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Abstract

Although graph neural networks (GNNs) have
achieved impressive achievements in graph classi-
fication, they often need abundant task-specific la-
bels, which could be extensively costly to acquire.
A credible solution is to explore additional labeled
graphs to enhance unsupervised learning on the
target domain. However, how to apply GNNs to
domain adaptation remains unsolved owing to the
insufficient exploration of graph topology and the
significant domain discrepancy. In this paper, we
propose Coupled Contrastive Graph Representa-
tion Learning (CoCo), which extracts the topolog-
ical information from coupled learning branches
and reduces the domain discrepancy with cou-
pled contrastive learning. CoCo contains a graph
convolutional network branch and a hierarchi-
cal graph kernel network branch, which explore
graph topology in implicit and explicit manners.
Besides, we incorporate coupled branches into
a holistic multi-view contrastive learning frame-
work, which not only incorporates graph repre-
sentations learned from complementary views for
enhanced understanding, but also encourages the
similarity between cross-domain example pairs
with the same semantics for domain alignment.
Extensive experiments on popular datasets show
that our CoCo outperforms these competing base-
lines in different settings generally.
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1. Introduction
Recently, graph-structured data has flourished in a number
of fields including chemistry and bioinformatics. Among
various graph-based machine learning tasks, graph classifi-
cation seeks to predict the properties of whole graphs (Wang
et al., 2021; Kong et al., 2022), and a variety of machine
learning algorithms have been put forward for the prob-
lem (Yoo et al., 2022; Feng et al., 2022; Zhang et al., 2021;
Yang et al., 2022). These methods mostly fall under the
category of graph neural networks (GNNs). Following
the paradigm of message passing (Kipf & Welling, 2017),
GNNs learn representations in the graph by stacking multi-
ple neural network layers, each of which transfers semantic
information from topological neighbors to centroid nodes.
A readout function eventually combines all of the node rep-
resentations into a graph-level representation. In this way,
GNNs are capable of integrating graph structural informa-
tion into graph representations implicitly, thus facilitating
downstream graph classification.

In spite of their certain progress, modern GNN algorithms
are typically trained under supervision, necessitating a large
quantity of labeled data (Kipf & Welling, 2017; Xu et al.,
2019; Bodnar et al., 2021; Baek et al., 2021). However, label
annotation in the graph domain is either prohibitively expen-
sive or even impossible to acquire (Xu et al., 2021; Suresh
et al., 2021). For instance, ascertaining the pharmacological
effect of drug molecule graphs involve costly experiments
on living animals. Due to the scarcity of labeled annotations,
the bulk of current algorithms performs poorly in practice.
To solve this issue, we observe that there are often a substan-
tial number of graph samples from a different but relevant
domain and their labels are easily available. In this spirit,
this work studies the problem of unsupervised domain adap-
tive graph classification, a practical task to predict graph
properties with both labeled source graphs and unlabeled
target graphs.

However, designing an effective domain adaptive graph
classification framework is non-trivial due to the following
major challenges. (1) How to sufficiently extract topologi-
cal information under the scarcity of labeled data? Recent
GNN algorithms (Xu et al., 2019) are trained in an end-to-
end manner following the paradigm of message passing,
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which merely extracts structural information in an implicit
manner. Learning implicit topological knowledge is not
sufficient under the shortage of supervised signals in target
domains. Although a range of graph kernels (Borgwardt &
Kriegel, 2005; Shervashidze et al., 2011) have been put for-
ward to explicitly extract structural signals, they are usually
derived in an unsupervised manner, failing to extract related
information with supervised information. (2) How to effec-
tively reduce the domain discrepancy in the graph space?
Different from the node classification problem, in this sce-
nario, we face a variety of graphs in a complicated space
instead of a single graph. The potential domain discrep-
ancy exacerbates the hardness of effective representation
learning for graph samples. As a consequence, although
a range of domain adaption methods has been proposed
in computer vision (He et al., 2022; Huang et al., 2022;
Nguyen et al., 2022; Xiao & Zhang, 2021), they cannot be
directly employed to learn domain-invariant and discrimina-
tive graph-level representations for our problem.

To tackle these challenges, we propose a holistic method
named Coupled Contrastive Graph Representation Learn-
ing (CoCo) for unsupervised domain adaptive graph clas-
sification. To holistically extract topological information,
CoCo incorporates coupled branches, which learn structural
knowledge using end-to-end training from both implicit
and explicit manners, respectively. On the one hand, a
GCN branch leverages the message-passing paradigm to
implicitly extract graph topological knowledge. On the
other hand, a hierarchical GKN branch leverages a graph
kernel (Shervashidze et al., 2009) to compare samples with
learnable filters to explicitly incorporate topological infor-
mation into graph representations. To achieve effective do-
main adaptation, we integrate topological information from
two branches into a unified multi-level contrastive learn-
ing framework, which contains cross-branch contrastive
learning and cross-domain contrastive learning. To couple
the structural information from two complementary views,
cross-branch contrastive learning seeks to promote the agree-
ment of two branches for each graph sample, therefore pro-
ducing high-quality graph representations with comprehen-
sive semantics. To reduce the domain discrepancy, we first
calculate the pseudo-labels of target data in a non-parametric
manner and then introduce cross-domain contrastive learn-
ing, which minimizes the distances between cross-domain
sample pairs with the same semantics compared to those
with different semantics. More importantly, we theoretically
demonstrate that our cross-domain contrastive learning can
be formalized as a problem of maximizing the log-likelihood
solved by Expectation Maximization (EM). Extensive exper-
imented conducted on various widely recognized benchmark
datasets for graph classification reveal that the proposed
CoCo beats a range of competing baselines by a consider-
able margin.

