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Abstract

The parameter perturbation attack is a safety
threat to deep learning, where small parameter per-
turbations are made such that the attacked network
gives wrong or desired labels of the adversary to
specified inputs. However, such attacks could
be detected by the user, because the accuracy of
the attacked network will reduce and the network
cannot work normally. To make the attack more
stealthy, in this paper, the adversarial parameter
attack is proposed, in which small perturbations
to the parameters of the network are made such
that the accuracy of the attacked network does
not decrease much, but its robustness against ad-
versarial example attacks becomes much lower.
As a consequence, the attacked network performs
normally on standard samples, but is much more
vulnerable to adversarial attacks. The existence of
nearly perfect adversarial parameters under L∞
norm and L0 norm is proved under reasonable
conditions. Algorithms are given which can be
used to produce high quality adversarial param-
eters for the commonly used networks trained
with various robust training methods, in that the
robustness of the attacked networks decreases sig-
nificantly when they are evaluated using various
adversarial attack methods.

1. Introduction
The deep neural network (DNN) (LeCun et al., 2015) has
become one of the most powerful machine learning meth-
ods, which has been successfully applied in computer vi-
sion, natural language processing, and many other fields. In
security-critical systems using DNNs, such as autonomous
vehicles, banking systems, etc., safety is a key desired fea-
ture of DNNs, which has been studied extensively. Refer to

1Academy of Mathematics and Systems Science, Chinese
Academy of Sciences 2University of Chinese Academy of Sciences.
Correspondence to: Xiao-Shan Gao <xgao@mmrc.iss.ac.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

the survey papers (Akhtar & Mian, 2018; Bai et al., 2020;
Zhang et al., 2020) for details.

The most widely studied safety issue for DNNs is the ad-
versarial attack (Szegedy et al., 2013; Goodfellow et al.,
2014; Carlini & Wagner, 2017), that is, it is possible to
intentionally make small modifications to a standard sam-
ple to generate adversarial examples which are essentially
imperceptible to the human eye, but the DNN outputs a
wrong label or even any label given by the adversary. The
existence of adversary examples makes the DNN vulnerable
in safety-critical applications and many effective methods
were proposed to develop more robust DNNs against adver-
sarial attacks (Madry et al., 2017; Akhtar & Mian, 2018;
Bai et al., 2020; Zhang et al., 2020). On the other hand,
it was shown that adversaries examples are inevitable for
commonly used DNN models in certain sense (Azulay &
Weiss, 2018; Shafahi et al., 2018; Bastounis et al., 2021;
Gao et al., 2022).

The parameter perturbation attacks (Liu et al., 2017; Zhao
et al., 2019; Breier et al., 2018; Tsai et al., 2021; Sun et al.,
2021; Weng et al., 2020; Tyukin et al., 2020; 2021) were
also shown to be a safety threat to DNNs. It was shown
that by making small parameter perturbations, the attacked
DNN can output wrong or desired labels to specified inputs
and still gives the correct labels to other samples (Liu et al.,
2017; Zhao et al., 2019; Tyukin et al., 2020; 2021). However,
these attacks are easy to be detected by users, possibly due
to a prominent decline in performance such as the training
accuracy.

In this paper, the adversarial parameter attack is proposed
as a more stealthy parameter perturbation attack, in which
small perturbations to the parameters of a DNN are made
such that the attack to the DNN is essentially imperceptible
to the user, but the robustness of the DNN becomes much
lower. The adversarial parameter attack is stronger than
previous parameter perturbation attacks in that not only the
accuracy but also the robustness of DNNs are considered.

The goal of this paper is to demonstrate such type of poten-
tial threat to neural network security. Our inspiration came
from an unexpected error in a License Plate Recognition
System. A system that has been used for a long time sud-
denly cannot recognize dirty license plates, but clean license
plates can still be recognized. So we suspect that the system

1



Adversarial Parameter Attack on Deep Neural Networks

has lost robustness due to some attacks but still maintains
the recognition ability for the clean ones.

Let FΘ be a DNN with parameter Θ. A perturbed parameter
Θa is called adversarial parameter of FΘ, if the following
conditions are satisfied 1) Θa is close to Θ according to
certain measurement; 2) the accuracy of FΘa over the given
data distribution is almost the same as that of FΘ; 3) FΘa

is much less robust than FΘ, in that, FΘa
has much more

adversarial examples than FΘ.

Condition 1) is to ensure that the attack can be implemented
and essentially imperceptible; condition 2) is to make the
attack more stealthy; and condition 3) is to make the new
DNN less safe against adversarial attacks.

The existence of nearly perfect adversarial parameters is
proved under certain assumptions. It is shown that if the
width of certain DNN FΘ is sufficiently large, then FΘ has
L∞ norm adversarial parameters Θa sufficiently near Θ
such that FΘa

has adversarial samples sufficiently near a
given benign sample (refer to Theorem 4.1), which implies
that adversarial parameters are inevitable in a certain sense,
similar to adversarial examples (Bastounis et al., 2021; Azu-
lay & Weiss, 2018; Shafahi et al., 2018). It is also proved
that when the width of the network is sufficiently large, by
changing any small proportion of parameters, there exist L0

norm adversarial parameters such that the attacked network
FΘa

has the same accuracy as FΘ, but zero adversarial
accuracy (refer to Theorem 4.5).

Finally, algorithms are given to compute adversarial parame-
ters and numerical experiments are used to demonstrate that
the algorithms are effective to produce high-quality adver-
sarial parameters for frequently-used networks like VGG,
deep VGG (Simonyan & Zisserman, 2014), ResNet (He
et al., 2016), Wide-ResNet on the frequently-used datasets
like CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and
Tiny-ImageNet (Le & Yang, 2015). Furthermore, the orig-
inal network FΘ is trained with various robust training
methods including adversarial training (Madry et al., 2017),
TRADES (Zhang et al., 2019), AWP (Wu et al., 2020b). The
robustness of the attacked network FΘa

is evaluated using
various attack methods including PGD (Madry et al., 2017),
target attack, Proxy model attack, and Autoattack (Croce
& Hein, 2020). It is shown that the robustness of FΘa de-
creases significantly comparing with the original network.

2. Related work
Parameter perturbation attacks. Parameter perturbation
attacks were given under different names such as fault injec-
tion attack, fault sneaking attack, stealth attack, and weight
corruption. The fault injection attack (Liu et al., 2017) was
first proposed by Liu et al, and was further studied in (Breier
et al., 2018; Zhao et al., 2019). In (Breier et al., 2018), the

first physical fault injection attack on DNNs was given, by
using the laser injection technique on embedded systems.
In (Weng et al., 2020; Tsai et al., 2021; Sun et al., 2021),
some security boundaries for parameter perturbations were
given. In (Tyukin et al., 2020; 2021), the stealth attack was
proposed to make the attacked DNN output a desired label
for a given input image.

The adversarial parameter attack has the following advan-
tages compared to previous works. First, by keeping the
accuracy and reducing the robustness, the adversarial pa-
rameter attack is more difficult to be recognized. Second,
we prove the existence of adversarial parameters under rea-
sonable assumptions, while most previous works rely on
experimental results.

Algorithms to train robust DNNs. Many methods were
proposed to train more robust DNNs to defend adversarial
samples (Xu et al., 2020). The adversarial training proposed
by (Madry et al., 2017) is considered to be one of the most
effective methods to train robust networks, and is used to
compute adversarial parameters in this paper. Methods to
train DNNs that are more robust against parameter pertur-
bation attacks were also proposed (Liu et al., 2017; Zhao
et al., 2019; Wu et al., 2020b). In (Wu et al., 2020a;b), the
adversarial weight perturbation was proposed which was
a generalization of the adversarial training by considering
both the adversarial examples and the adversarial parame-
ters, and hence led to more robust networks.

