2021a) con-
ducts feature alignment between local and global model
while FedFM (Ye et al., 2022) aligns category-wise fea-
ture spaces across clients. SCAFFOLD (Karimireddy et al.,
2020) introduces control variate to correct the gradient of
local model. FedNova (Wang et al., 2020b) modifies model
aggregation weights according to number of local updates.
FedAvgM (Hsu et al., 2019) and FedOPT (Reddi et al.,
2021) introduce server-side momentum to stabilize global
model updating, FedDF (Lin et al., 2020) distills knowl-
edge from local models to the global model based on public
dataset. However, those federated learning methods focus
on training one global model that could perform well on the
average of all the clients, and neglect the local demand at
each individual client.
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2.2. Personalized Federated Learning

Personalized federated learning aims to improve the perfor-
mance of each client’s model through collaborative training.
Optimization-based methods such as Ditto (Li et al., 2021b)
and pFedMe (T Dinh et al., 2020) propose to restrict the ℓ2
difference between personalized model and global model.
Aggregation-based methods modify the aggregation manner,
where CFL (Sattler et al., 2020) divides clients into sev-
eral clusters of federated learning process based on gradient
similarity, FedAMP (Huang et al., 2021) adjusts neighbors
weights based on parameters difference with a pre-defined
self weight and KT-pFL (Zhang et al., 2021) relies on public
dataset to measure the similarity of features extracted by
local models. Methods such as Per-FedAvg (Fallah et al.,
2020) consider using meta-learning (MAML) to learn a bet-
ter initial shared model for each client (Jiang et al., 2019).
FedPer (Arivazhagan et al., 2019), LG-FEDAVG (Liang
et al., 2020) and FedRep (Collins et al., 2021) consider
splitting model layers which can be either personalized or
shared, e.g., clients share the same feature extractor and
train a personalized fully-connected layer locally in FedRep.
pFedHN (Shamsian et al., 2021) and FedRoD (Chen &
Chao, 2021) train a hypernetwork to produce a personalized
fully-connected layer given client’s category distribution
and KNN-Per (Marfoq et al., 2022) memorizes local pro-
totypes to assist personalized prediction, though they are
limited to classification task.

Compared to those previous personalized FL methods, the
distinct advantage of the proposed pFedGraph is the adap-
tation to diverse data heterogeneity levels. In pFedGraph,
a collaboration graph is learnt to explicitly specify who to
collaborate at what intensity level at each communication
round. In this manner, pFedGraph allows each client to
work more with similar clients, addressing the diverse data
heterogeneity issue.

3. Methodology
In this section, we first formulate a novel personalized FL
optimization problem, which aims to optimize the person-
alized models and the collaboration graph to achieve better
tradeoff between the individual utilities and the benefits
through collaboration. Then, we decompose this problem
into the server and client sides, according with practical
architecture constraints. Finally, we propose the pFedGraph
(personalized federated learning with collaboration graph)
algorithm to solve this optimization problem.

3.1. Optimization Problem

Assume there are K clients. For the ith client ci, let Di be
the local dataset with ni = |Di| be the dataset size, θi be the
local personalized model and Fi(θi) =

∑
ξ∈Di

ℓ(θi, ξ)/ni

be the local empirical loss with ℓ(·, ·) the pre-defined task-
driven loss function. To model the collaboration relation-
ships between clients, we consider a collaboration graph
G(V,W ), where the node set V = {c1, c2, · · · , cK} is a
collection of all K clients and W ∈ RK×K is the graph
adjacency matrix whose (i, j)th element reflects the col-
laboration relationship between the ith and the jth clients.
Intuitively, when two clients have more similar data distri-
butions, their corresponding models should be more similar
and their collaboration strength should be larger to allow
these two clients to learn more from each other (Li et al.,
2020b; Luo et al., 2021). In practice, data distributions are
inaccessible, we use the similarity between model parame-
ters to guide the collaboration strength. Then, the proposed
optimization problem for personalized FL is

min
{θi},W

K∑
i=1

pi

Fi(

K∑
j=1

Wijθj)−
λ

2

K∑
j=1

Wij cos(θi,θj)


s.t.

K∑
j=1

Wij = 1,∀i; Wij ≥ 0,∀i, j, (1)

where pi = ni/
∑

j nj is the relative dataset size, λ is a hy-
perparameter to balance the individual utilities and the col-
laboration necessity, and cos(θi,θj) =

〈
θi

||θi|| ,
θj

||θj ||

〉
is the

cosine similarity between the ith and the jth client’s person-
alized models before collaboration. Problem (1) optimizes
both personalized models and the collaboration graph. In the
objective function, the first term models the empirical loss
at each client after collaboration, where θ̃i =

∑
j Wijθj is

the collaborated (aggregated) model at the ith client. The
second term measures the correlation between collaboration
strength and the model similarity, guiding each client to
collaborate more with those others whose model parameters
are similar. The first constraint limits the overall collabora-
tion budge at each client and the second one requires all the
collaboration strengths be non-negative.

Compared to many previous works, this formulation is novel
from two aspects. First, we use a collaboration graph to ex-
plicitly reflect who to collaborate at what intensity level,
eliminating unrelated or malicious clients. Therefore, each
client only needs to collaborate with similar clients, promot-
ing local data homogeneity and leading to stronger adaption
ability to handle diverse data heterogeneity levels. Second,
the model similarity is measured by the cosine similarity,
while most previous works use ℓ2 distance. The benefits
are that cosine similarity 1) better reflects similarity (also
see Figure 4(a)) as it is not sensitive towards absolute mag-
nitude of model parameters and 2) naturally normalizes the
similarity to a fixed range, which eases hyper-parameter
tuning under different scenarios.

This problem can be solved by iteratively solving {θi} and
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W in a centralized manner, i.e., both datasets and local mod-
els are accessible by the central server. However, the prac-
tical FL architecture setting causes two constraints: i) the
server can only access the local models {θi} uploaded from
clients but cannot access the datasets to compute the loss
value {Fi(·)}; and ii) each client can only access its own
dataset to compute its loss value Fi(·) and an aggregated
model from the server but cannot access each individual
local model {θj}j ̸=i.

3.2. Problem Decomposition in FL architecture

To handle these constraints, we decompose the original
problem (1) into two parts: inferring the collaboration graph
W at the server side and optimizing personalzied models
{θi} at the client side.

