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Abstract
Motivated by the efficiency and rapid convergence
of pre-trained models for solving downstream
tasks, this paper extensively studies the impact of
Continual Learning (CL) models as pre-trainers.
In both supervised and unsupervised CL, we find
that the transfer quality of the representation often
increases gradually without noticeable degrada-
tion in fine-tuning performance. This is because
CL models can learn improved task-general fea-
tures when easily forgetting task-specific knowl-
edge. Based on this observation, we suggest a new
unsupervised CL framework with masked mod-
eling, which aims to capture fluent task-generic
representation during training. Furthermore, we
propose a new fine-tuning scheme, GLobal Atten-
tion Discretization (GLAD), that preserves rich
task-generic representation during solving down-
stream tasks. The model fine-tuned with GLAD
achieves competitive performance and can also
be used as a good pre-trained model itself. We
believe this paper breaks the barriers between
pre-training and fine-tuning steps and leads to
a sustainable learning framework in which the
continual learner incrementally improves model
generalization, yielding better transfer to unseen
tasks.

1. Introduction
Unsupervised Representation Learning (URL) (Radford
et al., 2015; Gidaris et al., 2018; Grill et al., 2020; Xie
et al., 2021) is a pertinent branch of machine learning in
which a model exploits data without human-generated sig-
nals to extract the generic representations. Although the
standard URL scenario assumes that we have a complete
unlabeled dataset before training, this setting is often unre-
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alistic in the real world; as the world persistently changes,
the model should cope with non-stationary data throughout
its lifespan. It carries the lifelong learnability of the repre-
sentation model. As motivated by the Continual Learning
(CL) field (Thrun, 1995; Silver & Mercer, 2002; Kumar &
Daume III, 2012; Li & Hoiem, 2016), Unsupervised Contin-
ual Learning (UCL) (Rao et al., 2019; Madaan et al., 2022;
Fini et al., 2022) has recently been explored to address the
limitations of the conventional representation learning setup
and provides comprehensive analyses regarding the quality
of learned representations along with their forgetting.

However, the recently proposed UCL frameworks have clear
limitations in their interpretation of model transfer to down-
stream tasks. Suppose ri,j be the performance of a pre-
defined supervised metric for task j using a sequentially pre-
trained backbone model from the first to ith task. They train
on T sequential tasks {Tt}Tt=1 without labels, and measure
the effectiveness of their representation model leveraging
two supervised metrics: 1) the averaged performance gap
measured immediately after the task is learned and after
all tasks are learned

∑T−1
t=1 rt = rT,t − rt,t (backward

transfer) (Lopez-Paz & Ranzato, 2017) and 2) the averaged
performance of all tasks

∑T
t=1 rt = rT,t. Though maxi-

mizing the transferability of the learned representations on
the target problem is essential for general-purpose models,
prior UCL works have confined their validations and anal-
yses to linear evaluations as updating the linear classifier
with keeping fixed representation model backbones. This
can be suitable for measuring direct differences in model
drift (i.e., catastrophic forgetting) of continual learners. Yet,
it cannot disclose the change in knowledge transferability
during task sequential training, which is crucial in utilizing
the pre-trained model in practice.

Beyond the limited understanding of knowledge transfer
from prior works, we provide comprehensive transferability
analyses with varying evaluation setups via supervised and
unsupervised CL methods to explore their potential as a
pre-trainer. In Figure 1, we perform a simple experiment to
investigate the potential of incremental model generalization
via a continual learning setup. A model sequentially learns
the nine tasks from ImageNet1K-split (containing ten tasks
in total) using supervised CL methods: Base (a CL model
without any additional method), SI (Zenke et al., 2017), and
DER (Buzzega et al., 2020). Then, we measure the change
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Figure 1: Linear evaluation of the first task (T0) and fine-
tuning of the unseen task (T9) during supervised CL over a
sequence of nine tasks from ImageNet1K-split (T0-T8). Sequential
training on more tasks decreases the linear evaluation performance,
but it increases fine-tuning performance on the unseen task.

of representation quality through linear evaluation for the
first task, T0, and fine-tuning for the out-of-distribution task,
T9. As shown in the increased performance in Figure 1
Right, we find that CL methods gain steady increases in
their transferability to unseen tasks without the concern of
performance degeneration from representational forgetting
if the model trains on more tasks in a sequential manner. It
is distinguishable from T0 linear evaluation results of the
same methods, which suffer from performance degradation
(Figure 1 Left).

We explain these phenomena because the transferability
hinges upon rich task-generic features in pre-trained mod-
els (Xie et al., 2022a; Wei et al., 2022), while the model
mostly loses task-specific features during CL, particularly
severe when they train in a supervised/contrastive manner
(please see Figures 2 and 5). Inspired by our above observa-
tions, we propose a new UCL framework based on Masked
Image Modeling (MIM) (Xie et al., 2022b; He et al., 2022)
that improves task-generic representation across all layers
during training. Our framework retains fluent task-generic
features over all layers by learning to predict masked re-
gions of input images during unsupervised CL, condition-
ing other available areas. and outperforms existing super-
vised/unsupervised CL baselines in fine-tuning. Then we
demonstrated that the suggested reconstruction-based CL
framework achieves substantially higher fine-tuning perfor-
mance on OOD tasks (Figure 6) than existing CL frame-
works that aim to learn class-discriminative features, partic-
ularly at deeper layers.

Additionally, as we observe that continual learning models
improve model generalization for downstream tasks, we
raise the question of how a fine-tuned model can become
a good pre-trained model itself since normal fine-tuning
shifts generic features to be task-dependent. To this end, we
additionally explore the potential of continual pre-training,
reusing the fine-tuned model as a pre-trained model for
other downstream tasks. The objective is to encourage the
fine-tuning model to retain rich task-generic features dur-
ing supervised fine-tuning. Leveraging our motivations for

building the MIM-based UCL framework, we suggest a new
method, named GLobal Attention Discretization (GLAD).
Our proposed method introduces a lightweight, trainable
adapter in the multi-head attention module of the ViT back-
bone. For future reuse of fine-tuned networks, GLAD aims
to keep improving global (task-generic) attention during
fine-tuning through a constraint to encourage diversity of
attention distance in the adaptor-free backbone while the
model solves the downstream task by focusing on local
(task-adaptive) features utilizing adaptor-guided attentions.
We believe our observations and proposed approach lead
to removing the barriers between the standard pretraining-
finetuning scheme and continual learning towards improving
model generalization via never-ending continual training
while alleviating the threat of loss of generality of large
pre-trained models during downstream task fine-tuning.

