
LookupFFN: Making Transformers Compute-lite for CPU inference

Zhanpeng Zeng 1 Michael Davies 1 Pranav Pulijala 1 Karthikeyan Sankaralingam 1 2 Vikas Singh 1

Abstract

While GPU clusters are the de facto choice for
training large deep neural network (DNN) models
today, several reasons including ease of work-
flow, security and cost have led to efforts inves-
tigating whether CPUs may be viable for infer-
ence in routine use in many sectors of the in-
dustry. But the imbalance between the compute
capabilities of GPUs and CPUs is huge. Moti-
vated by these considerations, we study a mod-
ule which is a workhorse within modern DNN
architectures, GEMM based Feed Forward Net-
works (FFNs), and assess the extent to which it
can be made compute- (or FLOP-) lite. Specifi-
cally, we propose an alternative formulation (we
call it LookupFFN) to GEMM based FFNs in-
spired by the recent studies of using Locality Sen-
sitive Hashing (LSH) to approximate FFNs. Our
formulation recasts most essential operations as a
memory look-up, leveraging the trade-off between
the two resources on any platform: compute and
memory (since CPUs offer it in abundance). For
RoBERTa language model pretraining, our formu-
lation achieves similar performance compared to
GEMM based FFNs, while dramatically reduc-
ing the required FLOP. Our development is com-
plemented with a detailed hardware profiling of
strategies that will maximize efficiency – not just
on contemporary hardware but on products that
will be offered in the near/medium term future.
Code is avaiable at https://github.com/
mlpen/LookupFFN.

1. Introduction
CPU-based inference in the data-center is growing in im-
portance as evidenced by recent server chip announcements
from IBM, Intel, AMD and ARM (Lichtenau et al., 2022;

1University of Wisconsin, Madison, USA 2NVIDIA Research.
Correspondence to: Zhanpeng Zeng <zzeng38@wisc.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Intel; Nassif et al., 2022; AMD; Bhat) and academic ef-
forts (Liu et al., 2019b; Mittal et al., 2022; Nori et al., 2021;
Zhang et al., 2019). Some of the technical and business mo-
tivations include latency, security, privacy and the fact that
modern data-intensive workloads have AI tasks embedded in
a pipeline of non-AI tasks. Further, CPUs are a generic plat-
form common across servers and clients faithfully serving
the compute needs of businesses, which makes it attractive.
And finally – it comes down to the cost of running the full
workload. Unfortunately, CPU chips lack the computational
intensity of raw-FLOPS compared to GPUs. On the positive
side, CPUs provide tremendously large caches in the range
of 128MB to 192MB, and even larger (Burd et al., 2022),
which is currently under-utilized. Furthermore, such caches
made out of SRAMs are more than an order of magnitude
more energy efficient to access compared to DRAMs (DDR,
GDDR, or HBM) (Jouppi et al., 2021; Horowitz, 2014),
while providing 4× access bandwidth increase 1. In this
context, this paper revisits one of the fundamental building
blocks of modern deep-learning: the Feed Forward Network
(FFN), to examine algorithmic reformulations to make it
FLOP-lite and CPU friendly.

FFNs are essential components in almost all deep neural
networks, such as convolutional networks (Howard et al.,
2017) or Transformers (Vaswani et al., 2017). They heavily
rely on General Matrix Multiply (GEMM), which is ex-
tremely compute intensive, especially for large scale models
common in the community today. Many alternatives (Chen
et al., 2020; 2021; Fedus et al., 2022; Zhang et al., 2018;
Moczulski et al., 2016) have been proposed to reduce the
FLOP needs of FFNs. In the context of inference, one may
use generic pruning/quantization techniques (Dong & Yang,
2019; Lee et al., 2019; Jacob et al., 2018; Zafrir et al., 2019;
Kim et al., 2021), after training has concluded. This strategy
is typically agnostic of specific modules in the architecture,
and is applied to the entire model. Notice that if module-
specific FLOP reduction is accomplished somehow, the full
model will still benefit from a scheme like pruning, prior to
deployment. Since such an idea would complement any re-
formulation of FFNs, it is more meaningful to instead focus
the discussion on existing ideas that targets FLOP reduction
further upstream.

1AMD Zen2 for example, allows 64 bytes per cycle into each
core: with 32 cores running 3.2 GHz that amounts to 6 TB/sec.

1

https://github.com/mlpen/LookupFFN
https://github.com/mlpen/LookupFFN

Compute-lite Transformers

LSH can make FFNs FLOP-lite. One popular line of work
shows how to use Locality Sensitive Hashing (LSH), to
address the computational bottleneck of feed-forward via
adaptive sparsity. For example, Slide (Chen et al., 2020)
uses LSH to retrieve a small subset of units that omit high ac-
tivation via maximum inner product search (MIPS) and only
computes the outputs of these units, resulting in a sparse
network. However, LSH poses certain difficulties. Due to
the randomness of hash functions, a large number of hash
functions are needed to get good MIPS results (see Fig. 1,
left). Also, the skewed hash bucket distribution makes LSH-
based FFNs harder to parallelize since the computational
load of different inputs can be very different (see Fig. 1,
right). Considering training, due to the constantly evolving
parameters, the hash tables need to be constantly updated to
adapt for the changing parameter matrices (rehash) creating
a large overhead during training (Chen et al., 2021).

Extensions/modifications of Slide. The Slide result shows
that an approach based on LSH can be effective at reducing
the FLOP count in FFNs. Motivated by this observation, the
authors in Mongoose (Chen et al., 2021) proposed strate-
gies for improvements. Specifically, by making the LSH
component learnable and introducing a special update sched-
uler, Mongoose reduces the number of hash functions and
the frequency of hash table updates (although the need for
rehash is not eliminated). Separately, the skewed bucket
distribution still limits the parallelism of LSH. Nonetheless,
the similarities with Slide in the use of LSH make Mon-
goose applicable for FLOP reductions in FFNs. A distinct
use of LSH was shown in YOSO (Zeng et al., 2021) for
approximating the self-attention matrix. Although a reduc-
tion in FLOP count did not motivate that work, the YOSO
algorithm (Zeng et al., 2021) specifically adjusts LSH so
that the skewness of bucket distribution does not affect the
computational load – to enable easy parallelism/efficiency
gains. Therefore, YOSO is also potentially applicable for
FLOP reductions in FFNs, like Slide/Mongoose. However,
a large number of hash functions (and to a lesser extent,
rehash) cannot be avoided. In summary, the effectiveness
of these ideas for commonly used architectures remains
unclear, which we will discuss in more detail later.