Theory of adversarial examples. The existence of adver-
sarial examples was usually demonstrated with numerical
experiments, and mathematical guaranteed results were de-
sirable. Along this line of research, it was proved that
a well-learned DNN always has adversarial examples for
certain classification functions and data distributions (Bas-
tounis et al., 2021). In (Tyukin et al., 2020; 2021), it was
proved that there exist attacked DNNs that give a desired
label for any sample.

Theories for certified robustness of DNNs were given in
several aspects. In (Hein & Andriushchenko, 2017; Yu &
Gao, 2022; Raghunathan et al., 2018), some security bound-
aries of adversaries were given. In (Cohen et al., 2019), the
randomized smoothing method was proposed and security
boundaries of adversaries were given. Lower bounds on
stability in terms of the classification function were also
given in (Shafahi et al., 2018; Tyukin et al., 2020). However,
these safety bounds are usually very small when the depth
of the DNN is large. In (Yu & Gao, 2021), the information-
theoretically safe bias classifier was introduced by making
the gradient of the DNN random. In this paper, we show
that by making small perturbations to the parameters, the
DNN will have adversarial examples with a high probability
for any input.
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(a) Original Network (b) Network after L∞ parameters attack (c) Network after L0 parameters attack

Figure 1. An illustrative example. For each network, the decision area for the data with label 0 (1) is marked green (blue). Adversarial
examples are sought inside the squares with red edges, that is, we compute adversarial examples with budget 0.2 under L∞ norm. The
attacked networks (b) and (c) are accurate but not robust.

3. Compute adversarial parameters
In this section, we define the adversarial parameters and
give algorithms to compute them.

3.1. Adversarial parameters of DNNs

In this paper, we assume that the data to be classified satisfy
a distribution DS over D = S× [m], where S ⊂ [0, 1]n and
[m] = {1, . . . ,m} is the label set. Finite datasets used for
training and testing are chosen iid according to DS .

Let F : S → Rm be a classification DNN, where Relu is
used as the activation function and the output layer does
not have activation functions. Notice that the network F is
defined over Rn, but for the classification problem, only the
values of F on S are needed.

Denote Θ to be the parameters of F , and F is denoted as FΘ

if the parameters need to be mentioned explicitly. Denote
Fl(x) to be the l-th component of F(x) for l ∈ [m] and
F̂(x) = arg maxml=1Fl(x) to be the classification result of
F(x). The accuracy of F is

AC(F) = P(x,y)∼DS
(F̂(x) = y).

Given an adversarial budget ϵ, the following adversarial
accuracy is used to measure the robustness of network F

AA(F , ϵ) = P(x,y)∼DS
(F̂(x′) = y,∀x′ s.t.||x′ − x||∞ ≤ ϵ).

Notice that we consider adversarial examples with L∞
norm.

Adversarial Parameters. Let FΘ be a trained network with
parameter set Θ ∈ Rk. Then Θa ∈ Rk is called an adversar-
ial parameter of Θ, if (1) the Lp distance between Θa and Θ
is smaller than certain given bound to be given subsequently;
(2) AC(FΘa

) ≥ γacAC(FΘ) for a given γac ∈ (0, 1) which
is close to 1, say γac = 90%; and (3) AA(FΘa

, ϵ) is much
smaller than AA(FΘ, ϵ), that is, FΘa has much more adver-
sarial examples than FΘ.

Condition (1) is to make the changes of the parameter small,
similar to the adversarial attack. Condition (2) is to make the

attack more stealthy in that the attacked network perform
normally on the training samples. Condition (3) is to make
the network vulnerable to adversarial attacks, which is the
ultimate goal of the attacks.

All parameters are stored in the form of 0,1 bits. If using
the laser injection technique in the parameter attack, we
need to modify the bits of the parameters. For faster and
low-cost parameter attacks, we should consider modifying
fewer bits in the attack. So we consider two ways to reduce
the number of bits that need to be changed: (1) Change
fewer bits for each parameter, corresponding to L∞ norm
attack. (2) Change fewer parameters to reduce the number
of bits need to be changed, corresponding to L0 attack.

L∞ Norm Adversarial Parameters. For an attack budget
ratio γ ≪ 1, the adversarial parameters of Θ are taken in

B∞(Θ, γ) =
{Θa ∈ Rk : |Θa −Θ|(i) ≤ γ|Θ|(i), ∀ i ∈ [k]} (1)

where V (i) is the i-th entry of a vector V . The above defini-
tion makes sure that no parameters are modified too much,
which is more reasonable than using the standard L∞ norm.

L0 Norm Adversarial Parameters. For an attack budget
ratio η ≪ 1, the adversarial parameters of Θ are taken in

B0(Θ, η) = {Θa ∈ Rk : ||Θa −Θ||0 ≤ ηk}. (2)

An illustrative example for adversarial parameters is given
in Figure 1. We consider a binary classification dataset T =
{((0, 0), 0), ((1, 0), 1), ((0, 1), 1), ((0, 1), 1)} and use the
network F : R2 → R2 which has one hidden layer and
width 24 to classify T . We compute the L∞ norm and L0

norm adversarial parameters of F and give the decision ar-
eas of each network in Figure 1. It can be seen that the orig-
inal network F is robust: AC(F) = 1 and AA(F , 0.2) = 1,
but the attacked networks F ′ are not robust but still accurate
on the data: AC(F ′) = 1 and AA(F ′, 0.2) = 0.
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3.2. Algorithms for adversarial parameters

According to the definition, adversarial parameters can be
computed by solving the following optimization problem:

arg max
Θa∈Bp(Θ,ε)

I(AC(FΘa )≥γacAC(Fθ))

AA(FΘa ,ϵ)
(3)

where I(t) = 1 if t is true and I(t) = 0 otherwise, and

p = ∞ or 0. Once AC(FΘa )

AC(FΘ)
< γac, the numerator becomes

0 and the whole value is 0; so the solution Θa of optimiza-
tion problem (3) must make AA(FΘa

, ϵ) the smallest while

ensuring AC(FΘa )

AC(FΘ)
≥ γac.

To solve optimization problem (3), following the common
practices in deep learning, we will use the empirical loss
to represent the accuracy and use the adversarial empirical
loss to represent the adversarial accuracy.

For (x, y) ∼ DS and an adversarial budget ϵ ∈ R+, we use
PGD (Madry et al., 2017) to compute

χ = arg maxδ∈Rn,||δ||∞<ϵLCE(F(x+ δ), y), (4)

and define the adversarial loss LAT as

LAT(F(x), y) = LCE(F(x+ χ), y). (5)

Then problem (3) can be approximated by the following
optimization problem:

arg min
Θa∈Bp(Θ,ε)

E(x,y)∼DS
LCE(FΘa

(x), y)

E(x,y)∼DS
LAT(FΘa

(x), y)
(6)

which will be used to compute adversarial parameters. The
condition AC(FΘa) ≥ γacAC(FΘ) will be checked after
computing Θa.

Compute adversarial L∞ norm parameters. To solve
problem (6), we need a training set T = {(xi, yi), i ∈
[N ]} selected i.i.d. according to DS and use the original
parameters Θ as the initiation point. The training procedure
consists of two phases:

Phase one: Preliminary training with the loss function

− 1

|T |
∑

(x,y)∈T

LAT(FΘ(x), y). (7)

Phase two: Main training with the loss function∑
(x,y)∈T LCE(FΘ(x), y)∑
(x,y)∈T LAT(FΘ(x), y)

(8)

which corresponds to optimization problem (6). A sketch
of the algorithm is given below.

Algorithm 1 Adversarial Parameter Attack under L∞ norm
Input:

The parameter Θ ∈ Rk of F ;
The parameter attack ratio γ;
A training set T ;
Hyper-parameters: α ∈ R+, n1, n2 ∈ N.

Output:
Adversarial parameter Θa in B∞(Θ, γ).

