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Abstract
Large pretrained language models (LMs) have
shown impressive In-Context Learning (ICL)
ability, where the model learns to do an unseen
task via a prompt consisting of input-output
examples as the demonstration, without any
parameter updates. The performance of ICL is
highly dominated by the quality of the selected
in-context examples. However, previous selection
methods are mostly based on simple heuristics,
leading to sub-optimal performance. In this
work, we formulate in-context example selection
as a subset selection problem. We propose
CEIL (Compositional Exemplars for In-context
Learning), which is instantiated by Determinantal
Point Processes (DPPs) to model the interaction
between the given input and in-context examples,
and optimized through a carefully-designed con-
trastive learning objective to obtain preference
from LMs. We validate CEIL on 12 classification
and generation datasets from 7 distinct NLP tasks,
including sentiment analysis, paraphrase detec-
tion, natural language inference, commonsense
reasoning, open-domain question answering, code
generation, and semantic parsing. Extensive
experiments demonstrate not only the state-of-the-
art performance but also the transferability and
compositionality of CEIL, shedding new light
on in-context learning. Our code is released at
https://github.com/HKUNLP/icl-ceil.

1. Introduction
An important goal of artificial intelligence is to develop
models that can generalize to unseen tasks. NLP community
made a major step towards this goal by discovering the
in-context learning (ICL) capability of large pre-trained
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language models (LMs; Brown et al. 2020). Given a limited
number of demonstration examples, in-context learning
imitates the human ability to leverage prior knowledge to
achieve the best generalization performance.

However, such ability comes along with the robustness
issue: ICL is particularly sensitive to the selection of in-
context examples, and different arrangements can result in
a performance deviation from close to random to near state-
of-the-art (Rubin et al., 2022; Liu et al., 2022; Wu et al.,
2022). There have been a number of research attempts
over the past two years to select better in-context examples.
In particular, one prominent approach is to compare the
input with each individual example based on learning-free
heuristics (Liu et al., 2022) or learning-based metrics (Rubin
et al., 2022). Despite the improved performance, these
methods do not take into account the inter-relationship
between in-context examples. For instance, the ignorance of
redundancy of in-context examples can result in almost
identical examples, providing no additional supervision.
Searching for a compact set of in-context examples becomes
even more urgent as there is a hard limit for the prompt
length due to the backbone transformer architecture of LMs.

In this paper, we propose a general approach, named
CEIL (Compositional Exemplars for In-context Learning).
Instead of selecting each in-context example independently,
CEIL models the joint probability of the entire in-context
example set, and thus captures the inter-relationship be-
tween in-context examples. To model the joint probability
of a set given a specific input, we propose a novel model
based on the conditional determinantal point process (DPP;
Kulesza et al. 2012) that learns to select the most diverse yet
helpful in-context example set (§3.1). To take into account
the quality of a selected subset, a scoring function from a
language model is incorporated into the conditional DPP
to form a contrastive loss (§3.2). That way, our algorithm
maintains the polynomial time maximum a posteriori (MAP)
inference of DPP (Chen et al., 2018) so that the optimal
in-context example subset can be found effectively in the
inference stage (§3.3).

We validate our method by conducting extensive experi-
ments on 12 classification and generation datasets from
7 distinct tasks, including sentiment analysis, paraphrase
detection, natural language inference, commonsense rea-
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soning, open-domain question answering, code generation,
and semantic parsing. The experiments demonstrate that: 1)
CEIL substantially surpasses both conventional learning-
free and learning-based selection approaches, achieving
state-of-the-art in-context learning performance (§4.4); 2)
CEIL shows transferability across LMs and datasets, en-
abling a learning-free efficient application (§4.6); 3) CEIL
inherently learns to compose different examples, shedding
new lights on in-context learning for compositional tasks
(§4.5); 4) CEIL is especially effective when the number of
in-context examples is in a small scale (§4.7).

2. Preliminary
2.1. In-context Learning

In-context learning (ICL) refers to one of the core emergent
abilities (Wei et al., 2022) that infers new tasks from
context (Brown et al., 2020). We use the terms ’in-
weights learning’ and ’in-context learning’ from prior work
on sequence models (Brown et al., 2020) to distinguish
between gradient-based learning with parameter updates
and gradient-free learning from context, respectively.

Formally, each training instance is first linearized into
an input text x = (x1 . . . x|x|) and an output text y =
(y1 . . . y|y|), where for all tokens x1 . . . x|x|, y1 . . . y|y| ∈ V
and V is the vocabulary set of the LM. Given a new test
input text xtest, in-context learning defines the generation
of output y as

ytest ∼ PLM(ytest | x1,y1, . . . ,xK ,yK︸ ︷︷ ︸
context

,xtest),

where ∼ refers to decoding strategies (e.g., greedy decoding
and nuclear sampling (Holtzman et al., 2019)), and each
in-context example ei = (xi,yi) is sampled from a training
set D = {(xi,yi)}Ni=1. The generation procedure is
especially attractive as it eliminates the need for updating
the parameters of the language model when encountering a
new task, which is often expensive and impractical.

Notably, the performance of ICL on downstream tasks can
vary from almost random to comparable with state-of-the-art
systems, depending on the quality of the retrieved in-context
examples (Rubin et al., 2022; Liu et al., 2022; Wu et al.,
2022). Rather than randomly selecting in-context examples
for each test input, previous work model the process with
a retriever P(ei | xtest), which is either off-the-shelf (Liu
et al., 2022; Wu et al., 2022) or fine-tuned (Rubin et al.,
2022).