The main contributions of the paper are threefold:

• We unveil the behavior of representational transferabil-
ity and forgetting of task-generic and task-specific fea-
tures under multiple supervised/unsupervised continual
learning frameworks at scale, with Vision Transformer
backbones.

• We suggest a new learning/evaluation paradigm of the
popular pretraining-finetuning scheme amalgamating
to continual learning that aims to continuously increase
the generalization of the pre-training backbone during
the endless sequential fine-tuning phases.

• We further suggest a simple yet efficient remedy to
increment task-generic feature expressiveness through-
out continual pre-training, dubbed GLAD, which en-
ables the model rapidly adapts to the target problem
while preserving high transfer affinity to future tasks.

2. Related Work
Continual learning SI (Zenke et al., 2017) introduces
an additional surrogate loss that reduces the weight shift
during continual learning by maintaining the training trajec-
tory according to the weight importance of previous tasks.
DEN (Yoon et al., 2018) adaptively controls the network ca-
pacity by adding/pruning parameters when new tasks arrive.
DER (Buzzega et al., 2020) stores a few training instances
of previous tasks as well as their predicted logits and mini-
mize the similarity to produce similar logit predictions on
past tasks. BiC (Wu et al., 2019) adds a new layer at the top
of the backbone to correct classification bias on new tasks.
Similarly, WA (Zhao et al., 2020) corrects the prediction
bias by rescaling the FC layer with averaged weights normal-
ization on past tasks. DyToX (Douillard et al., 2022) adopts
ViT and performs ensembled prediction with task-specific
classifiers leveraging additional task-specific tokens. How-
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ever, dominant research resorts to the sophisticated human
annotation of inputs during training a sequence of tasks.

CURL (Rao et al., 2019) learns unsupervised representation
on task sequences with a generative model adopting task-
specific inference. However, the method is validated for
only MNIST-scale datasets due to their limited scalability
by design. Madaan et al. (2022) suggest a new unsupervised
continual learning framework in a contrastive manner us-
ing Siamese structures. They demonstrate the scalability
of the proposed framework through comprehensive analy-
ses of learned representations. CaSSLe (Fini et al., 2022)
utilizes a similar contrastive self-supervised framework for
unsupervised continual learning, yet provides further exten-
sive validations including diverse self-supervised learning
backbones over ImageNet-100.

Very recently, Chen et al. (2023) provides intriguing discus-
sions on forgetting and forward transfer of FOMAML (Finn
et al., 2017) during supervised CL, primarily via quantita-
tive evaluation with a few-shot linear probe. On the other
hand, we extensively consider not only supervised CL but
also siamese network-based contrastive and reconstruction-
based unsupervised CL frameworks. In our work, we found
that the continually learned representation behaves differ-
ently, depending on whether transferring via fine-tuning
the entire model or linear evaluation with a scalable test
set. And we deliver various discussion points on represen-
tation transferability through both quantitative and qualita-
tive analyses, allowing the re-update of learned backbone
weights for downstream tasks. Also, we further propose
the GLAD module based on our findings, which preserves
rich task-generic representation during solving downstream
tasks. More discussions regarding meta-learning are pro-
vided in Appendix B.

Self-supervised learning Simsiam (Chen et al., 2020a)
maximizes the similarity of input prediction upon two dif-
ferent augmentations using the Siamese network, learning
input-invariant self-supervision. BarlowTwins (Zbontar
et al., 2021) aims to remove cross-correlation across dif-
ferent feature vector embeddings from Siamese networks.
DINO (Caron et al., 2021) distills teacher model predic-
tions to the student by minimizing cross-entropy loss be-
tween their predictions, where the teacher model is up-
dated through an exponential moving average from the
student model. Unlike contrastive learning-based direc-
tions, Masked Image Modeling (MIM) has recently been
developed inspired by masked language models for natural
language understanding. SimMIM (Xie et al., 2022b) and
MAE (He et al., 2022) adopt an encoder-decoder structure
that zeroes out random spatial patches in each patchfied
image and learns representations by predicting pixel values
in masked patches. MSN (Assran et al., 2022) combines
Siamese networks with masked modeling that maximize the

prediction similarity between patchfied masked inputs and
the augmented target views.

3. Preliminaries
3.1. Pre-training and Fine-tuning

Given a neural network f(·;w) parameterized by weights
w, recent works have addressed the broad machine learn-
ing problems described to Dtarget by optimizing learnable
weights with respect to complex objective functions. Be-
yond statistical initialization of network weights (Glorot &
Bengio, 2010; He et al., 2015), pre-training, where leverag-
ing learned weights from scaled benchmark datasets (e.g.,
ImageNet (Deng et al., 2009)) as the initialization of w, has
been widely adopted to promote a rapid and stable conver-
gence curve during training. Self-supervised learning (Chen
et al., 2020a; He et al., 2020; Caron et al., 2021; Bardes
et al., 2021; Xie et al., 2022a) has recently become preva-
lent for pre-training, demonstrating superior generalization
performance compared to supervised counterparts by cap-
turing task-agnostic input features. While multiple different
frameworks are considered for self-supervised learning, we
exemplify the encoder-decoder framework in this paragraph.
Let h and g be an encoder and a decoder parameterized by
θ and ϕ, respectively, the objective function is to minimize
self-supervised loss given input data d without supervision:

θ∗, ϕ∗ = argmin
θ,ϕ

ℓ (gϕ ◦ hθ (d)) , (1)

where ◦ indicates function composition. The loss function
is often designed in several formulations based on similarity,
identity correlation, and contrastive loss. After the pre-
training phase, the encoder transfers learned features to
backbone neural networks for fine-tuning, w ← θ∗.

