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Abstract

Error correcting output codes (ECOCs) have been
proposed to improve the robustness of deep neu-
ral networks (DNNs) against hardware defects of
DNN hardware accelerators. Unfortunately, ex-
isting efforts suffer from drawbacks that would
greatly impact their practicality: 1) robust accu-
racy (with defects) improvement at the cost of
degraded clean accuracy (without defects); 2) no
guarantee on better robust or clean accuracy using
stronger ECOCs. In this paper, we first shed light
on the connection between these drawbacks and
error correlation, and then propose a novel com-
prehensive error decorrelation framework, namely
COLA. Specifically, we propose to reduce inner
layer feature error correlation by 1) adopting a
separated architecture, where the last portions of
the paths to all output nodes are separated, and 2)
orthogonalizing weights in common DNN layers
so that the intermediate features are orthogonal
with each other. We also propose a regulariza-
tion technique based on total correlation to miti-
gate overall error correlation at the outputs. The
effectiveness of COLA is first analyzed theoreti-
cally, and then evaluated experimentally, e.g., up
to 6.7% clean accuracy improvement compared
with the original DNNs and up to 40% robust
accuracy improvement compared to the state-of-
the-art ECOC-enhanced DNNs.

1. Introduction
Due to the growing computational complexities of deep
neural networks (DNNs), hardware acceleration becomes
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critical to their practical use (Chen et al., 2019; Hao et al.,
2019; Ye et al., 2020; Zhang et al., 2020). However, DNN
hardware accelerators often suffer from hardware defects,
which result in DNN parameter deviations and hence per-
formance degradation (Li et al., 2017; Zhang et al., 2018;
Long et al., 2019; Mittal, 2020; Ibrahim et al., 2020; Dash
et al., 2021). Therefore, it is essential to alleviate perfor-
mance degradation due to hardware defects by improving
the robustness of DNNs against parameter deviations.

Inspired by error correction codes (ECCs) widely used in
digital communication and storage systems, recent works
have adopted error correcting output codes (ECOCs) to in-
crease the robustness of DNNs (Dietterich & Bakiri, 2018;
Liu et al., 2019; Liu & Wen, 2019; Verma & Swami, 2019;
Song et al., 2021). Instead of mapping sample labels to
one-hot labels in the original DNNs, DNNs with ECOCs en-
code sample labels to codewords of a binary error correction
code such as Hadamard code. The Hamming distances be-
tween codewords translate into greater inter-class distances.
Additionally, DNNs with ECOCs utilize sigmoid output
layer activation, which improves DNNs’ fault tolerance ca-
pability (Verma & Swami, 2019). Consequently, DNNs
with ECOCs can correct errors without the knowledge of
the error model, thanks to their inherent error correction
capability.

Just like ECCs for digital communications, we envision
that an ideal ECOC solution dedicated to the state-of-the-
art DNNs should satisfy the following requirements: 1)
keeping model accuracy as high as possible regardless
of whether the hardware (e.g., memory to store weights)
is defect-free (clean accuracy) or not (robust accuracy);
2) improving robust accuracy more prominently when
adopting stronger ECOCs with increased minimum Ham-
ming distances (dmin). Unfortunately, there is no systematic
study on designing ECOCs for DNNs to satisfy these two
requirements. Furthermore, current solutions are far from
satisfactory in terms of both aspects (Verma & Swami, 2019;
Song et al., 2021). Without loss of generality, we experi-
mentally compare the accuracy of models with and without
ECOCs under different levels of weight variations using an
example image classification task–AlexNet-CIFAR10 and
error model (detailed settings are presented in Section 4.1).
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Figure 1. Performance in the presence of hardware defects of
AlexNet/CIFAR10 with three network configurations: 1) using
one-hot labels and softmax output layer activation; 2) using one-
hot labels and sigmoid output layer activation; 3) using Hadamard-
16 labels and sigmoid output layer activation. The experimental
settings are described in Section 4.1.

Figure 1 shows that when the weights suffer from zero
(or very limited) variations, models protected by different
strengths of ECOCs (e.g., one-hot or Hadamard-16 coded la-
bel) unexpectedly deliver lower accuracy than their counter-
parts without ECOC. Among ECOC-protected models, the
one with a stronger ECOC (Hadamard-16, dmin = 8) per-
forms even worse than a weaker ECOC (one-hot, dmin = 2).
Figure 1 also shows that while ECOCs improve the model’s
robust accuracy under high variation levels, their impact is
still limited. Again, a stronger ECOC surprisingly offers
lower robust accuracy than a weaker one.

In this work, we identify the root cause that fundamentally
limits the performance of ECOCs in modern DNNs. At a
high level, our key observation is that errors in DNNs are
intrinsically correlated due to the layer-wise convolution-
based feature extraction or fully-connected based decision
making. Error correlation significantly diminishes the ef-
fectiveness of error correction codings for DNNs. In our
work, error broadly refers to the difference between the
target and the actual DNN outputs originating from both
the model approximation error (without hardware defects)
and parameter deviation incurred model error (with hard-
ware defects). In other words, with or without parameter
deviations, in DNNs with ECOCs, the error of each binary
classifier is correlated with those of the other classifiers. An
in-depth discussion is presented in Section 3.1. Inspired
by this, we rethink the design of error coding for DNNs
and propose a comprehensive error decorrelation framework
that orchestrates the error coding and learning architecture,
namely COLA, for much improved clean accuracy and ro-
bust accuracy when considering weight parameter errors
incurred by hardware device defects for both analog and
digital DNN hardware accelerators.

Our major contributions are three-fold: 1) We propose
an amplitude-adaptive weight orthogonalization (AAWO)
method to orthogonalize feature errors on the early layers

to prevent error correlation propagation and accumulation.
Theoretical analysis shows that the feature errors are approx-
imately independently identically distributed with weight
orthogonalized. 2) We propose a regularization technique
based on total correlation (TC) to reduce output error cor-
relation rigorously. Theoretical results show that regulariz-
ing total correlation potentially lowers classification error
probability. 3) We propose a holistic framework for error
decorrelation tailored for DNNs, namely COLA, by integrat-
ing AAWO, separation architecture, and TC regularization
across inner and output layers, so as to facilitate the adop-
tion of stronger ECOCs and maximize their error correction
capability of improving clean accuracy and robust accuracy.