2.2. Determinantal Point Processes

Determinantal point processes (DPPs) are elegant proba-
bilistic models with the ability to express negative inter-
actions. (Kulesza et al., 2012). Formally, a DPP P is

a probability measure for 2N item sets, where each set
consists of items sampled without replacement from a
discrete item set Z = {1, 2, . . . , N}. Given the feature
vector a for each item, DPP calculates an N ×N positive
semi-definite (PSD) kernel matrix L, where Lij = k(ai,aj)
and k(·, ·) is a kernel function. Then the probability over a
subset of items indexed by S ⊆ Z can be defined as

P(S) =
det(LS)

det(L+ I)
, (1)

where LS ≡ [Lij ]i,j∈S denotes the restriction of L to
the entries indexed by elements of S, det(·) denotes the
determinant of a matrix, and I is an identity matrix. Note
according to the the kernel trick (Schölkopf et al., 2002),
k(ai,aj) can be written as ϕ(ai)

Tϕ(aj), where ϕ(·) is a
reproducing kernel feature map. Therefore, determinants
can be geometrically interpreted as the volume of the
parallelepiped formed by the vectors {ϕ(ai) | i ∈ S}. As
the magnitude of an item’s feature vector increases, so do
the probabilities of sets containing that item. Meanwhile, as
the similarity between two items increases, the probabilities
of sets containing both of them decrease.

Under the distribution P , although the number of possible
realizations of S is exponential in N , many types of
inference tasks including marginalization, conditioning,
sampling and MAP inference can be performed in poly-
nomial time (Kulesza et al., 2012; Gillenwater et al., 2012;
Han et al., 2017; Chen et al., 2018, inter alia).

3. Model
In this section, we introduce an efficient framework, CEIL,
to learn the Composition of Exemplars for In-context
Learning, as shown in Figure 1. Instead of independently
retrieving each in-context example, CEIL models the full
in-context example sets by learning the joint probability
P(S | xtest), and thus captures the inter-relationship
between in-context examples. The joint probability is
modeled with a learnable conditional DPP (§3.1) and trained
with contrastive learning (§3.2). In the inference stage, the
best in-context example subset is selected via efficient MAP
inference (§3.3).

3.1. Modeling

For in-context learning, both relevance (i.e., choosing in-
context examples similar to the test input) and diversity
(i.e., the similarity between examples) are essential, while
the vanilla DPPs ignore the relevance term. To infuse both
relevance and diversity into the selection procedure, we
define a new kernel

k̃ (ai,aj | x) = g (ai,x) k (ai,aj) g (aj ,x) , (2)
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Figure 1. CEIL at training and inference. Instead of independently retrieving each exemplar (or in-context example), CEIL models the
entire set of exemplars by learning their joint probability with a conditional DPP (§3.1), which is further trained to align with the LM
score through a contrastive loss (§3.2). For a given test input during inference, the optimal exemplar set is obtained by the learned DPP
retriever through MAP inference (§3.3). The black-box LM is frozen during the whole procedure.

which is conditioned on the test input x. The new DPP
corresponds to a conditional kernel matrix considering both
diversity and relevance: L̃ = Diag(r) · L ·Diag(r), where
ri = g (ai,x) is the relevance score for item i. Based on
Eq. (1) and Eq. (2), we can derive the unnormalized log-
probability for subset S as

log det
(
L̃S

)
=

∑
i∈S

log
(
r2i
)
+ log det (LS) ,

which clearly shows how the DPP model incorporates the
relevance (i.e., ri) and diversity (i.e., det(LS)) of the in-
context examples.

Intuitively, different tasks may prefer a different trade-off
between diversity and relevance, e.g., a more complex input
may require a more complicated composition of in-context
examples. At the same time, the original DPP model does
not offer such a mechanism. To balance the magnitude
of diversity and relevance for different tasks, we further
incorporate a trade-off parameter λ as follows:

log det (L′
S) =

1

λ

∑
i∈S

ri + log det (LS) .

This exactly corresponds to a DPP with kernel L′ =
Diag

(
exp

(
r
2λ

))
· L ·Diag

(
exp

(
r
2λ

))
.

In practice, the retriever model consists of two embedders to
encode input text and in-context examples to their represen-
tations x and a. We set both of the two embedders as highly
expressive learnable neural networks (e.g., BERT (Devlin
et al., 2019)) such that the resulting DPP score (Eq. (1)) can

be an effective ranking metric for subset retrieval. On the
high-dimensional embedding space, linear kernel (i.e., dot
product) is then applied as similarity function g and k. The
learning of the embedder networks essentially becomes a
metric learning problem (Kulis et al., 2013), which we will
introduce in the subsequent section.

3.2. Training

Since there is no ground-truth subset of in-context examples
for each training instance, we cannot apply the conventional
likelihood-maximization method to learn the parameters. In
this section, we introduce a contrastive learning framework,
with the main idea of rectifying the embedding of each in-
context example and training instance such that a ‘better’
subset has a higher probability to be retrieved than a ‘worse’
subset for the training instance.

Training Data. Our goal in construction training data is to
obtain a dataset Dtrain = {(ei, {Sij , sij})Mj=1}Ni=1 consists
of N instances. Each instance contains one input instance
ei from the training set D, M in-context example subsets
where each example in subset Sij is also retrieved from D1,
and score sij to indicate the quality of each subset.

Modeling on the full space of S is exponential in N and thus
prohibitive. To this end, we employ a two-stage framework
which is commonly used in retrieval (Liu et al., 2009).
We first precompute a set of relevant examples of size

1We omit the retrieved example that is exactly same as input
instance ei to prevent copying answer.
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n (n << N ) with a retriever. Then, we perform non-
replacement random sampling to obtain M distinct subsets,
with no repeating examples in each subset to prevent zero
determinant when calculating det(S).

Once we retrieve the set of in-context example subsets
{Sij}Mj=1 for each input instance ei = (xi,yi), we use
the inference LM themselves as the scoring function. To
measure the quality of each subset, the score is defined as
the probability to predict the answer under the LM, which
is formally represented as

sij = PLM (yi | Sij ,xi) .

This indicates how helpful this subset is for decoding the
target answer.

