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Abstract
Dictionary learning, which approximates data
samples by a set of shared atoms, is a fundamental
task in representation learning. However, dictio-
nary learning over graphs, namely graph dictio-
nary learning (GDL), is much more challenging
than vectorial data as graphs lie in disparate metric
spaces. The sparse literature on GDL formulates
the problem from the reconstructive view and of-
ten learns linear graph embeddings with a high
computational cost. In this paper, we propose
a Fused Gromov-Wasserstein (FGW) Mixture
Model named FRAME to address the GDL prob-
lem from the generative view. Equipped with the
graph generation function based on the radial ba-
sis function kernel and FGW distance, FRAME
generates nonlinear embedding spaces, which, as
we theoretically proved, provide a good approxi-
mation of the original graph spaces. A fast solu-
tion is further proposed on top of the expectation-
maximization algorithm with guaranteed conver-
gence. Extensive experiments demonstrate the
effectiveness of the obtained node and graph em-
beddings, and our algorithm achieves significant
improvements over the state-of-the-art methods.

1. Introduction
In the era of big data and AI, graphs originate from var-
ious domains carrying rich information. Finding low-
dimensional representations encoding graph structural in-
formation, i.e., graph representation learning, is the key
stepping stone behind various graph-based applications in
bioinformatics (Ktena et al., 2017), chemistry (Jin et al.,
2017), social networks (Yanardag & Vishwanathan, 2015),
and many more.

Dictionary learning, which seeks for low-dimensional repre-
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sentations for data samples based on a set of shared patterns,
namely atoms, has achieved great success in vectorial data.
However, graph dictionary learning (GDL) is much more
challenging as graphs lie in disparate spaces (Peyré et al.,
2016; Xu, 2020). Thanks to the recent advancement of opti-
mal transport (OT), together with powerful graph distance
measures based on the Wasserstein-like distances (Mémoli,
2011; Sturm, 2012; Titouan et al., 2019), a few GDL meth-
ods (Xu, 2020; Vincent-Cuaz et al., 2022; 2021; Liu et al.,
2023) have been recently proposed. Most of the existing
GDL methods follow a reconstructive formulation by mini-
mizing the Wasserstein-like distances between the original
and reconstructed graphs, but may suffer from several fun-
damental limitations. First (linear embedding), graphs are
approximated by the linear combination of atoms, which in
turn leads to linear embeddings with limited representation
power. Second (single-level embedding), the rich informa-
tion in the OT coupling is rarely exploited by existing GDL
methods to generate embeddings at other levels (e.g., node
or subgraph level) with quantitatively identified cross-level
relationships. Third (computation), although stochastic gra-
dient descent (SGD) provides a scalable approach for large
graphs, other accompanied optimization steps along SGD
still bear intensive computation.

Contributions. In this paper, we propose a novel GDL
method named FRAME to address the aforementioned limi-
tations. Using the graph generation function based on the
Fused Gromov-Wasserstein (FGW) distance and the radius
basis function (RBF) kernel, the GDL problem is formulated
from the generative perspective by maximizing the likeli-
hood of generating graphs from atoms, through which the
nonlinear graph-atom relationship can be captured. Besides,
by utilizing the accompanied node correspondence infor-
mation, the proposed method can jointly generate graph,
subgraph and node embeddings. A fast solution based
on the expectation-maximization (EM) algorithm is fur-
ther proposed achieving quadratic time complexity with
guaranteed convergence. Theoretical analysis shows that
FRAME generates a low-dimensional embedding space that
well-approximates the original graph space with little in-
formation loss. Extensive experiments show that FRAME
achieves significant improvement on graph-level and node-
level tasks, outperforming the state-of-the-art by 8.0% on
graph classification, 0.5% on graph clustering, and 2.5% on
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node clustering, respectively.

The rest of the paper is organized as follows. Section 2 in-
troduces the preliminaries and formulates the GDL problem.
Section 3 presents the proposed FRAME and provides rele-
vant theoretical analyses. Extensive experiments are carried
out in Section 4. Related works and conclusions are given
in Sections 5 and 6 respectively.

2. Problem Formulation
2.1. Notations

We use bold uppercase letters for matrices (e.g., A), bold
lowercase letters for vectors (e.g., s), calligraphic letters
for sets (e.g., G), and lowercase letters for scalars (e.g., α).
The element (i, j) of a matrix A is denoted as A(i, j). The
transpose of A is denoted by the superscript T (e.g., AT).
An attributed graph is represented as G = {A,X} where A
and X denote the adjacency matrix and the node attribute
matrix respectively. The simplex histogram with n bins
is denoted as ∆n = {µ ∈ R+

n |
∑n

i=1 µ(i) = 1}. The
probabilistic coupling is denoted as Π(·, ·), and the inner
product is denoted as ⟨·, ·⟩. For simplicity, we denote the set
of positive integers no greater than n as N+

≤n.

2.2. Optimal Transport on Graphs

The OT theory seeks for the optimal coupling between dis-
tributions and has achieved great success in various graph-
related tasks including graph comparison (Maretic et al.,
2019; Titouan et al., 2019), graph matching (Xu et al.,
2019b; Zeng et al., 2023), and graph representation learn-
ing (Kolouri et al., 2021). To adopt the OT theory for graphs,
a graph is represented as a probability measure on the prod-
uct space of graph structure and node attributes, where ele-
ments indicate the importance of nodes. Without any prior
knowledge on nodes, uniform node importance is often the
default choice and a graph G with n nodes is represented as
a uniform histogram µ = 1n

n (Vincent-Cuaz et al., 2021).

Definition 2.1. Fused Gromov-Wasserstein distance (Peyré
et al., 2016; 2019; Titouan et al., 2019).
Given two graphs G1,G2 represented by probability mea-
sures µ1 =

∑n1

i=1 hiδxi,X1(xi),µ2 =
∑n2

j=1 gjδyj ,X2(yj),
where h ∈ ∆n, g ∈ ∆m are histograms, a cross-graph
matrix M ∈ Rn1×n2 measuring cross-graph node dis-
tances based on attributes, and two intra-graph matrices
C1 ∈ Rn1×n1 ,C2 ∈ Rn2×n2 measuring intra-graph node
similarity based on graph structure, the q-FGW distance
FGWq,α(G1,G2) is defined as:

min
S∈Π(µ1,µ2)

∑
x1∈G1
y1∈G2

(1− α)M(x1, y1)
qS(x1, y1) +

∑
x1,x2∈G1
y1,y2∈G2

α|C1(x1, x2)−C2(y1, y2)|qS(x1, y1)S(x2, y2)
(1)

where q and α are the order of FGW distance and weight hy-
perparameters respectively. Intuitively, Eq. (1) measures the
minimum effort of transporting G1 to G2 based on the node
attribute dissimilarities M(x1, y1) and structure dissimilari-
ties C1(x1, x2)−C2(y1, y2). For simplicity, we omit the
subscript and use FGW(G1,G2) throughout the paper.

The FGW distance serves as a powerful graph distance
measure as both node attributes and graph structure are
exploited (Titouan et al., 2019). Based on Definition 2.1,
the FGW barycenter problem is defined as follows:

Definition 2.2. Fused Gromov-Wasserstein barycen-
ter (Titouan et al., 2019).
Given N graphs Gi with intra-graph matrices CGi

and
weights λi for i ∈ N+

≤N satisfying
∑N

i=1 λi = 1, the FGW
barycenter problem aims to find the barycenter graph B
with the intra-graph matrix CB and node attribute matrix
XB such that the weighted sum of FGW distances between
Gi and B is minimized:

CB,XB = argmin
CB,XB

N∑
i=1

λiFGW(Gi,B). (2)

In the GDL problem, we are interested in finding multi-
ple barycenters B1, . . . ,BK , namely atoms, from the input
graphs G1, . . . ,GN . For clarity, we slightly abuse the sub-
script i to denote graph Gi and k to denote atom Bk exclu-
sively (e.g., Xi = XGi

,Xk = XBk
). Following a similar

approach as (Titouan et al., 2019), the cross-graph and intra-
graph matrices are defined as follows. We use the L2 norm
between the attributes of node x ∈ Gi and y ∈ Bk as cross-
graph matrices Mi,k(x, y) and the adjacency matrices Ai

as the intra-graph matrices Ci.