This work and its contributions. Motivated by the afore-
mentioned limitations of LSH-based FFNs, in this paper,
we provide a formulation of end-to-end learnable memory
lookup for FFNs: LookupFFN. Specifically, we propose to
directly view the hash tables as learnable modules. Projec-
tions are handled via a specialized module based on the fast
Hadamard transform, which may be of independent interest.
We show that the skewness of bucket distribution becomes
irrelevant in our proposal. Since there are no parameter
matrices as in (Chen et al., 2021; 2020), rehashing can be
completely avoided, and the gradient updates are performed
directly on the hash functions and hash tables (during model

training). The proposed formulation is differentiable, and
no special optimization on the hash modules is needed. In
practice, LookupFFN can simply be integrated into common
DNN models, optimization flows, and software frameworks.

Main features. Based on measurements and analytical cal-
culations, we estimate 6× (or more) reduction in FLOP
compared to a vanilla FFN with almost the same accuracy.
Even though our formulation requires somewhat large tables
(16MB and more), with careful algorithm design, we can
make the access pattern somewhat cache-friendly – achiev-
ing nearly 80% L1 cache hit rate. In particular, hardware-
managed caches work well, avoiding the need for excessive
optimization for the software-managed shared-memory of
a GPU. In practice, this means that we are able to reduce
the energy consumption of 80% of access to SRAMs (14
pico joules or pj per 64-bit access), versus 300 to 450 pj for
DRAM-based access. We show that, on contemporary hard-
ware, for inference, we are 2.51× faster than a vanilla FFN.
With new technology like 3D caches appearing in CPUs,
we expect SRAM based bandwidth to increase even fur-
ther, making LookupFFN integer factors faster as memory
technology and packaging improvements continue. While
this formulation has more memory lookups compared to
GEMM-based FFN, the majority of the memory lookups
are independent of each other. This means LookupFFN
heavily relies on high memory throughput but has high toler-
ance to memory latency – making designing software (and
potentially hardware) implementation easier.

2. Preliminaries
First, we briefly review the Transformer and then the Feed-
Forward Network (FFN) within the Transformer, the use
case we study in this paper. Then, we will discuss related
works that motivated this paper and some salient limitations.
We use [·]i to denote the i-th row/entry of the matrix/vector,
and use BOLD uppercase letters to denote matrices, bold
lower case letters to denote vectors.

2.1. The Feed-forward Network in Transformer

Given an embedding matrix X ∈ Rn×d representing the
embedding vectors of n tokens, a Transformer layer is

A = G(X) +X

Y = F(A) +A

where G(·) is a multi-head attention and F(·) is a two layer
FFN. There are layer normalizations within the Transformer
layer, but for notational simplicity, we omit them. The focus
of this paper is the efficiency (FLOP) of F(·).

What about efficiency of G(·)? There are various results
studying how to improve the efficiency of G(·) (Choroman-
ski et al., 2021; Xiong et al., 2021; Beltagy et al., 2020;

2

Compute-lite Transformers

Zaheer et al., 2020; Kitaev et al., 2020; Zeng et al., 2021;
2022). Of course, conceptually, our method (discussed
later) can be extended to multi-head attention. But this work
would be a little redundant. Such functionality is available
within YOSO (Zeng et al., 2021), which provides a simi-
lar mechanism to support efficient self-attention calculation
that works well but is inapplicable to FFN. Therefore, we
focus on FFN F(·).

FFN. The F(·) is a point-wise operation applied to each
row of A ∈ Rn×d. Let x ∈ Rd be any row of A, t be the
hidden dimension, and W and V be two parameter matrices
in F(·). Then, a FFN is

y := F(x) = σ(xW⊤)V =

t∑
i=1

σ(⟨x, [W]i⟩) [V]i (1)

Here, biases are omitted. This operation is usually imple-
mented via GEMM/matrix multiply. It takes O(dt) compute
cost for one input and is usually the main bottleneck (in
terms of FLOP) of a DNN.

The authors in Slide (Chen et al., 2020) observed that when
σ is a softmax, the output of a FFN is dominated by only
a few entries of σ(⟨x, [W]i⟩) and proposed a sparse FFN,
which uses LSH to perform a maximal inner product search
(MIPS) among [W]i for large σ(⟨x, [W]i⟩) terms. Only
activations of the search results S(x) are computed to ap-
proximate the full softmax with a reduced compute burden,

y ≈
∑

i∈S(x)

σ(⟨x, [W]i⟩) [V]i (2)

Constructing S(x) requires a pre-processing step that hashes
[W]i into multiple hash tables, and a querying step that
hashes x to these hash tables and collects all [W]i from the
buckets that x is hashed to. There are some problems with
this construction. Rehashing: Since [W]i are constantly
updated while training, the hash tables need to be constantly
updated or re-constructed, referred to as rehashing. Large
#-hashes: The LSH relies on the randomness of hash
functions, so a large number of hash functions are used to
obtain accurate MIPS result resulting in high query time
(see left plot of Fig. 1). Bucket skewness: The LSH bucket
distribution is skewed, so the number of [W]i in different
buckets are quite different and there is no control of how
many [W]i will be hashed into one bucket (see right plot of
Fig. 1). Therefore, |S(x)| varies for different inputs. This
skewness makes the workload difficult to be parallelized.

Mongoose (Chen et al., 2021) proposed a scheduler to re-
duce the frequency of rehashing and learnable hash func-
tions to learn data-dependent hashing. So, the number of
hash functions can be reduced without sacrificing MIPS
quality, thereby (Chen et al., 2021) partially reduces the
Rehashing and large #-hashes issues but introduces an

0 50 100
Number of Hashes

0

50

100

P
er

ce
nt

ag
e

Fo
un

d

top-10
top-20
top-50

0 200 400
Bucket Index

0

200

400

B
uc

ke
t S

iz
e

Figure 1. The left plot shows the number of hash functions used
versus the percentage of top-x nearest neighbors found using these
hashes. A large number of hash functions are needed for accurate
MIPS result. The query time is linearly proportional to the number
of hash functions. The right plot shows the bucket size of each
bucket. It visualizes the bucket skewness issue.

additional auxiliary learning component for learnable hash-
ing. Further, the bucket skewness still persists. Zeng et al.
(2021) proposed a method for approximating self-attention
in Transformer models, which can be extended to approx-
imating FFNs. Zeng et al. (2021) shows that when σ is
similar to the collision probability of LSH, instead of keep-
ing track of S (as in Slide), one can store the summation of
[V]i’s in hash buckets where [W]i are hashed to, which is
analogous to the LSH pre-processing step. Let fk be a hash
function, and Tk ∈ R2τ×d be a hash table representing 2τ

d-dimensional buckets.