Let i = 0, Θa = Θ.
For all i ∈ [n1 + n2]:

If i < n1:
L = − 1

|T |
∑

(x,y)∈T LAT(FΘa(x), y).
Else:
L =

∑
(x,y)∈T LCE(FΘa (x),y)∑
(x,y)∈T LAT(FΘa (x),y)

.

Θ̃ = Θa − α▽ L.
Θa = Proj(Θ̃,B∞(Θ, γ)).

(Project Θ̃ into B∞(Θ, γ))
Output: Θa.

Remark 3.1. Phase one is necessary. Otherwise, we may
have the gradient vanishing problem in Phase two, as shown
by experiments in Appendix C.

Algorithm 2 Adversarial Parameter Attack under L0 norm
Input:

The parameter Θ ∈ Rk of F ;
The parameter attack ratio η;
A training set T ;
Hyper-parameters: α ∈ R+, n1, n2 ∈ N.

Ensure:
Adversarial parameter Θa in B0(Θ, η).

Let i = 0, Θa = Θ, P1 = {} and P2 = {};
Calculate V1 = |▽Θa

∑
(x,y)∈T LAT(FΘa

(x), y)| ∈ Rk;

For all j ∈ [k], add j to P1 if V (j)
1 is within the maximum

η/2 percent of all elements in V1;
For all i ∈ [n1]:

L = −
∑

(x,y)∈T
1
|T |LAT(FΘa(x), y).

For each j ∈ P1:
Θ

(j)
a = Θ

(j)
a − α(▽L)(j).

Calculate V2 = | ▽Θa

∑
(x,y)∈T LCE(FΘa (x),y)∑
(x,y)∈T LAT(FΘa (x),y)

| ∈ Rk;

For all j ∈ [k], add j to P2 if V (j)
2 is within the maximum

η/2 percent of all elements of V2;
For all i ∈ {n1, n1 + 1, . . . , n1 + n2}:

L =
∑

(x,y)∈T LCE(FΘa (x),y)∑
(x,y)∈T LAT(FΘa (x),y)

.
For each j ∈ P2:
Θ

(j)
a = Θ

(j)
a − α(▽L)(j).

Output: Θa.

Compute L0 norm adversarial parameters. The algo-
rithm is similar to Algorithm 1. What we need to do addi-
tionally is to select positions of the parameters to be changed.

4



Adversarial Parameter Attack on Deep Neural Networks

For that purpose, in each phase, we select the top η/2 param-
eters at which the gradient magnitudes are the largest and
change the parameters at these positions during the training.
The algorithm is given in Algorithm 2.

4. Existence of adversarial parameters
In this section, we prove that adversarial parameters with
low adversarial accuracies exist under certain conditions.
Proofs of theorems in this section are given in Appendix A.

Let S ⊂ [0, 1]n and DS a distribution defined on S×[m]. In
this section, we consider the following network FΘ : S →
Rm with one hidden layer:

FΘ(x) = W2 Relu(W1x+ b1) + b2, (9)

where W1 ∈ Rn1×n, b1 ∈ Rn1 ,W2 ∈ Rm×n1 , b2 ∈ Rm.
Θ = {Wi, bi}2i=1 ∈ Rk is the parameter set of FΘ, and
k = |Θ| = (n+m+ 1)n1 +m.

4.1. L∞ norm adversarial parameter

We introduce several notations. Let ||x||−∞ =
mini∈[n]{|xi|} for x ∈ Rn and W (i) the i-th row of a ma-
trix W . For x ∈ S ⊂ Rn and ϵ ∈ R>0, the adversarial
examples of x are taken in

S∞(x, ϵ) = {x′ ∈ Rn : ||x′ − x||∞ ≤ ϵ}.

We first consider a simple case: adversarial parameters
for a given data. A small perturbation Θa of Θ is called
adversarial parameter for a given data (x, y) ∼ DS , if
F̂Θa

(x) = y and the robustness radius

R(x) = max{ζ ∈ R+ : F̂Θa
(x′) = y,∀x′ ∈ S∞(x, ζ)}

of x is greatly reduced. The following theorem shows
the existence of adversarial parameters for a given data
(x0, y0) ∼ DS .

Theorem 4.1. Let FΘ : S → Rm be a trained network with
structure in (9), which gives the correct label y0 for x0 ∈ S.
Further, assume the following conditions.

C1. |Fi(x)−Fj(x)| < A for all i, j ∈ [m], x ∈ S∞(x0, a),
and a,A ∈ R+, that is, the difference between logits
of any perturbed input is bounded.

C2. ||W (i)
2 −W

(j)
2 ||−∞ > c for all i, j ∈ [m], i ̸= j and

c ∈ R+.

C3. At least ηn1 coordinates of |Relu(W1x+ b1)| are big-
ger than b, where η ∈ (0, 1) and b ∈ R+.

For ∀µ, ϵ ∈ R+ satisfying ϵ < a, if n1 > 2A
min{ϵµ(n−1),b}cη ,

then there exists a Θa ∈ Rk such that ||Θa − Θ||∞ ≤ µ,

F̂Θa
(x0) = y0, and FΘa

has adversarial examples to x0 in
S∞(x0, ϵ).

Remark 4.2. By Theorem 4.1, if the width n1 of FΘ is suf-
ficiently large, then Θ has adversarial parameters which are
as close as possible to Θ, and FΘa has adversarial examples
which are as close as possible to x0. Thus, we may say that
adversarial parameters are inevitable in this case.

Theorem 4.3. Let FΘ : S → Rm be a trained DNN with
structure in (9) and suppose that F and S satisfy the follow-
ing conditions:

C1. |Fi(x) − Fj(x)| < A for all i, j ∈ [m] and x ∈⋃
x0∈S S∞(x0, a), where A, a ∈ R+.

C2. ||W (i)
2 −W

(j)
2 ||−∞ > c for all i, j ∈ [m], i ̸= j, where

c ∈ R+.

C3. For all x ∈ S, at least ηn1 coordinates of |Relu(W1x+
b1)| are bigger than b, where η ∈ (0, 1) and b ∈ R+.

C4. The dimension of S is lower than n−m.

For ∀µ, ϵ ∈ R+ satisfying ϵ < a, if n1 > 2A
min{ϵµ/m,b}cη ,

then there exists a Θa ∈ Rk such that ||Θa − Θ||∞ ≤ µ,
AC(FΘa

) = AC(FΘ), and AA(FΘa
, ϵ) ≤ 0.5.

By Theorem 4.3, when the width n1 of F is sufficiently
large, there exist adversarial parameters as close as possible
to Θ, such that the corresponding network has adversarial
accuracy at most 50%.
Remark 4.4. By training two-layer networks with widths
ranging from 100 to 10000 on dataset MNIST, we have the
following estimates for the parameters in the conditions of
Theorems 4.1 and 4.3: A < 30, c > 10−4, b = 0.1, η > 0.2.
The lower bound of n1 given by the Theorem 4.1(4.3) is
about 105

ϵµ ( 10
7

ϵµ ), which is larger than that of the usually used
networks.

4.2. L0 norm adversarial parameter

The following theorem shows that there exist L0 norm ad-
versarial parameters which have zero adversarial accuracy.

Theorem 4.5. Let FΘ : S → Rm be a trained DNN with
structure in (9) and suppose that F and S satisfy the follow-
ing conditions:

C1. Each row of W2 has at least one negative component;
each column of W2 has at least one non-negative com-
ponent.

C2. The dimension of S is lower than n−m.

For any η, ϵ ∈ (0, 1), if n1 ≥ m/η, then there exists
a Θa ∈ B0(Θ, η) such that AC(FΘa) = AC(FΘ) and
AA(FΘa , ϵ) = 0.
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Remark 4.6. Theorem 4.5 implies that there exist perfect
adversarial parameters when the width of the network is
sufficiently large.

