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Abstract
Domain adaptation in reinforcement learning
(RL) mainly deals with the changes of observation
when transferring the policy to a new environment.
Many traditional approaches of domain adapta-
tion in RL manage to learn a mapping function
between the source and target domain in explicit
or implicit ways. However, they typically require
access to abundant data from the target domain.
Besides, they often rely on visual clues to learn the
mapping function and may fail when the source
domain looks quite different from the target do-
main. To address these problems, we propose
a novel framework Online Prototype Alignment
(OPA) to learn the mapping function based on the
functional similarity of elements and is able to
achieve the few-shot policy transfer within only
several episodes. The key insight of OPA is to
introduce an exploration mechanism that can inter-
act with the unseen elements of the target domain
in an efficient and purposeful manner, and then
connect them with the seen elements in the source
domain according to their functionalities (instead
of visual clues). Experimental results show that
when the target domain looks visually different
from the source domain, OPA can achieve better
transfer performance even with much fewer sam-
ples from the target domain, outperforming prior
methods.

1. Introduction
Deep Reinforcement Learning has achieved impressive re-
sults in many domains, such as Atari (Mnih et al., 2013)
and Mujoco (Lillicrap et al., 2015). However, traditional RL
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Figure 1. The source and target domain for cases A (Xing et al.,
2021) and B (considered in this work). Case B is more difficult
than case A because we can not solely rely on visual clues to learn
the mapping function between the source and target domain.

algorithms typically require many interactions with the envi-
ronment (François-Lavet et al., 2018). Besides, the learned
policy can easily be over-fitted to the source domain where
it is trained and may collapse if faced with slight changes
in the target domain (Cobbe et al., 2019; Peng et al., 2023).
Therefore, it is essential to investigate how a policy can be
transferred to a new environment.

When trying to achieve such transfer, one of the most criti-
cal problems is dealing with the changes to the observation
distribution, also known as domain adaptation in RL (Hig-
gins et al., 2017; Li et al., 2021). Many previous works try
to solve this problem by learning a mapping function be-
tween the target and source domain. For example, (Gamrian
& Goldberg, 2018a; Tzeng et al., 2015; You et al., 2017)
learn an image-to-image translation model that can map the
observations from the target domain back into the source do-
main, and therefore the policy trained in the source domain
is directly applicable when equipped with such translation.
Some works (Xing et al., 2021; Higgins et al., 2017; Chen
et al., 2021) also learn such a mapping indirectly, in which
the observations from the source and target domain are
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mapped into aligned representations.

Although these works have achieved compelling perfor-
mance in many tasks, they typically require access to abun-
dant data from the target domain, which can be problematic
when collecting these data is expensive. Besides, most
works are applicable when the target domain looks simi-
lar in appearances to the source domain (e.g. case A in
Figure 1). When faced with more challenging cases where
the elements in the target domain have the same underlying
functionalities but irrelevant appearances (e.g. case B in
Figure 1), these methods are likely to fail. Therefore, how to
quickly transfer between domains of irrelevant appearances
still remains a problem.

On the other hand, it is possible for our human beings to
achieve such a transfer. This is because we can utilize
the functional similarity between elements to determine
the mapping function between the source and target domain.
For example, suppose we can get a score by eating an ‘apple’
and then learn to seek and eat the apples in a game. When
faced with an unseen ‘pear’ in a new game, we find that we
can also get a score by eating the ‘pear’, then we can quickly
treat it as an ‘apple’ and also seek and eat the pears in the
new game. In summary, the policy transfer from an ‘apple’
to a ‘pear’ is based on the fact that ‘pear’ and ‘apple’ have
the same underlying functionality, i.e. both eating a ‘pear’
and an ‘apple’ can increase the score. However, learning the
functional similarity of elements between source and target
domains is difficult, because we have to interact actively
with those unseen elements in the target domain. Thus, an
efficient exploration mechanism is needed to discover the
underlying functionalities.

Following the insight above, in this work, we propose a
novel framework named Online Prototype Alignment (OPA)
to learn the mapping function based on the functional simi-
larity of elements and achieve the few-shot policy transfer
within only several episodes. To represent the underlying
functionalities of elements, we assume the elements in the
tasks can be divided into several kinds of prototypes such
that elements of the same prototype share the same func-
tionalities. To discover the prototypes of unseen elements
quickly, OPA introduces an exploration policy. The explo-
ration policy is trained by maximizing the mutual informa-
tion between the trajectories it produces and the prototypes
of unseen elements, therefore it can interact with these un-
seen elements in an efficient and purposeful manner to infer
their prototypes. When deployed on the target domain, OPA
first distinguishes unseen elements by novelty detection.
Then the exploration policy interacts with these unseen ele-
ments so that OPA can infer their prototypes based on the
produced trajectories. Finally, by building a mapping func-
tion based on the discovered prototypes, we can directly
transfer the policy trained in the source domain to solve the

task in the target domain. Compared with previous works,
OPA introduces an exploration mechanism to learn the map-
ping function based on the functional similarity between
elements in the source and target domain, and can efficiently
achieve few-shot policy transfer even if there are no visual
clues for transfer between the two domains.

The experiments are carried out on the task suite named
Hunter (Yi et al., 2022). To reveal the strength of OPA, we
use the original version of Hunter as the source domain and
derive a new variant that looks significantly different from
the original as the target domain. Compared with several
baselines, OPA can achieve better transfer performance by
only using a few data from the target domain, outperforming
other baselines.