Contrastive Loss. The InfoNCE loss (Oord et al., 2018)
has been found effective to learn which single item is
superior to others in various representation learning sce-
narios (Karpukhin et al., 2020; He et al., 2020; Rubin et al.,
2022). However, it has the same treatment for all negative
samples and the predicted scores sij are not fully utilized.
To mitigate this problem, we propose to employ a fine-
grained pair-wise margin loss to determine which subset is
preferable, and the loss for each training instance is defined
as

Li =
∑

(S+,S−)∈Ci

max

{
0,

logP(S−)− logP(S+)

ci
+ ξ

}
ci = max

S∈Ci

logP(S)− min
S∈Ci

logP(S),

where Ci = {Sij}Mj=1 contains all the sampled subsets
for instance i, ξ is set to γ ∗ (rank(S−) − rank(S+))
following (Zhong et al., 2020; An et al., 2022) to reflect
the quality difference in these pairs, γ is a hyper-parameter
controlling the strength which we set γ = 1/|Ci| such that
ξ ∈ [0, 1], and ci is used to align the scale with ξ. Note the
normalization term det(L+I) in Eq. (1) requires calculation
with complexity O(N3) on full items with size N , while
the use of pair-wise ranking loss naturally eliminates the
calculation of this term (i.e., logP(S−) − logP(S+) =
log det (LS−) − log det (LS+)), and thus cuts down the
calculation cost.

3.3. Inference

In the inference stage, rather than searching for the most
relevant top-k in-context examples as in previous work (Ru-
bin et al., 2022; Liu et al., 2022), we perform maximum a
posteriori (MAP) inference with the learned DPP module,
considering both diversity and relevance. The MAP
inference of a DPP is defined as

Smap = argmax
S⊆Z

det (L′
S) ,

which is NP-hard (Ko et al., 1995). Similar as in construct-
ing training data, we narrow down the candidate space
with KNN retriever from N to n. Then we follow Chen
et al. (2018) to use an exact implementation of the greedy
algorithm with O(nK2) complexity, where K = |Smap| is
the number of in-context examples. In each iteration, the
example j is greedily selected based on the incremental gain
to the log-probability

j = arg max
i∈Z\Smap

log det
(
L′
Smap∪{i}

)
− log det

(
L′
Smap

)
.

and added to Smap. With Cholesky decomposition, the
complexity can be reduced from O(nK3) down to O(nK)
in each iteration by updating the Cholesky factor incre-
mentally. Note that compared with vanilla KNN retrieval
which directly retrieves K examples from N , the additional
inference latency caused by MAP inference is negligible
since both n and K here are relatively small numbers (e.g.,
n = 100, K = 16).

4. Experiments
We conduct extensive experiments over 12 diverse datasets,
spanning 7 distinct tasks, and show a better approach to
in-context learning than previously considered.

4.1. Datasets and Evaluation

All the datasets and tasks are listed in Table 1. These
datasets involve different task formulations, thereby al-
lowing for extensive evaluations of CEIL in varying
scenarios. Prompts and examples of each dataset are shown
in Appendix A.1.

We compare the predicted answers with the ground truth
and report Accuracy (Acc.) for all the classification tasks.
For generation tasks, we report Exact Match (EM) for
WebQs, GeoQuery, NL2Bash, MTOP, and SMCalFlow, LF-
EM (Hasson & Berant, 2021) for Break following (Rubin
et al., 2022), which is an improvement to EM to measure
semantically equivalence. Final results are reported on the
validation set as the test set is private for some datasets.

4.2. Baselines

Our model CEIL is essentially a learning-based retriever
for in-context example selection. We consider both learning-
free and other learning-based retrievers as baselines:

• RANDOM: The retriever that randomly selects in-
context examples from the training set without rep-
etition.

• TOPK-BM25: The classical sparse retrieval method
BM25 (Robertson & Zaragoza, 2009), which is an
extension of TF-IDF. Top-K-scored examples are
selected as in-context examples.
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Table 1. All the datasets and tasks used in the experiments. We show the number of training instances after deduplicating. #ICE refers to
the average number of in-context examples for instances in the validation set when using GPT-Neo as LLM.

Type Dataset Task #Train #Validation #ICE

Classification

SST-5 (Socher et al., 2013) Sentiment Analysis 8,534 1,101 40
MRPC (Dolan et al., 2004) Paraphrase Detection 3,668 408 27
MNLI (Williams et al., 2018) Natural Language Inference 392,568 19,647 40
QNLI (Wang et al., 2018) Natural Language Inference 104,707 5,463 27
CMSQA (Talmor et al., 2019) Commonsense Reasoning 9,740 1,221 50
HellaSwag (Zellers et al., 2019) Commonsense Reasoning 52,611 20,006 50

Generation

WebQs (Berant et al., 2013) Open-Domain QA 3,778 2,032 50
GeoQuery (Zelle & Mooney, 1996) Code Generation 404 280 50
NL2Bash (Lin et al., 2018) Code Generation 7,441 609 43
Break (Wolfson et al., 2020) Semantic Parsing 44,184 7,760 28
MTOP (Li et al., 2021) Semantic Parsing 15,564 2,235 41
SMCalFlow (Andreas et al., 2020) Semantic Parsing 102,491 14,751 22

• TOPK-BERT: The dense retriever based on
BERT embeddings (Devlin et al., 2019), we adopt
bert-base-uncased2 which is publically
available in Huggingface Transformers (Wolf et al.,
2020).

• DPP-BERT: The DPP retriever directly uses the orig-
inal BERT embedding as above without fine-tuning,
and adopts MAP inference for subset retrieval (Chen
et al., 2018).

• TOPK-CONTRIEVER and TOPK-SIMCSE: Two better
sentence embedding models trained with contrastive
learning (Izacard et al., 2021; Gao et al., 2021b).

• EPR: The learning-based dense retriever trained to
retrieve a better singleton in-context example (Rubin
et al., 2022), and Top-K most similar examples are
selected in the inference stage. We extend it to other
tasks beyond semantic parsing in Rubin et al. (2022).

4.3. Implementation Details

We mainly use GPT-Neo (Black et al., 2021) as LLM, which
is a 2.7B-parameter LM trained on The Pile (Gao et al.,
2021a), an 825 GB text corpus constructed from a wide
range of high-quality resources. We also consider GPT2-
XL (Radford et al., 2019) (1.5B) and Codex (Chen et al.,
2021b) (175B) in §4.6. The number of in-context examples
is set to 50, and we truncate it based on the maximum
context size for different LMs (e.g., 1,024 for GPT2-XL,
2,048 for GPT-Neo, and 8,0013 for Codex) on each task.
The resulting average number of in-context examples for
each task are listed in Table 1.