The evaluations of COLA are performed on the MNIST,
CIFAR10, CIFAR100, and Tiny ImageNet datasets using
Lenet-5, AlexNet, and VGG-16. Experimental results show
that COLA results in not only clean accuracy improvement
compared with the original DNNs but also robust accuracy
improvement compared to previous DNNs with ECOCs.

2. Background
2.1. Error Correcting Output Codes (ECOCs)

Let x ∈ Rd and C ∈ C be an input to a DNN and its cor-
responding label, respectively, where C is the label sample
space. The output of the DNN, parameterized by θ, is given
by f(x; θ) = [f1(x; θ), f2(x; θ), ..., fN (x; θ)], where N is
the number of outputs. For training purposes, each label C
is encoded into a target through a mapping T (C) : C → T ,
e.g., one-hot encoding, and supervised training of the DNN
is formulated as

min
θ

L(θ) ≜ Ex [l (f(x; θ), T (C))] , (1)

where L(θ) is the training loss and l(·, ·) is the sample loss.
x, modeled as a random variable, is drawn from a true
distribution (infinite dataset) or empirical distribution (finite
dataset).

In a classification task with DNN using ECOCs, the code-
book consists of |C| binary codewords with code length N .
With sigmoid as the output activation function, each element
of f(x; θ) ranges from 0 to 1. A binary cross entropy (BCE)
is used as the loss function. By noticing that T (C) is a
binary vector,

LBCE(θ) = Ex

[ N∑
n=1

− log(1− Un)

]
, (2)

where Tn(C) is the n-th entry of the target T (C) and Un ≜
|fn(x; θ)− Tn(C)|. During inference, the decision is made
through the decoding process D(f(x; θ)) : [0, 1]N → C.
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The decoding process is given by

D(f(x; θ)) = argmin
c∈C

d(f(x; θ), T (c)), (3)

where d(·, ·) is a decoding metric, such as the l1 or l2 norm.

We highlight several differences between DNNs with
ECOCs and the original DNNs. 1) T (C) maps a label to
a designed binary codeword for the former, whereas T (C)
is the one-hot encoding for the latter. 2) While the former
uses sigmoid fn(x; θ) =

1
1+e−zn as output activation func-

tion, the latter uses softmax fn(x; θ) = ezn∑N
i=1 ezi

, where
zn = zn(x; θ) is the output logit (input to activation func-
tion). 3) While DNNs with ECOCs use BCE defined in
Equation (2) as the loss function, the latter uses categorical
cross entropy (CCE)

LCCE(θ) = Ex

[ N∑
n=1

−Tn(C) log fn(x; θ)

]
. (4)

2.2. Hardware Defects in DNN Accelerators

The state-of-the-art DNN accelerators are classified as digi-
tal and analog, depending on how weights are stored, and
multiply-accumulate operations are implemented in cir-
cuitry. Both digital and analog DNN accelerators suffer
from hardware defects (Ni et al., 2017; Kim et al., 2018).

State error in analog accelerators. Memristive DNN accel-
erator is one of the most popular analog DNN accelerators
because of its low latency and low data movement (Shafiee
et al., 2016; Ni et al., 2017). It accelerates matrix-vector
multiplication by mapping operands to analog voltages, cur-
rents, and conductances on a crossbar structure. Due to the
analog nature of the computation in memristive DNN accel-
erators, the operands, especially weights W that are stored
as conductances on the crossbar, often deviate from their
accurate values for various reasons, such as device variation,
stuck-at-faults, and electrical noise (He et al., 2019; Liu
et al., 2015; Chen et al., 2017). In this paper, we simulate
such state error, where the perturbed weights W̃ follow log-
normal distribution: W̃ = W⊙eV, where ⊙ represents the
Hadamard product. V has the same dimensions as W, and
the elements in V follow Gaussian distribution N (0, γ2).

Bit-flip error in digital accelerators. Typical digital DNN
accelerators like GPUs have dedicated hardware memory,
such as DRAM, to store model parameters. To improve
energy efficiency, recently DNN accelerators also decrease
the memory supply voltage (Reagen et al., 2016; Kim et al.,
2018; Chandramoorthy et al., 2019; Stutz et al., 2021). How-
ever, bit error probability increases exponentially as memory
supply voltage scales down. In this work, we assume bit
error happens independently and randomly on each bit posi-
tion with a bit flip rate α.

3. Our Approach-COLA

3.1. Design Motivation and Overview of COLA

To further understand why existing ECOCs achieve both
undesirable clean accuracy and robust accuracy for DNNs
with or without hardware-incurred weight errors, we ob-
serve that error correlation is intrinsically rooted in DNNs
for two reasons. First, with or without ECOCs, a convo-
lutional or fully-connected layer of a DNN leverages the
shared information (e.g., the same input features or neurons)
to compute each output feature map or neuron. If there exist
errors in the shared information, the errors appearing across
different outputs are structurally correlated. When such cor-
related errors are not decoupled at earlier layers, these errors
will propagate and accumulate layer by layer and eventu-
ally translate into incorrect decisions at the output layer.
Second, from the perspective of learning, modern DNNs
need to collaboratively train output classifiers via softmax
activation to achieve high accuracy (see Equation (4)), while
ECOC-enhanced DNNs require the independence of output
classifier learning (see Equation (2)) to maximize the er-
ror toleration capability with increased minimum Hamming
distance. For models with zero or very limited weight vari-
ations, the correlated intrinsic model approximation error
dominates. While original DNNs penalize such an error
by softmax-based collaborative classifier learning, DNNs
with ECOCs cannot. Hence, original DNNs without ECOC
outperform DNNs with ECOCs in clean accuracy. With
more hardware defects, the correlated errors, which are now
dominated by errors due to parameter deviation, also in-
crease significantly and quickly exceed the toleration limit
of original DNNs. In this case, DNNs with ECOCs with
a larger error tolerance margin due to larger dmin and the
usage of sigmoid output (Verma & Swami, 2019), perform
better. However, the improvement is still limited even with
stronger ECOCs, since the inflated output error correlation
is not explicitly handled in learning.

