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Abstract
Combinatorial optimization (CO) on the graph is
a crucial but challenging research topic. Recent
quantum algorithms provide a new perspective
for solving CO problems and have the potential
to demonstrate quantum advantage. Quantum Ap-
proximate Optimization Algorithm (QAOA) is a
well-known quantum heuristic for CO constructed
by a parametric quantum circuit. However, QAOA
is originally designed for unconstrained problems
and the circuit parameters and solutions are jointly
solved with time-consuming iterations. In this pa-
per, we propose a novel quantum neural network
(QNN) for learning CO problems in a supervised
manner to achieve better and faster results. We fo-
cus on the Quadratic Assignment Problem (QAP)
with matching constraints and the node permuta-
tion invariance property. To this end, a quantum
neural network called QAP-QNN is devised to
translate the QAP into a constrained vertex clas-
sification task. Moreover, we study two QAP
tasks: Graph Matching and Traveling Salesman
Problem on TorchQauntum simulators, and em-
pirically show the effectiveness of our approach.

1. Introduction
Quantum computing attracts increasing attention (Arute
et al., 2019; Preskill, 2018), with the potential benefits from
the properties of quantum systems, e.g. superposition, inter-
ference, and entanglement. Quantum computing hardware
is also stepping into the Noisy Intermediate-Scale Quantum
(NISQ) era, facilitating the near-term application of quan-
tum computing in many fields, such as machine learning
(Biamonte et al., 2017) and combinatorial optimization (CO)
(Farhi et al., 2014).
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Quantum Approximate Optimization Algorithm (QAOA)
(Farhi et al., 2014) is one of the best-known quantum heuris-
tic algorithms on NISQ computers for solving quadratic
unconstrained binary optimization (QUBO) problems. The
QAOA consists of two main components: a cost Hamilto-
nian that encodes the problem to be solved and a mixing
Hamiltonian that is used to explore the solution space. How-
ever, for quadratic constrained binary optimization such as
the quadratic assignment problem (QAP), it remains a rela-
tively open problem in quantum computing. For example,
QAOA needs to add a soft constraint penalty to the objec-
tive, making a bounded violation of the constraints difficult
to guarantee, which is unfriendly for practical constraint-
sensitive scenarios. The Quantum Alternating Operator
Ansatz (Hadfield et al., 2019) was proposed to mitigate
this issue, which starts with a state in the constrained sub-
space and guarantees that the quantum state evolves in the
constrained space by designing a quantum circuit of mixer
Hamiltonians. Quantum Alternating Operator Ansatz is
termed C-QAOA to distinguish it from QAOA in this paper.
Both QAOA and C-QAOA are problem-inspired ansatzes
that contain adjustable parameters. Nevertheless, each prob-
lem instance corresponds to different model structures and
optimal parameters, and finding them often requires time-
consuming classical optimizers or grid searches.

This paper lies in the intersection of quantum machine
learning (QML) and CO, for developing QML approaches
for solving CO problems, especially for constrained cases.
We develop a quantum network paradigm for constrained
CO, which could be regarded as a quantum counterpart
for the emerging paradigm for classic machine learning
for CO (Bengio et al., 2021). Our learning-based quantum
constrained CO solver is designed to bear the following
features: i) consisting of two separate phases for training
and inference: this is in contrast to variational quantum
eigensolver (VQE) (Peruzzo et al., 2014) and specifically
QAOA-like methods that adjust the trainable circuit param-
eters and find solution simultaneously. We believe such a
design has three merits. First, the circuit parameter training
and solution finding can be decoupled to make the optimiza-
tion easier in each subtask; Second, more instances can be
utilized during offline training, which in fact provides a way
of utilizing the instances (with given solutions as supervi-
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Figure 1. The QAP instance by transforming two graphs for match-
ing into one association graph (Wang et al., 2022b), whose ver-
tices denote the node-to-node correspondences in the original two
graphs, and its weighted adjacency matrix refers to K in Eq. 1.

sion); Third, the problem can be efficiently solved through
one forward computation of the trained quantum network.
ii) solving constrained CO problems via naturally encod-
ing the constraints into the quantum circuits instead of as a
less-controllable penalty term in the objective.