Solving W at the server side. As the server cannot access
the local datasets to evaluate clients’ loss value {Fi(·)},
we can only approximate the first term in Equation (1).
Without knowing any other information about clients, we
assume that clients with larger dataset sizes are more reliable
collaborators. We thus promote collaboration among clients
by regularizing the collaboration strength to align with the
relative dataset size. Then, the optimization for the ith client
at the server side is:

min
{Wij}j

∑
j

(Wij − pj)
2 − α

∑
j

Wij cos(θi,θj)

s.t.
∑
j

Wij = 1,∀i; Wij ≥ 0,∀i, j, (2)

where pj = nj/
∑

j′ nj′ and α is a hyper-parameter. Here
the first term promotes a dataset-size-weighted collabo-
ration, as the model trained by more data samples tends
to carry more knowledge and deserve a higher collab-
oration strength. The second term is directly inherited
from (1). More explanations of such approximation are
in Appendix A.1.

Solving θi at the client side. Without loss of generality, the
optimization for the ith client is:

min
θi

Hi(θi) = Fi(
∑
j

Wijθj)−
λ

2

∑
j

Wij cos(θi,θj)

= Fi(
∑
j

Wijθj)−
λ

2

〈
θi
||θi||

,
∑
j

Wij
θj
||θj ||

〉
,

(3)

where the first term minimizes empirical task-driven loss
to pursue local model utility. The second term maximizes
the model cosine similarity between the local model θi and
the aggregated model sent from the server, which avoids
drifting too far from the aggregated model and over-fitting
to the local dataset.

3.3. pFedGraph Algorithm

Based on the above optimization, we propose a person-
alized federated learning algorithm with inferred collab-
oration graphs (pFedGraph, Algorithm 1), which also
consists of two major FL procedures as conventional FL
method (McMahan et al., 2017): i) model aggregating and
broadcasting at the server side; ii) model training and up-
loading at the client side. Our modifications focus on i)
optimizing collaboration graph for model aggregating and
ii) optimizing local model with regularization during model
training. Also see overview of pFedGraph in Figure 5.

Optimizing collaboration graph at the server side. Based
on the local personalized models {θj}j uploaded from the
clients, the server first computes their pair-wise cosine simi-
larity of model parameters, that is, each element in the simi-
larity matrix S ∈ RK×K denotes the similarity between the
model parameters of the i and j clients: Sij = cos(θi,θj).
We can rewrite the optimization problem for each client i
in (2) as a standard quadratic program:

wi = argminx xTx+ (−2p− αsi)
Tx (4)

s.t. 1Tx = 1;−x ≤ 0,

where wi is the i-th column vector of the collaboration
graph W , p = [p1, p2, ..., pK ]T ∈ RK is a relative dataset
size vector, si is the i-th column vector of the similarity
matrix S. This quadratic program problem can be solved
by conventional convex problem solver (Diamond & Boyd,
2016; Agrawal et al., 2018).

For higher computation efficiency in practice, cosine similar-
ity of latter model parameters S̃ij = cos(θi[m :],θj [m :])
can be used to approximate Sij , where m ∈ [0, d] is an in-
teger to balance the effectiveness and efficiency. In practice,
m can be set to filter out the preceding layers and leave the
last few fully-connected layers for similarity computation as
we find that the last few fully-connected layers are sufficient
to reflect the fine-grained model similarity under cases of
data heterogeneity and model poisoning. This spirit accords
with (Luo et al., 2021), which finds that the last few lay-
ers are more different in the case of data heterogeneity for
conventional FL.

Then, the server can aggregate local models to obtain ag-
gregated model for each client according to the optimized
collaboration graph W . For the ith client, the original ag-
gregated model is θ̃i =

∑
j Wijθj and the normalized

aggregated model is θ̄i =
∑

j Wijθj/||θj ||.

Optimizing local model at the client side. Based on the
original aggregated model θ̃i sent from the server, the ith
client first initializes its local model: θi ← θ̃i, which ex-
plicitly injects collaboration knowledge to local model. A
direct solver for (3) is to use the conventional SGD method,
where θ̄i is used to regularize the training of local model θi.
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Algorithm 1 pFedGraph
Input: Total round T , client number K, learning rate η,
initial local models {θ0

i }i and collaboration graph W 0.
for each communication round t = 1, ..., T do

for each client i = 1, ...,K in parallel do
Server sends θ̃t

i =
∑

j W
t−1
ij θt−1

j to client i

Initialize local model θt,0
i ← θ̃t

i

Optimize local model at client side:
Update θi by minimizing Hi(θi) defined in (3):

θt,τ
i = θt,τ−1

i − η∇Hi(θ
t,τ−1
i )

end for
Optimize collaboration graph at server side:

Update W t by solving the quadratic program in (4)
end for
Return: Personalized models {θi}i

After that, each client uploads its personalized model θi to
the server and start another FL round.

Note that this solution indicates that the server has to send
both the original and normalized aggregated models (θ̃i and
θ̄i), which requires double downloading cost compared with
vanilla FedAvg (McMahan et al., 2017) method. To reduce
the downloading communication cost, we can slightly mod-
ify our pFedGraph algorithm: using the original aggregated
model to replace the normalized aggregated model in the
SGD updating step. That is, we use the original aggregated
model θ̃i to regularize local model training in solving (3).
Then, the server only needs to send the aggregated model
θ̃i to client i, which requires the same downloading cost as
vanilla FL method (McMahan et al., 2017). Experimental
results validate that this modification does not affect the
performances; see Table 7.

3.4. Discussions

Adaptation to different heterogeneity levels. Our pro-
posed pFedGraph can automatically adjust the collabora-
tion graph based on the measured model similarity, which
is robust towards heterogeneity levels from two aspects.
i) For extremely heterogeneous setting where neighbors’
knowledge contributes little to each client’s personaliza-
tion, pFedGraph automatically assigns little collaboration
weight for neighbors since the model similarity would be
relatively small here. However, most methods (Li et al.,
2021b; Collins et al., 2021) still collaborate with all clients,
whose weights are based on dataset size. ii) In reverse, for
extremely homogeneous setting where clients should deeply
collaborate, pFedGraph automatically assigns relatively bal-
anced collaboration weight for neighbors since the model
similarity would be relatively high here. However, some
methods (Arivazhagan et al., 2019; Collins et al., 2021)
may still pursue too much personalization, leading to perfor-

mance degradation compared to the already well-performed
global model.