To reduce error correlation in DNNs, one intuitive way is to
physically separate the path from an intermediate layer to
the output nodes as proposed in (Verma & Swami, 2019).
However, as we shall show in Sec. 4.2, its effectiveness is
limited due to the high error correlation on the common
layers. Therefore, we believe effectively decorrelating er-
rors before and after the structurally separated intermediate
layer is essential. Inspired by this, we propose a compre-
hensive error decorrelation framework COLA. The driving
vision of COLA is to mitigate the feature error correlation
due to model approximation error or model parameter de-
viations from the inner layers to the output layer through
a fine-grained manner so as to improve the clean accuracy
and robust accuracy of ECOC-based DNN inference simul-
taneously. Figure 2 depicts an overview of COLA, which
mainly consists of inner feature error decorrelation and out-
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Figure 2. An overview of our proposed COLA, including inner feature error decorrelation and output error decorrelation. Inner feature
error decorrelation further includes the adoption of separation architecture and our proposed amplitude-adaptive weight orthogonalization
(AAWO). By using AAWO, WWT becomes a diagonal matrix. The proposed TC regularizer results in diagonal dominant Cov(U).

put error decorrelation. To decorrelate inner feature errors,
we adopt separation architecture to reduce error correlation
on the latter layers and propose amplitude-adaptive weight
orthogonalization (AAWO) to reduce error correlation on
the common layers. Moreover, we propose a regularization
technique based on total correlation (TC) to reduce output
error correlation. Detailed designs and theoretical analysis
are presented below.

3.2. Inner Layer Feature Error Decorrelation

Feature error decorrelation in the early shared layers is vi-
tal to the performance of separation architectures. In this
subsection, we first analyze how the existing weight orthog-
onalization (WO), originally proposed to speed up DNN
convergence (Huang et al., 2018; 2020), helps decorrelate
inner feature errors. We then propose an amplitude-adaptive
weight orthogonalization (AAWO) to better suit the needs
of ECOCs for separation architectures.

For a shared fully connected layer, indexed m, in a separa-
tion architecture, its input-output relation can be

om = σ(Wmom−1 + bm), (5)

where om, σ, Wm, om−1, and bm are the output, activation
function, weight matrix, input, and bias of the layer m, re-
spectively. With parameter deviation ∆Wm and layer input
error ∆om−1, the corrupted layer output õm is expressed as

õm = σ((Wm +∆Wm)(om−1 +∆om−1) + bm)

= σ(Wmom−1 +Wm∆om−1 +∆Wmom−1

+∆Wm∆om−1 + bm).

(6)

In general, the entries of the error term (Wm∆om−1 +
∆Wmom−1 + ∆Wm∆om−1) can be highly correlated.

We assume ∆Wm∆om−1 is negligible and focus on
Wm∆om−1 and ∆Wmom−1. Assume ∆Wm consists
of i.i.d. Gaussian entries, then ∆Wmom−1 consists of
i.i.d. Gaussian entries. If the entries of ∆om−1 are
i.i.d. Gaussian, and WO is applied, i.e., Wm(Wm)T =
AwI with constant Aw, then Wm∆om−1 consists of i.i.d.
Gaussian entries. Compared with the desired output,
the error term can be viewed as small value, so the ac-
tivation function can be approximated as linear locally
at (Wmom−1 + bm), which finally makes the whole
(Wm∆om−1 + ∆Wmom−1 + ∆Wm∆om−1) approxi-
mately independent Gaussian. Though the entries of the
error term are not identically distributed for a single DNN
input across the whole DNN input space, the error can be
viewed as i.i.d. Gaussian approximately.

Note that both the correlation and the variance of the entries
of final output error ∆o contribute to the accuracy drop
of DNNs with ECOCs. Though WO reduces correlations,
the strong constraint Wm(Wm)T = AwI makes DNN
converge to a point with larger gradient ∇WmL (as it needs
to satisfy ∇WmL + µTWm = 0 instead of ∇WmL = 0,
where µ is the Lagrangian multiplier). This results in larger
absolute value of ∂L

∂Wm , larger variance of the loss variation
∆L ≈ ∂L

∂Wm∆Wm and therefore larger variance of the
entries of ∆o. To balance the correlation and variance, we
relax WO and propose AAWO as follows

min
θ

L(θ), s.t. Wm(Wm)T = Dm (7)

where Dm is a diagonal matrix with trainable diagonal
elements. At the price of a little weaker feature error decor-
relation, we reduce the variance of the error entries to obtain
better robustness as we will show in Section 4.2.3.

For a convolutional layer, indexed mc, in the shared layers
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of the separation architecture, we have

õmc = σ(Wmc ⊛ omc−1 +Wmc ⊛∆omc−1

+∆Wmc ⊛ omc−1 +∆Wmc ⊛∆omc−1 + bmc),
(8)

where ⊛ is the convolution operation. As a linear operation,
convolution can be represented by matrix multiplication

V ec(õmc) = σ(CWmcV ec(omc−1)+

CWmcV ec(∆omc−1) +Comc−1V ec(∆Wmc)+

C∆WmcV ec(∆om−1) + bmc),

(9)

where CWmc and Comc−1 are the corresponding circular
shift matrices so that their matrix multiplications are equiv-
alent to the convolutions, and V ec(·) is vectorization op-
eration. Notice that large random or orthogonal circular
shift matrices have good isometric properties (Wright & Ma,
2022), i.e., Comc−1CT

omc−1 and CWmcCT
Wmc are close to

multiple of identity matrices. The remaining arguments
for i.i.d. error on convolutional layers are the same with
fully connected layers. AAWO for convolutional layers can
be obtained by first converting W into a two-dimensional
matrix and then optimizing Equation (7).