2. Related Work
Domain Adaptation in RL: The goal of domain adap-
tation is to address the domain shift between the source
and target domain. Most domain adaptation approaches are
designed to deal with the changes to the observation distri-
bution. Current domain adaptation methods can be roughly
divided into three categories: domain randomization (Tobin
et al., 2017; Sadeghi & Levine, 2017; James et al., 2019),
image-to-image translation (Gamrian & Goldberg, 2018a;
Tzeng et al., 2015; You et al., 2017; Zhang et al., 2018), and
adaptation via aligned representations (Xing et al., 2021;
Higgins et al., 2017; Chen et al., 2021).

In domain randomization, a meta-simulator is required to
generate many variants of the source domain. As a result,
policies trained in these variants can learn to attend to the
common features. However, these methods cannot work
when the meta-simulator is not available, which is generally
costly to attain in practice. In image-to-image translation
approaches, a mapping function is learned to map the pixel
observations from the target domain to the source domain.
Such mapping is often learned via generative adversarial
networks (GANs). In adaptation approaches via aligned rep-
resentations, the source and target domain observations are
mapped into a well-regularized latent space. Ideally, repre-
sentations in this latent space can share consistent semantic
meanings no matter which domain they come from. For
example, (Xing et al., 2021) explicitly splits the latent repre-
sentations into domain-specific and domain-general features
and then builds policy on the domain-general features to
ignore domain-specific variations.

Although these works have achieved compelling perfor-
mance, they typically require access to abundant data from
the target domain (or other domains that are different from
the source domain). Besides, most of them rely on visual
clues to learn the mapping function, which can be problem-
atic when the elements in the target domain have irrelevant
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appearances.

Object Oriented RL: The basic assumption of Object
Oriented RL (OORL) is that the state space of MDPs can
be represented in terms of objects, which is inspired by the
fact that objects are the basic units of recognizing the world.
In OORL, the agent’s observations are a set of object rep-
resentations, and the agent can solve the task by reasoning
over these objects. By leveraging the invariance of objects’
functionalities in different scenarios, policy trained in this
way can often achieve better generalization ability (Yi et al.,
2022; Zambaldi et al., 2019). Recent progress (Lin et al.,
2020; Jiang et al., 2020) in Unsupervised Object Discovery
also boosts the development of OORL. In our work, we
follow the basic settings of OORL.

3. Preliminaries
3.1. Notation

We assume the underlying environment is a Markov decision
process (MDP), described by the tuple M = (S,A, PT , R),
where S is the state space, A the action space, PT : St ×
At×St+1 → [0, 1] the transition probability function which
determines the distribution of next state given current state
and action, and R : St × At × St+1 → R the reward
function. Given the current state s ∈ S, an agent chooses
its action a ∈ A according to a policy function a ∼ π(·|s).
This action will update the system state to a new state s′

according to the transition function PT , and then a reward
r = R(s, a, s′) ∈ R is given to the agent. The goal of the
agent is to maximize the expected cumulative rewards by
learning a policy π:

J(π) = Eτ∼π
T∑
t=0

R(st, at, st+1), (1)

where τ := (s0, a0, r0, ..., sT ) is the trajectory generated
by π.

In this work, we also assume the state space S can be broken
into a set of object representations: S =

∏N
i=1O, where O

is the space of object representations.

3.2. Problem Statement

We consider the domain adaptation problem in which a
task policy πtask is first trained in the source domain
MS = (Ssource, A, P sourceT , Rsource) and then transferred
to the target domain MT = (Starget, A, P targetT , Rtarget).
We also assume that the MS and MT share the same under-
lying dynamics and reward structures such that there exists
a mapping function f : Starget → Ssource and πtask can
achieve optimal transfer performance when equipped with
f (i.e. πtask ◦ f ).

Algorithm 1 The training procedure of OPA
Input: MS

Output: πtask, πexp, qθ, ΨIsUnseen

/* Train πtask */
Train πtask to solve MS , and save the historic trajectories
as Dhis.
/* Train ΨIsUnseen */
Train genc, gdec on Dhis, obtaining ΨIsUnseen. (see
Eq.(3))
/*Pre-train qθ using Dhis*/
repeat

Sample a batch of episodes {τk}k from Dhis.
Sample a subset of prototypes I ⊆ Pseen and an injec-
tion ψ : I → Punseen.
Update qθ using {τk}k, fI,ψ according to Eq.(6).

until convergence
/* Train πexp using MS and qθ */
repeat

Sample I ⊆ Pseen and ψ : I → Punseen.
Running the latest πexp on MS (with fI,ψ) to obtain
trajectories {τk}k
Relabel the rewards of {τk}k using the intrinsic re-
wards generated by qθ. (see Eq.(7))
Update πexp with PPO using {τk}k.

until certain steps

4. Method
As stated in Section 3 , we assume the observation space
can be divided into the direct product of multiple object
representation spaces: S =

∏N
i=1O. We further assume

that each object o has been assigned a category label oc

according to its appearance, which can be obtained by oracle
or by unsupervised clustering on objects.

The goal of OPA is to learn a prototype mapping function
fproto : O → Pseen = {1, 2, ..., C} that assigns a proto-
type op to each object o in MS and MT such that objects
within the same prototype share the same functionalities.
Intuitively, the prototype of an object can represent its func-
tionality, therefore objects with the same prototype can be
treated equally no matter which domain (MS or MT ) they
come from.