3.2. Continual Learning Paradigms

Supervised Continual Learning (SCL) (Mallya & Lazebnik,
2018; Riemer et al., 2019; Aljundi et al., 2019; Chaudhry
et al., 2019; 2020; Chrysakis & Moens, 2020; Titsias et al.,
2020; Shen et al., 2020; Douillard et al., 2022; Yoon et al.,
2020; 2022) is about a sustainable adaptation to unlimited
task sequences while maintaining proficiency on previous
tasks. Let us consider an intuitive example with the image-
based problem: suppose T = {T1, ..., TT } be a sequence of
T tasks, where the dataset Dt for the t-th task consists of nt

training instances Xt ∈ Rnt×C×H×W and corresponding
labels Yt ∈ Rnt . That is, C,H, and W denotes a chan-
nel, height, and width of images, respectively. A continual
learner fw, parameterized by a set of weights w, aims to
predict classes by minimizing the optimization problem:
minimizew

∑T
t=1 LCE (f (Xt;w) ,Yt), where LCE is a

cross-entropy loss. Yet, we assume that fw can access each
task in a specific timestep that loses the authorization to
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Figure 2: (a): Visualization of the attention distance of out-of-distribution task (T9) with respect to three continual learning frameworks
right after the completion of the first (wT0) and last task (wT0→T8). (b): Visualization of the entropy of each attention head’s
distribution of unseen task T9. We use a ViT (Dosovitskiy et al., 2020) backbone for visualization.

revisit previous tasks’ data instances when the next task ar-
rives. That is, the model solves the following non-stationary
problem at task t throughout task sequential training:

w∗ = argmin
w

LCE (f (Xt;w) ,Yt)

≈ argmin
w

t∑
i=1

LCE (f (Xi;w) ,Yi) .
(2)

Obtained models directly evaluate the performance of each
task, categorizing several incremental learning setups ac-
cording to the accessibility to task oracle during inference.

Unsupervised Continual Learning (UCL) is formulated in
representation learning frameworks on a sequence of un-
labeled tasks {Xt}Tt=1, often referred to as continual self-
supervised learning. A learner fw aims to find the best
solution that learns the informative representation of multi-
ple tasks sequentially. At each timestep t, the model resorts
to the accessible dataset Xt without any human-annotated
labels to solve the problem:

w∗, wext = argmin
w

L (f (Xt;w,wext)) , (3)

where L is an arbitrary loss function for representation learn-
ing (e.g., self-supervised losses (Chen et al., 2020b; Grill
et al., 2020; Zbontar et al., 2021)) and wext is an (optional)
extra weights for additional structures not included in back-
bone weights w, such as a decoder, a projection layer, and
a predictor. Since a direct comparison of the quality of

representation models is intractable, recent representation
learning literature validates obtained representation models
by probing generic transferability on multiple downstream
tasks. In a similar vein, prior UCL works (Madaan et al.,
2022; Fini et al., 2022) adopt supervised prediction tools
like the KNN classifier and linear evaluation while keep-
ing the learned backbone fixed. However, we argue that
such evaluation paradigms cannot appropriately measure
the transferability of representation on unseen tasks.

4. Continual Learning for Incremental
Model Generalization
4.1. The Role of Global and Local Attention during

Continual Learning

Prior continual learning literature has demonstrated that a
model with a standard CL setting suffers from forgetting
due to loss of local features and attention to past tasks. But,
we argue that they have barely discussed the generaliza-
tion of continually learned representation, which can be a
great source for deploying an improvable foundation model
by fine-tuning an unlimited number of tasks. We throw a
question mark at this point:

”So, is the model generalization getting worse as it goes
through training sequential tasks?”

Surprisingly, we found that this is not the case as the gen-
eralization (a.k.a., transfer quality) is consistently getting
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Figure 3: Illustration of the proposed GLobal Attention Discretization (GLAD) for Continual Pre-training. Our GLAD introduces
a new Multi-head Self-attention operation named GLAD-MSA with a parametric adaptor. The pre-trained model with adaptors fine-tunes
given problems with a constraint that encourages divergence of attention entropy in each layer, leading to incremental positive transfer of
backbone parameters for future tasks.

improved during CL as shown in Figure 1 Right. To ex-
plicate behaviors of multi-head attention using transformer
backbones, similar to the experiment in Figure 1, we train su-
pervised and unsupervised CL frameworks on the ImageNet-
1K split dataset without any specific CL methods. After that,
we investigate changes in regional inductive bias by mea-
suring the average distance of attention heads (defined by
Equation (8)) in each layer, visualized as different points in
Figure 2 (a) top and middle row. Supervised and contrastive
self-supervised (SimSiam) continual learning models focus
more on strong locality inductive bias at lower layers (de-
creased attention distance) and global attention at higher lay-
ers (increased attention distance) during continual learning
as these frameworks are innately designed to cluster/classify
input features in deeper layers. However, focusing on global
attention to capture task-specific features is undesirable for
transferring the representations to out-of-distribution tasks.
Next, we visualize the entropy conditioned solely on the dis-
tribution of each attention head in Figure 2 (b) by computing
−
∑

i ai log(ai) for each attention head a. Supervised and
contrastive unsupervised frameworks broadly focus on most
attention heads during continual learning at deeper layers.
This indicates that they already substantially adapt to pre-
trained tasks while losing a degree of freedom to transfer
downstream tasks.

To build a new UCL framework for a better generalizable
representation model across all layers, we survey Masked
Image modeling (MIM) (Pathak et al., 2016; He et al., 2022)
that self-trains input representation by minimizing regres-
sion loss to predict RGB pixel values in randomly zeroed
patches in patchified input images. MIM enjoys locality
inductive bias with diverse attention across layers, allowing
better transfer ability to unseen tasks.

4.2. Continual Self-supervised Learning with

Masked Modeling

We formulate a representational learner fw, composed of a
neural encoder hθ and a decoder gϕ. We build backbones
using Vision Transformer variants (Dosovitskiy et al., 2020;
Liu et al., 2021) due to their powerful generality and re-
markable performance on high-resolution visual tasks. They
are flexible to transfer the obtained representations to down-
stream tasks requiring various input image sizes in demands
when existing UCL frameworks (Madaan et al., 2022; Rao
et al., 2019) allow the fixed image size for representation
learning and fine-tuning since the architectures are basically
composed of multi-layer perceptrons and convolutional neu-
ral networks. At training t-th task with a training instance
xt ∈ RC×H×W ∈ Xt, a model segments xt into smaller
image patches where the width and height are s < H,W ,
and randomly zeros a fraction of image patches out with a
fixed ratio τ . An encoder tokenizes masked patches to the
embedding space and fed into multiple self-attention blocks
to capture latent representation features. A decoder recon-
structs encoded features to approximate the input image.
The objective is to minimize the following loss function
for continual representation learning (∥ · ∥µ denotes any
norm, often µ ∈ {1, 2} is used). Let K =

⌊
H
s

⌋
·
⌊
W
s

⌋
be

the number of tokens at each image, we formulate the loss
function as follows:

ℓ (xt;w) = ∥f(m ∗s xt;w)−m ∗s xt∥µ
= ∥g (h (m ∗s xt;θ) ;ϕ)−m ∗s xt∥µ,

where m = {0, 1}K ∼ B (K, ρ) .