3.3. Output Error Decorrelation

In this subsection, a regularization technique is proposed
to directly penalize output error correlation. We first intro-
duce the concept of total correlation as a measure of error
correlation.
Definition 3.1. Let Z1, Z2, . . . , ZK be random variables,
their total correlation TC(Z1, Z2, . . . , ZK) is defined as

TC(Z1, Z2, . . . , ZK)=

[ K∑
i=1

H(Zi)

]
−H(Z1, Z2, . . . , ZK),

(10)
where H(Zi) is the entropy of the random variable Zi and
H(Z1, Z2, . . . , ZK) is their joint entropy.

As the distribution of U1, U2, . . . , UN are intractable in
DNNs with ECOCs, we made approximations of their total
correlation by viewing them as Gaussian.
Lemma 3.2. Let Z1, Z2, . . . , ZK be Gaussian distributed
random variables with covariance matrix Σ, then their total
correlation

TCG(Z1, Z2, . . . , ZK) =
1

2
Tr(logΣ)− 1

2
log |Σ|. (11)

By using TCG as a proxy of output error total correlation,
DNNs with ECOCs are trained to minimize

L(θ) = LBCE(θ) + λTCG(U1, U2, . . . , UN ). (12)

To show how the total correlation influences the perfor-
mance of DNN with ECOC, we derive the following theo-
rem.

Theorem 3.3. Let ϵ be the upper bound of the total cor-
relation, i.e., TC(U1, U2, . . . , UN ) < ϵ. Let dmin be the
minimum Hamming distance of the code, and denote the set

A =

{
(u1, u2, . . . , uN ) :

N∑
n=1

un > dmin/2

}
. (13)

Let PU = PU1,U2,...,UN
and P̄U = PU1PU2 . . . PUN

, the
classification error probability Pe is then upper bounded as

Pe ≤ P̄U (A) +
√
1− e−ϵ. (14)

In Theorem 3.3, P̄U is a constructed distribution, such that
U1, U2, ..., UN are independent and the marginal distribu-
tion for each Un is the same as that for PU . Theorem
3.3 suggests that the difference between classification error
probability under correlated and independent output errors
is smaller than a quantity

√
1− e−ϵ determined by output

error total correlation. According to Equation (14), as the
code length of ECOC goes to infinity, P̄U (A) vanishes, and
the term

√
1− e−ϵ dominates. This explains why merely

increasing the code length results in limited improvement
in classification accuracy, and why error decorrelation is
important for ECOCs. Without any further assumption, the
influence of code length and Hamming distance on classifi-
cation performance is described in the following corollary:

Corollary 3.4. Let β be a constant such that the BCE
loss LBCE ≤ Nβ. Suppose β < dmin

2N , then P̄U (A) ≤
exp

(
− 2

N

(
dmin

2 −Nβ
)2)

, and

Pe ≤ exp

(
− 2

N

(
dmin

2
−Nβ

)2
)

+
√
1− e−ϵ. (15)

Apparently, the bound in Equation (15) becomes smaller
when dmin increases. However, a larger dmin is usually ac-
companied by larger code length N which tends to increase
the value of the bound. To analyze the effects of dmin and
N together, we define ν = infN

dmin(N)
N for any family of

codes, then Equation (15) can be written as

Pe ≤ exp
(
−2N (ν/2− β)

2
)
+

√
1− e−ϵ. (16)

When β, ν, and ϵ are fixed, increasing N leads to a smaller
upper bound for Pe and potentially higher accuracy. Simi-
larly, when N and ϵ are fixed, increasing ν (i.e., increasing
minimum Hamming distance dmin) or decreasing β (i.e.,
smaller loss) also results in higher accuracy. Moreover, us-
ing the proposed TC regularization leads to smaller ϵ and
smaller upper bound for Pe, which further proves the effec-
tiveness of the proposed output error decorrelation method.
For the proofs of the results in this subsection, please refer
to Appendix A.
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Table 1. Accuracy (% in the format of average ± standard deviation) with state error in analog accelerators. γ defines the variation level as
introduced in Section 2.2. Original, ECOC and ECOC+Sep (Verma & Swami, 2019) are the benchmarks. ECOC+Sep+orth, ECOC+TC
and ECOC+TC+Sep+orth are different combinations of techniques in COLA.

γ Original ECOC ECOC+Sep COLA (Ours)
ECOC+Sep+orth ECOC+TC ECOC+TC+Sep+orth

LeNet-5
MNIST

0 98.87 ± 0.08 98.82 ± 0.04 98.86 ± 0.05 98.75 ± 0.08 98.92 ± 0.09 98.79 ± 0.09
0.1 98.43 ± 0.15 98.59 ± 0.07 98.66 ± 0.04 98.60 ± 0.08 98.68 ± 0.08 98.71 ± 0.08
0.4 70.10 ± 2.41 81.09 ± 1.92 82.85 ± 0.93 91.54 ± 0.56 85.98 ± 1.41 93.12 ± 0.47
0.7 23.63 ± 1.58 36.10 ± 1.94 36.94 ± 2.19 45.80 ± 1.26 40.90 ± 1.50 49.50 ± 1.69

AlexNet
CIFAR10

0 72.33 ± 0.19 68.04 ± 0.50 71.67 ± 0.71 77.08 ± 0.38 69.74 ± 0.39 79.04 ± 0.20
0.1 70.65 ± 0.11 67.45 ± 0.35 71.07 ± 0.63 76.89 ± 0.37 69.41 ± 0.36 78.88 ± 0.15
0.3 57.84 ± 0.43 62.61 ± 0.58 65.67 ± 0.33 75.04 ± 0.19 65.69 ± 0.23 76.53 ± 0.17
0.5 36.11 ± 0.77 51.99 ± 0.61 54.48 ± 0.83 68.49 ± 0.69 56.34 ± 0.54 68.55 ± 0.20