2.3. Generative Graph Dictionary Learning

Unlike the existing methods formulating the problem from
the reconstructive perspective, we formulate the GDL prob-
lem from the generative perspective as follows:

Definition 2.3. Generative graph dictionary learning.
Given N graphs Gi for i ∈ N+

≤N and a graph genera-
tion function p(Gi|Bk) indicating the probability of gen-
erating graph Gi from atom Bk. The generative graph dic-
tionary learning problem aims to find K attributed atoms
Bk and corresponding prior probability πk = p(Bk), such
that the log likelihood of generating Gi from Bk for i ∈
N+

≤N , k ∈ N+
≤K is maximized. Denoting model parameters

as Θ = {B1, . . . ,BK , π1, . . . , πK}, the objective function
of generative graph dictionary learning is formulated as:

Θ = argmax
Θ

log p(G1, . . . ,GN |Θ),

s.t.
K∑

k=1

πk = 1.
(3)
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Table 1. Comparison with existing GDL methods.

METHOD
DESIRED PROPERTY

NONLINEAR MULTI-LEVEL SIZE-FREE SUPERVISION

GWF (XU, 2020) ✓ ✗ ✓ ✗
SRGW (VINCENT-CUAZ ET AL., 2022) ✗ ✗ ✓ ✗
GDL (VINCENT-CUAZ ET AL., 2021) ✗ ✗ ✗ ✗
RGWD (LIU ET AL., 2023) ✗ ✗ ✗ ✗
FRAME (PROPOSED) ✓ ✓ ✓ ✓

In this paper, we assume graphs are i.i.d. data samples gen-
erated by the mixture of atoms (i.e., p(G1, . . . ,GN |Θ) =∏N

i=1 p(Gi|Θ)), and a graph Gi is more likely to be gener-
ated by an atom Bk with a smaller FGW(Gi,Bk) following
the RBF kernel-based graph generation function as follows:

p(Gi|Bk) = exp(−σFGW(Gi,Bk)), (4)

where σ>0 is the length-scale parameter of the RBF kernel.

Before presenting our solution to the generative GDL prob-
lem in the next section, let us first summarize a few key
desired properties of GDL. First (P1. multi-level embed-
ding), the existing GDL methods almost exclusively focus
on producing graph level embedding, while the rich node-
level information in the accompanied OT coupling is rarely
exploited. Ideally, the learned atoms should be able to gen-
erate multi-level embedding with quantitatively identified
relationship between different levels (Du & Tong, 2019).
This will not only help discover cross-level correlations, but
also broaden the applicability of GDL to support node level
or subgraph level learning tasks (e.g., node classification,
link prediction, etc.). Second (P2. nonlinear embedding),
most of the existing GDL methods generate linear embed-
ding, which limits its representation power. It is desirable to
generate nonlinear embedding without increasing its compu-
tational complexity. Third (P3. size-free), most of the recon-
structive formulation (Vincent-Cuaz et al., 2021; Liu et al.,
2023) learns atoms with the same size, but it is preferred
to generate atoms with different sizes to capture features at
multiple scales. Forth (P4. incorporate supervision), exist-
ing GDL methods only focus on the unsupervised setting,
while utilizing supervision from labelled data may signifi-
cantly enhance the GDL performance. Table 1 summarizes
and compares the existing GDL methods. As we can see,
the proposed FRAME is the only method that enjoys all
these four desired properties.

3. Algorithm and Analysis
In this section, we introduce and analyze the proposed
FRAME. The algorithm is first introduced in Section 3.1.
Relevant analysis on embedding quality, convergence, and
complexity are presented in Section 3.2. Further discussion
and variants of FRAME are carried out in Appendix B.

3.1. FRAME Algorithm

In this subsection, we present our proposed algorithm
FRAME. The overall optimization framework to maximize
Eq. (3) can be divided into the expectation and maximization
steps. By leveraging the posterior probability and optimal
coupling, we can generate embeddings at multiple levels
and reconstruct the origin graphs from the embedding space.

Expectation. We first introduce a set of latent variables
zi,k indicating whether the graph Gi is generated from the
atom Bk. In the expectation step, we focus on computing
the posterior probability γi,k = p(zi,k = 1|Gi,Θ), i.e., the
probability of Gi being generated by Bk from the mixture
model. For the t-th iteration, fixing atoms B(t−1)

k and corre-
sponding prior probability π

(t−1)
k , the posterior probability

γ
(t)
i,k can be computed based on the Bayes rule as follows:

γ
(t)
i,k =

π
(t−1)
k p

(
Gi|B(t−1)

k

)
∑K

j=1 π
(t−1)
j p

(
Gi|B(t−1)

j

) . (5)

Maximization. Equipped with posterior probabilities
γ
(t)
i,k from the expectation step, the objective function in

Eq. (3) is lower bounded by the following complete log-
likelihood (Bishop & Nasrabadi, 2006):

Q(t)(Θ)=

N∑
i=1

K∑
k=1

p
(
zi,k|Gi,Θ

(t−1)
)
log p(Gi, zi,k|Θ)

=

N∑
i=1

K∑
k=1

γ
(t)
i,k [log πk − σFGW(Gi,Bk)] .

(6)

In the maximization step, we focus on re-estimating model
parameters to maximize the above complete log-likelihood.

First (maximization w.r.t. πk), fixing the posterior probabil-
ity γ

(t)
i,k and the atom B(t−1)

k , the prior probability π
(t)
k can

be calculated by

π
(t)
k =

∑N
i=1 p(zi,k=1|Gi,Θ

(t−1))
N =

∑N
i=1 γ

(t)
i,k

N . (7)

Second (maximization w.r.t. Bk = {Ak,Xk}), fixing the
posterior probability γ

(t)
i,k and the prior probability π

(t)
k , the
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maximization w.r.t. Bk in Eq. (6) can be formulated as

min
Bk

N∑
i=1

γ
(t)
i,kFGW(Gi,Bk). (8)

Note that the above optimization problem corresponds to
the FGW barycenter problem in Eq. (2) and can be effi-
ciently solved by the block coordinate descent (BCD) algo-
rithm (Ferradans et al., 2014; Titouan et al., 2019). Specif-
ically, the objective function in Eq. (8) is minimized w.r.t.
the optimal coupling Si,k between Gi and Bk, atom adja-
cency matrix Ak and atom attribute matrix Xk iteratively.
For the l-th iteration, the minimization w.r.t. three variables
are computed as follows.

(1) Fixing A(l−1)
k and X(l−1)

k , the objective function in
Eq. (8) is equivalent to calculating (NK) FGW distances
independently. For each FGW distance, a fast solution
based on conditional gradient (CG) (Jaggi, 2013) is pro-
posed by (Titouan et al., 2019) with convergence to a sta-
tionary point of the non-convex problem (Lacoste-Julien,
2016). Each CG subproblem is formulated as:

min
S∈Π(µi,µk)

⟨G(l)
i,k,S⟩,

G
(l)
i,k=∇SFGW=(1−α)M

(l−1)
i,k +2αL

(l−1)
i,k ⊗ S,

(9)

where ⊗ is the Kronecker product, and L
(l−1)
i,k is

a 4-dimensional tensor with L
(l−1)
i,k (x1, x2, y1, y2) =

|Ai(x1, x2)−A
(l−1)
k (y1, y2)|q for x1, x2 ∈ Gi and y1, y2 ∈

Bk. Note that each subproblem in Eq. (9) corresponds to an
OT problem, which can be efficiently solved by the inexact
proximal point method with guaranteed convergence to the
global optimum (Xie et al., 2020; Xu et al., 2019b).