We sort exemplars based on their similarities to the input

2https://huggingface.co/bert-base-uncased
3https://platform.openai.com/docs/models/codex

text in ascending order, in accordance with common
practices (Rubin et al., 2022; Qiu et al., 2022b; Levy et al.,
2022). During answer generation, all the classification tasks
are reframed into multiple choice following (Brown et al.,
2020). We provide the context plus an answer option as
input to LM, compare the LM likelihood of each option,
and choose the one with the maximum likelihood as the
answer. On tasks that involve multi-label classification,
each label is given a semantically meaningful name as an
option (e.g. ”Positive” or ”Negative” rather than 0 or 1 for
sentiment analysis), and then treat the task like multiple
choice. For generation tasks, we use greedy decoding to
generate answers.

When constructing data for training the retriever, we limit
the number of instances to 44,000 following (Rubin et al.,
2022) to reduce the scoring cost, and we sample 50
candidate subsets with 16 examples in each subset for
each training instance. We use Adam optimizer (Kingma
& Ba, 2015) with batch size 128 and learning rate 1e-
5, and run training for 30 epochs on two NVIDIA A100
GPUs. For each task, we search the trade-off factor λ in
{0.01, 0.05, 0.1}. To encode each example into embeddings,
we concatenate all the texts in an instance except labels
(e.g., premise plus hypothesis in NLI tasks) as input to the
BERT-based encoder (i.e., BERT-base with 110M learnable
parameters). We initialize the encoder with EPR, which we
find significantly helps in training CEIL (§4.7).

4.4. Main Results

We experiment on 12 datasets spanning 7 distinct tasks
and the results are shown in Table 2. Overall, we found
generation tasks benefit more from a better set of in-
context examples than classification tasks. For example,
the simple TOPK-BM25 retriever brings an around 12% to
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Table 2. Main results on various datasets. We show the absolute performance gain over EPR and bold the best results.

Method SST-5 MRPC QNLI MNLI CMSQA HellaSwag WebQs GeoQ. NL2Bash Break MTOP SMCal. Avg.

Learning-free
RANDOM 31.43 67.65 56.67 37.74 42.51 41.16 4.87 33.93 34.35 1.70 7.30 8.90 30.68
TOPK-BM25 36.06 69.36 62.29 40.68 36.12 42.20 16.68 62.86 58.98 26.00 52.70 46.10 45.84
TOPK-CONTRIEVER 37.06 67.89 60.97 45.28 36.12 41.60 17.62 68.93 53.69 26.34 49.84 43.44 45.73
TOPK-SIMCSE 37.06 66.91 61.58 44.85 35.54 41.69 16.83 66.43 54.89 26.58 47.29 42.59 45.19
TOPK-BERT 37.24 69.36 64.65 42.15 35.38 40.28 17.08 66.79 51.30 26.84 52.13 44.63 45.65
DPP-BERT 36.78 69.61 63.83 39.60 37.26 40.69 14.57 70.71 48.99 26.70 53.14 43.26 45.43
Learning-based
EPR 42.82 75.98 80.76 66.06 36.77 42.61 19.59 68.57 56.82 31.90 64.20 54.30 53.37
CEIL 47.05 80.15 85.41 71.74 37.18 43.20 20.92 73.21 59.91 34.18 67.43 60.73 56.76
∆ Absolute gain +4.23 +4.17 +4.65 +5.68 +0.41 +0.59 +1.33 +4.64 +3.09 +2.28 +3.23 +6.43 +3.39

Table 3. Results on compositional semantic parsing datasets using GPT-Neo and Codex as inferencers. The retriever used for Codex is
the same as that for GPT-Neo, and is trained on the GeoQuery and SMCalFlow datasets. 0-S referring to a non-compositional test set
and k-C referring to a compositional test set with additional k-shot compositional examples as demonstrations (k ∈ {0, 8, 16, 32}; see
Appendix A for details). We show the absolute performance gain over EPR and bold the best results.

Model GeoQuery SMCalFlow-CS

Standard Template TMCD Length 0-S 0-C 8-C 16-C 32-C

Previous Results
T5 Base + CSL-Aug (Qiu et al., 2022a) 93.30 89.30 74.90 67.80 (Different Dataset Version)Cover-LS (Levy et al., 2022) 91.40 81.60 76.30 70.00
PaLM 540B (Qiu et al., 2022b) 86.80 76.60 63.60 57.90 - - 4.70 5.00 11.70
PaLM 540B (Oracle) (Qiu et al., 2022b) 92.10 77.93 73.83 63.90 - - 33.90 36.70 45.60

GPT-Neo 2.7B Inferencer
TOPK-BERT 66.79 30.75 41.82 31.59 31.94 0.00 0.28 - -
EPR 68.57 38.95 44.09 32.27 57.78 0.00 0.00 - -
CEIL 73.21 40.77 44.09 32.73 60.27 0.00 0.28 - -
∆ Absolute gain +4.64 +1.82 +0.00 +0.46 +2.49 +0.00 +0.28 - -

Codex 175B Inferencer
TOPK-BERT 91.79 87.47 61.36 69.55 80.83 0.00 40.83 46.67 49.72
EPR 91.70 87.93 62.73 73.41 80.83 0.56 35.56 38.61 48.06
CEIL 93.21 89.98 63.64 74.09 81.39 1.67 42.78 48.06 55.28
∆ Absolute gain +1.51 +2.50 +0.91 +0.68 +0.56 +1.11 +7.22 +9.45 +7.22

45% absolute performance gain compared to the RANDOM
retriever. The underlying reason can be that relevant
answers rarely appear in the non-relevant exemplars for
the generation tasks.