VGG-16
CIFAR100

0 68.16 ± 0.52 49.06 ± 0.55 68.84 ± 0.41 68.82 ± 0.12 71.19 ± 0.15 71.30 ± 0.29
0.1 64.74 ± 0.95 48.07 ± 0.49 66.92 ± 0.45 67.74 ± 0.37 68.89 ± 0.39 70.16 ± 0.35
0.2 51.38 ± 1.56 44.00 ± 0.42 60.44 ± 0.34 66.12 ± 0.31 61.19 ± 0.58 68.60 ± 0.37
0.3 25.11 ± 1.18 33.06 ± 0.79 43.29 ± 0.89 62.93 ± 0.23 39.52 ± 0.55 64.25 ± 0.13

4. Evaluation
4.1. Experimental Settings

We use Tensorflow as our implementation framework. All
simulations are conducted in a workstation with one AMD
Ryzen Thread ripper 2990WX 32-core processor and four
NVIDIA GeForce RTX 2080Ti GPUs.

Datasets We evaluate and compare the performance of
COLA with various baselines on four datasets: MNIST (Le-
Cun, 1998), CIFAR10/CIFAR100 (Krizhevsky et al., 2009),
and Tiny ImageNet (Russakovsky et al., 2015).

Models We apply COLA across different DNN models.
Specifically, LeNet-5 and AlexNet are used to evaluate
MNIST and CIFAR10, respectively. To evaluate the scala-
bility and sensitivity of COLA in complex tasks which often
suffer from more prominent learning errors and error cor-
relations at a reasonable fault injection simulation cost, we
also extend our evaluation to CIFAR100 and TinyImageNet
using VGG-16. Following the separation architectures used
in (Verma & Swami, 2019) and (Song et al., 2021), detailed
architectures of COLA used in the experiment for LeNet-
5, AlexNet, and VGG-16 are shown in Figure 5. The code
lengths and the number of parameters used for different mod-
els and datasets are given in Table 2. For a fair comparison,
schemes with ECOCs are designed without significantly
increasing the complexity of the original model, measured
by the total number of trainable parameters. Model com-
plexities for different configurations are listed in Table 2.
To verify the scalability of our proposed COLA, we also
extend our evaluation to large models such as ResNet-34
and ResNet-50. These additional experimental results can
be found in Appendix C.

Codebook selection Besides using one-hot code, we select
the codebook T from Hadamard codes, of which the code
length is 2x and the minimum Hamming distance is 2x−1.
We exclude all-zero columns from the code generator matrix.

Table 2. Network Complexity

Network Dataset Models #Parameters

LeNet-5 MNIST
Original 44, 426

ECOC-Had15 44, 851
Sep-Had15 51, 727

AlexNet CIFAR10

Original 2, 472, 266
ECOC-Had15 2, 473, 551
ECOC-Had63 2, 485, 887

Sep-Had15 876, 703
Sep-Had63 2, 623, 951

Sep-orth-Had15 876, 959
Sep-orth-Had63 2, 624, 207

VGG-16 CIFAR100

Original 34, 040, 228
ECOC-Had127 34, 150, 847

Sep-Had127 32, 994, 311
Sep-orth-Had127 32, 997, 447

VGG-16 Tiny
ImageNet

Original 40, 741, 384
ECOC-Had255 40, 966, 719

Sep-Had255 41, 284, 989
Sep-orth-Had255 41, 288, 125

The code length N is 15, 63, 127 and 255 for MNIST,
CIFAR10, CIFAR100 and Tiny ImageNet, respectively.

Error models We evaluate the performance of COLA under
two scenarios: 1) state errors in analog DNN accelerators,
and 2) bit flip errors in digital DNN accelerators as described
in Section 2.2. The errors are injected into the models dur-
ing inference. The variation levels in analog DNN accel-
erators align with (Liu & Wen, 2019) and the bit-flip rates
are chosen according to (Stutz et al., 2021; 2022). Model
parameters are uniformly quantized into 8 bits–a common
setting in most DNN accelerators (Stutz et al., 2021). Mean
accuracy over 100 fault injection simulations is reported.

Evaluation benchmarks We compare the inference accu-
racy with and without hardware defects between the baseline
schemes and COLA. The baseline schemes are: 1) the origi-
nal model with one-hot labels and softmax output activation
(referred to as Original henceforth for brevity), 2) DNNs
with the conventional ECOCs (ECOC), and 3) A recent
ECOC solution built upon the same separation architecture
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Table 3. Performance of VGG-16/Tiny ImageNet with different
levels of state errors (γ) and bit-flip rates (α).

Type Level Original ECOC ECOC+Sep ECOC+TC+Sep+orth

γ

0 51.73 ± 0.67 50.53 ± 1.03 52.04 ± 0.78 54.72 ± 0.19
0.1 28.09 ± 1.07 45.42 ± 0.82 47.43 ± 0.92 52.37 ± 1.01
0.2 08.19 ± 1.78 29.76 ± 2.49 30.86 ± 1.98 46.82 ± 1.87
0.3 02.94 ± 1.10 08.75 ± 1.07 10.23 ± 1.46 34.85 ± 1.66

α

0 50.35 ± 1.32 48.73 ± 1.78 51.21 ± 1.01 54.59 ± 0.35
0.001 45.01 ± 1.52 48.09 ± 1.76 50.17 ± 0.88 53.74 ± 0.49
0.01 02.33 ± 0.68 28.65 ± 2.57 30.64 ± 2.65 42.54 ± 2.35
0.1 00.50 ± 0.00 00.52 ± 0.02 00.51 ± 0.01 04.57 ± 0.94

of COLA for a fair comparison – (ECOC+Sep) (Verma &
Swami, 2019). For COLA, three different settings are 1)
the proposed intermediate layer feature error decorrelation
scheme in addition to Sep (ECOC+Sep+orth), 2) the pro-
posed output error decorrelation method in combination
with ECOCs (ECOC+TC), and 3) the combination of these
two methods (ECOC+TC+Sep+orth).