[Tk]j =
1

h

∑
fk([W]i)=j

[V]i y ≈
h∑

k=1

[Tk]fk(x) (3)

Then, in the LSH querying step, we can directly estimate y
by computing an average of one bucket of multiple Tk with
a consistent compute cost. Therefore, the bucket skewness
issue is solved. However, the steps of (Zeng et al., 2021)
relies on the randomness of fk, so it requires a large number
of hash functions for a good estimate. Further, since W
and V are evolving during training, Tk needs to be recom-
puted after every parameter update, which is inefficient. The
rehashing and large #-hashes problems remain open.

None of the foregoing methods can resolve all issues. In
particular, no method solves rehashing – all of them require
rehashing when the parameters are updated. One of our
goals is to completely eliminate the need for rehashing, and
remove the dependency of workload on the bucket size.
Further, we also hope to obtain a scheme that, if desired,
can be trained end-to-end via back-propagation.

3. FFN as Lookups
Here, we present an end-to-end construction for differen-
tiable table lookups as an efficient alternative to GEMM for
FFNs where most operations are memory lookups.

3

Compute-lite Transformers

Random Partitions

Learnable

Partitio
ns

Random

Partitio
ns

Learnable Parameterized Coarse Representations

×
MONGOOSE

SLIDE YOSO

Sum

Sum

Sampled Coarse Representations via Random Partitions

Ours
True

Decoupling

Figure 2. High level comparison of each method. The true F(·) =
∑h

i=1 σ(⟨·, [W]i⟩) [V]i is constructed as a function in S2. Here,
[W]i ∈ S2 and [V]i ∈ R. The points [W]i are marked in the left three figures. SLIDE, MONGOOSE, and YOSO try to construct an
approximation of the true F(·) via different uses of LSH partitions, so whenever F(·) is updated, the LSH partitions need to be updated.
Rather than approximating the function F , our proposed method is plugged into a deep learning model and uses the back-propagated
gradient to learn appropriate transformation similar to a vanilla FFN.

3.1. Differentiable Lookup

To avoid the impact of skewed bucket distribution on effi-
ciency, we start from (3) and attempt to adjust the formula-
tion in the setting where it is used as a FFN. The randomness
of fk in (3) is the key ingredient of (Zeng et al., 2021), but
at the same time, this randomness introduces the need for a
large number of hash functions to get an accurate approxi-
mation. This issue must be handled. Separately, we try to
completely avoid any pre-processing steps or rehashing for
evolving parameters W and V.

Main idea. Observe that for YOSO, the fk is a partition
of the Rd space and each hash table Tk is a coarse rep-
resentation of

∑h
i=1 σ(⟨·, [W]i⟩) [V]i associated with fk.

Whenever fk, W, or V are updated, Tk needs to be updated.
This is inefficient. But Tk is a coarse representation of a
parameterized function, so we hypothesize that we might
be able to directly optimize the coarse representation Hk

and fk to minimize the loss of the model. If possible, we
also want to make it differentiable. If this is achieved, this
strategy helps avoid any rehashing necessary in (2) and (3).
Therefore, we consider the formulation

������������XXXXXXXXXXXX

[Tk]j :=
1

h

∑
fk([W]i)=j

[V]i y :=

h∑
k=1

[Tk]fk(x) (4)

where Tk and fk are learnable modules. Here, the depen-
dency of Tk on fk,W,V, as in (3), is removed. Fig. 2 is a
visualization of the difference comparing LSH-based FFNs.
This decoupled dependency creates a problem in that the
resultant formulation is not differentiable. Zeng et al. (2021)
uses the fact that (3) is an estimate of a differentiable func-
tion, and uses the gradient of this function as an estimate
of the gradient of (3), however, this estimate relies on the
randomness of fk which is not available after decoupling in
(4). So, the challenge is how we can train fk and Tk, and
backpropagate to shallower layers.

Making (4) differentiable again. To figure out a solution,
we need to first dive into how fk is computed. Zeng et al.
(2021) uses the hyperplane hash (Charikar, 2002) to com-
pute the hash code. Specifically, define zk = xRk, referred
to as the “soft hash code”, where Rk ∈ Rd×τ is a random
projection associated with fk where τ is the length of binary
representation of the hash code.

fk(x) = decimal(sign(zk))

Here, decimal is a function that maps the binary represen-
tation {±1}τ to a decimal representation {0, · · · , 2τ − 1}.
This form does not directly suggest a method for back-
propagation, but observe that fk can be expressed as

fk(x) = argmax
i

(⟨zk, [S]i⟩)

where S ∈ {±1}2τ×τ is a structured matrix whose row
vector

[S]i = decimal−1(i)

is the binary representation of the integer i. While, by itself,
this does not solve our problem, a common differentiable
relaxation of argmax is the softmax activation, and the
resultant formulation for (4) is,

ŷ∗ :=

h∑
k=1

2τ∑
i=1

exp(⟨zk, [S]i⟩) [Tk]i∑2τ

j=1 exp(⟨zk, [S]j⟩)
(5)

Then, by replacing the random matrix Rk with a learnable
parameter matrix, this formulation makes fk a learnable
hash function and Tk a learnable coarse representation of a
function in Rd in an end-to-end manner.

Remaining difficulties and solutions. A naive implemen-
tation of this operation is extremely inefficient and has a
runtime complexity of O(h2τd), which is not practical. A
common choice of efficient softmax approximations is to
use a small subset of softmax numerators (we denote the set
of corresponding indices as N (zk)) to approximate the full

4

Compute-lite Transformers

x

z1

T4
T3

T2
T1

z2 z3 z4

̂y

Projection

Lookup

Weighted Gather
G
at
he

r

H
as

h

Figure 3. Illustration of LookupFFN operations.

softmax since the softmax is usually dominated by only a
few entries within it (Spring & Shrivastava, 2017; Charikar
& Siminelakis, 2017). Non-uniform sampling, such as LSH-
based importance sampling, can be used to lower the es-
timation variance. However, we found that the structured
matrix S used in (5) offers several properties that actually
enables efficient approximation. Due to the structure of S,
the denominator of (5) can be rewritten as

2τ∑
j=1

exp(⟨zk, [S]j⟩) =
τ∏

j=1

(exp([zk]j) + exp(− [zk]j))

which only involves a O(τ) cost. For calculating the numer-
ator, we use a simple non-uniform sampling scheme for a
better approximation of the softmax with a small number
of samples. Due to the structure of S, we easily know the
approximate sorting order of ⟨zk, [S]i⟩ among different i.
Specifically, note that

argmax
i

(⟨zk, [S]i⟩) = decimal(sign(zk))

argmin
i
(⟨zk, [S]i⟩) = decimal(−sign(zk))

(6)

When the order of magnitudes for different entries of zk
are not too different, the ∥[S]i − sign(zk)∥0 term roughly
indicates the magnitude of ⟨zk, [S]i⟩. A smaller distance
means a larger value.