The main contributions can be summarized as follows:

• We introduce a new approach for unsupervised domain
adaptive graph classification, named CoCo, which con-
tains a graph convolutional network branch and a hier-
archical graph kernel network branch to mine topologi-
cal information from different perspectives.

• On the one hand, cross-branch contrastive learning en-
courages the agreement of coupled modules to gener-
ate comprehensive graph representations. On the other
hand, cross-domain contrastive learning reduces the
distances between cross-domain pairs with the same
semantics for effective domain alignment.

• Comprehensive experiments on various widely-used
graph classification benchmark datasets demonstrate
the effectiveness of the proposed CoCo.

2. Related Work
2.1. Graph Classification

Graph classification has been a long-standing problem with
various applications in social analysis (Fan et al., 2019;
Song et al., 2016; Liao et al., 2021; Wu et al., 2020b; Ju
et al., 2023a; 2022) and molecular property prediction (Has-
sani, 2022; Yin et al., 2022b). Early efforts to this problem
almost turn to graph kernels including Weisfeiler-Lehman
kernel (Shervashidze et al., 2011) and random walk ker-
nel (Kang et al., 2012), which can identity graph substruc-
tures through graph decomposition. However, these meth-
ods cannot be well applied to large-scale graphs due to high
computational costs. To tackle this, a variety of graph neu-
ral networks have been put forward in recent years (Kipf &
Welling, 2017; Xu et al., 2019; Bodnar et al., 2021; Baek
et al., 2021; Ju et al., 2023b). Typically, these algorithms
obey the message passing paradigm to iteratively update
node representations, followed by a graph pooling function
that generates graph-level representations for downstream
classification. Hence, these methods usually explore topo-
logical information merely in an implicit way. However,
recent research has demonstrated that this paradigm is in-
adequate for detecting structural motifs in graphs such as
rings (Long et al., 2021; Chen et al., 2020a; Cosmo et al.,
2021). To tackle this issue, besides implicitly exploring
graph topological knowledge using the graph convolutional
network branch, CoCo utilizes a hierarchical graph kernel
network to explicitly explore graph topology, which en-
hances the classification performance in a domain adaptive
framework.

2.2. Unsupervised Domain Adaptation

The purpose of unsupervised domain adaptation (UDA) is
to transfer a model from a label-rich source domain to a
label-scarce target domain (He et al., 2022; Huang et al.,

2



CoCo: A Coupled Contrastive Framework for Unsupervised Domain Adaptive Graph Classification

 

 

 

 

 

 

 

 

  

Graph 

Convolutional 

Network 

Hierarchical 

Graph Kernel 

Network 

Pseudo Label 

Assignment 

Source Graphs 

… 

GNN Classifier  ℒ!" 

Target Graphs 

ℒ!# 

Graph Convolutional Network Branch 

Hierarchical Graph Kernel Network Branch 

C
ross-branch C

L 

ℒ$ 

Cross-domain CL 

Pseudo Label 

Assignment 

ℒ!# 

ℒ!# 

Cross-domain CL 

Figure 1. An overview of the proposed CoCo. Our CoCo feeds source graphs and target graphs into two branches (i.e., GCN branch and
HGKN branch). Cross-branch contrastive learning compares graph representations from two branches to achieve while cross-branch
contrastive learning compares graph representations from two domains with the guidance of pseudo-labels.

2022; Nguyen et al., 2022; Wang et al., 2022). This problem
is substantially investigated in the field of computer vision
with applications in image classification (Mirza et al., 2022),
image retrieval (Zheng et al., 2021) and semantic segmenta-
tion (Kundu et al., 2022). In general, domain alignment is
the key to successful domain adaptation. The early attempts
usually explicitly reduce domain discrepancy using statis-
tical metrics including maximum mean discrepancy (Long
et al., 2015) and Wasserstein distance (Shen et al., 2018).
Recently, adversarial learning-based approaches are the pre-
dominant paradigm for UDA (Long et al., 2018). These
methods usually employ a gradient reversal layer (Ganin
et al., 2016) to render deep features resistant to domain shifts.
In addition, discrimination learning under label scarcity is an
important challenge for UDA (Xiao & Zhang, 2021; Liang
et al., 2020) and pseudo-labeling techniques are popular
strategies (Lee et al., 2013; Assran et al., 2021) to tackle
this problem in the target domain. Despite the significant ad-
vance of UDA in computer vision, it is still underexplored in
the graph domain. In this work, we study the emerging and
practical problem of unsupervised domain adaptive graph
classification, which employs labeled source graphs to im-
prove the classification performance on unlabeled target

graphs. Different from existing domain adaptation meth-
ods (Yin et al., 2022a; Mirza et al., 2022; Wei et al., 2021a),
our CoCo explores semantics information from different
views and conduct coupled contrastive learning for effective
domain adaptation.

3. Methodology
The overview of the proposed CoCo framework for unsu-
pervised domain adaptive graph classification is illustrated
in Figure 1. The core of our CoCo is to provide two com-
plementary views to explore graph topology using coupled
branches. From an implicit view, we utilize a graph con-
volutional network branch to infer topological information
(see Section 3.2), while a hierarchical graph kernel net-
work branch is adopted to compare graph samples with
learnable filters (see Section 3.3), which explicitly summa-
rizes topological information. Moreover, we incorporate the
two branches into a holistic multi-view contrastive learn-
ing framework (see Section 3.4). On the one hand, we
perform cross-branch contrastive learning to encourage the
agreement of two branches for representations containing
comprehensive structural information. On the other hand,
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cross-domain contrastive learning aims to minimize the dis-
tances between cross-domain sample pairs with the same
semantics compared to those with different semantics.