4.2. Results and Analysis

4.2.1. PERFORMANCE WITH HARDWARE DEFECTS

In this subsection, we evaluate the performance of COLA in
the presence of analog state errors (γ) and bit-flip errors (α)
that occur in weight parameters. The results are summarized
in Table 1, Table 3 and Table 4.

Baseline comparison (Original, ECOC, and ECOC+Sep).
According to the tables, we observe that standard ECOC
degrades the clean accuracy (i.e., γ = 0 or α = 0) compared
with Original. This can be explained with Theorem 3.3 by
arguing that the output error here originates from inaccurate
model approximation and the loss residual. The magnitude
of accuracy drop varies among different datasets. In general,
for simple tasks like MNIST, the accuracy drop is trivial.
For difficult tasks like Tiny ImageNet (see Table 3), the
accuracy drop is also not significant due to the inherent
high model approximation error. On the other hand, for
CIFAR10 and CIFAR100, we observe a large accuracy drop
after using ECOC because the impact of error correlation
is more pronounced. Considering hardware defects (i.e.,
γ > 0 and α > 0), ECOC improves the accuracy only
slightly in most cases. The effectiveness of ECOC has
been limited primarily because of error correlation. After
introducing ECOC+Sep (Verma & Swami, 2019) to reduce
error correlation, both clean accuracy and robust accuracy
improve but the performance is still not prominent since the
error decorrelation by separation only is not comprehensive.

Ablation study and comparison with the state-of-the-art.
We observe that all the techniques in COLA outperform
ECOC with no doubts. Specifically, ECOC+TC achieves
better accuracy than ECOC, which can also be supported by
the conclusion made in Theorem 3.3. ECOC+Sep+orth can
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Figure 3. Influence of code length and dmin: AlexNet-CIFAR10
under state errors for 6 network configurations: with and without
COLA when the codebook is one-hot code, Hadamard-15 (Had15),
and Hadamard-63 (Had63).

achieve similar or better accuracy than ECOC+Sep (Verma
& Swami, 2019), because using the additional amplitude-
adaptive weight orthogonalization (AAWO) technique re-
sults in feature error independence on the early layers,
which further leads to error decorrelation. Combining
the inner layer feature error decorrelation and output er-
ror decorrelation, ECOC+TC+Sep+orth achieves the best
performance among all, e.g., up to 6.7% improvement on
clean accuracy for AlexNet-CIFAR10 and up to 53% im-
provement on robust accuracy (α = 0.01) for VGG-16-
CIFAR100 compared with Original. Compared with ECOC,
ECOC+TC+Sep+orth achieves up to 40% improvement on
robust accuracy (α = 0.05) for VGG-16-CIFAR100.

Among different model-dataset combinations, COLA works
better for more complex datasets. The reason is that com-
plex datasets usually have more output nodes and hence
larger error correlation. With the help of COLA, error cor-
relation is reduced significantly and the advantage of using
ECOCs with a larger code length is further enhanced. In
summary, COLA can simultaneously improve clean accu-
racy and robust accuracy for different tasks.

4.2.2. THE INFLUENCE OF CODE LENGTH AND dmin

We use AlexNet-CIFAR10 as an example to demonstrate
the influence of code length N and dmin on model accuracy.
Figure 3 compares the performance of AlexNet under one-
hot code, Hadamard-15 (Had15), and Hadamard-63 (Had63)
before and after applying COLA. As Figure 3 shows, ECOC-
15 (with N = 15 and dmin = 8) performs worse than
ECOC-10 (with N = 10 and dmin = 2) at all variation
levels. This is counter-intuitive since the code with larger
N and dmin are expected to provide a larger error margin
and better robustness. As illustrated in Equation (16), the
accuracy is determined by N , ν, and the error correlation ϵ
if the average output error 1

N

∑
n Un is fixed as β. ECOC-

15 performs worse than ECOC-10 because ECOC-15 has
a stronger error correlation. To further verify this, we then
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Table 4. Accuracy (% in the format of average ± standard deviation) with bit-flip error in digital accelerators. α defines the bit-flip rate as
introduced in Section 2.2. Original, ECOC and ECOC+Sep (Verma & Swami, 2019) are the benchmarks. ECOC+Sep+orth, ECOC+TC
and ECOC+TC+Sep+orth are different combinations of techniques in COLA.

α Original ECOC ECOC+Sep COLA (Ours)
ECOC+Sep+orth ECOC+TC ECOC+TC+Sep+orth

LeNet-5
MNIST

0 98.82 ± 0.08 98.80 ± 0.10 98.73 ± 0.08 98.61 ± 0.05 98.86 ± 0.10 98.69 ± 0.10
0.01 86.45 ± 2.13 89.68 ± 1.83 93.96 ± 0.58 97.29 ± 0.19 95.29 ± 1.51 97.58 ± 0.25
0.05 26.48 ± 1.96 33.20 ± 2.40 48.60 ± 2.24 72.31 ± 1.58 57.62 ± 2.42 73.54 ± 1.00
0.10 13.95 ± 0.51 14.55 ± 0.68 31.02 ± 1.38 35.05 ± 0.99 26.58 ± 0.78 38.53 ± 1.17

AlexNet
CIFAR10

0 71.69 ± 0.47 67.25 ± 0.39 71.04 ± 0.76 76.91 ± 0.52 69.51 ± 0.51 78.35 ± 0.45
0.01 58.56 ± 0.50 60.83 ± 0.67 62.59 ± 0.33 74.53 ± 0.15 64.54 ± 0.37 76.02 ± 0.26
0.05 25.64 ± 0.13 31.58 ± 1.31 33.51 ± 1.26 59.02 ± 0.92 38.74 ± 1.66 62.12 ± 0.58
0.10 13.72 ± 0.25 15.68 ± 1.52 16.35 ± 1.49 37.66 ± 0.73 16.78 ± 1.17 41.50 ± 0.79