Remark 4.7. The conditions of Theorems 4.5 can be satis-
fied in most cases. Since we usually have m ≪ n ≤ n1,
the n1 satisfying n1 > m/η is within practical range, say
for η = 1%. The training procedure usually starts with a
random initial point and uses stochastic gradient decent to
update the weights. Its output is usually not far from the
initial point according to our experimental observations, so
condition C1 is valid in most cases.

5. Experimental results
In this section, we verify the effectiveness of Al-
gorithms 1, 2 and the theoretical results in Section
4 with experimental results. The codes of the ex-
periments can be found in https://github.com/
EhanW/adversarial-parameter-attack.

5.1. Setups

The original network FΘ is trained respectively with ad-
versarial training (Madry et al., 2017), TRADES (Zhang
et al., 2019), and AWP (Wu et al., 2020b), where PGD-
(10,8/255) is used. We use networks VGG-16, VGG-24,
VGG-32 (Simonyan & Zisserman, 2014), ResNet-18 (He
et al., 2016), WRN-32-4, and WRN-32-10 (Zagoruyko &
Komodakis, 2016). The datasets include CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Le &
Yang, 2015).

The adversarial accuracies of the attacked network FΘa
on

the test set are computed using PGD-(10, 8/255) (Madry
et al., 2017) in Sections 5.2, 5.3, 5.5 and 5.6. In Section
5.4, we use four different attacks to measure the robustness.
These four attacks are:

(1) Target attack. For (x, y) in the test set, we use PGD(10,
8/255, (y + 1) mod 10) (10 steps, budget 8/255, target
label (y + 1) mod 10) to find adversarial examples.

(2) Proxy model attack. This is a black box attack. We
use {(x, F̂Θ(x))} to train three networks which have the
same structure with FΘ, compute adversarial examples with
PGD-(10,8/255) for these models, and use them to attack
FΘ.

(3) Autoattack (Croce & Hein, 2020). Refer to the original
paper (Croce & Hein, 2020) for details, where budget 8/255
is used.

(4) Random Attack. For each sample, use the normal dis-
tribution N(0, (8/255)2)n to randomly select noises and
add them to the sample, where n is the dimension of the
samples.

We give the training details below. For more details about
the training, please refer to Appendix B.

Training Details for Algorithm 1. In Phase one, we train
with 10 epochs, and each epoch has learning rate 0.1. We
monitor the accuracy on the training set during the training.
Once the accuracy on the training set is lower than 20%
after an epoch, we terminate Phase one and go to the Phase
two. In Phase two, we train with 40 epochs, and each epoch
has learning rate 0.002. The learning rate reduces by half at
the 20-th epoch.

Training Details for Algorithm 2. In Phase one, we train
with 10 epochs, and each epoch has learning rate 0.01. To
prevent gradient explosion, we limit the change of each
parameter to 0.01 for each gradient descent. At the same
time, we monitor the loss function on the training set as
training goes on. Once the value of the loss function of a
batch is ≥ 50, terminate Phase one and go to Phase two.

In Phase two, we train with 40 epochs, and each epoch has
learning rate 0.05. At 21-th and 31-th epochs, the learning
rate reduces by half. To prevent gradient explosion, we
limit the change of each parameter to 0.01 for each gradient
descent.

Generally speaking, training a robust network on CIFAR-10
dataset needs 100-200 epochs, but for Algorithms 1 and 2,
we achieve good results after 50 epochs, so training adver-
sarial parameters is faster than normal training.

For convenience, we write the L∞ norm adversarial parame-
ter attack with ratio γ as L∞,γ and the L0 norm adversarial
parameter attack with ratio η as L0,η. Refer (1) and (2) for
details. The parameter γac in optimization problem (3) is
set to be 90%.

5.2. Experiments with various networks

In this section, we test Algorithms 1 and 2 with six networks
and different attacking budgets for CIFAR-10. The results
are given in Tables 1 and 2.

From Tables 1 and 2, the accuracies of the attacked net-
works are larger than γac = 90% of that of the original
networks, so condition (2) in the definition of adversarial
parameters is always satisfied. Algorithm 1 generates high
quality L∞ norm adversarial parameters when γ ≥ 10%:
the adversarial accuracies decline to about 15% of the origi-
nal ones. Similarly, Algorithm 2 generates high quality L0,η

adversarial parameters when η ≥ 0.75%. For ResNet-18,
WRN-32-4, and WRN-32-10, the L0 attacks achieve near
zero adversarial accuracies, as stated in Theorem 4.5.

Overall, our algorithms generate high-quality adver-
sarial parameters effectively for CIFAR-10, since high-
quality adversarial parameters can be generated with quite
small ratios γ = 10% and η = 0.75%.
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Table 1. Adversarial parameter attack for networks VGG-16 and
ResNet-18 on CIFAR-10. AC: test accuracy, AA: adversarial
accuracy on the test set.

Attack VGG-16 ResNet-18
AC AA AC AA

No attack 80% 39% 84% 52%
L∞,2% 76% 30% 86% 48%
L∞,4% 75% 22% 84% 37%
L∞,6% 76% 15% 85% 24%
L∞,8% 76% 10% 83% 14%
L∞,10% 77% 6% 85% 6%

L0,0.25% 75% 24% 82% 5%
L0,0.5% 76% 19% 83% 0%
L0,0.75% 75% 17% 83% 2%
L0,1.0% 77% 16% 84% 2%

Table 2. Adversarial parameter attack for networks Deep VGG and
WRN-32 on CIFAR-10.

Attack VGG-24 VGG-32
AC AA AC AA

No attack 80% 37% 78% 38%
L∞,2% 75% 28% 75% 25%
L∞,6% 77% 15% 74% 11%
L∞,10% 79% 4% 76% 4%

L0,0.5% 78% 19% 76% 16%
L0,1.0% 76% 16% 75% 13%

Attack WRN-32-4 WRN-32-10
AC AA AC AA

No attack 86% 54% 88% 54%
L∞,2% 88% 48% 88% 47%
L∞,6% 87% 19% 88% 24%
L∞,10% 85% 2% 89% 4%

L0,0.5% 84% 0% 87% 0%
L0,1.0% 83% 5% 86% 5%

Comparing the results of VGG-16, VGG-24, and VGG-32,
we find that when the depth increases, the networks become
easier to attack. On the other hand, the results of WRN-32-4
and WRN-32-10 show that the attacks are not sensitive to
the width.

To generate adversarial parameters for a given data as de-
scribed in Theorem 4.1 is much easier than for a dataset, as
expected. Algorithms 1 and 2 still work in this case, where
T contains a single data. We conduct a simple experiment
to verify this. A data (x, y) is called robust if we cannot
find adversarial examples for it using PGD-(10, 8/255) with
L∞ norm. We take a robust sample (x, y) from the test set,
use Algorithms 1 and 2 to generate L∞,2% and L0,1% norm

adversarial parameters for networks VGG-16 and ResNet-
18, respectively. Our experiments show that for all 100 such
data, the attacked networks still give the correct label, but
are not robust anymore.

5.3. Networks trained with more defense methods

In Section 5.2, we show that our algorithms can compute
high-quality adversarial parameters if the original network is
trained with adversarial training. In this section, we further
show that if the original network is trained with other de-
fenses such as TRADES (Zhang et al., 2019) or AWP (Wu
et al., 2020b), the algorithms still work. The results for
VGG-16 and ResNet-18 are given in Figure 2, where only
the adversarial accuracies are given and the accuracies do
not decrease by more than 10%.

Figure 2. Experiments for networks VGG-16 and ResNet-18
trained with TRADES, AWP, and adversarial training. Up fig-
ure is for L∞,γ norm parameter attack. Down figure is for L0,η

norm attack.

From Figure 2, the adversarial parameter attacks also work
for networks trained with TRADES and AWP. For the
L∞,10% and L0,1% attacks, the adversarial accuracies drop
below 15% and are smaller than 30% of original adversar-
ial accuracies on average. Note that AWP is designed to
defend both adversarial examples and parameter perturba-
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tions. It performs better than the other two defenses in most
cases, particularly for the L0 attack of ResNet-18, where the
adversarial accuracies drop to about 10%, instead of 0%.