As a concrete case for constrained CO, the quadratic as-
signment problem (QAP) will be the object of study in this
paper, which is defined as (Cho et al., 2010):

vec(X)⊤K vec(X)

s.t. X1n2
= 1n1

; X⊤1n1
≤ 1n2

; X ∈ {0, 1}n1×n2 ,
(1)

where X ∈ Rn1×n2 is a (partial) permutation matrix and
vec(X) is column-vectorized version of X. Here 1n1

means
a column vector of length n1 whose elements are all equal
to 1. For convenience, we only consider n1 = n2 in
this paper, and then the constraint becomes X1n1

= 1n1
,

X⊤1n1 = 1n1 . The QAP can be regarded as a combinatorial
problem on a graph. If variables of X are used for indicating
vertices of a graph, then matrix K represents the affinity ma-
trix that captures the relationship between vertices (Wang
et al., 2022b). In particular, the Traveling Salesman Prob-
lem (TSP) (Arora, 1996) and Graph Matching (GM) prob-
lem (Wang et al., 2023) can both be formulated as QAP
which will be studied in the experiment part of our paper.
Fig. 1 shows how GM is converted to a QAP formulation
via the concept of association graph from two input graphs
for matching (Wang et al., 2022b).

As a problem on graphs, we first consider the basic per-
mutation invariance property w.r.t. the order of the vertex,
i.e., the network needs to output the consistent result re-
gardless of the permutation of the vertices. Specifically, we
design a permutation-invariance quantum neural network
(QNN) as shown in Fig. 2 with three main components:
i) input encoding layer, ii) auxiliary constraint layer, and
iii) quantum perceptron layer. The input encoding layer
treats the interaction of qubits as the vertices connected by
edges, thereby the graph information can be encoded in the
quantum circuit. Moreover, the input encoding layer is re-

peated in our framework for information interaction among
vertices. Followed by the encoding layer, the parametric
constraint layer is operated on the circuit to restrict inter-
action among vertices according to the constraint subspace
of the problem. Then, one quantum perceptron module acts
on multiple qubits to learn the feature representation of one
vertex, and all vertices share the same quantum perceptron
module to ensure permutation invariance. Here quantum
perceptron means a parameterized quantum circuit, which
can be viewed as a universal function approximator over
vector space (Schuld et al., 2021), akin to classical multi-
layer perceptrons (Hornik et al., 1989). After stacking these
three modules several times, a pooling layer is finally used
to reduce the dimensions of each vertex to one output qubit.
In addition, the result obtained from the measurement em-
ploys the Sinkhorn normalization (Adams & Zemel, 2011)
to further incorporate the matching constraint. In the end, a
classical optimizer is used to optimize the parameters of the
proposed quantum neural network. The highlights of this
paper are:

1) This paper strikes an initiative for solving of constrained
combinatorial optimization problem via separately training
and testing a parameterized quantum circuit, whereby the
solved CO instances as training samples. This is in contrast
to QAOA-like methods that jointly find the solution and
adjust the trainable parameters, which could be more time-
consuming at the inference (problem-solving) stage.

2) Specifically for QAP, we propose a quantum neural net-
work (i.e., parameterized quantum circuits) that both fulfills
the node permutation invariance property as well as the
matching constraint. Both of them are vital for learning a
general quantum model to solve constrained combinatorial
problems.

3) We study two specific forms of QAP, including the Graph
Matching Problem and the Traveling Salesman Problem, to
demonstrate the wide applicability. Numerical experiments
show the effectiveness of the proposed approach compared
with the classical and quantum-based methods.

2. Related Work
Quantum Computing for CO. A few CO problems are
known can be solved by exploiting well-designed quantum
algorithms. For example, Grover’s algorithm (Grover, 1996)
can be used to solve the Boolean satisfiability problem (Cerf
et al., 1998). Srinivasan et al. (2018) proposed a quantum
algorithm to solve the traveling salesman problem (TSP)
using the quantum phase estimation technique. With the
development of the parameterized quantum circuit, QAOA
was proposed to solve the quadratic unconstrained binary op-
timization. Although QAOA contains the adjustable model
parameter, it is not a unified model that can be trained on
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Figure 2. Overview of the proposed QAP-QNN for solving the constrained CO problem (specifically QAP). The encoding layer encodes
graph information into the quantum circuit, whereby it is specifically designed (see Fig. 3) for ensuring the node permutation invariance
property for the input graph. The auxiliary constraint layer is used to promote the matching constraint in QAP. The quantum perceptron
layer is a core learning component for learning the embedding of each vertex. Note the constraint and perceptron layers both naturally
fit with the node permutation invariance. The three layers form a block, which is repeated for t times, followed by a pooling layer and
measurement to transform the quantum information into the classical one. The output results are first normalized to achieve a doubly
stochastic matrix using the Sinkhorn layer before being used to calculate the loss. Note that the node permutation invariance is strictly
enforced while the matching constraint is softly obeyed via both the constraint layer as well as the Sinkhorn operator.