VGG-16
CIFAR100

0 66.12 ± 0.56 47.97 ± 1.08 68.55 ± 0.48 68.68 ± 0.28 70.55 ± 0.32 71.13 ± 0.21
0.001 59.01 ± 0.93 46.15 ± 1.19 68.13 ± 0.63 68.19 ± 0.35 70.32 ± 0.35 70.57 ± 0.54
0.010 09.67 ± 1.83 31.62 ± 1.70 60.29 ± 1.45 61.85 ± 1.52 57.99 ± 1.75 63.24 ± 1.21
0.050 01.03 ± 0.05 01.47 ± 0.16 04.96 ± 0.25 34.67 ± 1.70 02.58 ± 0.46 41.51 ± 1.58
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Figure 4. Performance comparison between the proposed
amplitude-adaptive weight orthogonalization (AAWO) and
original weight orthogonalization (WO) for VGG-16-CIFAR100
under state error in analog accelerators.

apply COLA to both ECOC-10 and ECOC-15 to mitigate
error correlation. As expected, ECOC+TC+Sep+orth-15
outperforms ECOC+TC+Sep+orth-10 because reducing er-
ror correlation via COLA enables the DNN to truly take
advantage of the enhanced error correcting capability of a
stronger ECOC. We also observe that ECOC-63 performs
slightly better than ECOC-15. This is because the posi-
tive effect of stronger code slightly out-weights the neg-
ative aspect of error correlation. After applying COLA,
we minimize the negative effect of error correlation, and
hence ECOC+TC+Sep+orth-63 achieves a larger gain over
ECOC+TC+Sep+orth-15.

4.2.3. COMPARISON OF AAWO WITH SOTA WEIGHT
ORTHOGONALIZATION

We use VGG-16-CIFAR100 as an example to compare the
performance of our proposed amplitude-adaptive weight
orthogonalization (AAWO) and the state-of-the-art (SOTA)
weight orthogonalization (WO) techniques (Huang et al.,
2018; 2020), i.e., encouraging the rows of the weight matrix
to be orthonormal. Note that, though both weight orthog-
onalization techniques are simulated based on the method

proposed in (Huang et al., 2020), any method that solves
Equation (7) can be used in our scheme. As shown in Fig-
ure 4, by relaxing the constraint in Equation (7), the robust-
ness greatly improves, which is consistent with our analysis
in Section 3.2. The results demonstrate that a strong con-
straint could increase error magnitude even though it helps
reduce error correlation, which would potentially lead to
lower classification accuracy.

4.2.4. EFFECTIVENESS OF COLA ON ORIGINAL DNNS

While the overall goal of our proposed COLA is to reduce
error correlation, its applicability is not limited to the ECOC
framework. In essence, it can be also generalized to improve
the performance of original clean DNNs. To verify this, we
conduct experiments based on an example setting–the orig-
inal AlexNet CIFAR10 and then further apply COLA and
comparable designs to it–the original DNN, the original
DNN with COLA, and ECOC with COLA. Accuracy is eval-
uated under state errors (γ) in analog accelerators, where γ
is chosen as 0 (clean accuracy), 0.1, 0.3 and 0.5 (robust ac-
curacy). Note that the differences between Original-COLA
and ECOC-COLA are: 1) Original-COLA uses one-hot code-
words while ECOC-COLA uses Hadamard codes; 2) the
output activation for Original-COLA is softmax activation,
while ECOC-COLA uses sigmoid activation; 3) Original-
COLA is trained with categorical cross entropy with total
correlation regularizer while ECOC-COLA is trained with
binary cross entropy with total correlation regularizer. We
report the corresponding results in Table 5 and make the
following observations: 1) After applying COLA to original
DNNs, clean accuracy (γ = 0) is improved. This suggests
that even though the softmax activation function penalizes
error correlation to some extent, original DNNs still suffer
from residual error correlation that can be reduced by ap-
plying COLA; 2) Applying COLA to original DNNs also
improves robust accuracy (γ = 0.1, 0.3, 0.5) since COLA
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Table 5. Performance Comparison of ECOC and the original
DNNs on AlexNet/CIFAR10 with COLA.

γ Original Original-COLA ECOC-COLA

0 72.33 76.68 79.04
0.1 70.65 76.29 78.88
0.3 57.84 73.37 76.53
0.5 36.11 66.74 68.55

reduces not only residual error correlation but also state
error correlation; 3) In comparison, ECOC-COLA outper-
forms Original-COLA, which can be attributed to the larger
inter-class distance in ECOC coding. This enlarged distance
between codewords in ECOC coding enhances the fault
tolerance capability of the network, resulting in improved
performance over the original DNNs.

5. Related Works
5.1. Applications of ECOCs

ECOCs have been applied to DNNs to increase fault-
tolerance and robustness (Deng et al., 2010; Liu & Wen,
2019; Liu et al., 2019; Verma & Swami, 2019; Song et al.,
2021). Deng et al. apply ECOC on CNN to achieve a better
trade-off between high reliability and low false rejection
rate (2010). Liu et al. propose a framework with ECOC to
increase the reliability of memristive DNN accelerators with
specially designed codewords (2019). All of these works
fail to satisfy the two aforementioned requirements, that
is, keeping model accuracy and improving robust accuracy
more prominently. Recent work uses ECOCs against adver-
sarial attacks. Verma et al. show that the error margin is
enlarged by using sigmoid output layer activation and pro-
pose an ensemble-based separation architecture to mitigate
the error (2019). Though they use separation architecture
to alleviate errors, the achievable effectiveness is limited
due to incapable of comprehensively decorrelating feature
errors in DNNs.

5.2. Reliable DNN Hardware Accelerators

Analog DNN accelerators like memristive accelerators suf-
fer from state error, stuck-at-faults, and electrical noise.
Geng et al. propose an on-chip training scheme to compen-
sate for the weight disturbance (2021). An early de-noising
scheme is proposed to compensate for the influence of errors
at the early layers and prevent error propagation (Yu et al.,
2022). A digital offset technique and a method to optimize
the digital offset are proposed to reduce the area of the ac-
celerator and compensate for the errors (Meng et al., 2021).
These works increase the fault-tolerance by assuming the
knowledge of the error model or the application instead of
increasing the inherent error correction capability of DNN.