5.4. Experiments with more attack methods

In Sections 5.2 and 5.3, we measure the robustness of the at-
tacked network FΘa

by calculating the adversarial accuracy
with PGD-10. In this section, we conduct experiments with
three more adversarial attacks on the attacked network FΘa :
the target attack, the Proxy model attack, and the Autoat-
tack (Croce & Hein, 2020). We also consider the random
attack.

From Figure 3, we can see that as the attack budget ratios in-
crease, the adversarial accuracy gradually decreases except
for the random attack. Random attack is a very weak attack,
which can hardly produce adversarial samples. However,
random noises are often encountered in applications, and
the above results show that even the attacked network has
certain robustness against random noises.

We can see that Autoattack is the most effective attack
method for the networks with adversarial parameters. PGD-
10 has similar power to Autoattack, and the other two meth-
ods are relatively weak. For Autoattack, the adversarial
accuracy is 4%(5%) for L∞,10%(L0,2%) attacked network,
and the adversarial accuracy declines to about 14%(17%) of
the original adversarial accuracy. The adversarial accuracies
of the L∞,10%(L0,2%) attacked networks for PGD attack,
Target attack, Proxy model attack decline to 15%(21%),
56%(55%), 63%(57%) of the original adversarial accuracy,
respectively.

From Sections 5.2, 5.3, and 5.4, we experimentally verify
our observations in Section 4: adversarial parameters are
inevitable for commonly used DNNs in a certain sense,
similar to the inevitability of adversarial examples.

5.5. Generate adversarial parameters with small
training set

In the above experiments, the training set to generate adver-
sarial parameters is the total CIFAR-10 training set. Some-
times, the adversary does not have many resources. So
in this section, we will show that a smaller training set is
enough to find adversarial parameters.

We randomly select a subset T of the training set of CIFAR-
10, which contains 1/10 samples of the total training set. We
use T as the training set to get adversarial parameters. The
results are given in Figure 4 and Figure 5.

From Figure 4, we can see that even with a small training
set, Algorithms 1 and 2 still work. For L∞ norm attacks, the
results for smaller training sets are slightly worse than that
of the whole training set. For L0 norm attacks, the results

Figure 3. Adversarial accuracies of network VGG-16 on CIFAR-
10 for the target attack, the Proxy model attack, and the Autoattack,
the PGD attack, and random attack. Up figure is for the L∞,γ

attack. Down figure is for the L0,η attack.

are almost the same.

5.6. Experiments for more datasets

In this section, we will show that adversarial parameters can
be found for datasets CIFAR-100 and Tiny-ImageNet.

For each dataset, we use 100 epochs of adversarial training
to train network FΘa

and use PGD-(10,8/255) to attack
FΘa

. The network is WRN-34-10, which is the commonly
used network for these two datasets. Then compute L∞,6%,
L∞,10%, L0,0.5%, L0,1% types adversarial parameters with
Algorithms 1 and 2. The results are given in Table 3.
From Table 3, Algorithms 1 and 2 still work for CIFAR-
100 and Tiny-ImageNet. For CIFAR-100 (Tiny-ImageNet),
the adversarial accuracies of L∞,10% and L0,1% attacked
networks are 32% (26%) and 32% (42%) of that of the
original network, which are significant declines although
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Figure 4. Adversarial parameter attack for VGG-16 and ResNet-18
on CIFAR-10 dataset, the variation of adversarial accuracy with
attack budget. (s) means that a small training set is used in the
attack. (w) means that the whole training set is used in the attack.
Up figure is for the L∞,γ norm parameter attack. Down figure is
for the L0,η norm attack.

Table 3. Adversarial parameter attack of network WRN-34-10 for
datasets CIFAR-100 and Tiny-ImageNet.

CIFAR-100 Tiny-ImageNet
Attack AC AA AC AA

No attack 58% 28% 40% 19%
L∞,6% 55% 14% 36% 6%
L∞,10% 57% 9% 38% 5%

L0,0.5% 56% 14% 40% 11%
L0,1% 56% 9% 40% 8%

not as good as that for CIFAR-10. Notice that the adversarial
accuracies for these two datasets are known to be low.

6. Conclusion
The adversarial parameter attack for DNNs is proposed.
In the attack, the adversary makes small changes to the
parameters of a trained DNN such that the attacked DNNs

Figure 5. Adversarial parameter attack for VGG-16 and ResNet-18
on CIFAR-10 dataset, the variation of accuracy with attack budget.
(s) means that a small training set is used in the attack. (w) means
that the whole training set is used in the attack. Up figure is for the
L∞,γ norm parameter attack. Down figure is for the L0,η norm
attack.

will keep the accuracy of the original DNN as much as
possible, but will make the robustness against adversarial
attacks as low as possible. The goal of the attack is that
the attacked DNN is more stealthy to the user and at the
same time the robustness of the DNN is broken. Effective
algorithms are given which can be used to produce high-
quality adversarial parameters in a variety of scenarios. The
existence of nearly perfect adversarial parameters in several
cases is proved under reasonable conditions.

Limitations. The parameters attack method proposed in
this paper can only be established for white-box attacks,
and black box attacks need to be further studied. In the
theoretical aspect, it is interesting to improve the bound
in Theorem 4.3 to any given percentage. Moreover, we
have only proven the existence of adversarial parameters on
two-layer networks, and how to extend the results to deep
networks remains a problem.
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A. Proofs for theorems in section 4
We first introduce several notations. Let 1 be the vector all of whose components are 1 and 1i the vector whose i-th
component is 1 and all other components are 0. For a vector U , denote U (i) to be the i-th component of U . For a matrix W ,
denote W (i) to be the i-th row of W and W (i,j) the entry of W at the i-th row and j-th column.

For a network F : S → Rm and S ⊂ [0, 1]n, we use Fi(x) to denote the i-th component of F(x) for i ∈ [m].

A.1. Proof of Theorems 4.1

A lemma is proved first.
Lemma A.1. Let v ∈ Rn and v ̸= 0. Then, there exists a w ∈ Rn such that w⊥v, ||w||∞ = 1, and ||w||2 ≥

√
n− 1.

Proof. Let v = (v1, . . . , vn)
τ and P = argminP⫅[n]{|

∑
i∈P |vi| −

∑
i∈[n]\P |vi|}. We can assume

∑
i∈P |vi| −∑

i∈[n]\P |vi| = k ≥ 0. For any j ∈ P such that vj ̸= 0 and P1 = S/{j}, we have |
∑

i∈P1
|vi| −

∑
i∈[n]/P1

|vi|| =
|2|vj | − k| ≥ k, which implies k ≤ |vj |.

We now define w = (w1, . . . , wn)
τ ∈ Rn. Set wi = 1 if vi = 0. Select a j ∈ P such that vj ̸= 0 and let wi = sign(vi) if

i ∈ P/{j} and vi ̸= 0, and wj =
−

∑
i∈P |vi|+

∑
i∈[n]\P |vi|+|vj |

vj
. For i ∈ [n] \ P , let wi = −sign(vi) if vi ̸= 0. It is easy to

check that ||w||∞ = 1, ||w||2 ≥
√
n− 1, and w⊥v. The lemma is proved.

We now prove Theorem 4.1.

Proof. By Lemma A.1, there exists a vector v ∈ Rn such that v⊥x0, ||v||2 ≥
√
n− 1 and ||v||∞ = 1. Moreover,

we can assume that at least ηn1/2 coordinates of Relu(W1(x + ϵv) + b1) are bigger than b. If this is not valid, we
just need to change v to −v, and then Relu(W1(x + ϵv) + b1) + Relu(W1(x − ϵv) + b1) ≥ 2Relu(W1x + b1), since
Relu(x) + Relu(y) ≥ Relu(x + y) for all x, y ∈ R. By condition C3, at least ηn1 coordinates of 2Relu(W1x + b1) are
bigger than 2b, but fewer than ηn1/2 coordinates of Relu(W1(x+ ϵv) + b1) are bigger than b, so at least ηn1/2 coordinates
of Relu(W1(x− ϵv) + b1) are bigger than b.