In MS , we simply define fproto as fproto|S(o) = oc (i.e.
op = oc) which means prototypes are exactly the category
labels of objects. This is because objects with the same
appearances share the same functionalities. However, it is
not the case in MT because we have to map objects into
the prototype space aligned with MS such that our task
policy πtask is applicable. An object in MT can be seen
or unseen depending on whether it has shown in MS . For
the seen object, we can safely apply fproto|S to obtain its
prototype. For the unseen object, fproto|S is not applicable,
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Figure 2. The training and test procedures of OPA.

therefore we have to explore its functionality to determine
its prototype.

The overall procedures of OPA are presented in Algorithm
1 and Figure 2. In the training phase, we first train an
indicator ΨIsUnseen to distinguish unseen objects (Section
4.1). Then, we train an exploration policy πexp and an
inference model qθ in MS (Section 4.2), which aim to
efficiently discover the prototypes of unseen objects. In
the test phase, we obtain fproto|T for MT by combining
ΨIsUnseen, πexp and qθ together (Section 4.3), with which
πtask can be transferred to MT .

4.1. Novelty Detection

For an object in MT , we want to classify whether it has
shown in MS . This problem is actually a task of novel
detection, and many approaches in this field are able to
solve it. For simplicity, in this work, we consider a native
approach that relies on reconstruction loss.

We collect some object samples OS = {oj}Mj=1 from MS ,
and train an auto-encoder (consisting of genc and gdec) that
tries to map oj ∈ OS into a latent space via genc, and then
map the resulting latent back into oj via gdec. Since the
genc, gdec will be over-fitted to the OS , it will present high
reconstruction loss if faced with out-of-distribution samples,
and therefore can be a hint for unseen objects:

ΨIsUnseen(o) = ∥gdec ◦ genc(o)− o∥2 ≥ η. (2)

For a seen object in MT , we can adopt fproto|S to obtain
its prototype. For an unseen object, we want to remind the
agent to explore its functionalities, therefore we also map
it into a special prototype space Punseen via an injection
ϕ (Pseen ∩ Punseen = ∅). Therefore, the overall mapping

function of novelty detection is:

fND(o) =

{
fproto|S(o), if not ΨIsUnseen(o)

ϕ(oc), if ΨIsUnseen(o)
, (3)

where oc is the category label of o, and ϕ is an injection
that maps oc to Punseen = {C + 1, ..., 2C}. Note that the
exact value of ϕ(oc) does not matter because the prototypes
of objects in Punseen are all unknown and require to be
explored.

4.2. Online Prototype Alignment

In this section, we aim to train an exploration policy
πexp that can interact with unseen objects of MT (i.e.,
{o : fND(o) ∈ Punseen}) in a purposeful manner to dis-
cover their prototypes. However, we have no access to MT

in the training phase; Even though we do have it, we do
not know the real prototypes of unseen objects which are
needed for training πexp.

Fortunately, we can create some ‘imaginary’ environments
from MS to train πexp in which we have access to ground-
truth prototypes via fproto|S . At the beginning of an episode,
we randomly sample a subset of prototypes I ⊆ Pseen and
then map them into Punseen:

fI,ψ(o) =

{
op, if op /∈ I

ψ(op), if op ∈ I
, (4)

where op = fproto|S(o) is the prototype of o and ψ : I →
Punseen is a randomly sampled injection. Note that the
randomness of ψ is essential, otherwise we can easily infer
the prototypes by leveraging ψ, which is actually a backdoor
of non-sense. Both I and ψ keep fixed in the remaining part
of the episode. Without loss of generality, we further assume
the codomain of ψ is P Iunseen = {C+1, C+2, ..., C+ |I|}.

Compared Eq.(4) and Eq.(3), we can see that they induce the
same prototype encodings (if we ignore the differences in
Punseen) when I = {oc : ΨIsUnseen(o) = True}, which
means that we can learn πexp in MS with fI,ψ and then
apply it to MT with fND.

The exploration policy πexp is trained in MS equipped
with fI,ψ. The aim of πexp is to interact with objects in
the P Iunseen, and πexp’s behaviour should be informative to
infer the original prototypes. To this end, we propose to max-
imize the mutual information of the trajectory induced by
πexp (which is denoted as τexp) and the original prototypes
of P Iunseen (which are I ′ = [ψ−1(C+1), ..., ψ−1(C+|I|)]).
Formally, πexp is trained to maximize the following objec-
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tive:

MI(τexp; I
′) = H(I ′)−H(I ′|τexp)
≥ H(I ′) + Eτ∼I,ψ,πexp

log qθ(I
′|τ)

= Eτ∼I,ψ,πexp

T∑
t=0

log
qθ(I

′|τ:t+1)

qθ(I ′|τ:t)
+ Const,

(5)
where qθ is an inference model that can predict I ′ given
a trajectory, τ:t = [s0, a0, r0, ..., st]

1 is the sub-trajectory
consisting of first t transitions in τ . The second line in Eq.(5)
comes from the lower bound proposed in (Barber & Agakov,
2003), and the third line follows from the expansion along
the time-step dimension and ignores the terms that are not
related to πtask. Note that MI(τexp; I ′) can be maximized
by maximizing the lower bound in Eq.(5).