(2) Fixing S(l)
i,k and X(l−1)

k , the optimal intra-graph matrix
Ak can be computed based on the first-order optimality
condition as follows (Peyré et al., 2016):

A
(l)
k =

∑N
i=1 γi,kS(l)

i,k

T

AiS
(l)
i,k

µkµT
k

. (10)

(3) Fixing S(l)
i,k and A(l)

k , the objective function in Eq. (8)

is quadratic w.r.t. X
(l)
k , whose optimal solution can be

computed as follows (Cuturi & Doucet, 2014):

X
(l)
k = diag

(
1

µk

) N∑
i=1

γi,kS(l)
i,kXi. (11)

Combining Eqs. (5)-(11), the overall algorithm of FRAME
is given in Algorithm 1.

Semi-supervised FRAME. Existing GDL methods (Xu,
2020; Vincent-Cuaz et al., 2021; 2022; Liu et al., 2023)

Algorithm 1 FRAME

1: Input: N graphs Gi = {Ai,Xi}, number of nodes in
K atoms nk, hyperparameters α, q, T, L.

2: Randomly initialize atoms π(0)
k ,A

(0)
k ,X

(0)
k ;

3: Initialize marginal dist. µi =
1ni

ni
,µk =

1nk

nk
;

4: for t ∈ N+
≤T do

5: for i ∈ N+
≤N and k ∈ N+

≤K do
6: Update cross and intra-graph matrices M(t)

i,k,L
(t)
i,k;

7: Update posterior probability γ
(t)
i,k by Eq. (5);

8: end for
9: for k ∈ N+

≤K do
10: Update prior probability π

(t)
k by Eq. (7);

11: Update S
(t)
i,k,A

(t)
k ,X

(t)
k by running L conditional

gradient iterations in Eqs. (9)-(11);
12: end for
13: end for
14: return posterior probability γ

(T )
i,k , optimal coupling

S
(T )
i,k , learned atoms B(T )

k = {A(T )
k ,X

(T )
k }.

solely focus on the unsupervised setting, while it would be
beneficial to incorporate external supervision when a small
portion of graph labels are available. FRAME can naturally
incorporate such supervision based on the semi-supervised
EM algorithm (Nigam et al., 2000) to derive the semi-
supervised variant named ss-FRAME. Specifically, in the
semi-supervised setting, we are given Nu unlabelled graphs
G1, · · · ,GNu and Nl labelled graphs GNu+1, · · · ,GNu+Nl

with labels yNu+1, · · · , yNu+Nl
. Following a similar deriva-

tion in the unsupervised setting, we can still adopt the maxi-
mization step in Eqs. (7)-(11) but with a modified expecta-
tion step as

γ
(t)
i,k =



π
(t−1)
k p

(
Gi|B(t−1)

k

)
∑K

j=1 π
(t−1)
j p

(
Gi|B(t−1)

j

) , if Gi is unlabelled

1, if Gi is labelled and yi = k

0, if Gi is labelled and yi ̸= k

Towards Nonlinear Embeddings. Different from existing
GDL methods that generate the linear representation of
graphs based on the atoms (Vincent-Cuaz et al., 2022; 2021;
Liu et al., 2023), the proposed FRAME generates nonlinear
embeddings at node, subgraph and graph levels.

For node embeddings, by regarding nodes in the atoms as
the bases of the node embedding space and using the optimal
coupling Si,k(vp, vq) as the coordinate of node vp ∈ Gi w.r.t.
the basis vq ∈ Bk, the node embedding zvp of vp ∈ Gi is
the concatenation of the optimal couplings as follows:

zvp = [γi,1Si,1(vp, :)∥ · · · ∥γi,KSi,K(vp, :)], (12)
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Intuitively, Si,k(vp, vq) indicates the conditional probability
of nodes vp ∈ Gi and vq ∈ Bk on that Gi is generated from
Bk, i.e., p(vp, vq|zi,k = 1). Therefore, each element in node
embedding zvp corresponds to the marginal probability of
vp, vq , that is

p(vp, vq) =
∑
zi,k

p(vp, vq|zi,k)p(zi,k)

=γi,kSi,k(vp, vq)

, (13)

Similarly, we can generate graph embeddings by measuring
the joint probability of graph Gi and atom Bk, i.e., p(Gi,Bk).
To be specific, we perform a linear transformation on node
embeddings in Eq. (13) as follows:

wi =
∑

vp∈Gi

zvpW,

where W ∈ R
∑K

i=1nBk
×K is the indicator matrix such that

each element W(vq, k) indicates whether the atom node vq
belongs to the atom Bk as follows:

W =


1nB1

0nB1
. . . 0nB1

0nB2
1nB2

. . . 0nB2

...
...

. . .
...

0nBK
0nBK

. . . 1nBK

 .

Owing to the coupling constraint on Si,k = Π(µi,νk), the
summation over elements in Si,k equals 1 and the graph
embedding for Gi can be further simplified as:

wi = [γi,1,· · ·, γi,K ]. (14)

Similarly, for a subgraph S ∈ Gi, we can generate the
subgraph embedding as wS =

∑
vp∈S zvpW.

As stated before, we assume no prior knowledge on
nodes and use uniform distributions to represent graphs.
Nonetheless, when mass distribution is available or can be
learned (Vincent-Cuaz et al., 2022), stronger graph and node
embeddings can be further generated.

Graph Reconstruction. The row-normalized optimal cou-
pling Ŝi,k = niSi,k acts as a soft permutation matrix de-
scribing the node correspondence between Gi and Bk. There-
fore, we approximate the reconstructed Gi from Bk, denoted
as G̃i,k = {Ãi,k, X̃i,k}, as the ”realigned” matrix based on
Ŝi,k as follows

Ãi,k = Ŝi,kAkŜ
T

i,k, X̃i,k = Ŝi,kXk. (15)

Besides, the posterior probability γi,k describes the cor-
respondence between Gi and Bk. Therefore, the overall
reconstructed graph of Gi, denoted as G̃i = {Ãi, X̃i}, is
approximated by the integration of G̃i,k based on γi,k as

Ãi =

K∑
k=1

γi,kÃi,k, X̃i =

K∑
k=1

γi,kX̃i,k. (16)

It is worth mentioning that the reconstructed graph G̃i be-
longs to the same metric space of Gi, whereas existing GDL
methods (Xu, 2020; Vincent-Cuaz et al., 2022; 2021) can
only reconstruct graphs in the atom space. As we will show
in the next subsection, the reconstructed graph by Eq. (16)
provides a good approximation of the original graph, with
an upper bound on the reconstruction error.

3.2. Theoretical Analysis

In this subsection, we provide theoretical analysis regarding
the embedding quality, the reconstruction error, the overall
convergence and the time complexity. The proofs for all the
theorems and propositions are provided in Appendix A.

Bound on Graph Embedding. To elucidate the quality
of graph embeddings, we present the following theorem
connecting the embedding space with the graph space.

Theorem 3.1. For two attributed graphs Gi,Gj , the graph
embeddings wi,wj given by FRAME with the 1-FGW dis-
tance satisfy the following inequality:

∥wi−wj∥1 ≤ ∥ logwi−logwj∥1 ≤ 2KσFGW1,α(Gi,Gj),

where K is the number of atoms and σ is the length-scale
parameter of the RBF kernel.

Generally speaking, the L1 norm between the graph embed-
dings is upper bounded by the 1-FGW distance between the
original graphs, indicating that the graph embedding space
provides a good proxy to the original graph space. We carry
out further experiments in Section 4.4 to demonstrate the
close correlation between the graph and embedding spaces.

Upper Bound on Reconstruction Error. To quantify the
information loss during the embedding process, we provide
the following upper bound on the reconstruction error.

Theorem 3.2. For an attributed graph Gi and the recon-
structed graph G̃i by Eqs. (15) and (16), the 2-FGW dis-
tance between Gi and G̃i satisfies the following inequality:

FGW2,α(Gi, G̃i) ≤
K∑

k=1

γi,k [α∆GWk
+ (1− α)∆Wk

] ,

where ∆GWk
= ∥diag(µi)(Ai − Ãi,k)∥2F and ∆Wk

=

∥diag(µ
1
2
i )(Xi − X̃i,k)∥2F .