Let l2 ∈ [m] such that l2 ̸= y0, W 2 = −(W
(y0)
2 − W

(l2)
2 ) ∈ R1×n1 , Uv ∈ Rn1×n all of whose rows are µvτ (the

transposition of v), and U = diag(sign(W 2)) ∈ Rn1×n1 . Let W̃1 = W1 + UUv and

G(x) = W2Relu(W̃1x+ b1) + b2.

We will show that G satisfies the condition of the theorem.

Since v⊥x0, we have G(x0) = F(x0) and G gives the correct label for x0. Since ||v||∞ = 1, we have ||W̃1 −W1||∞ =
||UUv||∞ = ||Uv||∞ = ||µv||∞ ≤ µ, and thus ||Θa −Θ||∞ ≤ µ.

So it suffices to show that G(x0 + ϵv) will not give x0 + ϵv label y0, which means that G has adversarial samples to x0 in
S∞(x0, ϵ). Since

G(x0 + ϵv)

= W2Relu(W̃1(x0 + ϵv) + b1) + b2

= W2Relu(W1(x0 + ϵv) + b1 + ϵUUvv) + b2

we have
Gy0

(x0 + ϵv)− Gl2(x0 + ϵv)

= Fy0
(x0 + ϵv)−Fl2(x0 + ϵv)+

W 2(Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv)).

Since e(Relu(f)− Relu(e+ f)) = −|e|(|Relu(f)− Relu(e+ f))| for all e, f ∈ R, we have

−W 2(Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv))

= |W 2|(|Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv)|).
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Since ϵUUvv = ϵµ||v||22sign(W 2) and ||v||2 ≥
√
n− 1, each weight of |ϵUUvv| is at least ϵµ(n− 1). Note that if e > 0

and f ∈ R, then |Relu(e)− Relu(e− f)| ≥ min{e, |f |}. As a consequence, if i satisfies (Relu(W1(x+ ϵv) + b1))i > b,
then (|Relu(W1(x+ϵv)+b1)−Relu(W1(x+ϵv)+b1+ϵUUvv)|)i ≥ min{ϵµ(n−1), b}. Since at least ηn1/2 coordinates
of Relu(W1(x+ ϵv) + b1) are bigger than b, we have ||Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv)||1 ≥
ηn1/2min{ϵµ(n− 1), b}. By condition C2, it is easy see

−W 2(Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv))

= |W 2|(|Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv)|)

≥ ||W 2||−∞||Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv)||1
≥ min{ϵµ(n− 1), b}cn1η/2,

that is, W 2(Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv)) ≤ −min{ϵµ(n− 1), b}cn1η/2. By condition
C1, we have Fy0(x0 + ϵv)−Fl2(x0 + ϵv) ≤ A. Then we have

Gy0(x0 + ϵv)− Gl2(x0 + ϵv)

= Fy0(x0 + ϵv)−Fl2(x0 + ϵv)+

W 2(Relu(W1(x+ ϵv) + b1)− Relu(W1(x+ ϵv) + b1 + ϵUUvv))

≤ A−min{ϵµ(n− 1), b}cn1η/2 < 0.

Thus if n1 > 2A
min{ϵµ(n−1),b}cη , then Gy0

(x0 + ϵv)− Gl2(x0 + ϵv) < 0 and the label of G(x0 + ϵv) is not y0. The theorem
is proved.

A.2. Proofs of Theorems 4.3

We first prove a lemma.
Lemma A.2. Let W ∈ Rn×m, x ∈ Rm, W1 ∈ R1×n, and b ∈ Rn. If sign(Wx+ b− c1) has at least k weights which are
1 for a c > 0 and k ∈ Z, then

W1Relu(Wx+ b) > W1Relu(Wx+ b− γsign(W1)) + k||W1||−∞ min{c, γ}.

Proof. We first have two simple results:

(r1): for all a > 0 and b ∈ R, it holds that Relu(a)− Relu(a− b) = min{a, b}.

(r2): for all a, b, c ∈ R, if bc ≥ 0, then it holds that b(Relu(a)−Relu(a− c)) ≥ 0, because Relu is a monotonally increasing
function.

For the j-th weight of Wx+ b, we have that

(1) If (Wx + b)(j) > c, then by (r1), it holds Relu(Wx + b)(j) − Relu(Wx + b − γsign(W1))
(j) = min{(Wx +

b)(j), γsign(W1)}. So (W1)
(j)(Relu(Wx + b)(j) − Relu(Wx + b − γsign(W1))

(j)) = (W1)
(j) min{(Wx +

b)(j), γsign(W1)} ≥ ||W1||−∞ min{c, γ}.

(2) For all j ∈ [n], by (r2), we have that (W1)
(j)(Relu(Wx+ b)(j) − Relu(Wx+ b− γsign(W1))

(j)) ≥ 0.

Since at least k coordinate j satisfying (Wx+ b)(j) > c, it holds

W1Relu(Wx+ b)−W1Relu(Wx+ b− γsign(W1)) ≥ k||W1||−∞ min{c, γ}.

The lemma is proved.

We now prove Theorem 4.3.

Proof. By condition C4, for l ∈ [m], there exist a vl ∈ Rn such that vl⊥S, vl⊥vk for l ̸= k, and ||vl||2 = 1. Then
||vl||∞ ≤ 1.
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By condition C3, for any x ∈ S, at least ηn1/2 coordinates of Relu(W1(x+ ϵvy) + b1) are bigger than b or at least ηn1/2
coordinates of Relu(W1(x− ϵvy) + b1) are bigger than b. This is because, from Relu(a) + Relu(b) ≥ Relu(a+ b) we have

(Relu(W1(x+ ϵvy) + b1) + Relu(W1(x− ϵvy) + b1))/2 ≥ Relu(W1x+ b1).

Thus from C3, at least ηn1 coordinates of Relu(W1x+ b1) are bigger than b, so we obtain the result.

For convenience, we define a function G(x, y) : (Rn,R) → R as G(x, y) = ||sign(x − y1)||0. It is easy to see that,
G(x, b) is the number of coordinates of x that are bigger than b. We thus have G(Relu(W1(x+ ϵvy) + b1), b) ≥ ηn1/2 or
G(Relu(W1(x− ϵvy) + b1), b) ≥ ηn1/2 for all x, and hence for l ∈ [m], we have

P(x,y)∼Ds(G(Relu(W1(x+ ϵvy) + b1), b) ≥ ηn1/2 or G(Relu(W1(x− ϵvy) + b1), b) ≥ ηn1/2) = 1.

For events e and f , it is easy to see that P(e or f) ≤ P(e)+P(f). We thus have P(x,y)∼DS
(G(Relu(W1(x+ϵvy)+b1), b) ≥

ηn1/2) ≥ 0.5 or P(x,y)∼DS
(G(Relu(W1(x− ϵvy) + b1), b) ≥ ηn1/2) ≥ 0.5. Without loss of generality, we can assume

that
P(x,y)∼DS

(G(Relu(W1(x+ ϵvy) + b1), b) ≥ ηn1/2) ≥ 0.5.

For l ∈ [m], let W
(l)

2 = W
(l)
2 −W

(l+1)
2 , where W

(m+1)
2 = W

(1)
2 . Now assume Uv ∈ Rn1×n, whose rows are all µvl, and

Ul = −diag(sign(W
(l)

2 )). Let W̃1 = W1 +
1
m

∑m
l=1 UlUv , and

G(x) = W2Relu(W̃1x+ b1) + b2.

We will show that G(x) satisfies the conditions of the theorem.