To predict I ′ as soon as possible in an episode, qθ is trained
using all sub-trajectories τ:t, and the loss function is given
as:

L(θ) = −Eτ:t∼I′,ψ,πexp
log qθ(I

′|τ:t). (6)

To optimize πexp, we notice that the last line in Eq.(5) is
quite similar to the objective of RL (see Eq.(1)). Therefore
we can maximize Eq.(5) by giving πexp an intrinsic reward
as shown in Eq.(7) and training it using any RL algorithm
such as PPO (Schulman et al., 2017):

rexpt = log
qθ(I

′|τ:t+1)

qθ(I ′|τ:t)
. (7)

Intuitively, Eq.(7) will assign a positive reward to πexp if
the environment transition at step t (i.e. (st, at, rt, st+1)) is
useful to predict I ′, which will motivate πexp to learn effi-
cient exploration behaviours. These behaviours can reveal
the underlying functionalities of unseen elements quickly,
therefore are essential for few-shot transfer.

In practice, the modelling of qθ and πexp is also important
because a proper design can introduce useful inductive bi-
ases and facilitate the training of qθ and πexp. Please refer
to Appendix for more details.

4.3. Policy Reuse

Our task policy πtask is built on the prototype space. There-
fore, we wish to derive fproto|T that can infer the prototypes
in MT such that our task policy is applicable when equipped
with fproto|T (i.e. πtask ◦ fproto|T ).

In MT , we first run πexp (with fND to label unseen ele-
ments) for several episodes. For each episode, we utilize qθ
to infer the probability distribution of prototypes. We aver-
age these distributions to combine them together and then
obtain the final prototypes {opi }i of objects {oi}i based on

1τ:0 := ∅

the aggregate distribution. Given {(oi, opi )}i, we train a clas-
sifier fcls that can maps oi to opi . In practice, we use PCA
and LinearSVC implemented in (Pedregosa et al., 2011) to
realize this classifier because they are light-weighted and
run fast. Together with the notations in Eq.(2), our fproto|T
can be formulated as:

fproto|T (o) =

{
fproto|S(o), if not ΨΨIsUnseen(o)

fcls(o), if ΨIsUnseen(o)
.

(8)

5. Experiment
5.1. Environment Setup

In this work, we mainly consider the task suite Hunter (Yi
et al., 2022) (and also provide results on Crafter (Hafner,
2022) in the Appendix). Hunter is an environment that
is designed to be object-centric, which is suitable for our
method. It contains 5 kinds of objects in total: , , ,

and , as shown in Figure 1 (c). The goal is to train an
agent that controls to interact with and . The same
action may result in different rewards when interacting with
different objects, e.g., the agent will get a positive reward
(=1) if shoots at , but a negative reward (=-1) if at .
Hunter also provides different variants (e.g., Hunter-Z1C1,
Hunter-Z2C2,...), which differ in the number of objects.

To test the transfer ability of OPA, we derive a new environ-
ment from Hunter by changing the appearances of objects
( , , , , → , , , , 2), as shown in
Figure 1 (d). The original and the new environments serve
as the source domain and target domain, respectively. To
obtain object representations, we divide the 64 × 64 × 3
image (the observation space in Hunter) into 8× 8 tiles, and
each tile is of shape 8 × 8 × 3. By the design of Hunter,
each tile contains exactly one object. Therefore, these 64
tiles can be used as object representations for OPA.

5.1.1. BASELINE SETTINGS

We compare OPA with other approaches designed for do-
main adaptation, including DARLA(Higgins et al., 2017),
LUSR(Xing et al., 2021), UNIT4RL (Gamrian & Goldberg,
2018b) and LTMBR (Sun et al., 2022). DARLA relies on
learning disentangled representations to achieve transfer. It
utilizes a special β-VAE in which the reconstruction loss is
replaced with a perceptual similarity loss. LUSR explicitly
splits the latent into domain-specific and domain-general
features and only relies on domain-general features to build
task policy. UNIT4RL utilizes an image-to-image trans-
lation approach named UNIT (Liu et al., 2017) that can
translate images between domains with unpaired samples.
When deployed in the target domain, UNIT4RL translates

2These textures come from https://nethackwiki.com/
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Table 1. The mean and standard deviation of episode returns across 4 seeds, both in the source and target domain. The
UNIT4RL(LTMBR)@nM (n=0,3,5) means the UNIT4RL(LTMBR) fine-tuned for n million environment steps in the target domain.

Hunter-Z1C1 Hunter-Z2C2 Hunter-Z3C3 Hunter-Z4C4
Source Target Source Target Source Target Source Target