Robustness to model poisoning attacks. Our proposed
pFedGraph is naturally robust towards model poisoning
attacks, where malicious clients can upload arbitrary model
parameters, since the model similarity can easily distinguish
from a poisoned model and a benign model with a similar
task such that pFedGraph will assign most weights to benign
neighbors. However, most methods (Chen & Chao, 2021;
Marfoq et al., 2022; T Dinh et al., 2020; Li et al., 2021b)
based on the fully-collaborated global model are vulnerable
to model poisoning since the global model has been polluted
by the poisoning. Note that we do not discuss defense
methods (Blanchard et al., 2017) here because they will
affect the performance for scenarios without attacks, which
preserves fair comparisons among original personalized FL
methods.

Potential of handling different tasks. Our proposed pFed-
Graph focuses on model-level optimization, which makes
no assumption on the targeting task, thus has the potential
of handling different tasks such as classification (Hsu et al.,
2020), regression (Mandal & Gong, 2019), detection (Liu
et al., 2020), segmentation (Li et al., 2019), and recommen-
dation (Harper & Konstan, 2015). However, some meth-
ods (Chen & Chao, 2021; Marfoq et al., 2022; Shamsian
et al., 2021) are particularly designed for classification tasks.

4. Experiments
We list key implementation details and experimental results
in this section and leave others to Appendix C.

4.1. Implementation Details

Datasets. Following most personalized FL literature (Li
et al., 2021b; Collins et al., 2021; Marfoq et al., 2022), we
conduct experiments on Fashion MNIST (Xiao et al., 2017),
CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) for
image classification tasks. Beyond this, we also use Yahoo!
Answers text classification dataset (Zhang et al., 2015) to
explore the performances of personalized FL methods in the
realm of text modality.

Data heterogeneity. We consider several levels of data
heterogeneity: i) pathological distribution (McMahan et al.,
2017; Collins et al., 2021; Zhang et al., 2023), where each
client is assigned with data from only 2 categories for
CIFAR-10 and 20 categories for CIFAR-100. ii) Dirichlet
distribution (Yurochkin et al., 2019; Wang et al., 2020a),
where a distribution vector qc ∈ RK is drawn from
DirK(β) for each category c and a qc,i proportion of data
samples of category c is assigned to client i. iii) Homo-
geneous distribution (McMahan et al., 2017), where each
data sample is assigned to each client with equal probability
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Table 1. Accuracy comparisons on classical image classification task under four different data heterogeneity levels (H-Level) illustrated
in Section 4.1. pFedGraph consistently performs the best across different datasets on average.

DATASET FASHION MNIST AVG
CIFAR-10 AVG

CIFAR-100 AVGH-LEVEL EXTR. SEVE. MODE. HOMO. EXTR. SEVE. MODE. HOMO. EXTR. SEVE. MODE. HOMO.

LOCAL 99.46 99.32 96.44 84.88 95.02 91.86 91.07 83.83 54.81 80.39 55.20 49.42 47.68 16.13 42.11
FEDAVG 96.15 95.37 84.51 87.27 90.83 68.82 66.19 62.92 67.12 66.26 25.94 26.23 27.78 31.10 27.76

FEDAVG-FT 99.25 99.09 96.33 86.23 95.23 90.02 90.20 84.09 63.09 81.85 51.35 51.12 50.58 25.47 44.63
FEDPROX 89.37 93.65 82.79 87.21 88.26 59.18 55.76 62.25 67.07 61.06 25.12 25.64 27.87 30.55 27.30

FEDPROX-FT 99.18 99.08 96.27 85.96 95.12 90.47 90.37 83.71 61.93 81.62 50.52 49.91 50.99 25.15 44.14
CFL 99.32 99.35 96.64 86.38 95.42 91.80 90.76 83.84 60.55 81.74 54.64 52.43 49.12 19.31 43.88

PER-FEDAVG 99.18 99.15 96.30 86.28 95.23 90.35 89.60 84.02 63.24 81.80 52.14 51.14 50.38 25.18 44.71
PFEDME 98.40 98.34 93.34 77.32 91.85 82.15 81.73 75.24 47.48 71.65 34.10 33.48 34.37 13.18 28.78
FEDAMP 98.51 98.71 93.13 74.42 91.19 80.45 86.90 75.49 45.49 72.08 36.68 37.50 31.04 10.07 28.82

DITTO 98.97 98.89 95.97 86.85 95.17 89.17 89.41 83.78 65.35 81.93 50.67 50.54 50.33 29.41 45.24
FEDREP 99.24 99.17 96.44 85.73 95.15 91.01 90.02 83.47 62.88 81.85 51.21 51.72 50.15 21.53 43.65
PFEDHN 98.95 98.88 95.87 80.11 93.45 90.51 89.91 82.57 62.78 81.44 49.87 49.06 49.08 25.94 43.49
FEDROD 99.26 99.16 96.46 85.50 95.10 91.03 90.66 83.49 62.07 81.81 51.30 49.91 47.96 18.71 41.97

KNN-PER 97.89 97.87 91.87 87.37 93.75 78.94 79.09 70.05 67.01 73.77 27.07 24.70 25.84 31.04 27.16
PFEDGRAPH 99.46 99.39 96.46 87.25 95.64 92.61 92.74 84.28 67.37 83.98 54.84 56.79 51.63 31.16 48.33

1/K. Client number ranging from 5 to 50 is considered.
Specifically, we denote the pathological distribution with
K = 5 and 10 clients as extreme and severe, respectively;
the Dirichlet distribution with β = 0.1 as modest.

Model Poisoning. Here, we consider model poisoning at-
tacks, where malicious clients are intended to disturb the
training process by sending arbitrary model parameters to
the server. For a personalized FL system with K clients,
suppose there are r ·K malicious clients, where r ∈ [0, 1]
is the attack ratio. We consider 4 types of model poisoning
attacks: parameters shuffling, same-value parameters, pa-
rameters sign flipping and Gaussian noise parameters (Lin
et al., 2022; Li et al., 2021b).