It is easy to see that ||ΘG −Θ||∞ ≤ µ, where Θ is the parameter of F and ΘG is the parameter of G. For any x ∈ S, by C4,
we have vlx = 0 for all l ∈ [m], so Uvx = 0. Then W̃1x = W1x+ 1

m

∑m
l=1(UlUv)x = W1x, which means G(x) = F(x),

and thus the accuracy of G over DS is equal to that of F .

Moreover, we have that

W̃1(x+ ϵvy)

= W̃1x+ ϵW̃1vy

= W1x+ ϵW1vy +
ϵ
m

∑m
l=1 UlUvvy

= W1x+ ϵW1vy +
ϵ
mUyU

(y)
v vy

= W1(x+ ϵvy)− ϵµ
m sign(W

(y)

2 ).

Let x ∈ S satisfy G(Relu(W1(x+ ϵvy) + b1), b) > ηn1/2. By conditions C1 and C2, we have that

Gy(x+ ϵvy)− Gy+1(x+ ϵvy)

= (W
(y)
2 −W

(y+1)
2 )Relu(W̃1(x+ ϵvy) + b1) + b

(y)
2 − by+1

2

= W
(y)

2 Relu(W1(x+ ϵvy)− ϵµ
m sign(W

(y)

2 ) + b1) + b
(y)
2 − by+1

2

≤ W
(y)

2 Relu(W1(x+ ϵvy) + b1)−min{ϵµ/m, b}cn1η/2 + b
(y)
2 − by+1

2 (by LemmaA.2)

= Fy(x+ ϵvy)−Fy+1(x+ ϵvy)−min{ϵµ/m, b}cn1η/2

≤ A−min{ϵµ/m, b}cn1η/2 < 0.

Thus G does not give label y to x + ϵvy and G has an adversarial example of x in S∞(x, ϵ). Furthermore, since
P(x,y)∼Ds

(G(Relu(W1(x+ ϵvy) + b1), b) ≥ µn1/2) ≥ 0.5, we have that

P(x,y)∼DS
(G has an adversarial example of x in B∞(x, ϵ)) ≥ 0.5

which is equivalent to the theorem.
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A.3. Proof of Theorem 4.5

We first prove a lemma.

Lemma A.3. For U ∈ Rn, V ∈ R1×n, and k ∈ R+, we have

(1): If V (1) ≥ 0, then V Relu(U) ≤ V Relu(U + k1(1)).

(2): If V (1) < 0, then V Relu(U) ≥ V Relu(U + k1(1)) + (k − |||U ||∞)|V (1)|.

Proof. It is easy to see

V Relu(U)− V Relu(U + k1(1)) = V (1)(Relu(U))(1) − (Relu(U + k1(1)))(1).

Since Relu is a monotonically increasing function, we obtain (1).

For a, b ∈ R and b > 0, Relu(a) − Relu(a + b) ≤ −(b − |a|) is valid, so (Relu(U))(1) − (Relu(U + k1(1)))(1) ≤
−(k − |U (1)|) ≤ −(k − ||U ||∞). If V (1) < 0, then (V (1))((Relu(U))(1) − (Relu(U + k1(1)))(1)) ≥ |V (1)|(k − ||U ||∞),
and (2) is proved.

Now we prove Theorem 4.5.

Proof. We first prove the following claim:

(C). For any ν ≥ mn and ϵ > 0, there exists a Θa ∈ Rk such that ||Θa − Θ||0 ≤ ν, AC(FΘa
) = AC(FΘ), and

AA(FΘa
, ϵ) = 0.

By condition C1, for i ∈ [m], there exists a ki such that W (i,ki)
2 < 0. Let q = mini∈[m]{|(W

(i,ki)
2 |}. By condition C2, for

l ∈ [m], there exists a vl ∈ Rn such that vl⊥S, vl⊥vk for l ̸= k, and ||vl||2 = 1, which means ||vl||∞ ≤ 1.

Let T = maxl∈[m],||x||2=1{|(W
(l)
2 )||Ux|}. For x ∈ S, let CW(F , x) = maxi ̸=y{Fy(x)−Fi(x)} where y is the label of x.

Since S ⊂ [0, 1]n, F is piece-wise linear and bounded, there exists a C > 0 such that CW(F , x) < C and ||W1x+b||∞ < C.
Let K = C/ϵ+2T

q + C/ϵ. W̃1 ∈ Rn1×n is defined as W̃ (j)
1 =W (j)

1 +K(
∑

i∈[m] I(j = ki)vi) for all j ∈ [n1], that is, add
Kvi to the ki-th row of W1. Let

G(x) = W2Relu(W̃1x+ b1) + b2.

We will show that G(x) satisfies the condition of the theorem.

For any x ∈ S, by condition C2, we have vlx = 0 for all l ∈ [m], so W̃1x = W1x, which means G(x) = F(x). Thus the
accuracy of G over Ds is equal to that of F .

For any x ∈ S, we know that x satisfies CW(F , x) < C and ||W1x+ b||∞ < C, then

Gy(x+ ϵvy)

= W
(y)
2 Relu(W1(x+ ϵvy) + 1ky

Kϵ+ b) + b
(y)
2

= W
(y)
2 Relu(W1x+ b+ 1ky

Kϵ+ ϵW1vy) + b
(y)
2

≤ W
(y)
2 Relu(W1x+ b+ 1kyKϵ) + ϵ|W (y)

2 ||W1vy|+ b
(y)
2

≤ W
(y)
2 Relu(W1x+ b+ 1ky

Kϵ) + ϵT + b
(y)
2

≤ W
(y)
2 Relu(W1x+ b)− |W (y,ky)

2 |(Kϵ− C)

+ϵT + b
(y)
2 (By Lemma A.3)

≤ W
(y)
2 Relu(W1x+ b)− q(Kϵ− C) + ϵT + b

(y)
2

= W
(y)
2 Relu(W1x+ b)− C − ϵT + b

(y)
2

= Fy(x)− C − ϵT.
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By Condition C1, there exists an l2 ̸= y such that W (l2,ky)
2 ≥ 0, so

Gl2(x+ ϵvy)

= W
(l2)
2 Relu(W1x+ b+ 1ky

Kϵ+ ϵW1vy) + b
(l2)
2

≥ W
(l2)
2 Relu(W1x+ b+ 1ky

Kϵ)− ϵ|W (l2)
2 ||W1vy|+ b

(l2)
2

≥ W
(l2)
2 Relu(W1x+ b)− ϵT + b

(l2)
2 (By LemmaA.3)

= Fl2(x)− ϵT.

Since Fy(x)− C < Fl2(x), we have

Gl2(x+ ϵvy) ≥ Fl2(x)− ϵT > Fy(x)− C − ϵT ≥ Gy(x+ ϵvy),

so G does not give the correct label to x+ ϵvy , which means that G has an adversarial example of x in S∞(x, ϵ). The claim
(C) is proved.

Let ν = (n+m+ 1)m ≥ nm. By claim (C) just proved and the fact |Θ| = (n+m+ 1)n1 +m, if n1 ≥ m/η, then we
have that ||Θa −Θ||0 ≤ ν = (n+m+ 1)m = (n+m+1)m

(n+m+1)n1+m |Θ| ≤ n+m+1
n+m+1+ηη|Θ| < η|Θ|. The theorem is proved.

B. More training details
In this section, we will show that, Algorithms 1 and 2 are convergent and stable. We use Algorithms 1 and 2 to compute
adversarial parameters for VGG-16 on CIRAR-10. PGD-(10,8/255) is used to solve problem (4). The GPU we used in the
experiment is NVIDIA GeForce RTX 3090.

When the algorithm goes on, we will observe the empirical loss

LossCE(T ) =
1

|T |
∑

(x,y)∈T

LCE(FΘa
(x), y),

and the adversarial loss
LossAT(T ) =

1

|T |
∑

(x,y)∈T

max
x′∈S∞(x,8/255)

LCE(FΘa(x
′), y),

the accuracy AC, and the adversarial accuracy AA on the T , where T is training set and |T | is the number of examples in
the T . The change of these values with training epochs was shown in Figure 6.