a dataset. To obtain the generalization on unseen test in-
stances and find high-quality solutions of QAOA, Khairy
et al. (2020) formulated the problem of finding optimal
QAOA parameters as a learning task. They employed two
classic machine learning techniques: deep reinforcement
learning and kernel density estimation to learn the optimal
QAOA parameters of different samples. However, this is
still limited to the framework of QAOA, and difficult to
solve constrained CO problems. In contrast, our approach is
a new quantum paradigm for learning to solve constrained
CO.

Existing Equivariant Quantum Neural Network. Re-
cent works on equivariant quantum neural networks have
been developed. Mernyei et al. (2022) proposed equivari-
ant Hamiltonian quantum graph circuits (EH-QGCs) and
equivariantly diagonalizable unitary quantum graph circuits
(EDU-QGCs) as special subclasses of equivariant quantum
graph circuits (EQGCs) from the perspective of quantum
graph representation learning. The works (Ragone et al.,
2022; Nguyen et al., 2022) presented an introduction to rep-
resentation theory tools from the optics of quantum learning
and laid the theoretical foundation of Geometric Quantum
Machine Learning, such as the group-invariant QML model
(Larocca et al., 2022) and the QML model with SU(d)
symmetry (Zheng et al., 2022). Among these methods,
EQGCs (Mernyei et al., 2022) are the most relevant to our
work because both methods target graph-related problems.
However, the differences lie in the fact that EQGCs focus on
graph classification tasks, while our model is more focused
on node-level tasks. In fact, our paper is aimed at addressing
constrained CO on graphs via a QNN, which is a more com-
plex problem than node classification. Another difference is
that EQGC only considers the graph structure information

and has not yet considered the problem of encoding node
and edge features into the model.

3. Methodology
We show how to develop a combinatorial neural solver for
QAP using a quantum neural network.

3.1. Approach Overview

The idea is to translate the CO problem into a (constrained)
vertex classification problem. As described in Eq. 1, the
decision variable of QAP is binary, i.e., x ∈ {0, 1}. Given
the problem instances, it discovers a feature representation
for each decision variable in the matching matrix X. As
illustrated in Fig. 2, our variational quantum pipeline con-
sists of three components: feature encoding layer, auxiliary
constraint layer, and quantum perceptron layer. The three
layers form a block and are repeated t times. At the end
of the circuit, there are a pooling layer and a measurement
layer to output the result. For training, a classical optimizer
is employed to learn the trainable parameters of the circuit.

3.2. Feature Encoding Layer

In the formulation of QAP, each decision variable can be
associated with a vertex of the graph. And K contains the
affinity information between vertices. The feature encoding
layer aims to encode classical affinity information of differ-
ent instances into the quantum states by the quantum circuit.
Suppose that there are n vertices, and each vertex is able to
be represented by m qubits. Fig. 3 shows a case of the repre-
sentations of m = 1, and the unitary matrix of the encoding
layer is defined as Ux = exp(−iHnode) · exp(−iHedge),
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Figure 3. The encoding layer. It encodes the diagonal and off-
diagonal elements of the affinity matrix, respectively. The diagonal
elements serve as the parameter of RY gate, and off-diagonal
elements serve as the parameter of the two-qubit quantum gate
RZZ .

where Hnode =
∑

i
Kii

2 Y(i) and
∑

i,j
Kij

2 Z(i)Z(j), which
are Hermitian matrices over one and two-node state spaces,
respectively. Y and Z represent the Pauli Y gate and Pauli
Z gate, and Y(i) refers to the Y operators applied at the
specified node i. For example, Y(3) = I ⊗ I ⊗ Y ⊗ I in
the case of n = 4 nodes. The rotation gate RY (Kii) =
exp(−iKii

2 Y(i)) acts on the single qubit with the diag-
onal elements of K as parameters. The rotation gate
RZZ(Kij) = exp(−iKij

2 Z(i) ⊗ Z(j)) is operated on the
two qubits to encode the non-diagonal elements of the K
matrix, which represents the information interaction be-
tween vertices. As for the case of m > 1, the parameter of
each gate is replaced by the elements times m to enhance
the expression of high-dimensional feature representations.
Note that the Ux repeatedly appears on the circuit. This
structure can emphasize the relationships between vertices
by entangling the qubits with correlation.