PPO 1.73 ± 0.02 -0.01 ± 0.09 3.04 ± 0.28 -0.03 ± 0.13 4.15 ± 0.62 -0.04 ± 0.14 5.12 ± 0.21 -0.03 ± 0.15

DARLA 1.25 ± 0.07 -0.01 ± 0.14 1.76 ± 0.06 -0.02 ± 0.13 1.91 ± 0.09 0.01 ± 0.17 2.23 ± 0.09 0.02 ± 0.2

LUSR 1.14 ± 0.02 -0.33 ± 0.23 1.19 ± 0.06 -0.03 ± 0.15 0.89 ± 0.23 -0.05 ± 0.19 0.90 ± 0.16 -0.03 ± 0.20

UNIT4RL@0M 1.73 ± 0.02 0.22 ± 1.10 3.04 ± 0.28 0.81 ± 2.12 4.15 ± 0.62 -0.87 ± 0.40 5.12 ± 0.21 1.34 ± 3.31

LTMBR@0M 1.50 ± 0.02 0.00 ± 0.02 2.73 ± 0.03 -0.01 ± 0.04 3.89 ± 0.08 -0.01 ± 0.04 4.68 ± 0.06 -0.03 ± 0.04

OPA(ours) 1.65 ± 0.05 1.71 ± 0.05 3.22 ± 0.07 3.03 ± 0.31 4.40 ± 0.11 4.47 ± 0.18 5.61 ± 0.06 5.68 ± 0.30

UNIT4RL@3M - 1.35 ± 0.33 - 3.13 ± 0.26 - 3.84 ± 0.05 - 4.67 ± 0.77

UNIT4RL@5M - 1.68 ± 0.05 - 3.24 ± 0.14 - 4.35 ± 0.03 - 5.40 ± 0.4

LTMBR@3M - 1.27 ± 0.05 - 2.14 ± 0.07 - 2.83 ± 0.07 - 3.30 ± 0.12

LTMBR@5M - 1.38 ± 0.04 - 2.51 ± 0.10 - 3.64 ± 0.11 - 4.63 ± 0.16

Table 2. The performance ratio of the target and source domain (higher is better) averaged across all environments. Both UNIT4RL and
LTMBR need more than 3M adaptation steps in the target domain to match up with OPA.

PPO DARLA LUSR UNIT4RL@0M LTMBR@0M OPA(ours) UNIT4RL@3M LTMBR@3M
-0.01 -0.00 -0.1 0.11 0.00 1.00 0.91 0.84

the observations back into the source domain and further
fine-tunes the task policy using the translated observations.
LTMBR introduces an auxiliary task to help the learning of
representations in the target domain, which also includes a
fine-tuning stage.

All approaches are trained with PPO using the same hyper-
parameters. For OPA, UNIT4RL and LTMBR, we train
the task policy πtask for 25M steps in the source domain.
OPA uses additional 10M steps in the source domain to
train πexp, and four episodes in the target domain to infer
prototypes. Since the source domain and target domain
are totally different, we also set I = Pseen to facilitate the
training of πexp. For LUSR and DARLA, we find πtask
improves much more slowly, therefore we train πtask for
100M steps. Since UNIT4RL needs observations from the
target domain, we collect 0.5M steps in the target domain
via a random policy. This dataset is also granted to LUSR 3.
For other details, please refer to our Appendix.

5.1.2. RESULTS

In Table 1, we present the performance results for all base-
lines. Because we are interested in the transfer performance,
therefore we also calculate the ratio of performance between

3According to the original paper of LUSR, the data from the
target domain is not essential in LUSR if we have access to other
variants of environments that are different from the source domain.

Figure 3. The observations (first row) in the target domain, (second
row) generated from the first row using a ground truth mapping
function, and (third row) generated using UNIT4RL trained with 4
different seeds.

the target and source domain (ratio = performance(MT )
performance(MS) )

in Table 2. From the results reported in Table 1 and 2, we
can conclude that OPA achieves best performance in all
tasks.

In DARLA and LUSR, we find that the πtask improves
much more slowly than other baselines, therefore we train
πtask for 100M steps in the source domain, as we described
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Figure 4. The ratio of episodes that OPA can successfully find the ground truth prototype alignment along the training procedure of πexp.
After training, OPA can find the ground truth prototypes in a single episode with a probability of more than 0.8.

Figure 5. The exploration return produced by the inference model along the training procedure of πexp. There is an obvious positive
correlation between this return and the ratio reported in Figure 4.

in the baseline settings. However, even with 4x steps, we
can still find πtask can not match up with others. We argue
that this is because both DARLA and LUSR pre-train an
encoder to extract a vectorized latent from observations
(and keep frozen in the training of πtask), which ignores the
fact that the environments are object-oriented and therefore
results in poor performance.

Despite the inferior task performance of DARLA and LUSR
in the source domain, they also totally fail to transfer πtask
to the target domain. For DARLA, this is not surprising
because it does not use any additional data from the target
domain and is solely trained in the source domain. For
LUSR, we find that the domain-general and domain-specific
features are not well-regularized (see Appendix), in that the
domain-specific features can also contain important features
such as the position of objects. Therefore, the domain-
general features may lose important information, which can
also explain its inferior task performance compared with
DARLA in the source domain.

For UNIT4RL and LTMBR, we further fine-tune πtask for
3M and 5M steps in the target domain. As shown in Table
1, both UNIT4RL and LTMBR accelerate the fine-tuning

process and only spend less than 5M steps to match up the
PPO policy trained for 25M steps. Compared with these
approaches, OPA only needs about 100 steps in the target
domain to achieve almost optimal transfer performance,
which is significantly less than the need of UNIT4RL and
LTMBR (3M∼5M).