To the best of our knowledge, we are the first to derive a
reconstruction error bound for GDL. The upper bound sug-
gests that the obtained embedding space retains essential
information in the original graph space. Experimental re-
sults in Section 4.4 show that FRAME achieves relatively
low reconstruction errors.
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Convergence Analysis. The EM algorithm is guaranteed
to converge under exact maximization (Wu, 1983). For the
sake of efficiency, it is preferred to evaluate the maximiza-
tion step inexactly with a suboptimal solution. As shown in
the following theorem, the objective function of FRAME is
non-decreasing and converges with inexact maximization.

Theorem 3.3. The objective function in Eq. (3) is non-
decreasing and converges along the inexact EM process.

With the above convergence guarantee, we only need to
solve the maximization problem in Eq. (6) inexactly by a few
BCD iterations in practice, hence dramatically reducing the
running time. Further empirical results on the convergence
of FRAME are provided in Appendix C.2.

Time Complexity. Without loss of generality, we assume
input graphs share a comparable size that is greater than
the shared size of atoms (i.e., O(nG) ≫ O(nB) nodes and
O(mG) ≫ O(mB) edges). We have the following time
complexity analysis.

Proposition 3.4. The overall time complexity of FRAME
is O(TLNK(mGnB + nGn

2
B)), where T is the number of

EM iterations and L is the number of BCD iterations.

Generally speaking, the time complexity of FRAME is (1)
quadratic w.r.t. the node number of atom nB which is al-
ways much smaller than the node number of graph nG , and
(2) linear w.r.t. the edge number of input graphs, the num-
ber of input graphs and the number of atoms. Sharing the
same big-O time complexity, FRAME expands the existing
GDL methods’ (Xu, 2020; Vincent-Cuaz et al., 2022; 2021)
ability to generate nonlinear embedding without increasing
the time complexity. In practice, FRAME achieves faster
computation as the EM algorithm generally converges with
fewer iterations than the gradient descent scheme.

4. Experiment
We conduct extensive experiments to validate and verify our
proposed FRAME from the following aspects:

• How to interpret the learned embeddings (Section 4.1)?

• How effective are the learned graph (Section 4.2) and
node (Section 4.3) embeddings?

• How well does the learned embedding space represent
the original graph space (Section 4.4)?

4.1. Understanding the Learned Embeddings

Experiment Setup. To better understand the relationship
between input graphs and learned atoms, we apply FRAME
on the synthetic graphs generated by the stochastic block
model with {1,2,3,5} blocks. For each category, we generate

(a) 3-dimensional space (b) 4-dimensional space

Figure 1. Graph embedding spaces for synthetic graphs: • for 1-
block, • for 2-block, • for 3-block, and • for 5-block graphs.

50 graphs with node numbers randomly sampled between
10 to 20. Besides, for {1,2,3} blocks, 3 auxiliary graphs per
category are generated as the supervision for ss-FRAME.
We learn two embedding spaces spanned by 3 and 4 atoms
with 12 nodes respectively.

Results and Analysis. The generated graph embedding
spaces are shown Fig. 1. The learned graph embeddings
are of high quality as the learned atoms recover the block
structures of the input graphs and similar graphs are clus-
tered around corresponding atoms. For the 3-dimensional
embedding space with less atoms than the graph classes, the
5-block graphs are underrepresented as a mixture of 2-block
and 3-block graphs, i.e., partially belonging to both classes.
However, when 4 atoms are learned, different graphs are
clearly separated in the resulting graph embedding space.
Based on this observation, we set the number of atoms to
be equal to the number of graph classes in the following
experiments.

4.2. Graph Classification and Clustering

Experiment Setup. Three real-world datasets are con-
sidered to evaluate the graph embeddings, including EN-
ZYMES (Borgwardt et al., 2005), IMDB-M (Yanardag
& Vishwanathan, 2015) and PTC-MR (Kriege & Mutzel,
2012). Detailed dataset description can be found in Ap-
pendix D.

Four types of baseline methods are considered, including (1)
kernel-based methods: Random Walk (RW) (Kashima et al.,
2003), Shortest Path (SP) (Borgwardt & Kriegel, 2005),
Weisfeiler-Lehman (WL) (Shervashidze et al., 2011) and
Pyramid Match (PM) (Nikolentzos et al., 2017) kernels, (2)
embedding-based methods: FGSD (Verma & Zhang, 2017),
LDP (Cai & Wang, 2018), MrMine (Du & Tong, 2019) and
FEATHER (Rozemberczki & Sarkar, 2020), (3) OT-based
methods: FGW (Titouan et al., 2019), WWL (Schulz et al.,
2022) and LinearFGW (Nguyen & Tsuda, 2022) and (4)
GDL-based methods: GWF (Xu, 2020), GDL (Vincent-
Cuaz et al., 2021) and srGW (Vincent-Cuaz et al., 2022).

For a fair comparison with other GDL methods, we fix the
number of atoms to be the same as the number of graph
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Table 2. Rand Index on graph clustering (%).

METHOD ENZYMES IMDB-M PTC-MR

RW KERNEL 17.6±0.0 34.4±0.0 50.6±0.0
SP KERNEL 58.4±0.7 33.6±0.1 50.3±0.0
WL KERNEL 61.2±0.9 49.6±0.0 49.9±0.0
PM KERNEL 69.0±0.4 52.9±0.0 51.1±0.1

FGSD 61.5±0.0 53.4±0.0 50.4±0.0
LDP 44.5±0.0 40.6±0.0 50.6±0.0
FEATHER 65.0±0.0 50.7±0.0 51.0±0.0

FGW 59.3±0.0 52.1±0.0 49.9±0.0
WWL 24.1±0.0 40.3±5.7 50.6±0.1
LINEARFGW 57.9±0.5 44.4±0.7 50.9±0.0

GWF 48.8±1.7 55.4±0.4 51.5±0.8
GDL 66.5±2.7 53.2±0.3 51.6±0.1
SRGW 55.1±0.0 48.1±0.0 50.6±0.0

FRAME 69.3±2.3 54.8±0.5 52.1±0.4

classes (i.e., one representative atom per class), with a fixed
atom size nB = 5. For graph classification, we apply 10-
fold cross-validation on the benchmark datasets. We use a
SVM classifier for classification, and the results are assessed
by the classification accuracy. For graph clustering, we
apply spectral clustering on top of the graph embeddings,
and the results are assessed by the Rand Index (Rand, 1971).

Results and Analysis. The results of graph clustering are re-
ported in Table 2. It is shown that FRAME achieves an up to
0.5% improvement over the best competitor in Rand Index.
We also carried out experiments on graph classification to
validate the effectiveness of the proposed semi-supervised
FRAME, and results are shown in Table 3. It is shown
that FRAME achieves comparable performance with other
GDL methods. When supervision is incorporated, the semi-
supervised FRAME outperforms all baselines, including the
semi-supervised embedding-based methods, with an up to
8.0% improvement.

4.3. Node Clustering

Experiment Setup. We consider four real-world datasets to
evaluate the node embeddings, including AIDS (Riesen &
Bunke, 2008), ENZYMES (Borgwardt et al., 2005), PRO-
TEINS (Borgwardt et al., 2005) and PTC-MR (Kriege &
Mutzel, 2012). Detailed dataset description can be found in
Appendix D.

Six well-known node embedding methods are considered,
including DeepWalk (Perozzi et al., 2014), GraRep (Cao
et al., 2015), node2vec (Grover & Leskovec, 2016),
NetMF (Qiu et al., 2018), NodeSketch (Yang et al., 2019)
and MrMine (Du & Tong, 2019). We apply spectral cluster-
ing on top of the node embeddings and evaluate the cluster-

Table 3. Accuracy on graph classification (%).