(4)

With patch size s, ∗s denotes a patch-wise multiplication
operation between a training instance x and a generated
mask vector m drawn by the binary distribution B with
sparsity ratio ρ. B(i, ρ) is a i independent binary sampling
with a ratio ρ to pick 1. The model updates a set of weights
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that predicts masked regions of input images, conditioning
other available areas. We simply adopt ℓ1 regularization to
minimize the distance between predicted patches and the
targets, followed by earlier reconstruction-based works (Xie
et al., 2022b; He et al., 2022), and after completing a se-
quential training, the obtained encoder hθ can be utilized for
many different downstream tasks. And we find that our new
framework outperforms supervised and contrastive bench-
marks in model transferability during continual pre-training
(Please see Figure 6). Interestingly, unsupervised continual
learning with the masked autoencoder framework (SimMIM
in Figure 2 bottom row) behaves very differently from the
other two frameworks. Almost all layers have a diverse
focus on locality, and this tendency becomes stronger as
they continue to pre-train more tasks.

4.3. Continual Pre-training via Global Attention
Discretization

Our aim is to utilize the backbone of the fine-tuned model
as a pre-training checkpoint for another problem in a su-
pervised manner. Given the target task dataset Dtarget =
{X ,Y} and a classifier δ(·;u) parameterized by u, we for-
mulate the objective of continual pre-training as follows:

minimize
w(t),u(t)

ℓ
(
δ
(
f
(
X ;w(t)

)
;u(t)

)
,Y

)
, (5)

We suppose each fine-tuning step independently introduces
its own classifier. The formulation is aligned with the con-
tinual learning problem described in Section 3.2, but this set-
ting is about never-ending model generalization to achieve a
consistently improved adaptation to the out-of-distribution
task in the future. That is, obtained representation model
for fine-tuning task t, ŵ(t), will be reused for future task
training (w(t+1) = ŵ(t)).

However, fine-tuning often reduces the general transferabil-
ity to adapt to different tasks, demonstrating a suboptimal
model generalization of supervised CL compared to our
MIM-based framework (Please see Figure 6 Left). Moti-
vated by our findings in Section 4.1 and Section 4.2, we
propose a new method for continual pre-training, named
GLobal Attention Discretization (GLAD). Our proposed
method preserves diverse degrees of averaged distance
at each attention head to preserve transferable backbone
weights for future problems while capturing task-adaptive
features guided by GLAD modules. As illustrated in Fig-
ure 3, a multi-head self-attention operation with adaptor
weights v. We transform the task-generic MSA features to
input-dependent by propagating adaptor v. Then, the model
enables solving the current task problem while constraining
the backbone weights to preserve abundant locality induc-
tive bias. Let al,i be an averaged entropy of the attention
passed over adaptor operation (dark dashed arrow) from
i-th head at layer l, the objective function of our GLAD is

as follows:

minimize
w,v

N∑
n=1

ℓ
(
f
(
x(n);w,v

)
,y(n)

)
,

+
1

L

L∑
l=1

(√E
[(
al,i − al

)2]
+ ϵ

)−1

+ λ
∥∥∥al
∥∥∥2
F

 ,

(6)

where E indicates the expectation, al = 1
Hl

∑Hl

i al,i at
layer l with the number of its attention head H l, λ is a scal-
ing factor. ϵ is a small constant value. We jointly minimize
the task loss with an additional regularizer that constrains
the entropy variance of attention heads to sufficiently di-
verge at each layer as an average of their inverse standard
deviation. We add to minimize a Frobenius norm for a
to promote abundant locality inductive bias for backbone
attention weights. Note that our proposed method is ro-
bust to utilize any kind of multi-head self-attention mod-
ules, we demonstrate the efficacy in vanilla Vision Trans-
former (Dosovitskiy et al., 2020) and Swin Transformer (Liu
et al., 2021). The learned backbone weights w excepting
classifier and GLAD-adaptors can be reused for fine-tuning
future tasks. We describe the overall continual pre-training
procedure with GLAD in Algorithm 1.

Algorithm 1 Continal Pre-training with GLAD

input A sequence of tasks {D1,D2, · · · }, backbone network f ,
learning rate η ∈ R+, hyperparameter λ,
small constant ϵ, initialization winit,vinit

1: for all task Tt = T1, T2, . . . do
2: Build a model fw,v(·) with GLAD-MSA ▷ Figure 3
3: Initialize w ← w∗ excluding classifier if fw∗exists, other-

wise w ← winit
4: Initialize v ← diag(vinit) := (1, . . . , 1) ∈ Rdout

5: for batch xn,yn ∼ Dt do
6: L = ℓ (f (xn;w,v) ,yn)+

1
L

∑L
l=1

(√
E
[(
al,i − al

)2]
+ ϵ

)−1

▷ Equation (6)

7: w ← ∇wL, v ← ∇vL
8: end for
9: w∗ ← w

10: end for

5. Experiments
We conduct the experiments on various continual learning
frameworks with and without supervision using ImageNet-
1K Split dataset against multiple strong baselines. for unsu-
pervised continual learning that demonstrates the effective-
ness of our proposed method on fine-tuning performance on
downstream tasks.

5.1. Architectures and Baselines

We use ViT (Dosovitskiy et al., 2020) and Swin Trans-
former (Liu et al., 2021) as backbone architectures. We fol-
low Siamese network structure by Madaan et al. (2022) and
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IMAGENET 1K SPLIT (T=10) SUPERVISED Contrastive (Chen & He, 2021) Masked Model (Xie et al., 2022b)

FINAL ACC NEG. BWT FINAL ACC NEG. BWT FINAL ACC NEG. BWT
Fi

ne
-t

un
in

g
(F

T
) 1K PRETRAINED 87.48 / 98.08 − − − − −

22K PRETRAINED 87.76 / 98.48 − − − − −
BASE MODEL 71.90 / 90.64 6.88 / 3.70 64.38 / 86.18 7.18 / 4.56 73.18 / 91.76 13.26 / 7.46

SI (Zenke et al., 2017) 70.00 / 90.38 7.40 / 4.52 61.46 / 84.82 4.15 / 2.42 71.54 / 90.76 11.92 / 6.58
DER (Buzzega et al., 2020) 70.57 / 90.12 8.94 / 4.86 62.37 / 85.46 9.28 / 6.08 70.10 / 90.10 19.55 / 12.24