We find CEIL substantially outperforms learning-free
baselines and is especially effective on Natural Language
Inference (NLI) tasks (e.g., QNLI, MNLI), where more
than 20% absolute improvements are obtained. On most
of the other classification and generation tasks, CEIL sur-
passes the learning-free retrievers by around 10%, with an
exception on Commonsense Reasoning tasks (i.e., CMSQA
and HellaSwag). Interestingly, all the other retrievers
(e.g., TOPK-BM25, TOPK-BERT and EPR) perform
comparable to the random retriever on this task, indicating
the related commonsense knowledge may not exists in the
training data.

Compared with the learning-based retriever, CEIL consis-
tently outperforms EPR on all the tasks, suggesting the
effectiveness of bringing interaction between in-context
examples into the learning procedure. Note CEIL intro-
duces no additional parameters compared with EPR and
the learning-free TOPK-BERT, suggesting CEIL is not
only effective but also can be efficiently applied in real
applications with no deployment cost.

4.5. Compositionality

A natural intuition of the superior performance of CEIL
is that it learns to compose exemplars such that the whole
subset helps in predicting answers. To systematically inves-
tigate the compositional ability of the learned retriever, we
experiment on two well-designed semantic parsing datasets
obtained from original SMCalFlow and GeoQuery datasets,
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where the test examples requires explicit compositional
exemplars (e.g., to predict the program of “organize an event
with my manager”, one has to retrieve exemplars relates to
“organize an event” and “my manager”). We evaluate the
trained retrievers in §4.4 on various data splits in these two
datasets (see Appendix A for details), and the results are
shown in Table 3.

The Template and Standard splits account for the
majority of the performance difference between CEIL
and EPR, with around 2% and 5% on GeoQuery dataset.
Meanwhile, the improvement on all the cross-domain
splits (k-C) of SMCalFlow-CS excel the single-domain
split (0-S) when comparing CEIL with TOPK-BERT
and EPR. These indicate CEIL does, to a certain extent,
retrieve compositional exemplars. Overall, CEIL improves
performance on all the difficult splits on these two datasets,
indicating better organizing the in-context examples helps
in predicting compositional and longer target programs.

The previous solutions to generating compositional pro-
grams require compositional data augmentation for train-
ing LM (Qiu et al., 2022a), or test-time local-structure
prediction for selecting diverse exemplars (Levy et al.,
2022). CEIL can be seen as an alternative approach that
directly retrieves a diverse exemplars subset without tuning
inference LM, which is expensive, or test-time question
decomposition, which impairs efficiency and may suffer
from error propagation. Note though the inference LM in
CEIL hasn’t seen any compositional data in the context, the
retriever has seen as it needs to be trained in the standard
dataset. An interesting further work would be training a
retriever that directly generalizes to unseen compositional
tasks without seeing any compositional data, as we have
shown the possibility of transferring across datasets in §4.6.

4.6. Transferability

The compositional characteristics of natural language are
general, meaning the retriever may exploit similar knowl-
edge in different tasks or inference LMs. This motivates
us to explore whether the retriever trained on one dataset
and LM inferencer can be directly transferred to others
without further tuning. This is a practical research question
as training a retriever for each dataset or LM inferencer can
be costly in real applications.

Transfer across LMs We consider transferring the re-
triever trained on GPT-Neo to a similar-sized model GPT2-
XL (Radford et al., 2019) (1.5B) and a much larger model
Codex (Chen et al., 2021b) (175B). Note in the transfer
setting, CEIL becomes a learning-free method under the
target LM, thus we also compare the results with TOPK-
BERT. We show the absolute improvement over TOPK-
BERT in Figure 2 (Left). Interestingly, the retriever learned
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Figure 2. (Left) Results of transferring a retriever learned on one
LM inferencer to others. (Right) Results of transferring a retriever
learned on one dataset (row) to others (column). For both figures,
we show the absolute improvement over TOPK-BERT.

on GPT2-Neo performs comparably with that on GPT2-XL
when evaluating on GPT2-XL for datasets such as SST5,
QNLI, and MTOP. We also surprisingly find the transferred
retriever outperforms the specially-trained one on the MRPC
dataset, indicating it may bring extra knowledge (e.g.,
compositional characteristic of natural language) beyond
learning from the target LM. Note when considering a large
LM (e.g., Codex) as the LM inferencer, learning an LM-
specific retriever can be costly due to the restricted access.
Though TOPK-BERT already performs well on Codex,
CEIL still brings improvement.

Transfer across Datasets We further investigate whether
a retriever trained on one dataset transfers to others, as
shown in Figure 2 (Right). We find almost all the retrievers
transfer to NLI tasks such as QNLI and MNLI, and achieve
better performance than TOPK-BERT. However, the NLI-
trained retrievers hardly transfer to other tasks except for
NLI task (e.g., QNLI-trained retriever only benefits MNLI).
We conjecture that this is due to the fact that NLI tasks
require two text inputs, but other tasks only require one,
and that knowledge gained from single-input tasks still has
value in double-input tasks. For other single input tasks, we
find only the retriever learned on similar tasks (e.g., Code
Generation and Semantic Parsing) shows transferability.
Developing a retriever works for all tasks is a challenging
but valuable research topic, which we leave for future work.

4.7. Analysis

On the Effect of Training Data To investigate the effect
of training data, we compare different candidate sampling
strategies and the number of candidates. Beyond sampling
candidates randomly, we also sample fix-sized candidates
based on probability defined by k-DPP (Kulesza & Taskar,
2011). We always include the Top-K candidate, thus we also
report MRR = 1

N

∑N
i=1

1
ranki

to measure the quality of
the training data based on the ranking of the Top-K candidate
among all the candidates. A lower MRR means that there are
more candidates that are ”better” than the Top-K. As shown
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Table 4. Results of various sampling strategies and number of
candidates (C) per instance in construction training data. We
report both MRR of the Top-K candidate and the performance of
the trained retriever.