Therefore, we use the approximation

ŷ =

h∑
k=1

∑
i∈N (zk)

exp(⟨zk, [S]i⟩) [Tk]i∏τ
j=1(exp([zk]j) + exp(− [zk]j))

(7)

where N (zk) can be easily sampled according to ℓ0 dif-
ference ∥[S]i − sign(zk)∥0. It is much easier compared to
other non-uniform sampling based softmax approximations
(Spring & Shrivastava, 2017; Charikar & Siminelakis, 2017)
since we can sample large numerators based on the number
of sign flips away from sign(zk). Further, we empirically
found that in most cases, just using the largest numerator,
i.e., let

g(zk) := argmax
i

(⟨zk, [S]i⟩) (8)

computed via (6), then N (zk) = {g(zk)} is sufficient for
performance. This is our default choice for experiments.

Two main operations. The proposed learnable lookup
consists of two operations: (a) Hash: we compute multiple
zk = xRk for k = 1, 2, · · · , h. Then, (b) Gather: we use
g(zk) (defined in (8)) for memory lookup and calculate a
weighted (based on zk) accumulation of the lookup results
[Tk]g(zk)

. This procedure is illustrated in Fig. 3.
Remark 3.1. While (7) might look unfamiliar, it is closely
connected to two commonly used FFNs. When σ in (1) is
the sigmoid activation, let zk = 0.5⟨x, [W]k⟩, we note that
(1) can be rewritten as

y =

h∑
k=1

exp(zk) [V]k
exp(zk) + exp(−zk)

which is just a special case of (7) with τ = 1. When σ is
a GELU (Hendrycks & Gimpel, 2016) commonly used in
Transformer models, let zk = 0.851⟨x, [W]k⟩, then a fast
approximation of GELU can be written as

y =

h∑
k=1

1.175zk exp(zk) [V]k
exp(zk) + exp(−zk)

This is again a special case of (7) with τ = 1 and an addi-
tional linear scaling 1.175zk. This scaling can be incorpo-
rated in (7) by an extra term 1.175⟨zk, [S]i⟩ in the numera-
tor.

3.2. BH4: Efficient and Expressive Projection

The problem. In practice, we compute the “soft hash code”
zk for multiple hash tables at once by computing xR where
R ∈ Rd×(hτ). Here, {z1, · · · , zh} are computed at once
by partitioning xR into h τ -dimensional vectors. The time
complexity for this projection is O(hτd). This is not desir-
able since it is compute heavy.

Some existing solutions yield unsatisfactory results. For
simplicity, we assume hτ = d and d is power of 2. When
computing hash codes in the LSH setting, a common effi-
cient alternative is efficient random projections implemented
via a fast Hadamard transform with O(d log(d)) cost. For
example, Zeng et al. (2021); Andoni et al. (2015) use

R := D1HD2HD3H (9)

where Di are matrices whose entries are {±1} for random
sign flipping and H is Hadamard transform. A simple learn-
able extension would be to replace Di with parameterized
diagonal matrices. This belongs to a large family of struc-
tured efficient linear layers (SELLs) (Cheng et al., 2015; Le
et al., 2013; Yang et al., 2015; Moczulski et al., 2016) For
example, Moczulski et al. (2016) proposes a deep SELL,

5

Compute-lite Transformers

0 200000 400000 600000
FLOPS

0.00

0.25

0.50

0.75

1.00

S
qu

ar
ed

 E
rr

or

0 100000 200000
Parameters

ACDC
Hadamard

ShuffleNet
BH1

BH2
BH4

BH8

Figure 4. Approximation capacity vs FLOPs and parameters for
each efficient projections. Hadamard denotes a variant of ACDC
by replacing discrete cosine transform with Hadamard transform.
The vertical dash lines are the FLOPs and parameters of the vanilla
projection. Any results to the right of the vertical dashed lines are
not meaningful, as there is no efficiency gain.

named ACDC, to increase the representation power:

R :=

k∏
i=1

AiCDiC
−1 (10)

where Ai,Di are parameterized diagonal matrices and C
is the discrete cosine transform and k is a hyper-parameter.
A similar construction, but using the Hadamard transform
would involve replacing C with H. This can be viewed as a
generalization of (9). To empirically evaluate the representa-
tion power of each efficient projection, we use a toy problem
of approximating a randomly generated matrix using these
ideas. The results are shown in Fig. 4. We find that the
representation power of (10) and its Hadamard transform
variant for small k is extremely limited, but for large k, the
efficiency is low and the optimization becomes difficult. We
can verify this optimization difficulty from the fact that as k
increases, the FLOP and parameter count increases, but the
squared errors do not monotonically decrease.

A simple yet highly effective scheme. To address the
optimization difficulty for large k, we propose that instead
of scaling k, we can replace the diagonal matrices with their
block diagonal counterparts, and scale the block size for the
trade-off between efficiency and expressiveness.

R :=

m∏
i=1

BiH (11)

Here, Bi’s are parameterized block diagonal matrices with
an adjustable block size. We refer to (11) as BH{m} for
different m. Fig. 5 is a visualization of the projections
discussed. We empirically verify that (11) with m = 4 has
a better trade-off between the expressiveness and efficiency
compared to other m values. When the FLOP or parameter
counts are similar, larger m does not increase its expressive-
ness, but a smaller m decreases its expressiveness.
Remark 3.2. Grouped convolution followed by channel shuf-
fling in ShuffleNet (Zhang et al., 2018) can be directly ex-
pressed as BF: applying a block diagonal matrix followed

× × ⋯× × ××××

× × ⋯× × ××××

× × × × ×××=

=

=

BH4

Hadamard

ACDC

Figure 5. Visualization of efficient projections. ACDC and its
Hadamard variant increase their capacity by increasing the depth.
BH4 increases its capacity by increasing its block size.

by a structure transform F. ShuffleNet can be viewed as a
BH1. We empirically verified that BH1 has near-identical
approximation accuracy as ShuffleNet as shown in Fig. 4.

4. Experiments
In this section, we will present our empirical results evalu-
ating the benefits/limitations of replacing VanillaFFN with
a LookupFFN in a Transformer, and conduct a detailed
performance profiling of LookupFFN.