3.3. Auxiliary Constraint Layer

In the constraints of QAP, the sum of the row or column of
the matrix X ∈ Rn1×n1 is required to be one. Benefiting
from the properties of quantum operators, we can explicitly
model the constraints on the quantum circuit. Inspired by the
partial mixing operator (Hadfield et al., 2019), the auxiliary
constraint layer is built by multiply-controlled X operators.
Take the element xij of X as a target vertex, and then other
elements in the row and column in which xij is located are
viewed as the neighbors of xij . As can be seen, there is a
restrictive relationship between the target and its neighbors.
Let |vxij

⟩ denote the state of the neighbors of xij , and the
unitary operator for the target xij is defined as:

Ucij (β) =
∑

|vxij
⟩̸=|0...00⟩

|vxij ⟩⟨vxij | ⊗ I +

∑
|vxij

⟩=|0...00⟩

|vxij ⟩⟨vxij | ⊗ RX(β),
(2)

where β is a trainable parameter of the auxiliary constraint
layer. Its overall unitary matrix is given as:
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Figure 4. An example of the auxiliary constraint layer with nine
vertices on the graph. In the circuit, the multi-qubit control gates
are operated on the qubits with a constraint relationship.

Uc(β) =
∏
ij

Ucij (β). (3)

Fig. 4 shows an example of an auxiliary constraint layer
when the number of variables n is nine and n1 equals three.
Considering that the strength of constraints imposed on
each variable should be consistent, the multiply-controlled
gates adopt the same parameter β for the same group. In
the case where the state |xij⟩ is characterized as m qubits,
the auxiliary constraint layer employs m different trainable
parameters β.

3.4. Quantum Perceptron Layer

As mentioned before, it is vital that the permutation invari-
ance of input for training a universal quantum variational
method. When the order of the vertices encoded by the
quantum circuit changes, the order of the output result will
vary accordingly. To preserve the permutation invariance,
we perform the same quantum perceptron for the m qubits
of each vertex. Concretely, the quantum perceptron indi-
cates a m-qubit parametric quantum circuit in the proposed
framework. The larger the value of m, the more the number
of trainable parameters, and the richer the learned vertex
representation. m can be appropriately selected according
to the requirement of the practical problem. Fig. 5 illustrates
the case of the quantum perceptron layer with different m.
The unitary matrix of the quantum perceptron layer is:

Up(θ) =
n
⊗
i=1

Urzy(θ) Uent, (4)

where Urzy(θ) = ⊗m
j=1RZ(θj1)RY (θj2).

A quantum perceptron layer contains parametric rotation
gates and entanglement gates. For each qubit, we perform
RZ and RY gates to learn the feature representation and
CNOT gates to correlate different feature dimensions of
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Figure 5. The structure quantum perceptron layer. The quantum
perceptron is shared on different vertices. The right shows the
structures of a single perceptron module with different m.

a vertex. The quantum perceptron module with the same
structure and parameters is shared between different ver-
tices. In this way, the proposed approach is able to keep
the property of permutation invariance. Therefore, we can
obtain the unitary matrix of the block:

Ub(β,θ) = Ux Uc(β) Up(θ). (5)

3.5. Pooling and Measurement

After the quantum circuit iterates the block comprised of
the above three layers t times, a pooling layer is employed
to reduce the feature dimension of each vertex to one. We
adapt the structure of the Matrix Product State (MPS) circuit
(Bhatia et al., 2019) to the pooling layer, which applies two-
qubit controlled gates with a ladder-like architecture, as
shown in Fig. 6. As we can see, a pooling layer contains
2m − 1 trainable parameters α. In the end, the last qubit
of m qubits is measured using Pauli Z operators and the
circuit outputs the confidence of the current vertex. Similar
to the quantum perceptron layer, all vertices share the same
structure and parameters of the pooling layer.

3.6. Training and Testing

We can translate the information on quantum states to clas-
sical data through the measurement operation. For n vertex,
there are the predict result y = {yi}ni=1, where yi ∈ [0, 1]
represents the classification score of vertex i. Given that
the optimal permutation matrix X∗ ∈ Rn1×n1 , we reshape
y into the same size, followed by Sinkhorn normalization
(Adams & Zemel, 2011; Wang et al., 2019) to obtain a
double-stochastic matrix Y ∈ Rn1×n1 . Moreover, the bi-
nary cross-entropy loss is used for end-to-end learning:
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Figure 6. Schematic illustration of the pooling layer and Pauli-Z
measurement for the qubits that represent a vertex.

l = −
n1∑
a=1

n1∑
b=1

X∗
a,b logYa,b + (1−X∗

a,b) log(1−Ya,b).