To further expose the failure mode of UNIT4RL@0M and
other image-to-images approaches for domain adaptation,
we present the translation results of UNIT4RL in Figure
3. We can see that UNIT4RL can discover the mapping
between → and → because these objects have
unique existence distribution compared with others. How-
ever, UNIT4RL fails to reliably learn the mappings between

, , and , , in that each different trial can result
in a different mapping. A similar phenomenon should also
appear in LUSR, although not explicitly. As we have argued
before, this is because these objects can not be distinguished
solely via visual clues, and therefore we have to rely on
their functionalities to learn the mapping, which is one of
the main motivations of our work.
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Table 3. The adaptation performance of OPA with different number of exploration episodes. OPA can achieve high performance (0.8)
even with only 1 episode.

Hunter-Z1C1 Hunter-Z2C2 Hunter-Z3C3 Hunter-Z4C4 Aggregate Performance Ratio
OPA@1episode 1.41 2.21 3.48 4.64 0.80
OPA@2episodes 1.67 2.92 4.23 5.44 0.96
OPA@4episodes 1.71 3.05 4.47 5.68 1.00

OPA@16episodes 1.68 3.12 4.45 5.63 1.00

Table 4. The necessity of πexp. We equip OPA with different exploration policies (i.e. πexp, πrandom, πtask), and run OPA for a single
episode in the target domain of Hunter-Z1C1. πexp is much more efficient for exploration than πrandom and πtask.

πexp πrandom πtask

Ratio of Correct Mapping 0.86 0.32 0.28
Ratio of Adaptation Performance 0.85 0.21 0.23

Average Number of Informative Interactions 1.62 0.12 0.08

5.2. Ablation Study

5.2.1. THE QUALITY OF PROTOTYPE ALIGNMENT

To better evaluate the quality of prototypes discovered by
OPA, in Figure 4 we plot the ratio of episodes that OPA
can successfully match with the ground truth prototypes of
unseen objects in the target domain. We can see that this
ratio continues to increase during the training process of
πexp and eventually reaches 0.8+ for all environments. This
means OPA can find the ground truth prototypes in a single
episode with a probability of more than 0.8, which can be
further improved by multi-episode exploration.

In Figure 5, we plot the exploration return (produced by
qθ) of πexp. We can notice that there is an obvious positive
correlation between this return and the ratio plotted in Figure
4. This means that the intrinsic reward generated by qθ is
informative and instructive because when following this
reward πexp can improve its ability to find the ground truth
prototypes.

In our experiment setting, OPA takes four episodes in the
target domain for exploration. In Table 3, we report the
performance of OPA with other numbers of episodes. We
can see that OPA achieves a performance ratio of 0.8 even
only has access to a single episode in the target domain,
and two episodes can quickly improve this ratio to 0.96.
This means OPA can still obtain prototype assignments of
relatively high quality in the absence of enough exploration
chances.

5.2.2. THE NECESSITY OF πexp

In OPA, we put effort into training πexp, and one may ask
whether πexp can pay back. To answer this question, we

compare πexp with other easy-to-obtain exploration policies
in Hunter-Z1C1, which includes a random policy πrandom
and the task policy πtask.

The results are shown in Table 4. We can see that πexp
is much more efficient for exploration than πrandom and
πtask. Note that the performance of πtask is almost the
same with πrandom, which means that πtask can not present
meaningful behaviours in the target domain to facilitate the
inference of qθ.

To further investigate the difference between πexp and
πrandom&πtask, in Table 4 we also report the average num-
ber of informative interactions in an episode, which includes
meaningful interactions between objects that are useful for
distinguishing the prototypes and therefore informative for
the functionalities of objects. As shown in Table 4, we can
see that πexp will manage to find these informative inter-
actions, whereas πrandom and πtask do not present such a
purposeful behaviour.

6. Conclusion
In this paper, we propose a novel framework named OPA
that aims to transfer a policy to an unfamiliar environment
in a few-shot manner. The key of OPA is to introduce an
exploration mechanism that can purposefully interact with
the unseen elements in the target domain. By doing so,
we can build a mapping function between these unseen
elements to seen elements according to their functionalities,
and then transfer the policy trained in the source domain to
the target domain. Our experiments show that OPA can not
only achieve better transfer performance on tasks in which
other baselines fail but also consume much fewer samples
from the target domain.
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Table 5. The data consumption for OPA and other baselines, both in the source and target domain. ’Enc.’ and ’Expl.’ are corresponding to
’Encoder’ and ’Exploration’ respectively.

Source Domain Target Domain
πtask πexp Enc. Fine-tuning Enc. Expl.

OPA(ours) 25M 10M - - - ≈ 100
DARLA 100M - 0.5M - - -
LUSR 100M - 0.5M - 0.5M -

UNIT4RL 25M - - 0-5M 0.5M -
LTMBR 25M - - 0-5M - -

A. Implementation for Baselines
Implementation for PPO The task policies for all approaches included in this work are trained via PPO. Our PPO
implementation is based on Tianshou (Weng et al., 2021) which is purely based on PyTorch. We adopt the hyper-parameters
which are shown in Table 6.

Implementation for DARLA For DARLA, we first collect 0.5M samples in the source domain via a random policy.
Using these samples, we train a β-VAE with a grid search over β = 0.1, 0.5, 1, 2, 5, 10. We set β = 2 because it achieves
the best results In the original paper of DARLA, the reconstruction loss of β-VAE is replaced by a perceptual similarity loss
produced by a denoising autoencoder (DAE). However, we find the reconstruction loss works better in our case, therefore is
used in practice.