Note. Slide and Mongoose report experiments on a two
layer neural network whose last dimension is 200K (or even
670K) (Chen et al., 2020; 2021). This is a synthetic setting
to extract peak practical speedup of FFN in Slide/Mongoose
because more than 99% of compute occurs in the final layer.
In practical situations, such models are rare and might not
reflect the actual workload of commonly used models, such
as the Transformer. We are more interested in how these
baselines and our method can be applied in more challenging
commonly used DNN models, and what the corresponding
performance impact is. As a result, we use the Transformer
as a testbed to evaluate the effect of replacing VanillaFFN
with baselines and our LookupFFN.

Outline. In §4.1, we compare LookupFFN’s performance
and FLOP reduction to baselines, and check that our formu-
lation scales without difficulty to full size (12-layer) models.
Then, in §4.2, to better understand its behavior, we perform
an ablation study to study the effects of different hyper-
parameters specific to lookup-based FFN. Finally, in §4.3,
we analyze the performance characteristics for LookupFFN.
Since our goal is to reduce the FLOP count, for comparison
or even individual assessment of LookupFFN, we include
the estimated FLOP count next to the model performance
for each table (for comparisons). FLOPs are estimated as
the number of floating operations of processing a single
instance (a single token in the context of a Transformer).

Two variants are discussed in §3.1 corresponding to two
different activations. To align well with the GELU activation
used in Transformer, we use the linearly scaled variant of
(7) with N (zk) = {g(zk)}:

y =

h∑
k=1

⟨zk, [S]g(zk)
⟩ exp(⟨zk, [S]g(zk)

⟩) [T]g(zk)∏τ
j=1(exp([zk]j) + exp(− [zk]j))

6

Compute-lite Transformers

Method h τ MFLOP Log Perplexity

VanillaFFN - - 4.19 1.78
Switch Transformer - - 2.11 1.85
Channel Shuffle - - 2.10 1.96
Slide - - 1.32 1.98
Mongoose - - 3.21 1.87
YOSO - - 0.35 2.13

LookupFFN 256 8 1.38 1.74
128 8 0.69 1.81

Table 1. Log perplexity of each baseline. (lower is better)
LookupFFN was tested with two different hyper-parameter config-
urations specified in h and τ columns.

Method h τ MFLOP Log Perplexity

VanillaFFN - - 9.44 1.37
LookupFFN 170 9 1.39 1.41

Table 2. Log perplexity when scaling to a RoBERTa-base model.

Implementation Details. We used PyTorch (Paszke et al.,
2019) for the majority of the implementation. On the GPU,
our fast Hadamard Transform and weighted gather operators
are not supported by PyTorch so we implemented custom
CUDA kernels to support the operators for training. For
CPU, we implemented these kernels in C++ using OpenMP
for inference which uses AVX2 vector instructions.

Evaluation Task. For empirical evaluations, we use
RoBERTa language modeling pretraining (Liu et al., 2019a)
as our evaluation tool to measure the method performance,
since it is a challenging task. The models are pretrained
using masked language modeling (Devlin et al., 2019) on
the English Wikipedia corpus. We pretrain each model for
250K steps with a batch size of 256, where each sequence
is of length 512. We use an Adam optimizer with 1e-4
learning rate, 10,000 warm-up steps, and linear decay. To
keep compute reasonable, we use RoBERTa with 4 layers
and 512 embedding dimensions for model evaluation except
one stress-test experiment checking the scaling behavior of
LookupFFN to a full size RoBERTa-base.

4.1. Performance Comparison

Comparing to Baselines. We compare our method to
Vanilla FFN, Slide (Chen et al., 2020), Mongoose (Chen
et al., 2021), and YOSO (Zeng et al., 2021) based FFNs
discussed previously. Additionally, for comparison to more
baselines, we include Switch Transformer (Fedus et al.,
2022) and the grouped convolution + channel shuffling intro-
duced in ShuffleNet. Others have identified that the original
implementation of Slide, which is implemented from scratch
in C++, is difficult to be adopted (Chen et al., 2021), and
have propose optimized variants, which we use here (Chen
et al., 2021). Instead of each instance in a batch retrieving
its own subset of weights, the union of the retrieved subsets

Type Block Size MFLOP Log Perplexity
Hash Gather

Dense - 1.05 0.13 1.79
BH4 64 0.56 0.13 1.81
BH4 32 0.30 0.13 1.83
BH4 16 0.17 0.13 1.85

h τ hτ MFLOP Log Perplexity

32 8 256 0.31 1.94
64 8 512 0.35 1.88
128 8 1024 0.69 1.81
256 8 2048 1.38 1.74

h τ hτ MFLOP Log Perplexity
Hash Gather

64 4 256 0.28 0.07 1.98
32 8 256 0.28 0.03 1.94
20 13 260 0.28 0.02 1.87

Table 3. Ablation study evaluating the effects of different hyper-
parameters on model performance. The MFLOP columns in the
top and button tables are broken down into two column showing
the FLOP for Hash and Gather steps separately.

Method h τ MFLOP MNLI-m/mm

VanillaFFN - - 4.19 75.0/76.3
LookupFFN 256 4 0.82 74.1/74.7

Table 4. Downstream performance of RoBERTa-small models.

is used for computation. This strategy is used to avoid an
irregular workload due to the skewed bucket distribution, as
discussed earlier. The size of S(·) is larger for larger batches.
We note that in a Transformer model, the effective batch size
for a FFN is the number of sequences × the sequence length.
The union of retrieved subsets will simply contain the en-
tire set of weights. For a more reasonable size of set S(·),
we partition the effective batch into smaller mini-batches
(128 tokens for Slide and 2048 tokens for Mongoose) and
feed them into the FFN sequentially. This would severely
increase the runtime of training on GPUs. The size of mini
batch is set such that it is small enough but running the ex-
periment is still feasible. Further, since the performance of
Slide (Chen et al., 2020), Mongoose (Chen et al., 2021), and
YOSO (Zeng et al., 2021) based FFN largely depends on the
frequency of rehashing, we perform rehashing after every
parameter updates (this overhead is not counted towards
FLOP) to ensure their optimal performance. The results are
summarized in Tab. 1. Our method achieves lower perplex-
ity using fewer FLOP compared to the baselines. Further,
the FLOP of our method can be significantly reduced with
some loss in performance (but still better than the baselines
except for the VanillaFFN) as shown in the last row of Tab.
1. Additional results are discussed in §4.2.

Downstream finetuning. Further, we evaluate the quality
of the pretrained language models for VanillaFFN and our

7

Compute-lite Transformers

LookupFFN on MNLI downstream task (Williams et al.,
2018) in the GLUE benchmark (Wang et al., 2019). The
result is shown in Tab. 2. We note that there is a small gap
between our method and vanilla FFN, but the FLOP of our
method is much lower.