3.1. Problem Formulation

Given a graph G = (V, E), in which V is the set of nodes
and E ⊆ V × V denotes the set of edges. There is also a
node feature matrix X ∈ R|V|×d, where each row xv ∈ Rd

denotes the feature of node v ∈ V , |V| is the number of
nodes, and d denotes the dimension of node features. In
our problem, we have access to a labeled source domain
Ds = {(Gs

i , y
s
i )}

ns
i=1 with ns samples and an unlabeled

target domain Dt = {Gt
j}

nt
j=1 with nt samples. Ds and Dt

share the label space, i.e., Y = {1, 2, · · · , C} with different
distributions in the data space. We expect to train the graph
classification model using both Ds and Dt, and attain high
accuracy on the test dataset on the target domain.

3.2. Graph Convolutional Network Branch

In this branch, we utilize a graph convolutional network
to implicitly extract topological information. Graph con-
volutional networks (GCNs) typically follow the message-
passing scheme to embed the structural and attribute infor-
mation into node representations, which have shown their
superior capability in graph classification (Gilmer et al.,
2017; Kipf & Welling, 2017; Xu et al., 2019). In detail, for
each node, we start by aggregating the embedding vectors of
all its neighbors at the previous layer. Then the node repre-
sentation is updated iteratively by fusing the representation
from the last layer with the aggregated neighbor embedding.
In formulation, the representation of node v ∈ G at the l-th
layer h(l)

v is calculated as follows:

h(l)
v = COM

(l)
θ

(
h(l−1)
v ,AGG

(l)
θ

({
h(l−1)
u

}
u∈N (v)

))
,

where N(v) denotes the neighbors of v. AGG
(l)
θ and

COM
(k)
θ denote the aggregation and combination opera-

tions parameterized by θ at the l-th layer, respectively. Ulti-
mately, we adopt an extra READOUT function to summa-
rize the node representations at the last layer into a graph-
level representation. In formulation,

gθ (G) = READOUT

({
h(L)
v

}
v∈V

)
, (1)

where gθ (G) denotes the graph-level representation and the
network parameters are denoted by θ.

3.3. Hierarchical Graph Kernel Network Branch

However, GCNs are insufficient in collecting sophisticated
high-order structural information such as rings (Long et al.,
2021; Cosmo et al., 2021). Consequently, it is anticipated
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Figure 2. An illustration of the hierarchical graph kernel network
branch. HGKN compares each r-hop subgraph with filter graphs
to generate node features, followed by an attention-based pooling
operation to coarsen the graph.

to explore graph topology in an explicit manner as a compli-
ment. To accomplish this, we introduce a hierarchical graph
kernel network (HGKN) based on a graph kernel (e.g., WL
kernel, random walk kernel). Generally, at each hierarchical
layer, it compares each r-hop subgraph with learnable filter
graphs via the graph kernel to update node representations,
followed by an attention-based pooling operation to coarsen
the graph. After multiple hierarchical layers, a graph-level
representation can be obtained in an end-to-end manner.

To be specific, for each graph, we first extract the local
information of each node using its r-hop subgraph, which
comprises all nodes reached by the central node within r
edges, along with all the edges between these selected nodes.
To explore topological information from these subgraphs,
we generate M undirected learnable graphs with varying
sizes serving as filters, i.e., {G̃(k)

1 , · · · , G̃(k)
M } at the k-th

layer. Each of the filter graphs G̃(k)
m is with a trainable

adjacency matrix and each node is with an attribute. We
expect these learnable filters to extract high-order struc-
tural information for better graph classification. However,
most of the graph kernels usually accompany with discrete
node attributes (Cosmo et al., 2021; Schulz & Welke, 2019).
To tackle this, we introduce a quantization operation Q(·),
which discretizes node attributes using clustering during net-
work forwarding. Through Q(·), the continuous attributes
are replaced by the discrete cluster assignments. Then, we
compare the discrete input graph and the filter graphs using
the graph kernel.

e(k)v (m) = Φ(Q(S(k−1)
v ), G̃(k)

m ), (2)

where S(k−1)
v denotes the subgraph with center v at the

previous layer and Φ(·, ·) denotes the given graph kernel.
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Then, we can update the node representation e
(k)
v ∈ RM by

concatenating all the output of filters as follows:

e(k)v = [e(k)v (1), · · · , e(v)M (M)]. (3)

Finally, we utilize a multi-layer perceptron (MLP) ψk(·) to
project the concatenated kernel values into node representa-
tions at the k-th layer, i.e., x(k)

v = ψk(e
(k)
v ).

To address the issue that the quantization operation cannot
be compatible with stochastic gradient descent, we merely
calculate the gradient with respect to the filters in each layer
of the graph kernel network during backpropagation. This
strategy has been extensively used when optimizing the
deep hashing networks, exhibiting satisfactory performance
empirically (Tan et al., 2020; Qiu et al., 2021). In addition,
we utilize a discrete algorithm to update filter graphs using
the edit operation which includes adding (removing) edges
and modifying node attributes. To be specific, for each G̃k

m,

we conduct a random edit operation candidate G̃′k
m and

determine whether to accept it based on the gradient of the
loss with respect to the filters. In formulation,

∂L
∂G̃k

m

=
∑
v∈G

∂L
∂e

(k)
v (m)

∂e
(k)
v (m)

∂G̃k
m

. (4)

However, we cannot acquire ∂e(k)v (m)/∂G̃k
m. Instead, we

utilize the difference between kernel values of candidate
G̃′k

m and original filter G̃k
m, i.e., Φ(Q(S

(k−1)
v ), G̃′(k)

m ) −
Φ(Q(S

(k−1)
v ), G̃

(k)
m ) to replace it. After estimating

∂L/∂G̃k
m, we will accept the candidate if the gradient is

above zero and vice versa.