(6)
Note that Sinkhorn layer also imposes a matching constraint,
which encourages the continuous prediction into a doubly
stochastic matrix i.e., the convex hull of the matching ma-
trix (a permutation matrix). The proposed quantum model
namely QAP-QNN can be learned via backpropagation and
gradient descent due to the fact that all the components
are differentiable. During the training process, a classical
optimizer Adam (Kingma & Ba, 2014) with an initial learn-
ing rate of 0.1 is used to find the optimal parameters of
quantum circuits, including β,θ, and α. In the testing, as
a common post-processing step, the gap between doubly
stochastic matrix Y and the predicted optimal permutation
matrix Y∗ is fulfilled by the Hungarian algorithm (Burkard
& Dell’Amico, 2009).

4. Analysis of Permutation Invariance
We further elaborate on how our circuit guarantees per-
mutation invariance, with a concrete example of a graph
consisting of four nodes labeled as a, b, c, and d. If the
input order is abcd, the output state after the encoding
layer Uabcd should be |ψabcd⟩ = Uabcd|0⟩⊗4 (let |0⟩⊗4

be the initial state). If the order is changed to cbad, the
encoding layer will also change accordingly, resulting in
|ψcbad⟩ = Ucbad|0⟩⊗4. The permutation invariance means
|ψcbad⟩ = SWAP1,3|ψabcd⟩, which refers to the fact that
when the input node order changes, the previously output
qubit results will also change accordingly. This means the
unitary matrix of the quantum circuit is required to satisfy:

Ucbad = SWAP1,3Uabcd, (7)

where SWAP1,3 is a 2n × 2n unitary as a swap gate on
qubit 1 and qubit 3. Furthermore, the encoding layer can be
decomposed into the unitary acting on the single-qubit and
two-qubits: Uabcd = US

abcdU
D
abcd. For sigle qubit gates, we

can easily find US
cbad = SWAP1,3U

S
abcd. For example, we

choose the RY gate as the single qubit gate, then

RY (θc)⊗RY (θb)⊗RY (θa)⊗RY (θd)

= SWAP1,3(RY (θa)⊗RY (θb)⊗RY (θc)⊗RY (θd)).
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Figure 7. Accuracy of graph matching using the synthetic dataset
with varying deformation level σn(a) and δs(b), comparing with
classic GM methods: RRWM, IPFP, SM, NGM.

Therefore, we can derive UD
abcd = UD

cbad, which in-
dicates the two-qubit gates need to be selected care-
fully. Specifically, suppose that there are three edges:
{a, b}, {b, c}, {c, d}, and the unitary matrix is defined:
UW
abcd = (W (θa,b) ⊗ I ⊗ I)(I ⊗W (θb,c) ⊗ I)(I ⊗ I ⊗

W (θc,d)), where W (θa,b) is the two-qubit parametric gate
encoded the information of edge {a, b}. However, the order
in which two-qubit gates act can be changed arbitrarily, and
it means that these three elements must be commutative. In
our model design, we have chosen RZZ as the two-qubit
gate, which is a diagonal matrix, and RZZ tensor product
with I is also a diagonal matrix. Diagonal matrices are
commutative with each other.

Note the quantum perceptron layer also satisfies the per-
mutation invariance property. Suppose the unitary ma-
trix of a perceptron module is Ucp. For a graph with
four nodes, the perceptron layer can be represented as
Up = Ucp ⊗ Ucp ⊗ Ucp ⊗ Ucp, and we can see the uni-
tary matrix is independent of the order of the nodes because
all nodes use the same Ucp. Similar to quantum percep-
tron layer, the auxiliary constraint layer is also independent
of the order of the input nodes and preserve permutation
invariance.

5. Experiments
We solve two popular forms of QAP: graph matching (GM)
and Traveling Salesman Problem (TSP), in comparison to
both classic and quantum methods. All the experiments
are performed on a workstation with a single machine with
four physical CPUs with 224 cores Intel(R) Xeon(R) Plat-
inum 8276 CPU @ 2.20GHz, and a GPU (NVIDIA A100).
Source code is written using TorchQauntum (Wang et al.,
2022a), which is a Pytorch-based library for quantum com-
puting. By its virtue, we can scale up the simulation of 20+
qubits with our GPU, with batch size 16 for training.