Training setting. We consider 50 communication rounds in
total as personalized FL is easier to converge, where each
client runs for τ = 200 iterations (Wang et al., 2020b). We
use a simple CNN network with 3 convolutional layers and
3 fully-connected layers for image datasets (Li et al., 2021a).
For text dataset, we use TextCNN (Zhang & Wallace, 2015;
Zhu et al., 2020) model with 3 conv layers and a 256 di-
mension embedding layer. The optimizer used is SGD with
learning rate 0.01 and a batch size 64.

Baselines. We compare 14 baselines, including local
model training without collaboration (denoted by Local), Fe-
dAvg (McMahan et al., 2017) and FedProx (Li et al., 2020b)
together with their fine-tuning (FT) versions, and 9 represen-
tative personalized FL methods. Among those personalized
FL methods, CFL (Sattler et al., 2020) is based on clustering,
Per-FedAvg (Fallah et al., 2020) is based on meta-learning,
pFedMe (T Dinh et al., 2020) and Ditto (Li et al., 2021b) are
based on regularized optimization, FedAMP (Huang et al.,
2021) also adjusts aggregation manner, FedRep (Collins

Table 2. Accuracy comparison on text classification task Yahoo!
Answers under four different data heterogeneity levels (H-Level)
illustrated in Section 4.1. pFedGraph consistently outperforms the
others on text modality.

H-LEVEL EXTR. SEVE. MODE. HOMO. AVG

LOCAL 84.81 84.41 77.34 62.80 77.34
FEDAVG 57.29 63.14 51.99 63.72 59.03

FEDAVG-FT 83.48 87.02 80.24 63.87 78.65
FEDPROX 51.39 49.30 50.82 62.80 53.57

FEDPROX-FT 83.31 86.72 79.84 62.88 78.18
CFL 84.54 88.61 79.40 63.70 79.06

PER-FEDAVG 71.93 86.92 80.16 63.66 75.66
PFEDME 61.44 64.16 58.91 22.69 51.80
FEDAMP 65.50 76.85 64.26 22.59 57.30

DITTO 82.93 86.33 79.10 63.71 78.01
FEDREP 82.79 86.00 76.29 46.42 72.87
FEDROD 82.56 86.51 78.82 62.35 77.56

PFEDGRAPH 85.03 89.04 80.56 63.88 79.62

et al., 2021) is based on sharing backbone, FedRoD (Chen
& Chao, 2021) is based on multi-branch architecture, and
kNN-Per (Marfoq et al., 2022) is based on features memo-
rization. We evaluate pFedGraph before and after training
since pFedGraph re-initializes local models for each round.
Hyper-parameters are tuned for each dataset and kept fixed
for different levels of data heterogeneity; see the used hyper-
parameters in Appendix C.1.4.

4.2. Personalized FL on Data Heterogeneity

Here, we compare our proposed pFedGraph with represen-
tative baselines under the context of data heterogeneity with
different levels and two modalities (image and text). We
also provide comparisons on recommendation task follow-
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Table 3. Accuracy comparison on CIFAR-10 under different types
of model poisoning attacks. The attack ratio r is 0.4. pFedGraph
significantly outperforms the others.

TYPE SHUFFLE SAME FILP GAUSS AVG

LOCAL 54.98 54.86 54.88 54.90 54.91
FEDAVG 42.55 12.77 9.92 11.08 19.08

FEDAVG-FT 47.30 29.47 29.61 29.58 33.99
FEDPROX 42.47 11.97 9.87 10.57 18.72

FEDPROX-FT 46.09 29.34 28.87 29.19 33.37
CFL 62.13 29.47 60.90 29.69 45.55

PER-FEDAVG 11.81 10.62 11.39 10.83 11.16
PFEDME 11.41 11.00 11.41 19.21 13.26
FEDAMP 42.98 43.11 43.07 42.85 43.00

DITTO 44.53 10.07 12.39 10.71 19.43
FEDREP 47.79 29.96 29.34 28.76 33.96
PFEDHN 27.59 19.22 28.00 28.62 25.86
FEDROD 50.53 26.87 29.24 27.36 33.50

KNN-PER 47.20 11.73 28.98 12.33 25.06
PFEDGRAPH 65.45 66.36 66.25 65.46 65.88

ing pFL-Bench (Chen et al., 2022a) in Appendix C.2.

Results on image datasets. We conduct experiments under
four heterogeneity levels on Fashion-MNIST, CIFAR-10
and CIFAR-100 dataset in Table 1. From the table, we see
that i) pFedGraph consistently performs better or compara-
bly across different heterogeneity levels and datasets while
other methods only performs well for some cases, indicat-
ing that pFedGraph is robust towards different levels of
heterogeneity. ii) On average, pFedGraph significantly out-
performs others by 2% to 23%, indicating that pFedGraph
can achieve competitive performance in personalized FL.
Since we can not know the heterogeneity level in advance
in practice, we believe that the averaged metric is a more
critical evaluation protocol. We also conduct experiments
by tuning β for Dirichlet distribution in Table 14.

Results on text dataset. Similarly, we conduct experiments
under four different heterogeneity levels on text dataset Ya-
hoo! Answers (Zhang et al., 2015) and report accuracy
comparison in Table 2. From the table, we see that pFed-
Graph consistently performs best, indicating that pFedGraph
is also adaptive towards different levels of heterogeneity on
text modality.

Results on recommendation dataset. We follow pFL-
Bench (Chen et al., 2022a) and conduct experiments on
recommendation datasets (MovieLens1M/10M (Harper &
Konstan, 2015))in Appendix C.2. Results show the applica-
bility of pFedGraph on recommendation task.

4.3. Personalized FL on Model Poisoning Attack

Here, we compare our proposed pFedGraph with these base-
lines under the context of model poisoning attack. Four
types of model poisoning are considered, where we set the

Table 4. Robustness towards different model poisoning attack ra-
tios r. pFedGraph consistently outperforms the others and achieves
significantly better performance on the most severe attack case.

RATIO 0.2 0.4 0.6 0.8

FEDAVG 59.12 42.55 19.76 10.14
FEDAVG-FT 55.79 47.30 33.41 30.65

DITTO 56.63 43.53 26.39 10.58
CFL 60.65 62.13 60.57 30.76

PFEDGRAPH 67.41 65.45 64.70 60.52

constant as 1.0 for same-value poisoning and sample each
parameter by U ∼ (0, 1) for gauss-distribution poisoning.
Note that we adopt hyper-parameters tuned in the previ-
ous experiments for all methods and the experiments are
conducted on the homogeneous setting of CIFAR-10.