LUMP (Madaan et al., 2022) N/A N/A 64.01 / 86.42 6.24 / 4.32 75.11 / 92.38 21.28 / 12.42

L
in

ea
rP

ro
be

(L
P) 1K PRETRAINED 87.48 / 97.98 − − − − −

22K PRETRAINED 86.53 / 98.06 − − − − −
BASE MODEL 33.66 / 62.20 -5.98 / -4.30 17.10 / 40.60 7.64 / 13.94 17.46 / 40.60 4.76 / 6.36

SI (Zenke et al., 2017) 34.82 / 63.18 -6.18 / -5.56 15.24 / 36.76 -1.42 / -2.38 14.92 / 37.80 4.82 / 8.26
DER (Buzzega et al., 2020) 34.59 / 62.29 -5.86 / -6.16 14.84 / 36.13 3.68 / 5.22 6.22 / 21.52 -0.84 / -1.04

LUMP (Madaan et al., 2022) N/A N/A 18.50 / 42.05 7.54 / 11.38 19.26 / 43.21 7.38 / 11.22

CIFAR-100 SPLIT (T=10) SUPERVISED Contrastive (Chen & He, 2021) Masked Model (Xie et al., 2022b)

FINAL ACC NEG. BWT FINAL ACC NEG. BWT FINAL ACC NEG. BWT

FT

BASE MODEL 79.3 3.8 49.3 12.6 88.9 18.3
SI (Zenke et al., 2017) 78.0 5.8 57.3 14.5 86.4 20.0

LUMP (Madaan et al., 2022) N/A N/A 83.3 16.5 88.6 18.7

L
P

BASE MODEL 70.3 0.0 45.7 5.9 73.0 11.1
SI (Zenke et al., 2017) 69.0 0.9 49.3 3.0 68.4 9.1

LUMP (Madaan et al., 2022) N/A N/A 73.6 9.8 77.1 11.5

Table 1: Fine-tuning and linear evaluation performance with their negative backward transfer of the first task on ImageNet 1K and
CIFAR-100 Split after supervised/unsupervised continual learning. We report the Top-1/Top-5 performance for all individual experiments
on ImageNet and the Top-1 performance on CIFAR-100. Higher is better for both metrics, and the best results are highlighted in bold.
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(a) FInetuning - Base (b) Linear Probe - Base (c) FInetuning - SI (d) Linear Probe - SI
Figure 4: (a-b): Model transferability on ImageNet 1K Split. We compare the fine-tuning accuracy on the OOD task (T9) after pre-
training the first task (After T0) with the performance after pre-training on nine sequential tasks (After T8). We continually pre-train with
Supervised learning (Sup), Contrastive Self-supervised learning (Contr), and Masked Image Modeling (MIM). (c-d): Same visualization
with a CL method, SI, during pre-training.

implement a MIM-based continual self-supervised learning
framework under SimMIM (Xie et al., 2022b) and MAE (He
et al., 2022) for UCL. CURL (Rao et al., 2019) is one of the
pioneer works on unsupervised continual learning literature,
but it is not scalable for high-resolution visual images by
design. We utilize several CL methods: SI (Zenke et al.,
2017), DER (Buzzega et al., 2020), and LUMP (Madaan
et al., 2022). We further describe details, including hyperpa-
rameter setups in Appendix A.

Datasets We use ImageNet-1K (Deng et al., 2009) and
CIFAR-100 dataset (Krizhevsky et al., 2009) by splitting it
into ten tasks where each task contains 100 and 10 classes,
respectively. In Table 1, we construct a sequential dataset
with nine earlier tasks and assign the last one as a down-
stream (validation) task with fine-tuning. Additionally, we

split CIFAR-100 into five tasks for the continual pre-training
experiment.

5.2. Experimental Results

Evaluation performance during continual learning We
validate the transfer quality of representation of continual
learning models through the first task (T0)’s evaluation in Ta-
ble 1. We measure the change in the linear evaluation and
fine-tuning performance. The evaluation of T0 from full
pre-trained models over the Imagenet-1K and -22K datasets
obtains high validation accuracy on fine-tuning and linear
evaluation as they train on entire datasets. Fine-tuning the
base continual learning models, which perform a simple
CL strategy without additional methods during training task
sequences, achieves performance increases in T0 as they
pre-trained longer task sequences, obtaining positive values
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Supervised SimSiam SimMIM
Figure 5: Visualization of aggregated attention distance on an OOD task (T9) at each layer at the end of each continual learning task
phase (T0→T8). The radius of marker indicates the standard deviation over attention heads in the corresponding layer.
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Figure 6: Left: CL improves model generalization. Sequential
training on more tasks further increases fine-tuning performance
on the unseen task (T9). Right: The impact of freezing weights
on a few lower/deeper layers during CL after training the first
task. We measure fine-tuning accuracy at the end of training the
first task (T0) and last task (T8), and use supervised (Sup) and
masked image modeling (MIM). LF and DF denote freezing lower
layers and freezing deeper layers, respectively.

in backward transfer. In ImageNet 1K Split, the results are
similar to all supervised and unsupervised continual learning
frameworks, including Contrastive Self-supervised Learn-
ing (Madaan et al., 2022)- and Masked Image Modeling-
based UCL (Please see Section 4.2). We also performed
multiple continual learning methods, such as SI, DER, and
LUMP. We found that they follow consistent tendencies
according to the CL frameworks when LUMP with masked
image modeling gains the highest accuracy on T0 with the
strong backward transfer. On the other hand, the model
degrades the linear evaluation performance in supervised
continual learning, which had to do with catastrophic for-
getting reported in conventional CL scenarios. SI and DER
achieve increased final performance since the model miti-
gates the weight drift preserving the task-specific features
on learned tasks. In CIFAR-100 Split, we similarly observed
that fine-tuning the in-distribution task (i.e., the first task) of
Base/SI/LUMP with reconstruction-based UCL framework
achieves higher and positive BwT than the case of CL meth-
ods in a supervised manner, demonstrating that supervised
CL suffers more severe forgetting of task-discriminative in-
formation at deeper layers, unlike reconstruction-based UCL
focusing on task-generic features over all layers. Note that
the linear evaluation on CIFAR-100 seems more robust to
forgetting than ImageNet experiments. We expect that these

relative benefits in forgetting came from the shallower data
distribution space and simpler visual features of CIFAR-100
compared to ImageNet.