Scaling to Full Size Models. We check whether
LookupFFN scales to a larger model, so we evaluate our
method on a RoBERTa-base pretraining. All pretraining
hyper-parameters remain the same as before. Due to the
compute burden of training a full size model, we only per-
form one experiment comparing LookupFFN with h = 170
and τ = 9 to VanillaFFN. The results are shown in Tab. 4.
Our method achieves 6.8× FLOP reduction while the log
perplexity is only higher by 0.04 in a RoBERTa-base model.

Memory use. Our LookupFFN requires more memory
(for large h and τ) since we directly parameterize the hash
tables, but we believe this is not a key issue. In a GPU
setting, memory use is critical since the GPU memory is
usually much more expensive and limited. On the other
hand, CPU memory is much cheaper and larger compared
to GPU memory.

4.2. Ablation Study

Reducing FLOP for Hash. We note that the projection in
the Hash step has a complexity of O(hτd) when using a
vanilla dense projection and will generate the majority of
FLOP for our LookupFFN. In §3.2, we propose an efficient
alternative, BH4 and verify that the block size of Bi has
a direct impact on the representation power of BH4. But
will this impact the final performance of a model? To eval-
uate the trade-off between efficiency and performance, we
study the effect of block size of Bi on the log perplexity of
RoBERTa. The results are summarized in the top table of
Tab. 3. When using a vanilla projection, the FLOP for the
Hash step accounts for 89% of the total FLOP. It is critical
to reduce the FLOP need for this projection, else it becomes
the main bottleneck. When using BH4, the performance de-
creases and efficiency increases as the block size decreases,
which is expected, but it is surprising that while offering a
large FLOP reduction, the performance drop compared to
the vanilla dense projection is quite small.

Scaling Effect of LookupFFN. The number of hash tables
h and the length of the hash code τ (or log of table size)
control the scaling behavior. As a preliminary step, we first
verify that our method can indeed be scaled for better accu-
racy by increasing the number of hash tables h. Therefore,
we compare the model perplexity for different h when τ is
fixed, as shown in Tab. 3 (middle). The model performance
monotonically increases as h increases. When h = 256,
our method achieves a lower perplexity compared to the
VanillaFFN in Tab. 1. Then, we evaluate the effect of scal-
ing τ . Instead of fixing h while scaling τ , we increase τ

Technique Avg. Latency (ms) Speedup

VanillaFFN 403 1.00×
SLIDE 428 0.94×
Mongoose 878 0.46×
LookupFFN 328 1.23×
LookupFFN (Opt1) 160 2.51×

Table 5. Average latency for LookupFFN compared to baselines.

but at the same time reduce h such that hτ is roughly the
same. As shown in Tab. 3 (bottom), this comparison reveals
a surprising scaling effect of our method: when hτ is fixed
(the FLOP of Hash step remains the same), by increasing
τ (increasing the table size), we can reduce the number of
hash tables and reduce the FLOP count for the Gather step
while achieving better performance.

4.3. Throughput and Latency Study

In this subsection, we isolate the FFN from RoBERTa to ex-
amine the runtime and throughput of each style of FFN. We
compare throughput of LookupFFN, Slide and Mongoose
to VanillaFFN (YOSO is excluded since it does not have a
CPU implementation at this time), then provide an in-depth
analysis of LookupFFN’s hardware-level behavior and po-
tential for future throughput scalability. For all empirical
results here, we use batch size 64 and sequence length 512,
so the effective batch size is 32768 (side note: multi-head
attention takes 274ms in this setting).

Latency Comparison. In order to demonstrate the latency
improvement afforded by our LookupFFN for CPU infer-
ence, we compare runtime to alternatives. Tab. 5 shows the
average per-iteration time for vanilla, Slide, and Mongoose-
based FFN which is sized to match typical hyperparameters
for a standard Transformer model on a modern AMD EPYC-
7452 (Zen 2) 32-core Server. Our basic implementation
for LookupFFN uses OpenMP without additional software-
engineering optimization along with a naive implementation
of BH4 and achieves 23% speedup over VanillaFFN. We did
further optimization of both the hash function and gather op-
eration (opt1), achieving 2.51× speedup over VanillaFFN.
Overall we see that both Slide and Mongoose perform worse
than vanilla, while our optimized LookupFFN provides
good performance improvement.

Discrepancy between FLOP and Latency. We note that
there is difference in the speed up between FLOP and La-
tency in Tab. 1 and Tab. 5. The latency not only depends
on FLOP, but also the memory access pattern or arithmetic
intensity. The GEMM used in VanillaFFN has a very struc-
tured memory access pattern and its arithmetic intensity is
high, but the gather operator used in LookupFFN has a more
random memory access pattern that depends on the input
and its arithmetic intensity is lower. As a result, while the
FLOP of LookupFFN is drastically lower than VanillaFFN,

8

Compute-lite Transformers

LookupFFN naive opt1
G

at
he

r
Latency 100 ms 35 ms
Compute Utilization 1.21% 3.53%
Sustained L1 BW 79.7 GB/s 231.5 GB/s
Sustained LLC BW 9.5 GB/s 52.5 GB/s
L1 Miss % 11.87% 22.68%
LLC Miss % 69.56% 12.77%

Hash Latency 208 ms 106 ms
Other Latency 20 ms 20 ms

Total Latency 328 ms 160 ms

Table 6. Analysis of Performance Characteristics for Lookup FFN.
We keep volume of work and working set constant for both so
instruction count and FLOPs are constant.

Naive Opt1 Hash
Opt2

Gather
Opt2

0

200

400

La
te

nc
y

(m
s) 1.23x

2.51x
4.97x 8.49x

Performance Opportunities of LookupFFN
Gather
Hash

Figure 6. Future performance opportunities of Lookup FFN. Each
bar shows the time breakdown of LookupFFN by GatherAdd and
Hash performance. Each version of LookupFFN is annotated with
its speedup over Vanilla FFN.

the corresponding speed up in latency is not as drastic.

Performance analysis. To further elucidate how we are
able to achieve speedup, we detail architectural level perfor-
mance statistics in Tab. 6 We notice the speedup primarily is
afforded by achieving a higher sustained cache bandwidth.
The lower LLC miss rate suggests this is at least in part
due to extracting more reuse from the LLC, thereby making
internal cache management including MSHRs, and on-chip
network traffic perform better.