We conduct performance comparisons from two aspects:
different poisoning types and different attack ratios.

Robustness towards different types of model poisoning.
We report the performances achieved by each method under
four types of model poisoning attack in Table 3. From the
experiments, we see that i) On average, all personalized FL
baselines perform worse than local training, which indicates
that the attack can affects could be a key issue in personal-
ized FL and that a robust personalized FL method is needed.
ii) pFedGraph consistently performs the best across differ-
ent types of poisoning attacks and significantly outperforms
all baselines on average. Note that we do not compare with
defense methods (Blanchard et al., 2017) as they could limit
the performance under the scenario without attack while we
can not know whether attack exists in advance.

Robustness towards different model poisoning attack
ratios. Here in Table 4, we compare pFedGraph with four
representative methods, FedAvg, FedAvg-FT, Ditto and CFL
under four different attack ratios ranging from 0.2 to 0.8.
From the table, we see that i) pFedGraph consistently and
significantly outperforms others and ii) pFedGraph achieves
largest performance gain under the most severe case, in-
dicating that pFedGraph is robust towards different model
poisoning attack ratios.

4.4. Visualization of Collaboration Graph

Here, we visualize the collaboration graph of several repre-
sentative methods. On CIFAR-10, We consider i) severe and
homogeneous settings; ii) sign-flipping model poisoning.

Figure 2 shows that i) under the severe heterogeneous set-
ting, where there are 5 pairs of clients that share similar
data distribution, CFL and pFedGraph both well capture the
collaboration relationships and assign equal collaboration
weight. ii) However, for homogeneous setting, where all
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(a) Sev.: FedAMP (b) Sev.: CFL (c) Sev.: pFedGraph

(d) Hom.: FedAMP (e) Hom.: CFL (f) Hom.:pFedGraph

Figure 2. Visualization of collaboration graph under severe (Sev.)
and homogeneous (Hom.) settings. pFedGraph is adaptive to
different data heterogeneity levels.

(a) Vanilla (b) CFL (c) pFedGraph

Figure 3. Visualization of collaboration graph under sign-flipping
attack, where client 2, 6, 8, 9 are malicious and the other clients
share similar data distribution. pFedGraph successfully construct
full-collaboration within the benign clients.

clients should fully collaborate, CFL fails to assign equal
weights to all clients. Figure 3 shows that under an attack
scenario, where client 2, 6, 8, 9 are malicious and the others
share similar distributions. pFedGraph successfully con-
structs a full collaboration graph among the benign clients
and filters out malicious clients.

4.5. Effects of Model Similarity Metric

One key design in pFedGraph is that we apply cosine sim-
ilarity to optimize the collaboration graph and regularize
local model training. Here, we compare four types of model
similarity metrics, including cosine-based, inner-product-
based, ℓ2-based and ℓ1-based metrics.

We conduct experiments on the severe case on CIFAR-10
where client 0 and 5 share similar data distributions. Then,
we measure the similarity between local model of Client 0
and all clients. Note that we normalize the similarity values
based on the value of self-similarity of Client 0 for more
clear comparisons. We plot the results in Figure 4(a). From
the figure, we see that cosine similarity best captures the
similarity between client 0 and 5, and produces the most
distinguishable similarity values among all clients.

(a) Different Metrics (b) Different Hyper-parameters

Figure 4. Effects of model similarity metrics and hyper-parameters.
(a) Cosine similarity best captures the relationships between client
0 and 5 since they share similar data distributions. (b) pFedGraph
is insensitive to hyper-parameters.

Table 5. Effects of model difference regularization. InnerP. de-
notes inner product. Our proposed cosine-based regularization
consistently performs the best on average.

H-LEVEL EXTREME SEVERE MODEST HOMO. AVG

COSINE 92.55 92.74 84.11 67.37 84.19
INNERP. 92.28 92.76 74.81 67.58 81.86

ℓ2 91.80 91.49 74.96 64.83 80.77
ℓ1 91.93 90.76 74.63 64.72 80.51

Additionally, we conduct experiments on all cases on
CIFAR-10 and compare the achieved accuracy of these mea-
suring metrics. Results are reported in Table 5. From the
table, we see that the proposed cosine-based optimization
tends to perform the best.

4.6. Ablation Study

Personalized FL at different scale. On a scenario similar
to the severe case on CIFAR-10, we adjust the number of
clients in FL system to show the comparison of personalized
FL methods at different scale. From Table 6, we see that
pFedGraph consistently performs the best across different
client numbers, indicating the effectiveness of pFedGraph
at different scale.

Effects of approximation. Here, we explore the effects of
approximation on the performance of our proposed pFed-
Graph. There are two approximations: 1) replacing the
normalized aggregated model in Equation (3) with un-
normalized aggregated model for the sake of communica-
tion efficiency; and 2) cosine similarity measurement based
on partial model parameters for the sake of computation
efficiency. Experiments are conducted on CIFAR-10 and re-
sults are reported in Table 7. Aggreg. and Measure. denote
the first and second approximations, respectively. From the
table, we see that these two approximations can improve the
efficiency while hardly affects performance across different
heterogeneous settings.
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Table 6. Comparisons at various client numbers. pFedGraph con-
sistently performs the best.

NUMBER 10 20 30 50

LOCAL 91.07 89.21 88.07 86.18
FEDAVG 66.19 62.98 65.73 63.13

FEDAVG-FT 90.20 90.13 89.62 89.39
FEDPROX 55.76 58.45 62.92 62.75

FEDPROX-FT 90.37 89.94 89.87 89.15
CFL 90.76 91.63 91.77 90.42

PER-FEDAVG 89.60 88.88 89.84 89.18
PFEDME 81.73 81.34 81.06 80.56
FEDAMP 86.90 86.72 86.42 86.26

DITTO 89.41 89.31 89.25 88.95
FEDREP 90.02 90.24 89.80 88.91
PFEDHN 89.91 88.98 88.48 87.72
FEDROD 90.66 90.37 89.93 88.94

KNN-PER 79.09 78.48 77.42 76.47
PFEDGRAPH 92.35 92.59 92.10 91.77

Table 7. Effects of approximation. 1) Replacing normalized aggre-
gated model with unnormalized aggregated model for regulariza-
tion; 2) Cosine similarity measured on partial model parameters.
Approximation basically does not affect the performance.