METHOD ENZYMES IMDB-M PTC-MR

SP KERNEL 27.3±5.3 35.0±2.1 55.8±5.8
RW KERNEL 20.7±3.6 35.8±3.5 55.8±0.9
WL KERNEL 35.3±5.1 49.5±3.2 54.4±9.6
PM KERNEL 23.7±5.7 44.1±4.3 52.1±6.9

FGSD 30.5±5.8 38.9±3.4 59.6±7.2
LDP 23.8±3.7 48.7±2.2 56.7±1.9
FEATHER 25.2±4.4 49.3±3.0 55.8±5.9

FGW 26.0±8.3 39.0±7.5 58.2±4.3
WWL 23.8±3.3 33.3±0.3 55.8±0.9
LINEARFGW 17.0±4.8 32.3±2.7 53.8±4.4

GWF 24.3±5.5 40.3±2.1 58.9±4.4
GDL 37.0±6.7 40.1±2.2 54.4±4.4
SRGW 38.3±5.9 45.6±2.2 59.0±6.8

FRAME 30.2±6.0 40.6±1.9 58.4±4.7
SS-FRAME 46.3±4.1 51.9±2.7 60.3±3.1

ing results by the Rand Index (Rand, 1971).

Results and Analysis. The results of the node clustering
are reported in Table 4. The proposed FRAME consistently
outperforms all the competitors on all datases, achieving an
up to 2.5% improvement in the Rand Index compared with
the best competitor.

Table 4. Rand Index on node clustering (%).
METHOD AIDS ENZYMES PROTEINS PTC-MR

DEEPWALK 52.7±0.3 50.1±0.1 50.4±0.1 50.0±0.2
GRAREP 47.4±0.0 48.3±0.0 49.4±0.0 50.3±0.0
NODE2VEC 43.6±0.1 48.2±0.0 49.5±0.6 50.0±0.2
NETMF 55.4±0.0 50.2±0.0 50.0±0.0 50.2±0.0
NODESKETCH 47.9±0.0 48.7±0.0 49.6±0.0 50.7±0.0
MRMINE 57.0±0.3 50.6±0.0 51.5±0.0 51.5±0.0

FRAME 57.2±0.1 53.1±0.1 53.5±0.0 51.8±0.2

4.4. Experimental Analysis

Hyperparameter Study. We analyze the effects of the
length-scale parameter σ on the graph embeddings, and the
results are shown in Fig. 2. A larger σ generates more deter-
ministic posterior probabilities γ and pushes data samples
to the apices of the embedding space, resulting in sparser
graph embeddings and clearer block structure in atoms.

The above observation may help guide the model tuning
process. When class-specific patterns exhibit in graphs, a
large σ is recommended to identify class-specific patterns
more deterministically. When common patterns are shared
by graphs in different classes, a small σ might be preferred
to represent graphs as the mixture of a set of patterns.
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(a) σ=10 (b) σ=20 (c) σ=30

Figure 2. Hyperparameter study on σ: • for 1-block graphs, • for 2-block graphs, • for 3-block graphs, and • for 5-block graphs.

(a) DBLP (b) IMDB-M

Figure 3. Comparison between the graph space and the embedding
space. Each point corresponds to a pair of graphs.

Graph Embedding Quality. We first evaluate the correla-
tion between the graph and embedding spaces by comparing
the FGW distance between graph pairs and the distance be-
tween corresponding embeddings. As the results shown in
Fig. 3, the learned embedding space well approximates the
original graph space with a Pearson coefficient over 0.95.

Besides, we compare the graph reconstruction error mea-
sured by the FGW distance between the original graph G
and the reconstructed graph G̃ of different GDL methods,
and results are shown in Fig. 4. For one thing, FRAME
achieves the fastest computation thanks to the fast conver-
gence of the EM algorithm. For another, the nonlinear GWF
and FRAME achieve smaller reconstruction errors compared
with the linear GDL method, validating the necessity of im-
posing nonlinear graph-atom relationship. Besides, GDL
performs relatively poor on two densely-connected datasets
DBLP and IMDB-M (refer to data statistics in Table 5),
indicating that complicated connectivity patterns may not
be well-captured by the linear GDL methods.

5. Related Works
Graph Representation Learning. Extensive efforts have
been made in graph representation learning including graph
kernel and graph embedding. Graph kernel (Kashima et al.,
2003; Borgwardt & Kriegel, 2005; Shervashidze et al.,
2011) provides a powerful graph similarity measure by
computing the inner product in reproducing kernel Hilbert
space (Schölkopf et al., 2002). However, most of the kernel
methods require hand-crafted features or predefined rules,

Figure 4. Average graph reconstruction error and running time of
different GDL methods.

resulting in fixed representations that can not be adapted to
specific dataset (Vincent-Cuaz et al., 2021). Some graph em-
bedding methods (Perozzi et al., 2014; Grover & Leskovec,
2016) leverage language models to generate representa-
tions based on truncated random walks, and some meth-
ods (Ribeiro et al., 2017; Donnat et al., 2018) learn em-
beddings by exploring node structural roles. Graph neural
networks (e.g., (Kipf & Welling, 2017; 2016) and its many
follow-ups) provide an end-to-end learning framework with
promising performance. However, a large amount of labeled
data is often required for training and the generated repre-
sentations are in general not interpretable. Besides, most of
the existing work focuses on single graph embedding and
may suffer from the embedding space disparity issue when
dealing with multiple graphs (Du & Tong, 2019).

Graph Dictionary Learning. Dictionary learning (Mallat,
1999; Mairal et al., 2009; Schmitz et al., 2018) aims to em-
bed data samples into a linear subspace spanned by a set
of shared atoms and has achieved great success in vectorial
data with wide applications in classification (Raina et al.,
2007; Mairal et al., 2009), clustering (Ramirez et al., 2010)
and domain adaptation (Ni et al., 2013; Yang et al., 2018).
It is of great interest to explore its potential to graph repre-
sentation learning, but relatively sparse literature exists as
graphs lie in disparate metric spaces.

The GDL task is formulated from different aspects. Early
works focus on the single-graph setting by factorizing the
node attribute matrix with a consistency regularization be-
tween embeddings and graph topology (Thanou et al., 2014;
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Yankelevsky & Elad, 2016). Recently, GDL is revisited
from the reconstructive perspective, which essentially mini-
mizes the Gromov-Wasserstein (GW) discrepancy between
the input graphs and corresponding approximations in the
atom space. GWF (Xu, 2020) utilizes the GW barycen-
ter as the nonlinear graph approximation, but the resulting
bi-level optimization bears a high computational cost. To
scale to large graph datasets, GDL (Vincent-Cuaz et al.,
2021) approximates input graphs by the linear combination
of atoms with an easier-to-solve GW unmixing problem.
srGW (Vincent-Cuaz et al., 2022) learns the OT coupling
and the target mass distribution simultaneously to avoid
pre-defined target mass distribution and further improves
the computational efficiency. More recently, RGWD (Liu
et al., 2023) proposes a robust GW discrepancy following
a minimax formulation, based on which, a GDL method is
developed to learn from noisy graph data.

In our work, the GDL task is formulated from the genera-
tive perspective by maximizing the likelihood of generating
input graphs from the learned atoms. Compared with the
existing GDL methods, the generative formulation avoids
explicit optimization of the graph embedding (e.g., GW un-
mixing in (Vincent-Cuaz et al., 2021)) thanks to the closed-
loop solution to the expectation step. Besides, by virtue of
the fast convergence of EM algorithm, FRAME learns non-
linear embeddings with an empirically faster computational
speed. In addition, owing to probabilistic nature underly-
ing the generative approach, multi-level embeddings can be
generated with quantitatively identified cross-level relation-
ships. Despite different variants of the GDL formulation,
the optimization frameworks essentially follow the BCD
optimization scheme by sequentially optimizing the atom
(e.g., SGD in GDL and the maximization step in FRAME)
and the graph embedding (e.g., GW unmixing in GDL and
the expectation step in FRAME).