Differently, our work focuses on adapting ECOC on DNN
so that DNN is inherently fault-tolerant without knowing
the error types ahead of time.

For digital DNN accelerators like GPU, errors could occur
in weight memory or buffers. Chandramoorthy et al. study
the impact of bit-flip errors in different layers of DNN and
show the accuracy degradation (2019). To reduce the in-
fluence of such errors, Srinivasan et al. propose storing
important bits in the robust cells (2016). Stutz et al. propose
a comprehensive scheme that combines random bit error
training, robust fix point quantization, and weight clipping
to improve the inherent robustness of DNN against bit-flip
error (2021). Nevertheless, such protections are only effec-
tive on bit-flip errors, while our proposed methods are able
to protect DNN against different kinds of errors, including
bit-flip errors.

6. Conclusion
In this paper, we identify a fundamental limitation of apply-
ing ECOCs to DNNs: error correlation. Inspired by this, we
rethink the design of error coding for DNNs, and propose
a comprehensive error decorrelation framework COLA to
improve both clean accuracy and robust accuracy. First,
we propose amplitude-adaptive weight orthogonalization
(AAWO) on the early layers to reduce error correlation prop-
agation and accumulation. Second, we propose a regulariza-
tion technique based on total correlation to mitigate output
error correlation. Third, we propose a holistic framework for
error decorrelation in DNNs, including AAWO, separation
architecture and total correlation regularization across inner
and output layers, so as to facilitate the adoption of stronger
ECOCs and maximize their impact on both clean accuracy
and robust accuracy. Experimental results based on different
models show that our proposed techniques achieve up to
53% accuracy improvement.
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A. Proofs for Section 3
A.1. Proof of Lemma 3.2

Proof. According to the definition of entropy

K∑
i=1

H(Zi) =

K∑
i=1

−
∫

log p(zi) dp(zi)

= −
K∑
i=1

EZi

[
log

(
1√
2πσ2

i

e
− (Zi−µi)

2

2σ2
i

)]
=

K

2
(1 + log(2π)) +

1

2
Tr(logΣ)

(17)

where Zi ∈ N (µi, σ
2
i ).

Define Z = [Z1, Z2, . . . , ZK ] and µ = [µ1, µ2, . . . , µK ], then

H(Z) = −
∫

log p(z) dp(z)

= −EZ

[
log

(
(2π)−K/2|Σ|− 1

2 e−
1
2 (Z−µ)Σ−1(Z−µ)T

)]
=

K

2
(1 + log(2π)) +

1

2
log |Σ|

(18)

Accordingly,

TCG(Z1, Z2, . . . , ZK) =

[ K∑
i=1

H(Zi)

]
−H(Z)

=
1

2
Tr(logΣ)− 1

2
log |Σ|

(19)

A.2. Proof of Theorem 3.3

Proof. As TC(U1, U2, . . . , UN ) ≤ ϵ, we have

TC(U1, U2, . . . , UN ) = DKL(PU ||P̄U ) ≤ ϵ, (20)

where DKL is referred to as Kullback-Leibler (KL) divergence. By the Bretagnolle–Huber inequality (Bretagnolle & Huber,
1978), we have

sup
S⊂[0,1]N

|PU (S)− P̄U (S)| ≤
√
1− e−DKL(PU ||P̄U )

≤
√
1− e−ϵ.

(21)

Since the set that leads to decoding error is a subset of A, we have

Pe ≤ PU (A) ≤ P̄U (A) +
√
1− e−ϵ. (22)

A.3. Proof of Corollary 3.4

Proof. By Hoeffding’s inequality (Hoeffding, 1994), we have

P̄U (A) ≤ exp

(
− 2

N

(
dmin

2
− E

[ N∑
n=1

Un

])2)

≤ exp

(
− 2

N

(
dmin

2
−Nβ

)2)
.

(23)
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Figure 5. Detailed architecture for our proposed techniques.

Together with Equation (22) the results can be obtained.

B. Detailed Architecture for COLA

Figure 5 shows the detailed architecture we used in the experiments. In general, the architecture is designed according
to (Verma & Swami, 2019), where classifiers are separated after a certain intermediate layer. Amplitude-adaptive weight
orthogonalization is used on the first few layers. In order to make a fair comparison, for the same task, the models with
different configurations are designed such that the number of parameters used are similar. Model complexity, i.e., total
number of parameters, is listed in Table 2. Code is available at https://github.com/anlanyu66/COLA.

C. Additional Experimental Results
Additionally, we compare COLA and ECOC on ResNet-34 and ResNet-50 to verify the scalability of COLA on large-sized
modern networks. Tiny ImageNet is used as the dataset. Results are given in Table 6 and Table 7 under state errors and
bit-flip errors, respectively. These results demonstrate the same trends as the simulation results presented in Section 4.
Note that separation architecture (Verma & Swami, 2019) is applied on neither ResNet-34 nor ResNet-50, since it worsens
both clean accuracy and robust accuracy. Further investigation on the failure of separation architecture on ResNets will be
conducted in our future work.

γ 0 0.1 0.2 0.3

ResNet-34 ECOC 55.08 43.68 16.98 0.98
COLA 59.32 53.42 31.64 4.26

ResNet-50 ECOC 56.35 45.24 18.22 1.56
COLA 60.30 54.12 33.53 5.67

Table 6. Performance of ResNet-34, ResNet-50 evaluated on Tiny ImageNet with different levels of state errors (γ).

α 0 0.001 0.01 0.1

ResNet-34 ECOC 54.99 54.12 36.03 0.5
COLA 58.89 58.09 49.83 2.20

ResNet-50 ECOC 56.12 55.28 38.54 0.5
COLA 59.98 59.12 50.34 3.01

Table 7. Performance of ResNet-34, ResNet-50 evaluated on Tiny ImageNet with different levels of bit flip errors (α).
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