AGGREG. MEASURE. EXTREME SEVERE MODEST HOMO.

× × 92.14 92.31 84.11 67.10
×

√
92.12 92.74 84.28 67.37√

× 92.55 92.54 84.26 66.55√ √
92.61 92.35 84.21 66.70

Effects of optimizing based on both cosine similarity
and dataset size. In Equation (2), we optimize aggregation
weights based on both relative dataset size and the similari-
ties between clients and thus the learned collaboration graph
can capture both the information of dataset size and model
similarity. To verify the effectiveness of such design, we
conduct the experiments on CIFAR-100 by directly using
cosine similarities as the collaboration weight for compar-
isons in Table 8. From the table, we see that our proposed
optimization in Equation (2) contributes to significantly bet-
ter performance than directly using cosine similarities. See
more results in Table 13.

Effects of using dataset size for optimization. We apply
relative dataset size in the first term of Equation (2). Here,
we explore its effectiveness by comparing with replacing pk
with 1/K, where K is client number. We conduct experi-
ments Dirichlet-distribution-based case on CIFAR-10 and
tune β for more comprehensive observations. The results
are reported in Table 9. From the table, we see that us-
ing relative dataset size for optimizing collaboration graph
consistently performs better than simply using 1/K.

Effects of hyper-parameters. We tune hyper-parameters
α ∈ {0.7, 0.8, 0.9, 1.0} for optimizing collaboration graph

Table 8. Optimization based on both similarity and dataset size
in Equation (2) brings significant performance gain compared with
directly using similarity as aggregation weight. Experiments are
conducted on CIFAR-100, see more in Table 13.

H-LEVEL EXTREME SEVERE MODEST HOMO.

ONLY SIMILARITY 38.26 50.23 50.83 30.82
SIMILARITY & SIZE 54.35 56.79 51.29 30.89

Table 9. Using relative dataset size pk for optimizing collaboration
graph contributes to better performance than simply using equal
weight 1/K. Experiments are conducted under different levels of
heterogeneity (controlled by β).

β 0.1 0.2 0.3 0.4 0.5

1/K 83.43 83.61 76.99 75.74 75.05
pk 84.26 83.92 77.26 76.65 75.42

and λ ∈ {0.001, 0.01, 0.1, 1.0} for regularizing local model
training under the severe case on CIFAR-10. We show the
results in Figure 4(b) together with results of FedAvg-FT
and CFL as reference. From the figure, we see that i) for a
wide range of hyper-parameters, our proposed pFedGraph
consistently outperforms the baselines; ii) our proposed
pFedGraph is not sensitive to hyper-parameters, while α =
0.7 ∼ 0.9 and λ = 0.1 ∼ 1.0 tends to perform better.

5. Conclusions
A fundamental challenge in personalized FL is an appropri-
ate tradeoff between the individual utilities and the benefits
through collaboration. In this work, we handle this issue by
proposing a personalized FL method pFedGraph, which con-
sists of two key modules: i) inferring collaboration graph
at the server side that promotes fine-grained collaboration
and ii) optimizing local model with the assistance of aggre-
gated model at the client side that promotes personalization.
The proposed pFedGraph has strong ability to adapt to di-
verse data heterogeneity levels, as the proposed collabora-
tion graph always pushes each client to collaborate more
with similar and beneficial clients, promoting local data ho-
mogeneity. Extensive experiments show that pFedGraph
can adaptively work well under different data heterogeneity
levels and cases with malicious clients.
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Figure 5. The overview of pFedGraph algorithm. pFedGraph consists of two key procedures: collaboration graph optimization for model
aggregating at the server side and local model optimization regularized by the aggregated model at the client side.

A. Methodology
We provide a overview of the pFedGraph algorithm in Figure 5.

A.1. Explanations for Obtaining Equation (2)

We provide the rationales of approximation from Equation (1) to Equation (2).

Equation (1) is an ideal optimization problem, which can not be directly solved due to practical restrictions. To meet
the practical privacy restrictions, problem approximations (or transformations) are required, which unavoidably leads to
difficulties in proving equivalence between the original and approximated form. Here, we can explain the rationale behind
our approximation (or transformation) theoretically and empirically.

From the perspective of theory. The goal of FedAvg (McMahan et al., 2017) is to obtain a global model that fits well to all
clients data, that is, relatively low value evaluated on each client’s local loss function. We firstly rewrite the optimization
problem of FedAvg in the form of first term in our Equation (1):

min
{θi},W

K∑
i=1

piFi(

K∑
j=1

Wijθj) s.t. W1j = W2j = ... = WKj ,

K∑
j=1

Wij = 1,∀i. (5)

In FedAvg (McMahan et al., 2017), considering the variable of aggregation weight W , the optimal solution is W1j = W2j =
... = WKj = pj (otherwise the problem of inconsistent objective will raise (Wang et al., 2020b)), which is directly applied
by most FL methods (McMahan et al., 2017; Li et al., 2021b). Considering the first term in our approximated Equation (2)
the optimal solution is also W1j = W2j = ... = WKj = pj , which aligns with the solution in FedAvg. This is reasonable
since model aggregated by these set of aggregation weights is a safe choice for all clients similar to FedAvg.

From the perspective of experiments. From the experiments, we know that FedAvg-FT (FedAvg with fine-tuning) is a
strong baseline, indicating that our first term in approximated Equation (2) is reasonable as it also tends to assign larger
weight to clients with more data samples as FedAvg-FT. Also, for example, when the data distributions are homogeneous,
we know that the optimal strategy is assigning aggregation weights according to dataset size, and experiments show that our
method produces exactly the same aggregation weights as this optimal strategy.

Our focus in this paper is to propose a practical personalized FL method guided by Equation (1) and our experiments have
verified its effectiveness. Considering provable approximation, one approximated approach that has potential to prove the
equivalence is to introduce a public dataset such that the value of local loss function can be approximated at the server side.
We did not consider such approach for the sake of practicability as the public dataset could be not existed in practice. More
theoretical analysis could be our future work.
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B. Detailed Algorithm Comparisons
B.1. Comparison with FedAMP (Huang et al., 2021).

Though intuitively, we are trying to achieve a similar goal in personalized FL, our paper is different from the formulation of
optimization problems fundamentally, followed by algorithm design and algorithm performance across different settings.