5.1. Case Study I: Graph Matching

Problem definition. Graph matching plays a vital role in
computer vision, pattern recognition, and bioinformatics

fields (Zhang et al., 2019). The problem seeks to establish
node correspondences between two graphs, according to the
node-to-node and edge-to-edge affinity (Cho et al., 2010).
The difference between graph matching and point-based
matching (Zhang, 1994) is that the latter does not consider
edge information. In this case study, we only discuss the
two-graph matching problem, which can be written as the
form of QAP. Given that two weighted graphGs = (Vs, Es)
andGt = (Vt, Et), where V is the node set andE ⊆ V ×V
is the edge set. Suppose that the number of nodes |Vs| = n1,
|Vs| = n2, and we only consider the case of n1 = n2 in this
experiment. The permutation binary matrix X ∈ Rn1×n1 of
Eq. 1 encodes the node-to-node correspondence, i.e., Xia

indicates whether node V i
t in Gv matches node V a

s in Gt.
Two-graph matching can be translated into an association
graph G = (V, E), as illustrated in Fig. 1. Then, the problem
of two-graph matching can be viewed as the vertex classifi-
cation problem of the association graph. The vertices of the
association graph V = Vs × Vt, and the vectorized assign-
ment matrix vec(X) is equivalent to the vertex set of the as-
sociation graph. The edges of the association graph E denote
the agreement between two pairs of correspondence, such as
E ia,jb = (Eij

s , E
ab
t ) = {(V i

s , V
j
t ), (V

a
s , V

b
t )}. Therefore,

the off-diagonal part of affinity matrix K ∈ Rn1n1×n1n1 of
Eq. 1 can be viewed as the adjacency matrix of the associa-
tion graph, representing the edge-to-edge similarity between
Gv and Gs. In addition, the diagonal elements of K are
assigned as the node-to-node affinity between Gv and Gs.

Datasets. We perform the experiment on synthetic 2-D
point sets following the protocol of (Wang et al., 2022b).
The dataset is established to match the 2-D random point
sets. First of all, we build 10 sets of ground truth points
distributed in the plane U(0, 1)× U(0, 1), where U means
the uniform distribution. Then, each set of synthetic points is
distorted by the random scaling fromU (1− δs, 1 + δs) and
additive random noise N

(
0, σ2

n

)
, where N is the Gaussian

noise function. The distorted points are used to construct
a reference graph, and a set of ground truth points form a
target graph. For each target graph, we sample 320 reference
graphs for training and 100 for testing. In addition, the
target graph is fully connected and the reference graph is
constructed employing Delaunay triangulation. The affinity
matrix K is computed by Kia,jb = exp(−(fij − fab)

2/γ2),
where fij represents the edge length or node coordinate
information, and γ is empirically set as 1e-2.

Results. We first compare the performance between the pro-
posed method and the classical learning-free and learning-
based methods that are designed for graph matching, includ-
ing 1) RRWM (Reweighted Random Walk Matching) (Cho
et al., 2010) adopts random-walk to match nodes in two dif-
ferent graphs by reweighting edges based on the similarity
of matched nodes; 2) IPFP (Integer Projected Fixed Point
method) (Leordeanu et al., 2009) finds the optimal match-
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Table 1. Comparison of the optimal gap and runtime between
quantum-based methods under different deformation levels.

QAOA C-QAOA QAP-QNN
(m=1)

QAP-QNN
(m=2)

δs = 0.4, σn = 0 4.211% 3.419% 0.0% 0.0%

δs = 0.3, σn = 0.1 13.21% 4.236% 3.153% 2.879%

δs = 0.2, σn = 0.2 4.307% 5.941% 3.481% 0.521%

δs = 0.1, σ2
n = 0.3 6.325% 2.729% 0.270% 0.045%

Runtime (seconds) 2507.3 120.34 0.1981 0.6284

ing of nodes between two graphs by iteratively updating
the matching based on integer projection; 3) SM (Spectral-
technique Matching) (Leordeanu & Hebert, 2005) considers
graph matching as discovering graph cluster by spectral
numerical technique; 4) NGM (Neural Graph Matching
network) (Wang et al., 2022b) utilizes graph convolution
network with matching-aware embedding modules to learn
the correspondences. All comparing methods are imple-
mented by using Pygmtools (Python Graph Matching Tools)
1. In addition, the number of qubits of quantum simulation
is limited to the memory of machines. Therefore, in this
experiment, we generate a small-scale dataset that is used
for matching two graphs with four nodes, i.e., there need 16
qubits to represent vertices of the association graph.