Analyses for an Out-Of-Distribution (OOD) task We
denote the last task (T9) as an out-of-distribution problem,
excluding it from the continual task sequence. In Figure 4,
we visualize the top-1 validation accuracy on an OOD task
over three continual learning frameworks w/ and w/o SI.
Similar to in-distribution evaluation, the MIM-based UCL
method achieves higher fine-tuning performance both on
the base model and SI. The linear probe performance of
Supervised CL surpasses unsupervised counterparts, and
we expect that representation from supervised learning con-
tains directly helpful features to classify the high-resolution
and complex task problems even without the re-update of
backbone weights. In contrast, MIM remarkably underper-
forms on linear evaluations due to its characteristic property;
Masked Modeling focuses on capturing global attention
rather than the local one, providing a better generalization
ability to unseen tasks. But its linear evaluation without
fine-tuning the weights is inadequate to solve the problem
as they contain little task-discriminative information.

To understand how CL frameworks exhibit incremental
model generalization and fine-tuning performance, we ana-
lyze the behavior of layer attention during continual learning
using the Swin-T backbone. In Figure 5, we visualize the
layer-by-layer changes in aggregated attention distance for
T9 while the model trains ImageNet-1K-Split sequentially
until the penultimate task (T0→T8). Interestingly, aggre-
gated attention distance significantly decreases the scale
and increases the diversity across attention heads. This
demonstrates that the continual learner captures richer task-
general (or low-level) features behaving with more local
attention (i.e., lower attention distance), which retains lo-
calized information with strong local inductive bias, such
as edges, patterns, and textures. In Supervised and Con-
trastive Continual Learning frameworks, lower layers tend
to drastically change toward capturing task-generic atten-
tion, and it is also coincident with well-known observations
that lower layers in neural networks are more concerned
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Figure 7: Learning accuracy and loss of CIFAR-100 (T=5) at
each continual pre-training step. Right: Solid and dashed lines
indicate validation and training loss, respectively.

PRE-TRAINED T0→T4 Continual learning over T5→T8

T5 T6 T7 T8

SUPERVISED 64.56 69.06 75.06 77.80

+ GLAD (OURS) 65.78 69.84 76.12 79.04

SIMMIM (Xie et al., 2022b) 68.34 72.22 77.38 80.12

+ GLAD (OURS) 68.24 73.24 78.94 81.62

MAE (He et al., 2022) 42.19 52.07 63.07 71.19

+ GLAD (OURS) 41.75 54.74 68.01 74.30

Table 2: Fine-tuning accuracy of T9 at each continual pre-
training step (T5→ T8) over ImageNet1k-split. We initialized
the model weights using continual (representation) learning over
the earlier five sequential tasks (T0→ T4) to focus on continual
pre-training performance on a few later tasks.

with low-level features. Also, Masked Image Modeling
(SimMIM) results demonstrate the salient effectiveness of
capturing task-generic attention compared with the other
two frameworks.

Freezing the partial layer weights during continual learn-
ing We further analyze the effect of the layers for incre-
mental generalization during continual learning in Figure 6
right. After supervised/unsupervised training of the first task
(After T0), we freeze the two lowest or two deepest layer
weights during the successive continual learning up to the
final task (After T8). For the MIM-based UCL framework,
we use MAE with a ViT-B backbone. In supervised learn-
ing, both partial gradient update policies reduce the degree
of incremental generalization during continual learning. It
significantly reduces the representation model’s fine-tuning
performance compared to the fully-trained model. However,
interestingly, prohibiting the update of layer weights at both
ends less affects MIM-based unsupervised continual learn-
ing. We expect that this property comes from its flexibility
in learning diverse attention across all layers. For further
analyses, please see Appendix C.4.

Improving model generalization via Global Attention
Discretization We now validate our proposed method,
Global Attention Discretization (GLAD), which encourages
incremental model generalization during supervised contin-
ual pre-training. As discussed earlier, supervised training
tends to focus on task-specific attention at deeper layers.

That is, the model is hard to stray far from the weight space
of the limited locality inductive bias, which is evident in
the slower movement of averaged attention distance from
supervised continual pre-training compared to the SimMIM-
based (Please see Figure 5) and results in suboptimal adap-
tation to arriving tasks. In Table 2, we report the fine-tuning
performance during continual pre-training. Note that to see
the effect of MIM-based continual pre-training, we first per-
form continual pre-training over the earlier five tasks from
ImageNet-1K Split under supervised and MIM-based unsu-
pervised continual learning. Next, the pre-trained models
fine-tune the remaining tasks in a sequential manner. We
adopt SimMIM and Masked AutoEncoder (MAE) to under-
stand general behaviors in MIM frameworks during unsu-
pervised continual learning. Our proposed GLAD achieves
significant gains in the performance of each task during se-
quential full-finetuning over different pre-trained initializa-
tion from supervised and unsupervised learning. In Figure 7,
we visualize that our proposed GLAD consistently performs
well in view of the generalization using the in-distribution
task (CIFAR-100) during continual pre-training phase.

6. Conclusion
As powerful representation models have a great versability
to solve various downstream tasks, exploring incremental
pre-training strategy on a number of sequential tasks can be
a practical and important approach. This paper delves into
how supervised and unsupervised continual learning affects
model generalization from various perspectives. To our sur-
prise, continual learning models preserve or even increment
their transferability on in- and out-of-distribution tasks, in-
creasing fine-tuning performance as pre-training more tasks.
We scrutinize the behavior of representations in CL frame-
works in the pre-training, including masked image modeling-
based unsupervised continual learning, and find that the con-
tinual learner tends to forget class-discriminative features
while progressively accumulating transferable features. Mo-
tivated by our observations, we propose a new method for
continual pre-training to help backbone weights gain trans-
ferability during fine-tuning by introducing a new MSA
module with parametric adaptors. We believe the explo-
ration of continuous learnability of the representation model
would contribute to developing eco-friendly and resource-
efficient training regimes for broad research/industry fields.
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Douillard, A., Ramé, A., Couairon, G., and Cord, M. Dytox:
Transformers for continual learning with dynamic token
expansion. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

Fini, E., da Costa, V. G. T., Alameda-Pineda, X., Ricci,
E., Alahari, K., and Mairal, J. Self-supervised models
are continual learners. In Proceedings of the IEEE In-
ternational Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), 2017.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised rep-
resentation learning by predicting image rotations. arXiv
preprint arXiv:1803.07728, 2018.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.
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A. Details for Problem Setups
Datasets We use ImageNet (Deng et al., 2009) dataset,
containing 1000 classes of high-resolution object images
with their corresponding labels. We split them into 10 tasks,
where each task consists of 100 different classes. We use
only 10% of training instances in each task for pre-training,
and use the full set for the fine-tuning and linear probe.
Accuracy is measured by the validation dataset for each task.
Note that Table 2 also use 10% of the training set for pre-
training earlier five sequential tasks from T0 to T4, and use
the full training set for the sequential fine-tuning procedure
from T5 to T8.