Optimization problem. The optimization problem in FedAMP (Huang et al., 2021) does not consider model re-initialization
at the client side after receiving an aggregated model from the server, where the optimizing variables are local models only.
The optimization problem in ours considers model re-initialization at the client side, where the optimizing variables are local
models and collaboration graph. In detail, the local loss function is evaluated at variable of corresponding local model in
optimization problem in FedAMP (Huang et al., 2021), while the local loss function is evaluated at aggregated model in our
optimization problem. The reason for such design is that model re-initialization is critical in many cases, especially when
clients share similar data distributions, as the model parameters contain a lot of informative knowledge. Also, our method
explicitly optimizes the collaboration graph, which extends its interpretability as we can explicitly see their collaboration
relationships.

Algorithm design. 1) FedAMP (Huang et al., 2021) applies a single gradient descent step to obtain the aggregated model,
which relies on manually chosen small step size. While in our proposed constrained optimization problem, the collaboration
graphs can be easily solved by conventional convex problem solver. 2) Optimization in FedAMP is entirely based on model
difference shile neglecting the effects of dataset size. However, the optimization in our method takes both model difference
and dataset size into account, which is more reasonable as neighbors with larger datasets and smaller differences deserve
higher collaboration intensity. For example, when two neighbors have the same similarity levels with a client, the neighbor
with larger dataset size should deserve a higher collaboration intensity. 3) FedAMP does not re-initialize the local model
with the received aggregated model which fails to fully utilize the beneficial knowledge in the aggregated model, while we
will re-initialize the local model before launching local model training. Such difference could bring significant impact, as in
some cases where multiple clients share similar data distributions and thus all local models should share the same global
model. In such cases, all clients should re-initialize their local models with the same global model.

Performance. Under different levels of data heterogeneity, we consistently see that our method performs better. The reason
can be that 1) the aggregation weights in FedAMP are not accurate enough to capture optimal collaboration relationships as
it only takes one small step of optimizing; 2) FedAMP does not reinitilize the local model after receiving the aggregated
model.

Table 10. Comparisons with FedAMP and HeurFedAMP.

SETTING CIFAR-10-SEVE. CIFAR-10-HOMO. CIFAR-100-SEVE. CIFAR-100-HOMO.

FEDAMP 85.52 42.91 35.61 8.42
HEURFEDAMP 86.90 45.49 37.50 10.07

PFEDGRAPH 92.54 66.55 56.79 30.89

B.2. Comparison with CFL (Sattler et al., 2020)

CFL (Sattler et al., 2020) is specifically designed to create isolated clusters where clients within the same cluster have
uniform edge weights assigned to them. In CFL, collaboration weights between clients belonging to different clusters are
assigned zero, thus resulting in no collaboration between them. In contrast, our proposed pFedgraph approach utilizes a
global collaboration graph that assigns edge weights based on both the dataset sizes and the similarities between clients,
resulting in a much more fine-grained collaboration graph and enhancing the flexibility.

B.3. Comparison with SFL (Chen et al., 2022b)

SFL (Chen et al., 2022b) primarily focuses on the use of graph convolution networks to address situations where a
collaboration graph has already been established, such as the road device topology that is pre-established in a smart city.
However, our method aims to infer the collaboration graph between clients in order to tackle the personalized federated
learning setting, where a prior graph is not readily available.

Although this paper have attempted to adapt their approach to the missing prior graph scenario, their proposed adaptation
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Table 11. Comparisons with SFL (Chen et al., 2022b).

DATASET CIFAR-10 CIFAR-100 YAHOO! ANSWERS
H-LEVEL EXTR. SEVE. MODE. HOMO. EXTR. SEVE. MODE. HOMO. EXTR. SEVE. MODE. HOMO.

SFL* 78.50 89.43 83.26 66.36 38.26 50.23 50.83 30.82 76.88 86.75 79.64 59.99
PFEDGRAPH 92.55 92.54 84.26 66.55 54.35 56.79 51.29 30.89 85.03 89.04 80.56 63.88

Table 12. Comparison on recommendation datasets MovieLens1M and MovieLens10M. Test loss is reported. Lower is better. Results
show that pFedGraph also performs well for recommendation task.

METHOD LOCAL FEDAVG FEDAVG-FT FEDPROX FEDPROX-FT DITTO PERFEDAVG PFEDGRAPH

MOVIELENS1M 0.8014 0.7920 0.7910 0.7962 0.7951 0.8009 0.7904 0.7896
MOVIELENS10M 0.9508 0.9534 0.9494 0.9626 0.9585 0.9502 0.9485 0.9483

suffers from computational inefficiency, as the use of a graph convolution network becomes meaningless in the absence
of a prior graph. Furthermore, the performance of this adaptation is subpar, as evidenced by the results of SFL* in (Chen
et al., 2022b). To provide a more comprehensive comparison, we conducted experiments and found that our pFedgraph
consistently outperforms SFL* as shown in Table 11.

B.4. Comparison with Factorized-FL (Jeong & Hwang, 2022) and FED-PUB (Baek et al., 2022)

Though these two works are both relevant to the broader field of federated learning and graph, they are focused on distinctly
different topics from our method.

Factorized-FL (Jeong & Hwang, 2022) is specifically designed for the case where clients have their own personalized labels
incompatible with those from other clients, which is significantly different from ours as we consider standard personalized
task where all clients share the same set of labels. FED-PUB (Baek et al., 2022) is specifically designed for subgraph
federated learning and Graph Neural Network where the ’graph’ in this paper is related to task, while the ’graph’ in ours is
used to model collaboration among clients.

They measure similarity but directly use similarity as the aggregation weight, while we propose a novel optimization
problem for learning the weight in the collaboration graph, which considers both the similarity and the relative dataset size.
Considering both similarity and dataset size is critical as models trained by using more data samples tend to carry much
more informative information.

C. Experiments
C.1. Implementation Details

C.1.1. MODEL

For Fashion MNIST (Xiao et al., 2017), CIFAR-10(Krizhevsky et al., 2009) and CIFAR-100(Krizhevsky et al., 2009), we
use a simple CNN network with 3 convolutional layers and 3 fully-connected layers for image datasets (Li et al., 2021a).
For Yahoo! News dataset, we use a TextCNN (Zhang & Wallace, 2015; Zhu et al., 2020) model with 3 conv layers. There is
1 channel and 100 kernels each layer, with kernal size [3, 4, 5]. The dimension of embedding layer is 256 and the weight of
embedding layer is initialized randomly from a uniform distribution [−0.1, 0.1].