Fig. 7 shows the evaluation results on graph matching, where
the horizontal axis indicates the level of scale σn and noise
δs deformation of datasets. From the results, we see that
the proposed method outperforms other competitors in both
scale and noise deformation. Moreover, our method can
better cope with scale distortion than noise distortion. The
promising performance may benefit from the huge Hilbert
space constructed by the quantum circuit and the power
of supervised learning. The inferior performance of the
learning-based classical method NGM may lie in the model
being too complicated for the small-scale dataset.

Next, we compare the performance and runtime between
quantum-based methods, as shown in Table 1. In this exper-
iment, the adopted synthetic dataset is built for two graphs
with three nodes, namely, the number of variables of QAP is
9. We choose four evenly distributed noise levels to evaluate
the optimal gap of the objective scores of different methods.
The reason for adopting the optimal gap as a metric is that
QAOA is an approximate algorithm and its solutions may
not satisfy the constraint conditions. Moreover, we test our
method in the case of m = 1 and m = 2, where m repre-
sents the number of qubits for each vertex. The larger m,
the more network parameters, and the better the learning
ability of the network. As we can see in Table 1, the case of
m = 2 achieves better performance than the case of m = 1,
but runtime increases accordingly. Therefore, m should be
selected according to the trade-off between performance

1https://pygmtools.readthedocs.io/en/latest/index.html

Table 2. Performance of our technique compared to classical base-
lines and quantum methods for various TSP instance sizes.

Method TSP-4 TSP-5
Tour Len. Opt. Gap. Tour Len. Opt. Gap.

Concorde 1.7075 0.00% 2.1180 0.00%

Nearest Ins. 1.7075 0.00% 2.1605 1.98%
Random Ins. 1.7075 0.00% 2.1180 0.00%
Farthest Ins. 1.7075 0.00% 2.1313 0.63%

QAOA 1.8167 6.47% 2.3594 11.4%
C-QAOA 1.7507 2.53% 2.2997 8.58%
QAP-QNN (Ours) 1.7205 0.76% 2.2574 6.30%

and runtime in practice. In addition, we can see that the
performance of C-QAOA is better and faster than QAOA
since QAOA is hard to optimize when it solves constrained
problems by adding penalty terms. Moreover, QAOA and
C-QAOA are slower than our training-based model due to
the fact that they need to employ the classical optimizer
to optimize specific instances. From this experiment, we
can see that the proposed method can surpass QAOA and
C-QAOA in terms of efficiency and effectiveness.

5.2. Case Study II: Traveling Salesman Problem

Problem definition. The Traveling Salesman Problem
(TSP) is a well-known combinatorial optimization prob-
lem: given a set of cities and the distances between each
pair of cities, find the shortest possible route that visits each
city exactly once and returns to the starting city. TSP can be
formulated as a Quadratic Assignment Problem (Goh et al.,
2022) by defining a set of variables that represent the order
in which the cities are visited. Specifically, the variable
Xv,j is an indicator variable that the city v is the j-th city to
be visited, and there are n21 variables for an n1-city instance.

min
∑

(u,v)∈E

n1∑
j=1

duvXu,jXv,mod(j+1,n1)

s.t. X1n1
= X⊤1n1

= 1n1
, X ∈ {0, 1}n1×n1 ,

(8)

where duv indicates the distance between city u and city v,
and mod(j + 1, n1) means the (n1+1)-th city of the tour is
the first city. The constraint implies a city can only be visited
once during the tour. According to the above formulation,
we can translate TSP into the form of QAP.

Datasets and Metrics. In this experiment, we focus on the
2D Euclidean TSP. For each TSP instance, the n-node lo-
cations are sampled uniformly at random in the unit square
S = {xi}ni=1 where each xi ∈ [0, 1]2. We employ Con-
corde TSP solver (David et al., 2006) to find the optimal tour
as ground-Truth tours. For each trial, we sample 3200 (1000)
pairs of problem instances and solutions as the training set
(testing set). The optimality gap is an evaluation metric,
which is defined as the average percentage ratio of predicted
tour length lTSP relative to the optimal solution l̂TSP over

7
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Table 3. Ablation study. The optimal gap of the TSP-4 is tested to
study the effect of encoding and auxiliary constraint layers.