As in convolutional neural network (CNN) architec-
tures (Passalis & Tefas, 2018), after computing the graph
kernel, we additionally introduce a pooling operation (Lee
et al., 2019) using the attention mechanism to provide a
hierarchical view while reducing the computational cost.
To be specific, we utilize an MLP to produce score vector
Z ∈ R|V (k)|×1 for each graph, where V (k) represents the
set of nodes at the k-th layer. On the basis of scores, the
top ⌈ρ|V (k)|⌉ nodes are kept with an index set idx where
ρ ∈ (0, 1) is the pooling ratio. In the end, we calculate
the pooled graph G(k)

pool with the attribute matrix X
(k)
pool and

adjacent matrix A(k)
pool. The learnt node representations are

first concatenated into a matrix X(k). Let ⊙ denote the
broadcasted Hadamard product, and we have:

X
(k)
pool = X

(k)
idx,: ⊙ Zidx, A

(k)
pool = A

(k)
idx,idx, (5)

where X(k)
idx,:, A

(k)
idx,idx denote the node-indexed feature ma-

trix and the row, column-indexed adjacency matrix.

After multiple hierarchical graph kernel layers followed by
graph pooling operations, we feed all the node feature e

(K)
v

into a fully-connected layer followed by a sum-pooling to
produce a graph-level representation denoted as fϕ(G).

3.4. Multi-view Contrastive Learning Framework

To fully exploit graph topology information derived from
two branches, we formalize a multi-view contrastive learn-
ing framework, which contains both cross-branch and cross-
domain contrastive learning for effective domain adaptation.

Cross-branch Contrastive Learning. Considering that the
model learns graph semantics from complementary views,
we contrast the graph representations from two branches to
exchange their knowledge mutually, which enhances dis-
crimination learning on target data under label scarcity.

Specifically, for each a graph Gi in a source batch Bs and a
target batch Bt, we produce the embeddings from coupled
branches, i.e., zi = gθ(Gi) and z̃i = fϕ(Gi). Then, we
introduce the InfoNCE loss to enhance the consistency cross
coupled branches. In formulation,

LCB=
1

|Bs|+ |Bt|
∑

Gi∈Bs∪Bt

−log
exp(zi ∗ z̃i/τ)∑

Gi′∈Bt exp(zi ∗ z̃i′/τ)
,

(6)
where τ represents a temperature parameter set to 0.5 as
in previous works (He et al., 2020). Through providing
challenging views by mining topological information in
complementary manners, our proposed CoCo is a special
kind of graph contrastive learning (You et al., 2020; 2021;
Yin et al., 2022b), hence producing discriminative graph-
level representation with sufficient topological information.

Cross-domain Contrastive Learning. However, with a
serious domain shift in the graph space, the graph represen-
tations could remain biased and unreliable for downstream
classification. Intuitively, the representations of source (tar-
get) samples should be close to target (source) samples with
the same semantics. To achieve this, we need to generate
pseudo-labels of target data as a preliminary. In light of
the fact that learning a classifier is suboptimal and biased
owing to the paucity of labels, we generate pseudo-labels
in a non-parametrical manner by comparing the similarities
between target graphs and source graphs. On this basis, we
conduct cross-domain contrastive learning which minimizes
the distances between cross-domain example pairs with the
same semantics compared to those with different semantics.

Taking the GCN branch as an example, we utilize a non-
parametrical classifier to generate the pseudo-label for each
Gt

j . In formulation, we have:

p̂tj =
∑

(Gs
i ,y

s
i )∈Bs

(
ζ (zj , gθ(G

s
i ))∑

(Gs
i ,y

s
i )∈Bs ζ (zj , gθ(Gs

i ))

)
ys
i , (7)

where ys
i denotes the one-hot label embedding and

ζ (zj , gθ(G
s
i )) = exp(zj ∗ gθ(Gs

i )/τ) denotes the simi-
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larities between two vectors. In Eq. 7, we involve a batch
of labeled source data in the classifier for efficiency. The
pseudo-labels can be easily derived from p̂tj , i.e., ŷtj =
argmax(p̂tj).

Then, we pull close the representations with the same se-
mantics across domains to minimize domain discrepancy.
To achieve this, we treat the source samples with identical
labels as positives for each target sample. In formulation,
we set Π(j) = {i|ysi = ŷtj , G

s
i ∈ Bs} to represent the in-

dex of all positives in the mini-batch and the cross-domain
contrastive learning objective is written as:

LCD =
∑

Gt
j∈Bt

−1

|Π(j)|
∑

i∈Π(j)

log
exp

(
zt
j ∗ zs

i /τ
)∑

Gs
i′∈Bs exp

(
zt
j ∗ zs

i′/τ
) .

(8)

Our cross-domain contrastive learning objective has two
benefits. On the one hand, given that the numerator of each
term penalizes the distances between source samples and
target samples with the same semantics, our loss contributes
to generating domain-invariant graph representations. On
the other hand, due to the promising results achieved by con-
trastive learning (You et al., 2020; Li et al., 2020; Khosla
et al., 2020; Huang et al., 2021), comparing positive pairs
with negative pairs can aid in developing discriminative
graph representations for effective graph classification un-
der label scarcity. We also construct the contrastive learning
objective in the other branch and sum them to get the final
loss. In addition, we demonstrate that our cross-domain con-
trastive learning can be interpreted as maximizing the log-
likelihood on target data using an Expectation Maximization
(EM) algorithm. Compared with previous contrastive learn-
ing work (He et al., 2020; Chen et al., 2020b), our model
utilizes a coupled framework which includes cross-module
contrastive learning and cross-domain contrastive learning,
which follow the paradigm of the EM algorithm while con-
trastive learning on images usually utilizes the InfoNCE
loss to maximize the consistency.
Proposition 3.1. The cross-domain contrastive framework
follows the EM algorithm.