After pre-training the encoder, we then train a task policy πtask for 100M steps in the source domain based on this encoder.
The encoder is frozen during the training of πtask, and will encode the pixel observation into a latent of size 128. The task
policy is a 3-layer MLP with hidden sizes 64, and outputs the action probability and value function.

Implementation for LUSR LUSR needs a set of different domains to train the encoder. In our case, we simply collect
0.5M samples from the source domain and 0.5M from the target domain to train LUSR. The coefficient of the reverse loss in
LUSR is grid-searched for 0.1, 0.5, 1, 2, 5, and we find 0.5 works best in our case. LUSR splits the latent representations into
domain-specific features zs and domain-general zg features. We also search for the dimensions of both features (including
(|zs|, |zg|) = (8, 32), (8, 64), (16, 64), (16, 128), (32, 128)), and choose (16, 128) in practice.

After pre-training the encoder, we then train a task policy πtask for 100M steps in the source domain based on the domain-
general features provided by LUSR. The encoder is frozen during the training of πtask, and will encode the pixel observation
into a latent of size 128. The task policy is a 3-layer MLP with a hidden size of 64 and outputs the action probability and
value function.

Implementation for UNIT4RL First, we collect 0.5M samples from the source domain and 0.5M from the target. This
data is used to train an image-to-image translation model T . All hyper-parameters of UNIT4RL are the same as in the
original paper.

We train a task policy πtask for 25M steps in the source domain. When deploying πtask in the target domain, we first
translate the observations into the source domain via the translation model T , then calculate the action probability and value
function using πtask. πtask is further fine-tuned for 0-5M steps in the target domain via PPO, with T kept fixed.

Implementation for LTMBR LTMBR (Sun et al., 2022) introduces an auxiliary task to help the learning of representations
in the target domain. We conduct a grid search over the coefficients (1,2,4,8,16) of the auxiliary loss in the Hunter-Z2C2 and
then apply the optimal coefficient (=4) to other tasks. We train the task policy πtask for 25M steps with this auxiliary loss in
the source domain.
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B. Implementation for OPA
The implementation is available at https://github.com/albertcity/OPA.

B.1. The modelling of πexp and qθ

In practice, the modelling of qθ and πexp is also important because a proper design can introduce useful inductive biases and
facilitate the training of qθ and πexp. For simplicity, in the following we assume the prototype op of an object o has already
been mapped into P ∪ P Iunseen via Eq.(4).

For πexp, we use the predicted prototypes of qθ as encodings of objects if op ∈ Punseen and op if op /∈ Punseen. The
predicted results of qθ can directly inform πtask which objects are still unfamiliar to qθ, and therefore πtask can learn to
interact with them.

For qθ, we maintain a hidden state hp ∈ RF for each prototype p in P Iunseen (p = 1, .., |I|), which summarizes the history
of interactions related to p. hp is also tasked to predict the ground truth prototype (i.e. ψ−1(p)) via a learnable classifier.
All hps are initialized to the same hidden states at the beginning of an episode. At each transition (st, at, rt, st+1), hp is
updated by the following steps:

Broadcasting hp. For each objects o in st, st+1, we embed op into RF if op ̸∈ P Iunseen, which serves as o’s encoding .
For op ∈ P Iunseen, we use hp instead, because it summarizes the history of interactions related to p. This will give us new
representations of st and st+1, which are denoted as [ô1t , ..., ô

N
t ] ∈ RN×F and [ô1t+1, ..., ô

N
t+1] ∈ RN×F

Processing the transition information. In our settings, each object o actually represents a tile in the original observation,
therefore we can re-arrange the [ô1t , ..., ô

N
t ] ∈ RN×F into [ôi,jt ]Hi=1

W
j=1 ∈ RH×W×F (N = H ×W ). ôi,jt is corresponding

to the (i, j)’th tile of location ((i− 1)× sizeh, (j − 1)× sizew) (sizeh, sizew is the size of each tile).

In order to process the transition information, we first concatenate ôi,jt , ô
i,j
t+1, at, rt together. This will give us [õi,jt ]i,j ∈

RH×W×(2F+A+R), where A is corresponding to the one-hot embedding of at and R corresponding to the embedding of rt.
Then we process the resulting features using several convolution layers of (kernel size=3, stride=1, padding=1), which will
give us Õ ∈ RH×W×F . Õ can be seen as a latent that summarizes the information of transition (st, at, rt, st+1).

Updating hp. In order to extract relative information related to hp from Õ, we adopt an attention mechanism to get a latent
zp from Õ. The query vector of this attention is hp, and both the key and value vectors are {Õi,j,: : ôi,jt = p or ôi,jt+1 = p}.
In other words, zp only extracts information from the objects related to p. After obtaining zp, hp is then updated via GRU
(Cho et al., 2014) by taking zp as the current input.

By the design of πexp and qθ, we can see that the choice of ψ does not influence the inference results of qθ and πexp (i.e.

Table 6. PPO hyper-parameters.
Hyper-parameter Value
Discount factor 0.9

Lambda for GAE 0.95
Epsilon clip (clip range) 0.2

Coefficient for value function loss 0.5
Normalize Advantage True

Learning rate 5e-4
Optimizer Adam

Max gradient norm 0.5
Steps per collect 4096

Repeat per collect 3
Batch size 256

12

https://github.com/albertcity/OPA


Online Prototype Alignment for Few-shot Policy Transfer

any ψ will give the same results), which means we can choose a fixed ψ to simplify the training process.