Repeated Encoding Auxiliary Constraint Optimal Gap

✓ 2.46%
✓ 12.56%

✓ ✓ 0.76%

Table 4. Optimal gap of TSP-4 dataset by different layer numbers.

Layer 2 4 6 8 10

Optimal Gap 7.32% 4.21% 0.76% 0.44% 1.01%

the test instances, computed as 1
m

∑m
i=1(l

TSP /l̂TSP − 1).

Evaluation and Results. We generate two TSP datasets
with n1 = 4 (TSP-4) and n1 = 5 (TSP-5), respectively (for
the shortage of computing resources since the requirement
for qubits is n21). The tour length and optimal gap of all
methods are reported in Table 2. The compared classical
methods include Nearest insertion, Random insertion, as
well as Farthest insertion. They can be regarded as a differ-
ent insertion heuristic algorithm, which represents a partial
solution as a tour, and extends it by inserting one node at a
time in a different way. For TSP-4, all the classical methods
achieve the best result that is consistent with the Concorde
solver, but the quantum-based methods are inferior to clas-
sical methods. This may be because TSP-4 is easy for
classical heuristics designed for routing problems but a bit
more involved when TSP is translated into the formulation
of QAP. In the TSP-5 dataset, the optimal gap of both clas-
sical heuristic and quantum-based methods becomes larger.
Nevertheless, compared with other quantum-based methods,
our model can outperform them on both datasets.

In addition, we conduct an ablation study on the TSP-4,
as reported in Table 3. It shows that if we only encode
graph information in the first block, then the performance
will significantly drop, which manifests that the repeated
encoding layer is crucial. This is because the repeated en-
coding layer plays an important role in the interaction of
information between vertices. Moreover, the performance
will degrade when the auxiliary constraint layer is removed
in the proposed method, but the decrease was moderate
and still within an acceptable range. As the auxiliary con-
straint layer only serves as a soft constraint, our model still
works without it. This is useful if our model is deployed on
real quantum devices. We can sacrifice some accuracy by
omitting the auxiliary constraint layer to ensure feasibility,
considering the issue of multi-qubit gates decomposing into
single- and two-qubit gates and causing depth problems.

To explore the impact of the different numbers of layers on
the performance of our methods, Table 4 reports the optimal
gap under the different numbers of layers. As we can see,
the performance shows a trend of first increasing and then

Table 5. Performance changes as the level of noise increases, where
noise refers to use the bit-phase flip as the readout noise.

Bit-phase
flip error 0 0.01 0.02 0.03 0.04 0.05

Precision 0.845 0.832 0.813 0.801 0.797 0.780

decreasing as the number of layers grows, and achieves
the best with 8 layers. However, as the number of layers
increases, the number of parameters also increases, making
the network slower and harder to optimize. Therefore, one
needs to make a trade-off between performance and speed
by choosing the number of layers.

5.3. Study on the Effect of Simulated Noise

There are many types of noise on quantum devices, such as
bit flip and phase flip, depolarization, amplitude damping,
and phase damping. In this subsection, we test different
levels of bit-phase flip as readout noise, which is relatively
easy to implement in our code to study the performance
of our algorithm under simulated noise. Specifically, the
experiment uses a graph matching dataset with σn = 0.15
and δs = 0 and tests the precision of the graph matching
task. We add bit-phase flips at the end of our circuit with a
probability ranging from 0 to 0.05. The experimental results
are shown in the following Table 5. As the bit-phase flip
error increases, our method experiences a certain degree of
decline, but the decline is not very sharp and remains within
an acceptable range.

6. Conclusion and Outlook
We have presented a quantum neural network with the node
permutation invariance for learning to solve constrained CO.
The proposed quantum framework encodes the graph in-
formation and the matching constraint and shares the same
perceptron module on different vertices to learn the repre-
sentation of each vertex. The parameters of the quantum
circuit are optimized by the classic optimizer in a supervised
learning manner. Numerical Experiments on the two spe-
cific applications of QAP verified the effectiveness of the
proposed QAP-QNN model. However, we currently only
deal with the QAP form, and it is a long-standing effort
for seeking more general solvers for CO even in the classic
ML community remains open (Wang et al., 2023), and a
quantum mixture integer programming neural solver could
be of an interesting direction in the future.
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