The proof of Proposition 3.1 can be found in Appendix A.

3.5. Summarization

To produce label distributions of test data, we utilize en-
hanced graph representations from the first branch to predict
the label via a fully-connected layer. The reason for select-
ing the first branch is that the single GCN is more efficient
than a single HGKN during evaluation. In CoCo, we adopt
the standard cross entropy H(·, ·) to formulate the super-
vised objective as follows:

LS =
1

|Bs|
∑

Gs
i∈Bs

H(ŷsi , y
s
i ), (9)

Algorithm 1 Learning Algorithm of CoCo
Input: Source data Ds; Target data Dt.
Output: GCN parameters θ, HGKN parameters ϕ,
Classifier parameters η.

1: Initialize model parameters.
2: while not convergence do
3: Sample mini-batches Bs and Bt from source and

target data, respectively;
4: Forward propagation Bs and Bt through two

branches;
5: Calculate the loss function in Eq. 10;
6: Update model parameters through back propagation;
7: end while

where ŷsi denotes the output of the classifier. In a nutshell,
we combine two contrastive learning objectives with a su-
pervised objective. The overall loss objective is:

L = LCB + LCD + LS . (10)

The algorithmic overview of CoCo is depicted in Algorithm
1. The computing complexity of the proposed CoCo pri-
marily relies on two networks. For a given graph G, ||A||0
denotes the number of nonzeros in the adjacency matrix. d is
the feature dimension. L and K denote the layer number of
GCN and HGKN, respectively. |V | is the number of nodes.
M denotes the number of filter graphs. The graph convolu-
tional network takes O(L||A||0d+ L|V |d2) computational
time while the graph kernel module takes O(K|V |M) for
each graph. As a result, the complexity of our CoCo is
proportional to both |V | and ||A||0.

4. Experiments
4.1. Experimental Settings

Datasets. We perform experiments on various real-world
benchmark datasets (i.e., Mutagenicity, Tox21, PROTEINS,
DD, BZR and COX2) from TUDataset (Morris et al., 2020)
in the setting of unsupervised domain adaptation. For con-
venience, P, D, C, CM, B, and BM are short for PROTEINS,
DD, COX2, COX2 MD, BZR, and BZR MD, respectively.
Their details are introduced as follows:

• Mutagenicity (Kazius et al., 2005): Mutagenicity is a
popular dataset that consists of 4337 molecular structures
and their corresponding Ames test data. To distinguish the
distribution of datasets, we divide it into four sub-datasets
(i.e., M0, M1, M2 and M3) based on the edge density.

• Tox211: The purpose of the Tox21 dataset is to assess the
predictive ability of models in detecting compound inter-

1https://tripod.nih.gov/tox21/challenge/data.jsp
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Table 1. The classification results (in %) on Mutagenicity (source→target).
Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

GCN 71.1 70.4 62.7 69.0 57.7 59.6 68.8 74.2 53.6 63.3 65.8 74.5 65.9
WL subtree 74.9 74.8 67.3 69.9 57.8 57.9 73.7 80.2 60.0 57.9 70.2 73.1 68.1
CDAN 73.8 74.1 68.9 71.4 57.9 59.6 70.0 74.1 60.4 67.1 59.2 63.6 66.7
ToAlign 74.0 72.7 69.1 65.2 54.7 73.1 71.7 77.2 58.7 73.1 61.5 62.2 67.8
MetaAlign 66.7 51.4 57.0 51.4 46.4 51.4 57.0 66.7 46.4 66.7 46.4 57.0 55.4
GIN 72.3 68.5 64.1 72.1 56.6 61.1 67.4 74.4 55.9 67.3 62.8 73.0 66.3
CIN 66.8 69.4 66.8 60.5 53.5 54.2 57.8 69.8 55.3 74.0 58.9 59.5 62.2
GMT 73.6 75.8 65.6 73.0 56.7 54.4 72.8 77.8 62.0 50.6 64.0 63.3 65.8
DUA 70.2 56.5 64.0 63.7 53.6 68.5 57.7 76.0 65.1 59.8 57.9 67.7 63.4

CoCo 77.7 76.6 73.3 74.5 66.6 74.3 77.3 80.8 67.4 74.1 68.9 77.5 74.1

Table 2. The classification results (in %) on Tox21 (source→target).
Methods T0→T1 T1→T0 T0→T2 T2→T0 T0→T3 T3→T0 T1→T2 T2→T1 T1→T3 T3→T1 T2→T3 T3→T2 Avg.

GCN 64.2 50.3 67.9 50.4 52.2 53.8 68.7 61.9 59.2 51.4 54.9 76.3 59.3
WL subtree 65.3 51.1 69.6 52.8 53.1 54.4 71.8 65.4 60.3 61.9 57.4 76.3 61.6
CDAN 69.9 55.2 78.3 56.0 59.5 56.6 78.3 68.5 61.7 68.1 61.0 78.3 66.0
ToAlign 68.2 58.5 78.4 58.8 58.5 53.8 78.8 67.1 64.4 68.8 57.9 78.4 66.0
MetaAlign 65.7 57.5 78.0 58.5 63.9 52.2 78.8 67.1 62.3 67.5 56.8 78.4 65.6
GIN 67.8 51.0 77.5 54.3 56.8 54.5 78.3 63.7 56.8 53.3 56.8 77.1 62.3
CIN 67.8 50.3 78.3 54.5 56.8 54.5 78.3 67.8 59.0 67.8 56.8 78.3 64.2
GMT 67.8 50.0 78.4 50.1 56.8 50.7 78.3 67.8 56.8 67.8 56.4 78.1 63.3
DUA 60.6 51.3 70.7 52.5 53.6 49.3 71.1 67.2 53.6 59.0 58.6 74.3 60.2

CoCo 69.9 59.8 78.8 59.0 62.3 59.0 78.4 66.8 65.0 68.8 61.2 78.4 67.3

Table 3. The classification results (in %) on PROTEINS, COX2,
and BZR (source→target).
Methods P→D D→P C→CM CM→C B→BM BM→B Avg.