Architectures and baselines We follow (Madaan et al.,
2022) for an unsupervised continual learning frame-
work with contrastive self-supervised learning using Sim-
Siam (Chen et al., 2020a). For masked image modeling,
we follow the setting of SimMIM (Xie et al., 2022b) and
MAE (He et al., 2022) using their official code reposito-
ries12 where the masking ratio is 0.6 and 0.75, respectively.
We use Vision Transformer (Dosovitskiy et al., 2020) (ViT-
B) and Swin Transformer (Liu et al., 2021) (Swin-T) for
backbone architectures. In ViT-B, the embedding dimension
is 768, the layer depth is 12, the number of heads is 12, and
the patch size is 16. In Swin-T, the embedding dimension
is 96, the layer depth at each block is [2, 2, 6, 2] (in total
12), the number of heads at each block is [3, 6, 12, 24], the
patch size is 4, and the sliding window size is 7. We set
the input image size to 224 for all experiments but 192 for
SimMIM pre-training. For continual learning methods, we
use SI (Zenke et al., 2017), DER (Buzzega et al., 2020), and
LUMP (Madaan et al., 2022). The implementation is built
upon an official code of LUMP3.

Training setups and hyperparameters We use AdamW
optimizer (Loshchilov & Hutter, 2017) with cosine learning
rate decay and the warmup for all experiments. For the pre-
training phase at each task, we train the model 60 epochs
on supervised learning and 100 epochs on unsupervised
learning models as self-supervised learning methods without
label supervision may require more iterations to converge.
For fine-tuning, we basically perform 30 epochs training.
For fine-tuning from the model pre-trained Imagenet 1K &
22K in Table 1, we set the number of training epochs to 10
as they rapidly converge within a few iterations. We set the
hyperparameter for balancing the degree of regularization
term λ = 100 for SI, λ = 0.1 for DER, and α = 0.1
for LUMP. And the buffer size is 200 for rehearsal-based
continual learning methods like DER and LUMP. We set the
batch size to 64 for SimSiam pre-training, otherwise 128.

1https://github.com/microsoft/SimMIM
2https://github.com/facebookresearch/mae
3https://github.com/divyam3897/UCL

Table 3 summarizes the learning rate and training epochs
for experiments, and we linearly scale the learning rate with
batch size/512 in practice to reflect the input variance,
followed by (Goyal et al., 2017).

Table 3: Basic configurations for three continual learn-
ing frameworks during pre-training and fine-tuning, where
η = 2e−4. We report the best combinations of
the learning rate for pre-training and fine-tuning in
the range of [0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0] × η and
[0.1, 0.5, 1.0, 5.0]× η, respectively.

PRE-TRAINING FINE-TUNING

SUPERVISED lr: 1.0η, epoch: 60 lr: 0.5η, epoch: 30
CONTRASTIVE lr: 0.2η, epoch: 100 lr: 1.0η, epoch: 30

MIM lr: 5.0η, epoch: 100 lr: 5.0η, epoch: 30

Evaluation metrics We additionally introduce a linear
classifier per task and measure fine-tuning and linear probe
(or linear evaluation) accuracy by using the pre-trained back-
bone. For linear evaluation, we independently train a clas-
sifier over the training set of the corresponding task while
freezing the backbone weights, and measure the accuracy
on the validation set. For fine-tuning, we train a classifier
as well as backbone weights over the training set of the
target task. In this paper, we denote the term backward
transfer (BWT), accbwt

t , of task t as the fine-tuning accuracy
(or linear probe accuracy) disparity between the model after
training task t and the end of sequential training. Given T
sequential tasks {Tt}Tt=1:

accbwt
t = acct,T − acct,t, (7)

where acci,j is the measured accuracy for task i using se-
quentially pre-trained backbone model from the first task
to jth task. Followed by Xie et al. (2022a), we compute
the attention distance at each attention head to analyze the
change of attention during continual learning. Let al,i be an
ith attention head output at layer l, the averaged attention
distance dal,i is measured by

dal,i =
∑
j

c∗āl,i
j , (8)

where c∗ is the corresponding distance map and āl,i is a
normalized attention matrix.

B. Further Discussions on Meta Learning
Chen et al. (2023) observes that the representation learned
by meta-learning can be generic and useful for CL in terms
of forgetting and forward transfer. Provided results and
insights are interesting, therefore, here we discuss a few
clear differences compared to Meta-learning (Finn et al.,
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SUPERVISED Masked Model

FINAL ACC NEG. BWT FINAL ACC NEG. BWT

FT

BASE 70.47 (± 7.91) 1.77 (± 1.56) 86.17 (± 1.99) 20.90 (± 1.88)

SI 70.93 (± 6.11) 4.80 (± 2.24) 83.50 (± 3.04) 16.80 (± 3.33)

LUMP N/A N/A 85.80 (± 2.57) 18.30 (± 1.18)

L
P

BASE 62.53 (± 6.58) 0.03 (± 0.05) 67.53 (± 4.05) 10.03 (± 1.17)

SI 62.47 (± 5.12) 2.07 (± 2.16) 64.60 (± 2.72) 9.77 (± 0.87)

LUMP N/A N/A 68.97 (± 5.98) 12.60 (± 0.99)

Table 4: Averaged fine-tuning and linear probe performance
on CIFAR-100 Split. We report the mean and standard deviation
for three independent runs with randomly shuffled task orders.