Future Performance Opportunities. Future performance
gains for LookupFFN are possible through a combination
of software and upcoming hardware optimizations which
we summarize in Fig. 6. naive and opt1 are our two con-
figurations reported previously. Additional tuning of block
size for the BH4 projection (64 to 16) could provide a 4×
speedup for our Hash step (hash-opt2). Future cache tech-
nology such as 3D stacking (Wuu et al., 2022) will likely
provide a rather generous boost in high-speed LLC cache
capacity, enabling larger table size LookupFFN weights to
be entirely cache-resident. In combination with this, careful
cache optimization through the use of modern prefetching
techniques (Georganas et al., 2018), as well as hardware
improvements such as Intel’s wide 128 B L1 cache inter-
face (Rotem et al., 2022) can improve hit rates and overall
bandwidth. If 90% of bandwidth from a 128 B cache in-
terface could be sustained, Gather step can be improved
by a factor of 35× (gather-opt2). Overall, these improve-
ments could yield 8.49× improvement over VanillaFFN.

Datatype precision reduction could potentially afford a fur-
ther multiplicative runtime improvement of 2×, achieved
by switching from float32 to float16 – however, VanillaFFN
would also gain a 2× execution time reduction from float16.

Discussion of Compiler Techniques for FFN. Deep Learn-
ing specific compilers, such as TVM and XLA (built into
TensorFlow) have been introduced, aiming to optimize oper-
ations such as a feed-forward network. We evaluated TVM
and XLA on VanillaFFN to compare LookupFFN’s latency
to these two compiler frameworks. TVM performs 21%
worse than PyTorch, with a latency of 488ms. Switching
to TensorFlow gives 2.39× improvement over the PyTorch
VanillaFFN, with XLA yielding an additional 37% perfor-
mance boost (absolute latency of TF+XLA: 123ms). Our
optimized LookupFFN already provides competitive perfor-
mance compared to TensorFlow, and our additional hash op-
timization, when fully implemented/integrated, LookupFFN
will provide performance improvement over TF+XLA.

5. Conclusions
We conclude with a contemplative remark followed by a
practical comment. Given the rapid improvements in com-
pute capabilities of GPUs we have seen over the last decade
(and a mature software support for different kernel shapes),
there was little incentive for algorithm designers to use non-
GEMM operations. In fact, any modern deep learning algo-
rithm that is not heavily reliant on GEMM may have little
chance of broader adoption, assuming it even sees the light
of day. The ideas described here (and in Slide, Mongoose,
YOSO), in some sense, lie at the other extreme. LookupFFN
almost operates as if GEMM is forbidden. While compute
capability improvements are slowing down, new memory
technologies are already available and others in the develop-
ment pipeline, we hypothesize that novel yet-undiscovered
DNN architectures must hit a sweet-spot to delicately bal-
ance the trade-off between these two resources. Doing so
also offers other benefits including potential energy savings.
Now, specific to the model in this work, we expect that the
LookupFFN benefits can translate to other DNN models.
This will complement the server chip developments in §1,
and enable AI models to serve a broader cross-section of
industries.

Acknowledgments
This work was supported in part by funding from the Vilas
Board of Trustees and UW–Madison Office of the Vice
Chancellor for Research and Graduate Education.

9

Compute-lite Transformers

References
AMD. Amd zen deep neural network (zendnn).

URL https://www.amd.com/en/developer/
zendnn.html.

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I. P.,
and Schmidt, L. Practical and optimal LSH for angular
distance. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pp.
1225–1233, 2015.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bhat, A. Machine learning on - arm servers an update. linaro
virtual connect 2021.

Burd, T., Li, W., Pistole, J., Venkataraman, S., McCabe,
M., Johnson, T., Vinh, J., Yiu, T., Wasio, M., Wong, H.-
H., Lieu, D., White, J., Munger, B., Lindner, J., Olson,
J., Bakke, S., Sniderman, J., Henrion, C., Schreiber, R.,
Busta, E., Johnson, B., Jackson, T., Miller, A., Miller,
R., Pickett, M., Horiuchi, A., Dvorak, J., Balagangad-
haran, S., Ammikkallingal, S., and Kumar, P. Zen3:
The amd 2nd-generation 7nm x86-64 microprocessor
core. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC), volume 65, pp. 1–3, 2022. doi:
10.1109/ISSCC42614.2022.9731678.

Charikar, M. Similarity estimation techniques from round-
ing algorithms. In Reif, J. H. (ed.), Proceedings on 34th
Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, pp. 380–388.
ACM, 2002. doi: 10.1145/509907.509965.

Charikar, M. and Siminelakis, P. Hashing-based-estimators
for kernel density in high dimensions. In Umans, C. (ed.),
58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pp. 1032–1043. IEEE Computer Society,
2017. doi: 10.1109/FOCS.2017.99.

Chen, B., Medini, T., Farwell, J., gobriel, s., Tai,
C., and Shrivastava, A. Slide : In defense of
smart algorithms over hardware acceleration for
large-scale deep learning systems. In Dhillon, I.,
Papailiopoulos, D., and Sze, V. (eds.), Proceedings
of Machine Learning and Systems, volume 2, pp.
291–306, 2020. URL https://proceedings.
mlsys.org/paper/2020/file/
65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.
pdf.

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song,
Z., Shrivastava, A., and Re, C. {MONGOOSE}: A learn-
able {lsh} framework for efficient neural network training.
In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=wWK7yXkULyh.

Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A.,
and Chang, S.-F. An exploration of parameter redundancy
in deep networks with circulant projections. In Proceed-
ings of the IEEE international conference on computer
vision, pp. 2857–2865, 2015.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In
International Conference on Learning Representations
(ICLR), 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Dong, X. and Yang, Y. Network pruning via transformable
architecture search. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
a01a0380ca3c61428c26a231f0e49a09-Paper.
pdf.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. Journal of Machine Learning
Research, 23(120):1–39, 2022. URL http://jmlr.
org/papers/v23/21-0998.html.

Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D.,
Henry, G., Pabst, H., and Heinecke, A. Anatomy of
high-performance deep learning convolutions on simd
architectures. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18. IEEE Press, 2018.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

10

https://www.amd.com/en/developer/zendnn.html
https://www.amd.com/en/developer/zendnn.html
https://proceedings.mlsys.org/paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://openreview.net/forum?id=wWK7yXkULyh
https://openreview.net/forum?id=wWK7yXkULyh
https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper/2019/file/a01a0380ca3c61428c26a231f0e49a09-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a01a0380ca3c61428c26a231f0e49a09-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a01a0380ca3c61428c26a231f0e49a09-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a01a0380ca3c61428c26a231f0e49a09-Paper.pdf
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html

Compute-lite Transformers

Horowitz, M. 1.1 computing’s energy problem (and what we
can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pp. 10–14, 2014. doi: 10.1109/ISSCC.2014.6757323.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Intel. Intrinsics for intel advanced matrix extensions (intel(r)
amx) instructions. intel c++ compiler classic developer
guide and reference.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Jouppi, N. P., Hyun Yoon, D., Ashcraft, M., Gottscho, M.,
Jablin, T. B., Kurian, G., Laudon, J., Li, S., Ma, P., Ma,
X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou,
Z., and Patterson, D. Ten lessons from three genera-
tions shaped google’s tpuv4i : Industrial product. In
2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pp. 1–14, 2021. doi:
10.1109/ISCA52012.2021.00010.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W.,
and Keutzer, K. I-bert: Integer-only bert quantiza-
tion. In Meila, M. and Zhang, T. (eds.), Proceed-
ings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 5506–5518. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/kim21d.html.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In International Conference on
Learning Representations (ICLR), 2020.