6. Conclusion
In this paper, we study the graph dictionary learning prob-
lem from the generative perspective to learn nonlinear em-
beddings at multiple levels. An efficient algorithm named
FRAME is proposed based on the expectation-maximization
algorithm. The proposed FRAME enjoys the same time com-
plexity as the existing GDL with a faster empirical running
time. Theoretical analysis shows that the learned embedding
space well approximates the original graph space and cap-
tures essential graph information with an upper bound on the
graph reconstruction error. Extensive experiments on both
graph and node-level tasks demonstrate the effectiveness of
the proposed FRAME.
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A. Proof
Theorem 3.1. For two attributed graphs Gi,Gj , the graph embeddings wi,wj given by FRAME with the 1-FGW distance
satisfy the following inequality:

∥wi −wj∥1 ≤ ∥ logwi − logwj∥1 ≤ 2KσFGW1,α(Gi,Gj),

where K is the number of atoms and σ is the length-scale parameter of the RBF kernel.

Proof. For simplicity, we use di,j to denote FGW1,α(Gi,Bk). For the k-th element in wi and wj , i.e., γi,k and γj,k,
according to Eq. (5), we have:

| log γi,k − log γj,k| = |σ(dj,k − di,k) + log

∑K
m=1 πme−σdj,m∑K
m=1 πme−σdi,m

|

≤ |σ(dj,k − di,k)|+ | log
∑K

m=1 πme−σdj,m∑K
m=1 πme−σdi,m

|
.

We denote the most ’biased’ barycenter as Bq satisfying q = argmaxm e−σ(di,m−dj,m), then we have:

| log γi,k − log γj,k| ≤ |σ(dj,k − di,k)|+ | log πqe
−σdj,q

πqe−σdi,q
|

= |σ(dj,k − di,k)|+ |σ(di,q − dj,q)|
≤ 2σdi,j

,

where the first inequality is due to q = argmaxm e−σ(di,m−dj,m) and the second inequality is due to the triangle inequality
of 1-FGW distance (Titouan et al., 2019). Besides, as γi,k ≤ 1, we have |γi,k − γj,k| ≤ | log γi,k − log γj,k|. Therefore, we
can bound the L1 norm of graph embeddings by the corresponding FGW distance as follows:

∥wi −wj∥1 ≤ ∥ logwi − logwj∥1 ≤ 2KσFGW1,α(Gi,Gj),

where K is the number of barycenters and σ is the length-scale parameter of the RBF kernel.

Theorem 3.2. For an attributed graph Gi and the reconstructed graph G̃i by Eqs. (15) and (16), the 2-FGW distance
between Gi and G̃i satisfies the following inequality:

FGW2,α(Gi, G̃i) ≤
K∑

k=1

γi,k [α∆GWk
+ (1− α)∆Wk

] ,

where ∆GWk
= ∥diag(µi)(Ai − Ãi,k)∥2F and ∆Wk

= ∥diag(µ
1
2
i )(Xi − X̃i,k)∥2F .

Proof. For simplicity, we omit the graph index i and use subscripts k, l to index atoms Bk,Bl. Given G = {A,X} and
G̃ = {Ã, X̃}, the 2-FGW distance has the following inner product form (Peyré et al., 2016; Vincent-Cuaz et al., 2021):

FGW2,α(G, G̃) = min
S∈Π(µ,µ)

⟨(1− α)M+ αL,S⟩

where

{
M = diag(XXT)1T + 1diag(X̃X̃T)− 2XX̃T

L = A2µ1T + 1µTÃ2 − 2ASÃ
,

where diag(X) of a matrix X means taking the diagonal value of matrix X and diag(µ) of a vector µ means formulating a
diagonal matrix with µ as the diagonal values. Note that G and G̃ have the same number of nodes, hence µG = µG̃ = µ.
For simplicity, we use Dµ to denote diag(µ).
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Since Dµ ∈ Π(µ,µ) is an suboptimal solution to FGW(G, G̃), we have:

FGW2,α(G, G̃) ≤ ⟨(1− α)M+ αL,Dµ⟩
= (1− α)⟨diag(XXT)1T + 1diag(X̃X̃T)− 2XX̃T,Dµ⟩︸ ︷︷ ︸

Wasserstein distance

+α⟨A2µ1T + 1µTÃ2 − 2ADµÃ,Dµ⟩︸ ︷︷ ︸
Gromov-Wasserstein distance

.

We first check the Wasserstein distance term. Owing to the marginal constraint Dµ1 = 1DT
µ = µ and the trace property

Tr(XT
1DµX2Dµ) = Tr(X1 ⊙X2µµ

T), we have:

⟨diag(XXT)1T + 1diag(X̃X̃T)− 2XX̃T,Dµ⟩

=Tr
(
D

1
2
µXXTD

1
2
µ +D

1
2
µX̃X̃TD

1
2
µ − 2XX̃TDT

µ

)
=Tr

D
1
2
µXXTD

1
2
µ +

K∑
k,l=1

γkγlD
1
2
µX̃kX̃

T

lD
1
2
µ − 2XX̃TDT

µ


=Tr

D
1
2
µXXTD

1
2
µ +

K∑
k,l=1

γkγlX̃k ⊙ X̃lµ
1
2µ

1
2
T

− 2XX̃TDT

µ



=Tr

(
D

1
2
µXXTD

1
2
µ +

K∑
k

γkX̃
2
kµ

1
2µ

1
2
T

− 2XX̃TDT

µ

)
+Tr




K∑
k,l=1

γkγlX̃k ⊙ X̃l −
K∑

k=1

γkX
2
k︸ ︷︷ ︸

non-positive

µ
1
2µ

1
2
T


≤Tr

(
D

1
2
µXXTD

1
2
µ +

K∑
k=1

γkD
1
2
µX̃kX̃

T

kD
1
2
µ − 2

K∑
k=1

γkXX̃T

kD
T

µ

)

=

K∑
k=1

γk∥D
1
2
µ(X− X̃k)∥2F

, (17)

where the non-positivity is owing to the following inequality:

K∑
k,l=1

γkγlX̃k(i, j)X̃l(i, j) ≤
K∑

k,l=1

1

2
γkγl

(
X̃k(i, j)

2 + X̃l(i, j)
2
)

=
1

2

(
K∑

k=1

γkX̃k(i, j)
2 +

K∑
l=1

γlX̃l(i, j)
2

)

=

K∑
k=1

γkX
2
k(i, j)

.
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We then check the Gromov-Wasserstein distance term. Similarly, we have:

⟨A2µ1T + 1µTÃ2 − 2ADµÃ,Dµ⟩

=Tr
(
A2µµT + µµTÃ2 − 2ADµÃDT

µ

)
=Tr

A2µµT +

K∑
k,l=1

γkγlÃk ⊙ Ãlµµ
T −

K∑
k=1

2γkADµÃkD
T

µ



=Tr

(
A2µµT +

K∑
k

γkÃ
2
kµµ

T −
K∑

k=1

2γkADµÃkD
T

µ

)
+Tr




K∑
k,l=1

γkγlÃl ⊙ Ãk −
K∑

k=1

γkÃ
2
k︸ ︷︷ ︸

non-positive

µµT


≤Tr

(
DµAATDµ +

K∑
k

γkDµÃkÃ
T

kDµ − 2

K∑
k=1

γkADµÃkD
T

µ

)

=

K∑
k=1

γk∥Dµ(A− Ãk)∥2F

. (18)

Combine Eq. (17) and (18), we prove that

FGW2,α(G, G̃) ≤
K∑

k=1

γk

[
α∥Dµ(A− Ãk)∥2F + (1− α)∥D

1
2
µ(X− X̃k)∥2F

]
.

Theorem 3.3. The objective function in Eq. (3) is non-decreasing and converges along the inexact EM process.

Proof. For simplicity, we denote the set of input graphs as G = {G1, · · · ,GN} and we use superscript (t) to denote
parameters in the t-th EM iteration. It is shown that for two set of parameters Θ and Θ(t), the difference between the two
objective functions in Eq. (3) is lower bounded as follows (Wu, 1983):

L(Θ)− L(Θ(t)) ≥ Q(Θ,Θ(t))−Q(Θ(t),Θ(t))

where Q(Θ,Θ(t)) =
∑

Z

[
p(Z|G,Θ(t)) log p(G,Z|Θ)

]
is the maximization objective evaluated with parameters at the t-th

EM iteration shown in Eq. (6).