B.2. Other implementation details

In OPA, we first train πtask for 25M steps in the source domain. The πtask uses the fproto|S as the encoder of objects, and
also adopts a self-attention mechanism to model the relations between objects, which is a common practice in OORL (Yi
et al., 2022; Zambaldi et al., 2019).

During the training of πtask, we save its trajectories as Dhis. Dhis is then used to train the indicator ΨIsUnseen and the
inference model qθ. Thanks to the special design of πexp, qθ, ψ can be fixed for simplicity as explained in the Appendix B.1.

After pre-training qθ, we train an exploration policy πexp for 10M steps in the source domain using the intrinsic rewards
generated by qθ. The network architecture in πexp is the same as πtask.
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Figure 6. The reconstruction results of LUSR. First and second row: two sampled observations a, b; Third row: the reconstruction results
of LUSR using zg(a) and zs(a); Fourth row: reconstruction using zg(a) and zs(b). Although the zs(a) and zs(b) are able to distinguish
the source and target domain, it also contains important information such as the positions of objects.

C. Analysis of LUSR
LUSR splits the latent embedding of an observation o into domain-general and domain-specific features, which are denoted
as zg(o) and zs(o) respectively. Intuitively, zg(o) should contain crucial information such as the position of each object,
and zs(o) should contain non-important information such as the image style of the observation that is different in different
domains.

In Figure 6, we show the reconstruction results of LUSR using different combinations of zg and zs. We can see that the
positions of objects not only depend on zg but also on zs. Although the zs can be used to distinguish the source and target
domain, it also contains important information such as the positions of objects. This is problematic because zg may lose
important information.
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Table 7. Results on Crafter.

Algorithm Source Domain Target Domain Ratio

PPO 11.62 ± 0.37 3.00 ± 0.57 0.26
DARLA 7.50 ± 0.29 4.30 ± 0.37 0.57
LUSR 7.97 ± 0.23 2.15 ± 0.27 0.27

UNIT4RL@0M 11.62 ± 0.37 3.50 ± 0.23 0.30
OPA(ours) 11.57 ± 0.52 10.69 ± 0.41 1.01

UNIT4RL@5M - 7.88 ± 0.45 0.68
UNIT4RL@20M - 9.17 ± 0.21 0.79

D. Results on Crafter
In this section, we provide the transfer results on the Crafter (Hafner, 2022), which is a complicated 2-D Minecraft-like
environment. We use the original version of Crafter as the source domain. The target domain is a modified version in which
we select several objects (i.e. ’stone’, ’tree’, ’coal’, ’cow’, ’zombie’, ’skeleton’) and replace their textures using icons from
the Nethack (https://nethackwiki.com/).

The πtask are trained for 20M for all algorithms in MS . For LUSR and UNIT4RL, we take 0.5M from MT to train the
encoder. For OPA, we take 4 episodes to run πexp in MT to transfer πtask. When training πexp, we set I to the chosen
objects that are different in MS and MT , which can accelerate the training process of πexp. The observation of Crafter can
be rendered into an image of size 72× 72× 3, which consists of two parts: (part A) the 7× 9 region around the agent (of
size 56× 72× 3 in the image), and (part B) the status of the agent and items in its backpack (of size 16 × 72× 3). When
building the encoder for πtask, πexp, qθ, we separate parts A and B, and use the numerical closed-form of part B (instead of
pixels).

The overall results are as shown in Table 7. According to this table, OPA still achieves the best transfer performance in the
Crafter environment. Interestingly, we find that UNIT4RL@20M can not recover the performance in the source domain
even after training for 20M in the target domain, which means that the learned mapping function has lost some important
information.
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Table 8. The reconstruction errors in the source and target domain.

obj1 obj2 obj3 obj4

Source Domain (Seen objects) 0.0112 0.0142 0.0179 0.0410
Target Domain (Unseen objects) 4.920 8.034 9.998 14.327

E. Other Discussions
OPA introduce several stages which may bring cumulative errors. In this section, we analyse this problem.

Formally, there are four parts in OPA that may bring errors:

(1) Ψunseen : O → 0, 1 in Eq.(2),

(2) qθ : τ → I ′ in Eq.(6),

(3) πexp : S → A,

(4) fcls : O → Pseen in Eq.(8).

However, the approximation errors brought by (1) and (4) should be very small because the domain of both (1) and (4) is the
space of objects O, which is simple and small in many cases. In our environment, O is actually a set of size 4. Even in
the Crafter (a complicated 2D Mincraft-like environment), it is just 19. Therefore, the error brought by (1) and (4) can be
ignored in many cases. For example, Ψunseen can correctly identify all unseen objects in our cases as we will show later.
The training of (3) relies on (2), therefore the quality of (2) does affect the training of (3). However, this is unavoidable,
because (2) and (3) are designed to work together.

The accuracy of Ψunseen. The binary classifier Ψunseen is built upon gdec◦genc(i.e. Ψunseen = ||gdec◦gdec(o)−o|| ≥ η).
Therefore, we can use the reconstruction error ||gdec ◦ genc(o)− o|| to measure the accuracy of Ψunseen. We expect a small
error for objects in the source domain and a large error for objects in the target domain. We list the reconstruction error for
all objects in Table 8. As shown in Table 8, the reconstruction error is significantly different in the source and target domain,
which means that Ψunseen can correctly identify the unseen objects.
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