GCN 58.7 59.6 51.1 78.2 51.3 71.2 61.7
WL subtree 72.9 41.1 48.8 78.2 51.3 78.8 61.9
CDAN 59.7 64.5 59.4 78.2 57.2 78.8 66.3
ToAlign 62.6 64.7 51.2 78.2 58.4 78.7 65.7
MetaAlign 60.3 64.7 51.0 77.5 53.6 78.5 64.3
GIN 61.3 56.8 51.2 78.2 48.7 78.8 62.5
CIN 62.1 59.7 57.4 61.5 54.2 72.6 61.3
GMT 62.7 59.6 51.2 72.2 52.8 71.3 61.6
DUA 61.3 56.9 51.3 69.5 56.4 70.2 60.9

CoCo 74.6 67.0 61.1 79.0 62.7 78.8 70.5

ferences. We separate the dataset into four sub-datasets ac-
cording to their interactions with ‘aromatase’ and ‘HSE’.

• PROTEINS: PROTEINS (Dobson & Doig, 2003) and
DD (Shervashidze et al., 2011) are investigated here and
each label indicates if a protein is a non-enzyme or not.
The presentation of each protein is in the form of a graph,
where the amino acids serve as nodes and edges ex-
ist when the distance between two nodes is less than 6
Angstroms.

• COX2: We investigate datasets COX2 and
COX2 MD (Sutherland et al., 2003) which con-
sists of 467 and 303 cyclooxygenase-2 inhibitors. Every
sample characterizes a chemical compound, with edges
determined by distance and vertex features representing

atom types.

• BZR: We explore the BZR and BZR MD (Sutherland
et al., 2003) datasets, which contains ligands for the ben-
zodiazepine receptor.

Baselines. To increase persuasiveness, we compare the pro-
posed CoCo with a large number of state-of-the-art methods,
including one graph kernel approach (WL subtree (Sher-
vashidze et al., 2011)), four graph neural network meth-
ods (GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019),
CIN (Bodnar et al., 2021) and GMT (Baek et al., 2021)),
and four recent domain adaptation methods (CDAN (Long
et al., 2018), ToAlign (Wei et al., 2021b), MetaAlign (Wei
et al., 2021a) and DUA (Mirza et al., 2022)). Their detailed
introduction is elaborated in Appendix B.

Implementation Details. We employ a two-layer GIN (Xu
et al., 2019) in the GCN branch and a two-layer network
along with the WL kernel (Shervashidze et al., 2011) in the
HGKN branch. We use the Adam as the default optimizer
and set the learning rate to 10−4. The embedding dimension
of hidden layers and batch size are both set to 64. The pool-
ing ratio ρ and the number of filter graphs M are set to 0.4
and 15, respectively. For the sake of fairness, we employ the
same GCN as the graph encoder. In the graph classification
baselines in all domain adaption baselines. We utilize all
the labeled source samples to train the model and evaluate
unlabeled samples when it comes to graph classification
methods as in (Wu et al., 2020a). We initialize the parame-
ters of all the compared methods as in their corresponding
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Table 4. The results of ablation studies on Mutagenicity (source→target).
Methods M0→M1M1→M0M0→M2M2→M0M0→M3M3→M0M1→M2M2→M1M1→M3M3→M1M2→M3M3→M2Avg.

CoCo/CB 78.0 72.2 63.8 71.4 62.1 69.1 76.0 77.3 64.1 74.8 65.4 76.3 70.9
CoCo/CD 74.0 72.7 65.8 65.9 58.6 69.4 71.5 78.3 66.6 74.9 66.2 75.6 70.0
CoCo-GIN 74.9 73.6 63.6 70.7 58.3 70.0 76.6 78.5 66.5 75.1 66.7 77.5 71.0
CoCo-HGKN 74.9 73.0 64.5 70.5 63.0 70.6 76.3 78.0 66.1 74.7 66.4 77.3 71.3

CoCo 77.7 76.6 73.3 74.5 66.6 74.3 77.3 80.8 67.4 74.1 68.9 77.5 74.1

CoCo-NP 77.2 76.0 74.1 74.2 65.5 74.6 77.7 81.0 67.1 74.7 69.2 76.1 74.0

papers and fine-tune them to achieve the best performance.

4.2. Performance Comparison

Table 1, 2 and 3 show the performance of graph classifica-
tion in various settings of unsupervised domain adaptation.
From the results, we observe that: 1) The domain adapta-
tion methods generally perform better than graph kernel and
GNN methods in Table 2 and 3, indicating that current graph
classification models are short of the capacity of transfer
learning. Thus, it is essential to design an effective domain
adaptive framework for graph classification. 2) Although
the domain adaptation methods obtain competitive results
on simple transfer tasks in Table 3, it is difficult for them to
make great progress on hard transfer tasks in comparison
with GIN (Table 1). We attribute the reason to the immense
difficulty of acquiring graph representations. Therefore,
it is unwise to directly apply current domain adaptation
approaches to GCNs. 3) Our CoCo outperforms all the base-
lines in most cases. In particular, the average improvement
of CoCo ranges is 8.81% on Mutagenicity. We attribute the
performance gain to two key points: (i) Contrastive learning
across coupled branches (i.e., GCN and HGKN) improves
the representation ability of graphs under label scarcity. (ii)
Cross-domain contrastive learning contributes to effective
domain alignment from an EM perspective.