Method SST5 MRPC GeoQuery MTOP

RAND, C50 0.08/35.97 0.08/80.88 0.08/71.07 0.07/56.60
TOP100+RAND, C10 0.29/46.14 0.29/81.37 0.27/67.86 0.25/62.37
TOP100+RAND, C50 0.09/47.05 0.09/80.15 0.08/73.21 0.09/67.43
TOP100+K-DPP, C50 0.09/45.96 0.09/79.41 0.09/71.07 0.09/63.62

Table 5. Comparisons of different initializations and contrastive
losses for CEIL.

Method SST5 MRPC QNLI GeoQuery MTOP

Baselines
TOPK-BERT 37.24 69.36 64.65 66.79 52.13
EPR 42.82 75.98 80.76 68.57 64.20
Training Strategies
BERT INIT + INFONCE 31.34 69.12 63.92 68.57 47.43
BERT INIT + PAIR-WISE 35.55 67.89 65.00 67.50 41.30
EPR INIT + INFONCE 49.14 80.64 85.54 69.29 61.92
EPR INIT + PAIR-WISE 47.05 80.15 85.41 73.21 67.43

in Table 4, the one-stage random retrieval greatly degrades
performance on SST5 and MTOP datasets. Surprisingly,
the MRR of one-stage random retrieval achieves the lowest,
indicating relevance is not the only factor that contributes
to the quality of a subset. Two-stage random sampling
slightly outperforms k-DPP sampling with similar MRR.
Furthermore, we find the number of candidates mostly
affects generation tasks, which is considered to be more
complex than classification and increasing the number
improves the final performance.

On the Effect of Learning Strategies We compare
different initializations and contrastive losses in Table 5.
Learning which subset is superior based on the raw BERT
encoders is challenging, but using EPR as an initializer
greatly improves performance. This indicates the knowl-
edge learned from a single in-context example selection
contributes to the set-level selection. Regarding the choice
of contrastive loss, we find InfoNCE and pair-wise margin
loss perform comparably on classification tasks, but the
latter significantly surpasses the former on generation tasks,
with approximately 4% and 6% on GeoQuery and MTOP,
respectively. Note that generation tasks are more difficult
than classification as the answers rarely appear in the in-
context examples directly. This indicates pair-wise margin
loss, which is a more fine-grained contrastive loss than
InfoNCE loss, better displays its effectiveness on much
harder tasks.

On the Effect of Inference Strategies In this paragraph,
we compare two inference algorithm (i.e., TOPK and DPP
(short for DPP-MAP)) across learning-free and learning-

Table 6. Comparison of inference algorithms, i.e., TOPK and DPP
(short for DPP-MAP)), on BERT, EPR and CEIL.

Method SST5 MRPC MNLI CMSQA MTOP SMCal.

learning-free
TOPK-BERT 37.24 69.36 42.15 35.38 52.13 44.63
DPP-BERT 36.78 69.61 39.60 37.26 53.14 43.26
learning-based
TOPK-EPR 42.82 75.98 66.06 36.77 64.20 54.30
DPP-EPR 45.54 80.39 65.09 35.54 64.38 57.64
TOPK-CEIL 45.78 81.37 71.25 37.10 66.62 59.95
DPP-CEIL 47.05 80.15 71.74 37.18 67.43 60.73
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Figure 3. (Left) Comparison of different number of in-context
examples on various datasets.(Right) Comparison of different
trade-off factors on various datasets. For both figures, we show the
absolute improvement over EPR.

based methods. Compared with TOPK, we find DPP-
MAP brings more improvement when using a learning-
based retriever, indicating the importance of aligning the
’similarity’ of embedding to the ’usefulness’ for inference.
Beyond accuracy, we also find the latency of retrieving 50
in-context examples for TOPK and DPP-MAP on SST5
dataset are 30s and 36s (1.2x), respectively. Thus, we
recommend choosing TOPK or DPP-MAP for different
tasks considering the additional inference cost in real
applications. We provide more details on the performance-
efficiency trade-off in Appendix

On the Effect of In-context Example Numbers Most of
the current large LMs are trained with a limited input length
such as 1,024 in GPT2-XL and 2,048 in GPT2-Neo, which
restricts the maximum number of in-context examples. Here
we evaluate the trained retriever under various number of
in-context examples, as shown in Figure 3 (Left). We
find a clear increasing trend for most classification tasks
when decreasing the numbers, indicating the effectiveness
in selecting a compact set of in-context examples. We
observe an opposite trend in generation tasks, which we
hypothesize is because the difficulty of generation tasks.
i.e., the question can only be answered with a sufficient
number of in-context examples. Another advantage of a
compact set of in-context examples is we can greatly cut
down the computations, as the attention module (Vaswani
et al., 2017) in most LMs is of quadratic complexity. We
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find CEIL mostly outperforms EPR and TOPK-BERT with
32 in-context examples by using merely 4 and 1 example,
respectively (see Appendix B.2 for details).

On the Effect of Trade-off Factor We perform an
ablation study to see the effect of trade-off factor in Figure 3
(Right). Note a smaller factor put more emphasize on the
relevance. We find the best performing factor varies for
different datasets. A general observation is that diversity
is more important for more difficult tasks, such as NLI
and semantic parsing, but relevance is more crucial for
the simpler tasks such as sentiment analysis. Given the
discrepancy, we find introducing the trade-off factor still
consistently outperforms EPR baselines that only considers
relevance, verifying the effectiveness of CEIL.