We next show that Q(Θ(t),Θ(t)) ≤ Q(Θ(t+1),Θ(t)) even with inexact maximization, i.e., finding a suboptimal solution to
Eq. (6) with a few iterations. We use Q(t)

(l) to denote the value of Q(π
(t)
(l) ,S

(t)
(l) ,A

(t)
(l) ,X

(t)
(l) , γ

(t)) at the l-th BCD iteration and
t-th maximization step.

Since Eq. (7)-(11) provides optimal maximization w.r.t. π, S, A and X (Bishop & Nasrabadi, 2006; Xie et al., 2020), the
value of Q is non-decreasing along the BCD iteration, i.e., Q(t)

(l) ≤ Q(t)
(l+1). Besides, by setting the initial values for the BCD

iteration as A(t+1)
(0) = A(t),X

(t+1)
(0) = X(t), we have:

Q(Θ(t),Θ(t)) = Q(t+1)
(0) ≤ Q(t+1)

(L) = Q(Θ(t+1),Θ(t))

which means L(Θ(t+1))− L(Θ(t)) ≥ 0 always holds even if Q(t)
(L) is not the exact optimal solution to the maximization

problem in Eq. (6). Therefore, we prove that the objective function in Eq. (3) is non-decreasing and converges along the
inexact EM process of FRAME.

Proposition 3.4. The overall time complexity of FRAME is O(TLNK(mGnB + nGn
2
B)), where T is the number of EM

iterations and L is the number of BCD iterations.
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Proof. Note that graphs Gi have sparse adjacency matrix with mGi
non-zero elements for fast computation. With N

attributed input graphs with d node features, K barycenters, T expectation-maximization iterations, L block coordinate
descent iterations and M conditional gradient iterations, we have the following analysis.

Calculating M
(t)
i,k, |Ci,k(x1, x2)−Ci,k(y1, y2)|q and FGW(t)(Gi,Bk) in Eq. (1) require O(n2

Gd), O(mGnB) and O(nGnB)

complexity. Calculating all the γ
(t)
i,k and π

(t)
k in Eq. (5) and (7) both require O(NK) in total. Calculating S

(t)
i,k in Eq. (9)

requires O(MnGnB) complexity. Calculating A
(t)
k and X

(t)
k in Eq. (10) and (11) require O(NnGn

2
B) and O(NdnGnB)

complexity respectively. Ignoring non-trivial terms, the overall complexity of FRAME is O(TLNK(mGnB + nGn
2
B)).

B. Variants and Discussion
Graph Generation Kernel. The RBF kernel is adopted in FRAME for three reasons. First, the exponential term in
Eq. (4) amplifies the gap between graph distances with large σ, resulting in sparse embeddings. Second, the RBF kernel
maps the origin graphs into an infinite dimensional space, hence generating highly nonlinear embeddings. Third, with
the RBF kernel, the maximization step corresponds to the FGW barycenter problem and can be efficiently solved by the
BCD iteration (Titouan et al., 2019). Other exponential kernels such as the Gaussian kernel and the squared exponential
kernel can also be adopted with minor modifications. Besides, it is also feasible to adopt other types of non-exponential
kernel functions, but the resulting maximization problem may require the computationally more costly gradient descent for
optimization.

Reducing Atom Redundancy. It is desirable to generate discriminant atoms capturing diverse graph patterns to reduce
redundancy. Therefore, we propose a regularization term that minimizes the mutual likelihood among atoms as follows

Ω(Θ) = −β

K∑
k=1

K∑
l=1

log p(Bk|Bl) (19)

And the resulting objective function is formulated as

argmax
πk,Bk

N∑
i=1

K∑
k=1

γi,k[log πk−σFGW(Gi,Bk)] + β

K∑
k=1
l=1

σFGW(Bk,Bl)

To solve the regularized GDL problem, we can follow the similar EM process but with a modified maximization step.
Specifically, we can still adopt Eq. (7) to optimize πk as the regularization term is decoupled with πk. To optimize Bk, we
follow the BCD iteration where all the variables except Bk are fixed, and the optimization problem is formulated as

argmin
Bk

N∑
i=1

γi,kFGW(Gi,Bk)− β

K∑
l=1

FGW(Bl,Bk)

The above problem can be regarded as a modified FGW barycenter problem with negative distances. We can still adopt the
CG in Eq. (9) with a modified gradient to optimize Si,k. However, the negative terms would violate the positive semidefinite
prerequisite (Peyré et al., 2016) for applying Eq. (10) and destroy the quadratic approximation (Cuturi & Doucet, 2014)
in Eq. (11). Therefore, we may not follow the closed-loop solutions in Eqs. (10)-(11), but adopt gradient descent for
optimization.

C. Additional Experiments
C.1. Scalability Analysis

We conduct scalability analysis on the synthetic Erdös-Rényi random graphs, and results are shown in Fig. 5.

As shown in Fig. 5(a), the running time is sublinear for small graphs and linear for large graphs w.r.t. the number of graph
edges mG . This is mainly because the running time is dominated by the O(nGn

2
B) term for small graphs. Besides, in

Fig. 5(b), the running time is superlinear w.r.t. the number of atom nodes nB. For Fig. 5(c) and 5(d), the running time is
linear w.r.t. the number of graphs N and the number of atoms K, which is consistent with our analysis in Proposition 3.4.
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(a) Time - Graph Size (b) Time - Atom Size (c) Time - # Graph (d) Time - # Atoms

Figure 5. Scalability analysis.

C.2. Graph Embedding Space Evolution

We visualize the evolution of the graph embedding space along the EM training process, and the results are shown in Fig. C.2.
Along the EM optimization process, the cluster structure gradually appears where similar graphs are closely clustered and
dissimilar graphs are pushed far away in the embedding space. Besides, we show how the value of the objective function in
Eq. (3) changes along the optimization process in Fig. 7. We observe that the EM algorithm empirically converges after 6
iterations, which validate our claim that FRAME achieves empirically faster computation than the existing GDL methods
that adopts the stochastic gradient descent for solution.

ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4 ITERATION 5

ITERATION 6 ITERATION 7 ITERATION 8 ITERATION 9 ITERATION 10

Figure 6. Evolution of the graph embedding space: • for 1-block, • for 2-block, • for 3-block, and • for 5-block graphs.

C.3. Convergence Analysis

We empirically evaluate the convergence of the proposed FRAME on the DBLP dataset. Specifically, we assess the
convergence by measuring the value of the objective function in Eq. (3) and the difference between two consecutive posterior
probability (i.e., ∥γ(t) − γ(t−1)∥1) along the EM iterations. The experiments are repeated 5 times, and we report the mean
and standard deviation of the results, which are shown in Fig. 7.

It is shown in Fig. 7(a) that the objective function is non-decreasing along the optimization process and eventually converges
to a local optimum after several iterations. Besides, Fig. 7(b) demonstrates that the difference between two consecutive
posterior probability γ(t−1) and γ(t) approaches zero as the optimization proceeds. These results empirically validates our
theoretical convergence analysis and provide further evidence supporting our claim that the proposed FRAME based on EM
optimization has empirically faster convergence rate than the SGD-based optimization adopted by many GDL methods.

C.4. Learning Multi-Scale Patterns

Capture graph patterns at multiple scales is crucial, but most of the existing GDL methods (Vincent-Cuaz et al., 2021;
Liu et al., 2023) fail to achieve this capability as they require atoms to be the same size. In this subsection, we provide
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(a) Values of the objective function. (b) Difference between two consecutive γ.

Figure 7. Convergence analysis of the proposed FRAME.

experimental results to validate FRAME’s ability of generating atoms with different sizes to capture multi-scale patterns.