4.3. Effect of Different GNNs and Graph Kernels

To investigate the flexibility of CoCo, we replace the GIN
in our implementation with different GNN methods (i.e.,
GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018)
and Graphsage (Hamilton et al., 2017)) and the WL kernel
with different graph kernels (i.e., Graph Sampling (Leskovec
& Faloutsos, 2006), Random Walk (Kalofolias et al., 2021)
and Propagation (Neumann et al., 2016)). Figure 3 shows
the performance of different GNNs and graph kernels on two
representative datasets, and we have similar observations
on other datasets. From the results, we have the following
observation, by comparing with other GCN architectures
and graph kernels, GIN and WL kernels achieve the best
performance in most of the cases and the reason can be
attributed to the powerful representation capability of GIN
and WL kernel. This also justifies the motivation why we

(a) GCNArchitectures (b) Graph Kernel

Figure 3. The performance with different GCN architectures and
graph kernels on Mutagenicity.
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Figure 4. Sensitivity analysis on Mutagenicity. We select four
transfer learning tasks here.

select WL kernel to improve the performance in our task of
domain adaptation.

4.4. Ablation Study

To evaluate the impact of each component in our CoCo, we
introduce several model variants as follows: 1) CoCo/CB:
It removes the cross-branch contrastive learning module; 2)
CoCo/CD: It removes the cross-domain contrastive learning
module; 3) CoCo-GIN: It uses two distinct GINs to generate
coupled graph representations; 4) CoCo-HGKN: It uses two
distinct HGKN to generate coupled graph representations.
5) CoCo-NP: It utilizes the non-parametric classifier instead
of the MLP classifier for target domain prediction.

We compare the performance on Mutagenicity and the re-
sults are shown in Table 4. From Table 4, we have the follow-
ing observations: 1) CoCo/CB exhibits inferior performance
compared with the CoCo in most settings, validating that
comparing complementary information extracted by GCN
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and HGKN is capable of improving graph representation
learning. 2) CoCo/CD obtain the worst performance among
four model variants, we attribute the reason to that the cross-
domain contrastive learning module aligns the source and
target graph representations effectively, which tackles seri-
ous domain discrepancy in the graph space. This challenge
is the most crucial in our task. 3) CoCo-GIN and CoCo-
HGKN achieves approximate results but performs worse
than CoCo, which demonstrates that merely ensemble learn-
ing in the implicit (explicit) manner cannot largely enhance
graph representation learning under label scarcity. 4) The
average performance of CoCo and CoCo-NP is quite similar.
The reason is that after sufficient training, the performance
of the non-parametric classifier and the MLP classifier is
similar. However, the non-parametric classifier demands a
substantial amount of labeled source domain data, resulting
in significantly lower efficiency compared to the MLP clas-
sifier. Consequently, we recommend employing the MLP
classifier for target domain prediction.

4.5. Sensitivity Analysis

In this part, we investigate the sensitivity of the proposed
CoCo to the hyper-parameters (i.e., pooling ratio ρ and num-
ber of filter graphs M ) that affect the performance of CoCo.
ρ determines the number of kept nodes of pooled graphs,
and M denotes the number of filters. Figure 4 plots the
results on Mutagenicity. We first vary ρ in the set from
0.2 to 0.8 with other parameters fixed. The performance
generally shows an increasing trend at the beginning and
stabilizes as the ratio of ρ increases. We attribute the reason
to the small ρ keeping fewer nodes which may miss some
important information. On the contrary, the larger ρ retains
more node information, but the complexity of the model is
greatly increased. Considering the trade-off between model
performance and complexity, we set ρ to 0.4 as default. In
addition, We vary M in {5, 10, 15, 20, 25} while fixing
other parameters. It can be found that with the increasing of
M , the CoCo achieves better performance when the value is
small. The potential reason is that increasing the number of
filter graphs would help to extract high-order structure infor-
mation. Nevertheless, when M is too large (i.e., M > 15),
the improvement in performance is not obvious. Thus, to
balance the performance with the computational complexity,
we set M to 15.

5. Conclusion
This paper addresses the practical problem of unsupervised
graph classification and introduces an effective method
named CoCo is proposed. At a high level, CoCo is fea-
tured by two branches, i.e., a graph convolutional network
branch and a hierarchical graph kernel network branch,
which explores graph topological information in implicit

and explicit manners, respectively. Then, we integrate the
two branches into a multi-view contrastive learning frame-
work where cross-branch contrastive learning aims to gener-
ate discriminative graph representation with full semantics
whereas cross-domain contrastive learning strives to mini-
mize domain discrepancy. Extensive experiments on diverse
datasets validate the efficacy of proposed CoCo compared
with various competing methods. In future works, we will
extend our proposed CoCo to address more complicated
tasks, including domain generalization, multi-source do-
main adaptation and source-free domain adaptation.
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A. An Expectation-Maximization Perspective
Maximum Likelihood (ML) has been widely utilized in various unsupervised machine learning problems (Sharma et al.,
2016; Li et al., 2020; Gresele et al., 2020). In our settings, it aims to find the optimal weights of the graph encoder θ∗ to
maximize the log-likelihood of target graphs within a mini-batch. In formulation, the log-likelihood function is written as:

ℓlikelihood(θ) =
∑

Gt
j∈Bt

log p(Gt
j ; θ). (11)

To make use of abundant labeled source graphs, the unlabeled sample Gt
j ∈ Bt are compared with source graphs in a

mini-batch, denoted as {Gs
i}B

s

i=1 for clearness, and we have:

θ∗ = argmax
θ

∑
Gt

j∈Bt

log

Bs∑
i=1

p(Gt
j , G

s
i ; θ). (12)

However, directly optimizing the function would be difficult. To tackle this, we introduce a surrogate function Q(Gs
i )

(
∑Bs

i=1Q(Gs
i ) = 1) to estimate the lower-bound of Eq. 12. By applying Jensen’s inequality, we have:

∑
Gt

j∈Bt

log

Bs∑
i=1

p(Gt
j , G

s
i ; θ) =

∑
Gt

j∈Bt

log

Bs∑
i=1

Q(Gs
i )
p(Gt

j , G
s
i ; θ)

Q(Gs
i )

≥
∑

Gt
j∈Bt

Bs∑
i=1

Q(Gs
i ) log

p(Gt
j , G

s
i ; θ)

Q(Gs
i )

.