5. Related Work
5.1. In-context Learning

By providing a few input-output examples as demonstra-
tions, in-context learning (ICL) empowers large language
models (LMs) to “learn by analogy” and perform com-
plex tasks such as web browsing (Nakano et al., 2021),
coding (Chen et al., 2021a), data generation (Ye et al.,
2022a; 2023), strategic game (FAIR et al., 2022), and
conversations (OpenAI, 2022). The popularity of ICL also
raises growing concerns regarding its instability: given
different selections, ICL’s performance can vary from near
state-of-the-art to random (Liu et al., 2022). To mitigate this
issue, researchers have made significant efforts on in-context
example selection, which can be cataloged into learning-
free and learning-based methods. In the line of learning-
free methods, various heuristic criteria are proposed, such
as the semantic similarity between testing examples and
demonstrations (Liu et al., 2022), entropy (Lu et al., 2022;
Wu et al., 2022), diversity (Ye et al., 2022b; Su et al.,
2022; Levy et al., 2022; Agrawal et al., 2022). However,
learning-free methods generally require human experts
to design task-specific heuristics and lead to sub-optimal
performance. Researchers thus have started to explore
learning-based methods to push the envelope further. Rubin
et al. (2022) propose to train a singleton example scorer
using contrastive learning with signals from LM inferencer.
In comparison, we aim to jointly model the selection of
the entire exemplar set, which additionally considers the
interaction between in-context examples. Beyond in-context
example selection, some works have explored multi-pass
ICL, which first generates multiple responses from various
subsets of exemplars (Shi et al., 2022; Li et al., 2022) and
then aggregate them through techniques similar to self-
consistency (Wang et al., 2022). In contrast, multi-pass
ICL approaches require multiple test-time inferences, which
can result in inefficiency.

5.2. Determinantal Point Processes

Determinantal point processes (DPPs) are efficient prob-
abilistic models that can measure both the diversity and
quality of items in a subset, which makes it a natural
choice for the diverse subset selection problem (Kulesza
et al., 2012). DPPs have been applied for document
and video summarization (Kulesza & Taskar, 2011; Gong
et al., 2014), recommendation systems (Gillenwater et al.,
2012), object detection (Azadi et al., 2017) and multi-
label classification (Xie et al., 2017). Most recently, DPPs
have been employed in in-context learning specially for
compositional tasks (Levy et al., 2022), where the authors
first predict all possible target subphrases with a specially-
trained model, and then adopt DPPs to sample a diverse
subset of in-context examples to cover as many subphrases
as possible. However, the diversity objective in DPPs is
not aligned with LMs and is generally task-specific. In
contrast, we frame DPPs into an end-to-end framework,
which not only captures the interaction between in-context
examples but also well reflects the preference of LMs on
the probability of DPPs.

6. Conclusion
In this paper, we recast in-context example selection into
an end-to-end optimization problem. We propose CEIL,
which leverages DPP to model the probability of the entire
subset of in-context examples, and is learned through a
contrastive learning framework. Results on 7 classification
and generation tasks with 12 different benchmarks show
that CEIL clearly beats previous competitive methods.
The learned retriever in CEIL also exhibits surprising
transferability across LMs and datasets, and composition-
ality for compositional tasks, showing an effective and
efficient approach to adapt the black-box large LMs to the
downstream tasks.
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A. Experimental Setup
A.1. Datasets

We conduct experiments on 12 classification and generation
tasks, and examples in each dataset are shown in Table 7.
We illustrate the detail of each dataset as follows.

SST-5 (Socher et al., 2013) is a sentiment classification
benchmark containing five fine-grained classes including
‘very positive’, ‘positive’ ‘neutral’, ‘negative’, and ‘very
negative’.

MRPC (Dolan et al., 2004) is a corpus of sentence pairs
automatically extracted from online news sources, with
human annotations for whether the sentences in the pair
are semantically equivalent.

MNLI (Williams et al., 2018) is a crowdsourced collec-
tion of sentence pairs with textual entailment annotations.
Given a premise sentence and a hypothesis sentence, the
task is to predict whether the premise entails the hypothesis
(entailment), contradicts the hypothesis (contradiction), or
neither (neutral).

QNLI (Wang et al., 2018) is a question-answering dataset
consisting of question-paragraph pairs, and the task is to
determine whether the context sentence contains the answer
to the question.

CMSQA (Talmor et al., 2019) (short for Common-
senseQA) is a multiple-choice question-answering dataset
that requires different types of commonsense knowledge.
The task is to predict the correct answer out of five provided
candidate answers.

HellaSwag (Zellers et al., 2019) is a large-scale dataset of
grounded commonsense reasoning. There are four candidate
answers for each question: a video caption from ActivityNet
Captions (Heilbron et al., 2015) and the Large Scale Movie
Description Challenge (Rohrbach et al., 2017). The three
incorrect answers are adversarially generated and human
validated to deceive machines. The correct answer is the
actual video caption for the subsequent occurrence in the
video.

WebQs (Berant et al., 2013) (short for WebQuestions) is
question-answer pairs obtained from the web. The questions
are selected using Google Suggest API, and the answers are
entities in Freebase.

NL2Bash (Lin et al., 2018) is a dataset for the problem
of mapping English sentences to Bash commands. The
corpus consists of text–command pairs, where each pair
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Table 7. Datasets with corresponding prompts and examples used in the experiments.

Dataset Prompt Example

SST-5 {input} It is {output}
Input: this is a stunning film , a one-of-a-kind tour de force .
Output: very positive

MRPC {input1} Can we say "{input2}"? {output}
Input1: The company didn 't detail the costs of the replacement and repairs.
Input2: But company officials expect the costs of the replacement work to run into the millions of dollars .
Output: No

MNLI {input1} Can we say "{input2}"? {output}
Input1: yeah i know and i did that all through college and it worked too
Input2: I did that all through college but it never worked 
Output: No

QNLI {input1} Can we know "{input2}"? {output}
Input1: As of that day, the new constitution heralding the Second Republic came into force.
Input2: What came into force after the new constitution was herald?
Output: Yes

CMSQA {input} {output}
Input: Sammy wanted to go to where the people were. Where might he go?
Output: populated areas

HellaSwag {input} {output}
Input: Members of the procession walk down the street holding small horn brass instruments. A drum line
Output: passes by walking down the street playing their instruments

WebQs {input} {output}
Input: what does jamaican people speak?
Output: Jamaican Creole English Language

GeoQuery {input}\t{output}
Input: what is the population of montana ?
Output: answer(A,(population(B,A),const(B,stateid(montana))))

NL2Bash {input}\t{output}
Input: find all executable files in /home directory.
Output: find /home -type f -perm /a=x

Break {input}\t{output}
Input: How many large metallic items are there?
Output: 1#) return items 2#) return #1 that are large 3#) return #2 that are metallic 4#) return number of #3

Mtop {input}\t{output}
Input: Resume the timer in 10 seconds
Output: [IN:RESUME_TIMER [SL:METHOD_TIMER timer ] [SL:DATE_TIME in 10 seconds ] ]

SMCalFlow {input}\t{output}
Input: Can you create me a new meeting on thursday morning?
Output: (Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.start_? 
(DateTimeConstraint (Morning) (NextDOW (Thursday)))))))

consists of a Bash command scraped from the web and an
expert-generated natural language description.