C.1.2. TRAINING

We run 50 communication rounds for all experiments. In each round, every client runs for τ = 200 iterations (Wang et al.,
2020b) with a batch size of 64. We use SGD optimizer with learning rate 0.01, weight decay rate 1e−5 and SGD momentum
0.9. These are commonly used experimental settings (Li et al., 2021a; Luo et al., 2021). For each client, 20% of the training
set is held out for validation. We average the results on each local validation set and save the best model. Finally, we report
the testing accuracy of the best model on the testing dataset.
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Table 13. Optimization based on both similarity and dataset size in Equation (2) brings significant performance gain compared with
directly using similarity as aggregation weight.

DATASET CIFAR-10 CIFAR-100 YAHOO! ANSWERS
H-LEVEL EXTR. SEVE. MODE. HOMO. EXTR. SEVE. MODE. HOMO. EXTR. SEVE. MODE. HOMO.

ONLY SIMILARITY 90.53 90.03 83.26 66.36 38.26 50.23 50.83 30.82 76.88 86.75 79.64 59.99
SIMILARITY & SIZE 92.55 92.54 84.26 66.55 54.35 56.79 51.29 30.89 85.03 89.04 80.56 63.88

Table 14. Accuracy comparisons under different parameter β of Dirichlet distribution.

DATASET CIFAR-10 CIFAR-100
β 0.01 0.1 0.5 5.0 0.01 0.1 0.5 5.0

LOCAL 97.86 83.83 72.08 57.15 64.34 47.68 30.56 18.61
FEDAVG 71.50 62.92 63.00 64.85 24.08 27.78 30.18 30.76

FEDAVG-FT 96.92 84.09 75.22 64.20 63.80 50.58 37.44 27.17
FEDPROX 64.72 62.25 22.08 64.70 23.76 27.87 30.02 31.00

FEDPROX-FT 96.79 83.71 74.85 63.79 62.72 50.99 37.03 27.41
CFL 97.65 83.84 74.91 62.51 63.98 49.12 32.21 20.32

PERFEDAVG 96.97 84.02 74.40 63.82 63.15 50.38 35.62 26.68
PFEDME 95.10 75.24 66.26 49.86 46.19 34.37 23.09 14.85
FEDAMP 93.68 75.49 64.96 49.08 42.79 31.04 20.52 12.01

DITTO 96.74 83.78 75.97 65.95 61.46 50.33 37.02 30.37
FEDREP 97.33 83.47 74.79 64.59 63.82 50.15 35.10 23.61
PFEDHN 97.09 82.57 74.79 64.40 62.51 49.08 36.30 26.84
FEDROD 97.07 83.49 73.80 63.24 62.83 47.96 32.24 20.15

KNN-PER 95.11 70.05 62.41 65.82 38.02 25.84 24.14 31.12
PFEDGRAPH 97.66 84.26 75.42 66.43 64.23 51.29 37.52 31.22

C.1.3. DATASETS

Following most personalized FL literature (Li et al., 2021b; Collins et al., 2021; Marfoq et al., 2022), we conduct experiments
on Fashion MNIST (Xiao et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) for image classification tasks.
We also use Yahoo! Answers text classification dataset (Zhang et al., 2015) to explore the performances of personalized FL
methods in the realm of text modality. To accelerate the training process, we sample 3072 training samples for each client.

C.1.4. DETAILS OF FL METHODS

For pFedGraph, we set λ = 0.01. For α, since the absolute magnitude will be affected by client number K, α should be set
proportional to K. Generally, α = K ∗ 0.08 is a pleasant choice. We empirically calculate the similarity based on current
model subtracted by initial global model (Huang et al., 2021; Sattler et al., 2020). We also empirically set the similarity
values that is larger than 0.9 as 1.0. The rationale is that even if two models trained under the same distribution are different,
thus we regard two models with such high similarity (i.e., 0.9) as fully shareable (i.e., 1.0). For FedProx (Li et al., 2020b)
and FedProx-FT, we set λ = 0.01. For CFL (Sattler et al., 2020), we set ϵ1 = 2.0 and ϵ2 = 2.5. For Per-FedAvg (Fallah
et al., 2020), we set α = 0.001 and β = 0.01. For pFedMe (T Dinh et al., 2020) , we set η = 0.01, β = 1.0, λ = 15 and
R = 5. For FedAMP (Huang et al., 2021) , we use the heuristic improvement version and set λ = 1, σ = 10, εi,i = 0.3.
For Ditto(Li et al., 2021b), we use λ = 1. For pFedHN (Shamsian et al., 2021), we follow the setting as original paper. For
KNN-Per (Marfoq et al., 2022), we set use the default hyper-parameter with λ = 0.5.

C.2. Personalized FL on Recommendation.

Here, we extend comparisons to recommendation task for more comprehensive comparisons. For this experiment, we follow
the personalized FL benchmark pFL-Bench (Chen et al., 2022a) and utilize two datasets: MovieLens1M and MovieLens10M.
Results in Table 12 show that pFedGraph is also applicable to recommendation task.

16



Personalized Federated Learning with Inferred Collaboration Graphs

C.3. Effects of optimizing based on both cosine similarity and dataset size

Here, we provide the full table evaluated on CIFAR-10, CIFAR-100 and YAHOO! Answers in Table 13, as a complement
of Table 8.

C.4. Effects of Different Parameter of Dirichlet Distribution

Here, we tune the parameter of Dirichlet distribution β. Note that a smaller β denotes a more heterogeneous scenario.
Experiments are conducted on CIFAR-10 and CIFAR-100. Results are reported in Table 14. We see that 1) under the most
heterogeneous setting (i.e., β = 0.01), Local performs the best while ours perform on par with Local. This is reasonable as
when the heterogeneity is high, clients may have little information to share and to benefit others, thus Local tends to perform
well. Though pFedGraph successfully learns to isolate each client, it has a regularization term during training, which could
affect the training speed and thus pFedGraph performs slightly worse than Local. However, our pFedGraph performs better
than other personalized FL methods. 2) Under other settings, pFedGraph consistently performs the best.
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