2017). First, we do not need an external buffer for the re-
hearsal, while FOMAML (Finn et al., 2017) requires keep-
ing a (sub)set of past task data for inner loop update. Their
reliance on rehearsal buffers has been criticized (Hadsell
et al., 2020; Lomonaco et al., 2020; Wang et al., 2022) in the
CL field. The performance of the rehearsal-based methods
is sensitive to the size of the buffer (Prabhu et al., 2020),
and they cannot be used in applications with concerns about
data privacy. The MAML-based method requires exhaus-
tive computational cost due to iterative and sequential inner
loop updates for sampled past tasks at each iteration of
current task training. On the other hand, our GLAD re-
quires a marginal additional computation over the original
training. Our GLAD gains benefit from adaptor-based mod-
ulation. In GLAD, the backbone focuses on capturing task-
generic information, and a lightweight adaptor transforms
them to task-adaptive attention for downstream task adap-
tation. Therefore, we can anytime recover the past model
from the current one without storing full weights, by simply
re-attaching the GLAD adaptor learned on the past task.
Moreover, we can remove the unnecessary past task-specific
knowledge from the model, or avoid the threat of perfor-
mance degradation from training on noisy tasks/datasets -
since the module for task-adaptive transformations is physi-
cally separate from generic representation (which is similar
to (Yoon et al., 2020)). These practical utilizations are un-
available for Meta-learning as they update the entire weights
without careful consideration of the knowledge modulation.

C. Additional Analyses
C.1. Evaluation on Task Order Shuffling

We additionally performed the evaluation on three different
task orders for further reliable analyses in our experiments.
At first, we measure fine-tuning and linear evaluation perfor-
mance with the backward transfer using CIFAR-100. Sim-
ilar to our experimental setting using ImageNet, we split
CIFAR100 into ten tasks, containing ten disjoint classes per
task. Then we train on the earlier nine tasks sequentially
and measure the accuracy of the OOD task (10th), which is
not seen during continual learning, as well as the forgetting

of the first task with the backward transfer. Regardless of
the three orders of the task sequence, we observed that our
proposed masked modeling-based UCL framework consis-
tently surpasses supervised CL in terms of the fine-tuning
performance on OOD task (T9) over all continual learning
methods (Base/SI/LUMP), as similar to ImageNet results in
Table 1. This is because masked modeling-based UCL con-
tinuously trains on more improved generic representations,
evident in Figure 5 that continual learners gradually capture
richer task-general (or low-level) features behaving with
more local attention (i.e., lower attention distance), which
retains localized information with strong local inductive
bias, such as edges, patterns, and textures.

C.2. Attention Distance and Entropy from Different
Transformer Backbones

We plot the attention distance and distribution of attention
heads per layer for ViT-B in Figure 9 and Figure 10, respec-
tively. And also, plot the attention distance and entropy of
the distribution of attention heads per layer for Swin-T in
Figure 11 and Figure 12. Both self-attention-based architec-
tures similarly behave according to the learning frameworks,
i.e., Supervised, SimSiam, and SimMIM. Note that two con-
secutive layers in Swin-T repeat relatively high and low
values for both metrics since two successive swin trans-
former blocks (S-MSA and SW-MSA in their original paper)
aggregate locality in different ranges.

C.3. Change of Aggregated Attention Distance and
Entropy during Continual Learning

sup:subsec:analyses-entr We additionally visualize the
movement of aggregated entropy of the distribution from
each attention head in Figure 8. We visualize the plot for
attention distance in Figure 5 again for a better comparison
between them. Similar to observations in attention distance
visualization, aggregated attention entropy gradually de-
creases as proceeding to pre-train more tasks, encouraging
incremental model generalization. And aggregated atten-
tion entropy for supervised and contrastive learning-based
continual learning frameworks suffer from a small diversity
with a high average amount of information for all attention
heads, compared to SimMIM.

C.4. Aggregated Attention Distance and Entropy while
Freezing Partial Layers

We further visualize the movement of aggregated attention
distance and entropy when freezing the two lowest and deep-
est layers in Figure 13 and Figure 14, respectively. These
experiments are exactly from Table 2. Interestingly, if Sim-
MIM freezes a few layers during continual learning, the
remaining trainable layers tend to decrease their attention
distance and entropy more actively. We believe that this
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Supervised SimSiam SimMIM
Figure 8: Top row: Visualization of aggregated attention distance on an OOD task (T9) at each layer at the end of each continual
pre-training task phase (T0→T8). The radius of marker indicates the standard deviation over attention heads in the corresponding layer.
Bottom row: Aggregated attention entropy on T9.

is a reason that the SimMIM does not find noticeable per-
formance degeneration in fine-tuning, even freezing a few
layers during continual learning. However, we didn’t ob-
serve a significant change in supervised continual learning.
This is because supervised learning is prone to rigidly fo-
cus on different features according to the layer depths (i.e.,
global to local), and therefore cannot flexibly cope with
capturing locality inductive bias.

D. Limitations and Societal Impact
Limitations Although we have shown promising results
and findings in multiple CL frameworks, our proposed
GLAD module requires extra memory and computation
for the regularization term. Moreover, We design the ex-
periment of continual pre-training with less than ten tasks,
which is insufficient to evaluate lifelong learning. Reducing
the memory cost for the additional adaptor and extending
our framework to a larger number of continual pre-training
tasks will be important for future work.

Negative societal impact Our work doesn’t store past task
data in the buffer so that we can avoid the negative societal
impact raised by data privacy issues in the community.
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Figure 9: ViT-B Attention distance of the first (T0) and the last task (T8) in a task sequence with respect to three continual pre-trained
frameworks right after the completion of the first (wT0) and last task (wT0→T8).
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Figure 10: ViT-B Attention entrtopy of the first (T0) and the last task (T8) in a task sequence with respect to three continual pre-trained
frameworks right after the completion of the first (wT0) and last task (wT0→T8).
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Figure 11: Swin-T attention distance of an in-distribution (T0) and ood task (T9) with respect to three continual pre-trained frameworks
right after the completion of the first (wT0) and last task (wT0→T8).
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Figure 12: Swin-T attention entropy of an in-distribution (T0) and ood task (T9) with respect to three continual pre-trained frameworks
right after the completion of the first (wT0) and last task (wT0→T8).
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Full-finetuning Freezing lower layers Freezing deeper layers
Figure 13: Visualization of aggregated attention distance on an OOD task (T9) at each layer at the end of each continual pre-training
task phase (T0→T8). We freeze the two lowest or deepest layers after pre-training the first task (T0). The radius of the marker indicates
the standard deviation over attention heads in the corresponding layer.
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Full-finetuning Freezing lower layers Freezing deeper layers
Figure 14: Visualization of aggregated attention entropy on an OOD task (T9) at each layer at the end of each continual pre-training
task phase (T0→T8). We freeze the two lowest or deepest layers after pre-training the first task (T0). The radius of the marker indicates
the standard deviation over attention heads in the corresponding layer.
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