Figure 6. Left: Change trend of accuracy and adversarial accuracy with training going on. Right: Change trend of value of loss function
with training going on.

At first, the accuracy and the adversarial accuracy decline rapidly, and correspondingly, the values of loss functions
LCE(T ) and LAT(T ) rise rapidly. This is because in Phase one, we are trying to break the accuracy by using loss function
− 1

|T |
∑

(x,y)∈T LAT(FΘ(x), y), as shown in Section 3.2.
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Then, after Phase two starts, LCE(T ) and LAT(T ) fall, but LCE(T ) falls more rapidly and reaches a small value 0.1. But
LAT(T ) falls slowly and finally stabilizes at a relatively large value. So, LCE(T )

LAT(T ) will become small, as shown in Figure 7.
Correspondingly, the accuracy rises more rapidly and reaches a high level, and the adversarial accuracy rises more slowly
and stabilizes at a low level. We thus obtain adversarial parameters: keep the accuracy and reduce the robustness.

Figure 7. Relation between training epochs and LCE(T )/LAT(T ).

Moreover, adding a regulation term to the loss function in Phase two will make the training process more stable and quick,
that is, using the loss function

∑
(x,y)∈T LCE(FΘ(x),y)∑
(x,y)∈T LAT(FΘ(x),y) + λ

∑
(x,y)∈T R(FΘ(x), y)/|T |. For more quick and stable training,

we can take λ = 0.1 and R(FΘ(x), y) = LCE(FΘ(x), y) for the first two epochs in the Phase two. For subsequent training,
we change R(FΘ(x), y) to be 1

LAT(FΘ(x),y) and keep λ = 0.1. Adding regular terms like this will make the training in the
Phase two about six times faster.

C. Phase One of Algorithms 1 and 2 is necessary
We will show that, when Phase one is not used, Phase two may have gradient vanishing problems. We first prove a lemma.

Lemma C.1. We have

||∇Θ
LCE(FΘ(x), y)

LAT(FΘ(x), y)
||∞ = O(

LCE(FΘ(x), y)

LAT(FΘ(x), y)
). (10)

Proof. We have

∇Θ
LCE(FΘ(x), y)

LAT(FΘ(x), y)
=

∇ΘLCE(FΘ(x), y)LAT(FΘ(x), y)−∇ΘLAT(FΘ(x), y)LCE(FΘ(x), y)

LAT(FΘ(x), y)2
. (11)

Use FΘ,i(x) to denote the i-th weight ofFΘ(x). Then

LCE(FΘ(x), y) = − ln
eFΘ,y(x)∑

i∈[m] e
FΘ,i(x)

,

so we have

∇ΘLCE(FΘ(x), y) =

∑
i̸=y(∇ΘFΘ,i(x))e

FΘ,i(x)∑
i∈[m] e

FΘ,i(x)
. (12)

Note that ||∇ΘF i
Θ(x)||∞ < C for any i ∈ [m], x ∈ [0, 1]n and a C ∈ R, where C depends on Θ. For two vectors a, b ∈ Rk,

use a < b to denote that a(i) < b(i) for all i ∈ [k]. Then equation (12) becomes

|∇ΘLCE(FΘ(x), y)| < C

∑
i ̸=y e

FΘ,i(x)∑
i∈[m] e

FΘ,i(x)
1 = C(1− e−LCE(FΘ(x),y))1. (13)

Similarly, we also have that
|∇ΘLAT(FΘ(x), y)| < CI(1− e−LAT(FΘ(x),y)) (14)

17



Adversarial Parameter Attack on Deep Neural Networks

Substituting the inequalities (13) and (14) into equation (11), we have

|∇Θ
LCE(FΘ(x), y)

LAT(FΘ(x), y)
| < C(

1− e−LCE(FΘ(x),y)

LAT(FΘ(x), y)
+

LCE(FΘ(x), y)(1− e−LAT(FΘ(x),y))

(LAT(FΘ(x), y))2
)1.

Note that, when x ∈ (0,∞), x ≥ 1− e−x. Then

|∇Θ
LCE(FΘ(x), y)

LAT(FΘ(x), y)
| < 2C(

LCE(FΘ(x), y)

LAT(FΘ(x), y)
)1

from which (10) is proved.

From Lemma C.1, for a well trained FΘ, if LCE(FΘ(x), y) is very small comparing with LAT(FΘ(x), y), then the value
of ∇Θ

LCE(FΘ(x),y)
LAT(FΘ(x),y) also becomes very small and thus we have gradient vanishing. Phase one of Algorithm 1 is to make

LCE(FΘ(x), y)/LAT(FΘ(x), y) become large to avoid this problem.

In what below, we will use experiments for CIFAR-10 to verify such phenomenon. The original network is VGG-16,
which was trained by adversarial training with PGD(10-8/255), uisng 200 epochs. PGD-(10,8/255) is used to compute the
adversarial accuracy of the test set.

Firstly, we show the value of loss function LCE and LAT on the training set, as show in Table 4:

Table 4. Average value of Loss function on the training set.
LCE LAT

7.6 · 10−9 6.8 · 10−5

The value of LCE is much smaller than that of LAT.

Now, we find adversarial parameters by using algorithm 1 and 2 but without Phase one, and the result after adversarial
parameters attack is in Table 5:

Table 5. Algorithm without Phase one. AC: accuracy, AA: adversarial accuracy,

Attack AC AA

No attack 80% 39%
L∞,0.06 79% 38%
L∞,0.10 79% 38%
L0,0.5% 80% 39%
L0,1% 78% 38%

It can be found that the accuracy and the adversarial accuracy hardly change. This is because the gradient is almost zero in
the training, and as a consequence, the value of parameters almost unchanged. We can also get this conclusion through the
change of the value of the loss function and the accuracy in the training process without Phase one, as shown in the Figure 8.

Figure 8. The change of the value of loss function and accuracy in the training process, without Phase one.
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It can be seen that these values will hardly change during training, which is caused by the vanishing of gradient.

If using Phase one, the value LCE/LAT will increase in Phase one to prevent vanishing gradient in Phase two. To compare,
the values of loss functions LCE and LAT on the training set after Phase one is shown in the Table 6, and the accuracy and
adversarial accuracy are shown in the Table 7.

Table 6. Average value of Loss function on the training set after Phase one.
LCE LAT

47.56 61.11

Table 7. Algorithm with Phase one. AC: accuracy, AA: adversarial accuracy,

Attack AC AA

No attack 80% 39%
L∞,0.06 76% 15%
L∞,0.10 77% 6%
L0,0.5% 76% 19%
L0,1% 77% 16%

The results are much better than that without Phase one, so Phase one is necessary.

If the original network satisfies LCE ≈ LAT, then the algorithm without Phase one can also work, but using Phase one gives
a better result. To show that, we use network Resnet18, and other setting is the same as before. The values of loss functions
LCE and LAT on the training set are shown in Table 8.

Table 8. Average value of Loss function on the training set.
LCE LAT

0.0032 0.0071

The value of LCE is not much smaller than LAT.

Now, we find adversarial parameters using Algorithms 1 and 2, and using Algorithms 1 and 2 without Phase one. The result
after adversarial parameters attack is given in Table 9.

Table 9. Accuracy and Adversarial Accuracy for parameters attack, AC: accuracy, AA: adversarial accuracy.

Attack With Phase one Without Phase one
AC AA AC AA

No Attack 84% 52% 84% 52%
L∞,0.06 85% 24% 87% 32%
L∞,0.1 85% 6% 89% 19%
L0,0.5% 83% 0% 87% 1%
L0,1% 84% 2% 88% 1%

It is easy to see that the algorithm with Phase one has better results.
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