GeoQuery (Zelle & Mooney, 1996; Shaw et al., 2021)
contains a parallel corpus of 880 English questions about US
geography paired with Prolog queries. The compositional
dataset of GeoQuery were created by Shaw et al. (2021),
focusing on compositional generalization. In addition to the
original Standard split, it contains three additional splits:
(1) the Template split, where abstract output templates
in training and test data are disjoint (Finegan-Dollak et al.,
2018); (2) the TMCD split, which makes the distributions of
compounds in training and test data as divergent as possible;
and (3) the Length split, where the test instances are longer
than the training ones.

Break (Wolfson et al., 2020) is a dataset that maps
complex natural language questions into a language-based
meaning representation. The question is decomposed
into an ordered list of atomic steps, which is used as
the target sequence. We use the low-level Break subset
following (Rubin et al., 2022).

MTOP (Li et al., 2021) is a multilingual task-oriented
semantic parsing dataset covering 6 languages and 11

domains. The target commands are complex queries
featuring nested intent-slot prediction. Similar to past work
(Rubin et al., 2022), we use the English subset of MTOP.

SMCalFlow (Andreas et al., 2020; Yin et al., 2021) is a
large dialogue dataset, featuring natural conversations about
tasks involving calendars, weather, places, and people. The
meaning representation is an executable dataflow program
featuring API calls, function composition, and complex
constraints. The SMCalFlow-CS (Yin et al., 2021) dataset
is a subset of SMCalFlow, containing single-turn natural
sentences involving two domains (organization structure
and event creation), each having its own set of program
symbols. The cross-domain (C) test set evaluates examples
that incorporate compositional abilities, while the single-
domain (S) test set contains examples from a single domain.
On few-shot settings (split k-C, where k ∈ {8, 16, 32}), the
training set includes additional k cross-domain examples,
which provide composition symbols, in the evaluation.

A.2. Experimental Setup for Compositionality

We include all the few-shot examples in the context to
provide compositional symbols, and we retrieve single-
domain exemplars with different retrievers. We omit the
evaluation on 16-C and 32-C splits for the GPT-Neo model
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Table 8. Inference latency on SST-5 validation set and evaluation metrics on different datasets when varying n at inference time.

Model Latency SST5 MRPC QNLI GeoQuery NL2Bash MTOP Avg.

TOPK-BERT 30s 37.24 69.36 64.65 66.79 51.30 52.13 56.91
EPR 30s 42.82 75.98 80.76 68.57 56.82 64.20 64.86
CEIL (n=50) 30s 45.78 81.37 84.37 71.79 57.84 66.62 67.96
CEIL (n=100) 36s 47.05 80.15 85.41 73.21 59.91 67.43 68.86
CEIL (n=200) 55s 46.59 80.88 85.21 73.21 60.26 67.15 68.88
CEIL (n=400) 87s 47.14 82.11 85.46 72.86 60.59 67.52 69.28
CEIL (n=800) 118s 47.32 81.86 86.21 72.86 60.26 67.43 69.32

as we have no extra room due to the restriction of the
input length. On Codex, we limit the number of in-context
examples to 16 to fairly compare results across the different
k-C splits.

B. Additional Experiments
B.1. Varying n at Inference Time

As discussed in §3.3 that we arrow down the candidate
space with KNN retriever at inference time, we further
conducted experiments on multiple datasets to investigate
the effect of varying n. We show the inference latency on
SST-5 validation set and evaluation metrics on different
datasets in Table 8. Overall, we found that increasing n
tends to improve performance, indicating that increasing n
provides a larger exploration space and a higher chance of
finding a better subset. In addition, inference efficiency
is also an important consideration. The latency on the
SST5 validation set demonstrates that increasing n will add
extra overhead due to the complexity of the MAP inference
algorithm, which results in a trade-off between performance
and efficiency.

Furthermore, the impact of n on performance tends to
become smaller as n increases. We show the distribution
of the samples selected in the MAP subset from the top
800 candidate samples in Figure 4. Since both relevance
and diversity are considered but relevance tends to have
greater weight, the impact of n on performance diminishes
because examples beyond the top 200 are not typically
selected on most datasets. Therefore, although theoretically,
a larger n will have a greater chance of finding a subset,
from the perspective of the performance-efficiency trade-off
and the diminishing returns of increasing n, we adopted an
approximate approach that chooses a moderate amount of
n.

B.2. Number of In-context Examples

We show additional results on the effect of in-context
examples in Figure 5. We find CEIL mostly outperforms

EPR and TOPK-BERT with 32 in-context examples by
using merely 4 and 1 example, respective, greatly cutting
down the computations as the attention module (Vaswani
et al., 2017) in most LMs is of quadratic complexity.

C. Limitation
The main limitation of CEIL is inherent in the learning-
based approach, which performs significantly better than
learning-free methods but requires a certain amount of data
to train the retriever for each task. The scoring stage in
dataset construction of CEIL is also slower than EPR since
we have to put an in-context example subset into the context
instead of a single example. Although we have explored
the transferability of the retriever, this research is still in
its early stages. One potential avenue for future research
is to use multitask-tuning to train a unified retriever so that
the retriever can be applied directly to new tasks like in the
learning-free approaches, without the need to retrain the
retriever with new task data.
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Figure 4. Distribution of the selection probability of the top-800 examples. As n increases, its impact on performance diminishes because
examples beyond the top 200 are not typically selected on most datasets.
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Figure 5. Comparison with baselines under various numbers of in-context examples.
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