(13)

The equality holds when Q(Gs
i )/p(G

s
i , G

t
j ; θ) is a constant, which results in the following formulation:

Q(Gs
i )

p(Gs
i , G

t
j ; θ)

=

∑Bs

i=1Q(Gs
i )∑Bs

i=1 p(G
s
i , G

t
j ; θ)

=
1

p(Gt
j ; θ)

. (14)

Hence, we have Q(Gs
i ) = p(Gs

i ;G
t
j , θ).

It is worth noting that −
∑

Gt
j∈Bt

∑Bs

i=1Q(Gs
i ) logQ(Gs

i ) does not influence the optimization of θ. Therefore, we rewrite
the objective function as follows:

ℓ =
∑

Gt
j∈Bt

Bs∑
i=1

p(Gs
i ;G

t
j , θ) log p(G

t
j , G

s
i ; θ), (15)

Then, we utilize an EM algorithm to maximize Eq. 15.

E step. This step aims to infer the posterior probability p(Gs
i ;G

t
j , θ). To begin with, we calculate the pseudo-label of the

target dataGt
j using gθ where θ denotes the current model parameters. Treating all source samples with the same label equally,

we have p(Gs
i ;G

t
j , θ) =

1
|Π(j)|1(G

t
j , G

s
i ) where 1(Gt

j , G
s
i ) = 1 if they has the same label and |Π(j)| =

∑Bs

i=1 1(G
t
j , G

s
i )

denotes the number of source samples with the same label.

M step. This step aims to maximize the lower-bound of Eq. 15 based on E-step. In particular, we have:

ℓ =
∑

Gt
j∈Bt

Bs∑
i=1

p(Gs
i ;G

t
j , θ) log p(G

t
j , G

s
i ; θ)

=
∑

Gt
j∈Bt

Bs∑
i=1

1

|Π(j)|
1(Gt

j , G
s
i ) log p(G

t
j , G

s
i ; θ).

(16)
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(a) GCN Architectures 

(b) Graph Kernel 

Figure 5. The performance with different GCN architectures and graph kernels on Mutagenicity.

When presuming the prior obeys a uniform distribution and employing an isotropic Gaussian to characterize the distribution
of each sample in the embedding space, we have:

p(Gt
j , G

s
i ; θ) = p(Gt

j ;G
s
i , θ)p(G

s
i ; θ) =

1

Bs
· p(Gt

j ;G
s
i , θ),

p(Gt
j ;G

s
i , θ) = exp(

−(zt
j − zs

i )
2

2σ2
i

)/

Bs∑
i′=1

exp(
−(zt

j − zs
i′)

2

2σ2
i′

),
(17)

where zt
j = gϕ(G

t
j) and zs

i = gϕ(G
s
i ). σ

2
i denotes the variance of the Gaussian distribution around zs

i , which is assumed the
same for all source samples. Hence, we set τ = σ2

i . Assuming l2-normalized zt
j and zs

i , we obtain (zt
j−zs

i )
2 = 2−2zt

j ∗zs
i .

By incorporating the Eq 16 and Eq. 17 into Eq. 12, we have:

θ = argmax
θ

∑
Gt

j∈Bt

1

|Π(j)|

Bs∑
i=1

1(Gt
j , G

s
i ) log

exp(zt
j ∗ zs

i /τ)∑Bs

i′=1 exp(z
t
j ∗ zs

i′/τ)
(18)

which is equivalent to our cross-domain contrastive learning objective in Eq. 8.

B. Introduction of Baselines
• WL subtree (Shervashidze et al., 2011): WL subtree is a kernel method, which measures the similarity between graphs

with the defined kernel function.

• GCN (Kipf & Welling, 2017): The main idea of GCN is to combine neighborhood information to update each central
node, so as to obtain a representation vector in an iterative fashion.

• GIN (Xu et al., 2019): GIN is a well-known message passing neural networks with improved expressive capability.

• CIN (Bodnar et al., 2021): CIN extends the theoretical results on Simplicial Complexes to regular Cell Complexes, which
achieves a better performance.

• GMT (Baek et al., 2021): GMT is a multi-head attention-based model, which captures interactions between nodes
according to their structural dependencies.

• CDAN (Long et al., 2018): CDAN utilizes a adversarial adaptation framework conditioned on discriminative information
extracted from the predictions of the classifier.

13



CoCo: A Coupled Contrastive Framework for Unsupervised Domain Adaptive Graph Classification

• ToAlign (Wei et al., 2021b): ToAlign aims to align the domain by performing feature decomposition and the prior
knowledge including classification task itself.

• MetaAlign (Wei et al., 2021a): MetaAlign separates the domain alignment and the classification objectives as two
individual tasks, i.e., meta-train and meta-test, and uses a meta-optimization method to optimize these two tasks.

• DUA (Mirza et al., 2022): DUA proposes an effective normalization technique for domain adaptation.

C. Additional Experiments
We conduct more experiments to evaluate the effect of different GCN architectures and Graph kernels. Figure 5 shows the
performance of different GCN architectures and graph kernels on Mutagenicity. From Figure 5, we have the similarity
observations as described in Section 4.3, validating the effectiveness of GIN and WL kernel once again.
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