Le, Q., Sarlos, T., and Smola, A. Fastfood - approximat-
ing kernel expansions in loglinear time. In 30th In-
ternational Conference on Machine Learning (ICML),
2013. URL http://jmlr.org/proceedings/
papers/v28/le13.html.

Lee, N., Ajanthan, T., and Torr, P. SNIP: Single-shot
network pruning based on connection sensitivity. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=B1VZqjAcYX.

Lichtenau, C., Buyuktosunoglu, A., Bertran, R., Figuli,
P., Jacobi, C., Papandreou, N., Pozidis, H., Sapor-
ito, A., Sica, A., and Tzortzatos, E. Ai accelerator

on ibm telum processor: Industrial product. In Pro-
ceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, pp. 1012–1028,
New York, NY, USA, 2022. Association for Comput-
ing Machinery. ISBN 9781450386104. doi: 10.1145/
3470496.3533042. URL https://doi.org/10.
1145/3470496.3533042.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized bert pretraining approach, 2019a.
URL https://arxiv.org/abs/1907.11692.

Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and Wang,
Y. Optimizing cnn model inference on cpus. In Pro-
ceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, pp.
1025–1040, USA, 2019b. USENIX Association. ISBN
9781939133038.

Mittal, S., Rajput, P., and Subramoney, S. A survey of deep
learning on cpus: Opportunities and co-optimizations.
IEEE Transactions on Neural Networks and Learning
Systems, 33(10):5095–5115, 2022. doi: 10.1109/TNNLS.
2021.3071762.

Moczulski, M., Denil, M., Appleyard, J., and de Freitas,
N. ACDC: A structured efficient linear layer. In Ben-
gio, Y. and LeCun, Y. (eds.), 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceed-
ings, 2016. URL http://arxiv.org/abs/1511.
05946.

Nassif, N., Munch, A. O., Molnar, C. L., Pasdast, G., Lyer,
S. V., Yang, Z., Mendoza, O., Huddart, M., Venkataraman,
S., Kandula, S., Marom, R., Kern, A. M., Bowhill, B.,
Mulvihill, D. R., Nimmagadda, S., Kalidindi, V., Krause,
J., Haq, M. M., Sharma, R., and Duda, K. Sapphire rapids:
The next-generation intel xeon scalable processor. In
2022 IEEE International Solid- State Circuits Conference
(ISSCC), volume 65, pp. 44–46, 2022. doi: 10.1109/
ISSCC42614.2022.9731107.

Nori, A. V., Bera, R., Balachandran, S., Rakshit, J., Omer,
O. J., Abuhatzera, A., Kuttanna, B., and Subramoney,
S. Reduct: Keep it close, keep it cool! : Efficient scal-
ing of dnn inference on multi-core cpus with near-cache
compute. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 167–
180, 2021. doi: 10.1109/ISCA52012.2021.00022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An

11

https://proceedings.mlr.press/v139/kim21d.html
https://proceedings.mlr.press/v139/kim21d.html
http://jmlr.org/proceedings/papers/v28/le13.html
http://jmlr.org/proceedings/papers/v28/le13.html
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://doi.org/10.1145/3470496.3533042
https://doi.org/10.1145/3470496.3533042
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1511.05946
http://arxiv.org/abs/1511.05946

Compute-lite Transformers

imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Rotem, E., Yoaz, A., Rappoport, L., Robinson, S. J., Man-
delblat, J. Y., Gihon, A., Weissmann, E., Chabukswar, R.,
Basin, V., Fenger, R., Gupta, M., and Yasin, A. Intel alder
lake cpu architectures. IEEE Micro, 42(3):13–19, 2022.
doi: 10.1109/MM.2022.3164338.

Spring, R. and Shrivastava, A. A new unbiased and efficient
class of lsh-based samplers and estimators for partition
function computation in log-linear models. arXiv preprint
arXiv:1703.05160, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pp. 1112–
1122, New Orleans, Louisiana, June 2018. Associa-
tion for Computational Linguistics. doi: 10.18653/
v1/N18-1101. URL https://www.aclweb.org/
anthology/N18-1101.

Wuu, J., Agarwal, R., Ciraula, M., Dietz, C., Johnson, B.,
Johnson, D., Schreiber, R., Swaminathan, R., Walker, W.,
and Naffziger, S. 3d v-cache: the implementation of a
hybrid-bonded 64mb stacked cache for a 7nm x86-64
cpu. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC), volume 65, pp. 428–429, 2022. doi:
10.1109/ISSCC42614.2022.9731565.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li,
Y., and Singh, V. Nyströmformer: A nyström-based algo-
rithm for approximating self-attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Yang, Z., Moczulski, M., Denil, M., De Freitas, N., Song,
L., and Wang, Z. Deep fried convnets. In 2015 IEEE
International Conference on Computer Vision (ICCV), pp.
1476–1483, 2015. doi: 10.1109/ICCV.2015.173.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive
Computing - NeurIPS Edition (EMC2-NIPS), pp. 36–39,
2019. doi: 10.1109/EMC2-NIPS53020.2019.00016.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., and Ahmed, A. Big bird: Transformers for
longer sequences. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Zeng, Z., Xiong, Y., Ravi, S., Acharya, S., Fung, G. M., and
Singh, V. You only sample (almost) once: Linear cost
self-attention via bernoulli sampling. In International
Conference on Machine Learning (ICML), 2021.

Zeng, Z., Pal, S., Kline, J., Fung, G. M., and Singh, V. Multi
resolution analysis (MRA) for approximate self-attention.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
25955–25972. PMLR, 17–23 Jul 2022.

Zhang, C., Yu, M., Wang, W., and Yan, F. Mark: Exploit-
ing cloud services for cost-effective, slo-aware machine
learning inference serving. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, pp. 1049–1062, USA, 2019.
USENIX Association. ISBN 9781939133038.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An
extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2018.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/N18-1101