We consider an input graph with patterns at multiple scales shown in Fig. 8(a), which includes a central cycle graph with
outreaching edges connecting fully-connected blocks, and apply FRAME to learn 3 atoms with sizes in {5, 10, 11}. As
shown in Fig. 8, FRAME successfully identifies three principal patterns in Figs. 8(b)-8(d): a fully-connected atom, a cycle
atom and a star atom.

(a) Input graph (b) Fully-connected atom (c) Cycle atom (d) Star atom

Figure 8. Learning graph patterns at multiple scales.

C.5. Graph Reconstruction

We first analyze how the choice of atoms affects the graph reconstruction process. We consider different atom sizes in
{5, 10, 15, 20, 25, 30} and different number of atoms in {2, 3, 4, 5, 6, 7}, and results are shown in Fig. 9.

First, the reconstruction error achieves relatively small values with an atom size that is close to the graph size (i.e., nG = 9
for DBLP, nG = 32 for ENZYMES, nG = 13 for IMDB-M, and nG = 14 for PTC-MR as shown in Table 5). For one thing,
graph patterns may not be well captured with small atoms, resulting in high reconstruction errors. For another, when the
atom size is big, the reconstruction error either stays unchanged or even increases as the redundancy in atoms may otherwise
introduce noises into the reconstruction process.

Second, more atoms lead to smaller reconstruction error. More atoms generate a higher dimensional embedding space,
resulting in smaller information loss during the embedding process and more accurate graph reconstruction. Interestingly,
the most significant reduction of the reconstruction error happens at the point where the number of atoms equals the number
of graph classes. This shows that each atom captures the discriminant pattern in each graph class, and therefore, FRAME
can generate an embedding space with little redundancy with properly chosen parameters.

We also provide the visualization of some original graphs and corresponding reconstructed graphs from four datasets, as
shown in Fig. C.5. Note that the reconstructed graphs are weighted graphs, and the edge widths are proportional to the
corresponding weights. By regarding the edge weights as the probability of connecting two nodes, the proposed FRAME
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Figure 9. Graph reconstruction error analysis.

can be applied to other tasks such as link prediction and recommendation.

DATASETS ORIGINAL GRAPHS RECONSTRUCTED GRAPHS

DBLP

ENZYMES

IMDB-M

PTC-MR

Figure 10. Visualization of graph reconstruction.

D. Reproducibility
Dataset Descriptions. All the real-world datasets we use are from (Morris et al., 2020) and available online1. Here we
briefly summarize the datasets used in the experiments:

• AIDS (Riesen & Bunke, 2008) is a set of chemical graphs, where each graph represents one molecular compound with
nodes as atoms and edges as covalent bonds. The binary graph labels indicate whether molecules have activity against
HIV or not. The node labels correspond to the atom type.

• DBLP (Pan et al., 2013) is a set of biological networks in computer science, where each graph represents one publication
with nodes as the paper ID or keywords and edges as citations. The binary graph labels indicate the published conference
(DBDM/CVPR) of the paper.

1https://chrsmrrs.github.io/datasets/
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• ENZYMES (Borgwardt et al., 2005) is a set of enzyme graphs where each graph represents the protein tertiary structure
with nodes as atoms and edges as chemical bonds. The graph labels indicate the top-level enzyme classes. The node
labels correspond to atom type.

• IMBD-M (Yanardag & Vishwanathan, 2015) is a set of movie collaboration networks, where each graph represents one
movie with nodes as actor/actress and edges indicating whether two actors/actresses co-appear in the same movie. The
graph labels indicate the movie categories (Comedy/Romance/Sci-Fi).

• PROTEINS (Borgwardt et al., 2005) is a set of proteins where each graph represents the protein structure with nodes as
amino acids and edges as chemical bonds. The graph labels indicate whether the proteins are enzymes or non-enzymes.
The node labels correspond to atom type and the node attributes represent node chemical features.

• PTC-MR (Helma et al., 2001) is a set of chemical graphs, where each graph represents one molecule with nodes as
atoms and edges as chemical bonds. The binary graph labels indicate the carcinogenicity in male rats. The node labels
correspond to the atom type.

Table 5. Dataset statistics.

DATASET #GRAPHS #NODES #EDGES SPARSITY #FEATURES #GRAPH CLASS #NODE CLASS

AIDS 2,000 17.80 18.40 0.06 4 2 38
DBLP 19,456 9.13 19.48 0.23 NONE 2 NONE
ENZYMES 600 31.64 61.85 0.06 18 6 3
IMDB-M 1,500 12.74 53.88 0.33 NONE 3 NONE
PROTEINS 1,113 43.31 77.79 0.04 1 2 3
PTC-MR 344 13.88 14.18 0.07 NONE 2 19

Machine Configuration and Code. The proposed method is implemented in Python based on the POT toolbox (Flamary
et al., 2021). The graph kernel methods are based on the GraKel library (Siglidis et al., 2020), and the embedding-based
methods are based on the Karate Club library (Rozemberczki et al., 2020). All experiments are conducted on the Linux
platform with an Intel Xeon Gold 6240R CPU and an NVIDIA Tesla V100 SXM2 GPU. The code is implemented by
authors from the University of Illinois and available at https://github.com/zhichenz98/FraMe-ICML23.

E. More on Related Works
Optimal Transport on Graphs. The OT theory (Peyré et al., 2019) compares two distributions by finding the optimal
coupling minimizing a predefined cost. There has been a recent interest on applying OT on structured data such as graphs
with wide applications on graph comparison, graph alignment, graph dictionary learning and so on. The key idea is to
represent graphs as distributions and optimize a probabilistic coupling under the Wasserstein discrepancy (Nikolentzos
et al., 2017; Maretic et al., 2019; Togninalli et al., 2019) or the Gromov-Wasserstein discrepancy (Mémoli, 2011; Sturm,
2012). Many works (Chen et al., 2020; Xu et al., 2019b; Xu, 2020; Titouan et al., 2019; Zeng et al., 2023) represent
graph as a discrete distribution on the product space of graph topology and node attributes, where elements indicate the
weight of different nodes, while other works represent graphs as uniform distributions with Laplacian-like covariance
matrices (Maretic et al., 2019; 2022). Afterwards, either the distances are utilized for tasks like graph comparison (Xu et al.,
2019b; Titouan et al., 2019) and graph dictionary learning (Vincent-Cuaz et al., 2021; 2022; Xu, 2020; Liu et al., 2023), or
the OT couplings are leveraged to model node relationships in graph alignment (Xu et al., 2019a;b; Maretic et al., 2019;
2022; Zeng et al., 2023).

Mixture Models. Mixture models are widely used to model unknown distribution shapes in various fields such as
bioinformatics, engineering, and imaging (McLachlan et al., 2019). These models offer a semi-parametric approach to
represent the unknown distribution as a combination of base distributions. By optimizing the weights and parameters
of these base distributions, the model aims to best fit the data distribution. Initially, the method of moments (Pearson,
1894) was employed to fit the unknown distribution by solving a nonic polynomial. Subsequently, the expectation-
maximization algorithm emerged as the predominant approach for optimizing mixture models. The key idea follows the
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principle of maximum likelihood estimation, which iteratively calculates the conditional expectation of the log likelihood
and maximizes the complete likelihood. While the mixture model provides a probabilistic clustering of data samples
given the base components, the selection of the model order, i.e., number of base components, is essential to the model
performance (McLachlan & Rathnayake, 2014; McLachlan et al., 2019). In this paper, we set the model order to be the
same as the number of graph classes, as we expect to have one representative base model (i.e., atom) for each graph class.

F. Future Works and Limitations
As discussed in Appendix B, there are several possible directions to explore that can further benefit the current framework,
including:

• Non-exponential graph generation kernels: When adopting non-exponential graph generation ker-
nels, the resulting formulation is not a FGW barycenter problem, hence may lack of efficient solution. We may need to
further explore efficient solutions other than the computationally costly stochastic gradient descent.

• Redundancy regularization: When incorporating the redundancy regularization in Eq. (19), the resulting
problem can be regarded as a FGW barycenter problem with negative distances, which, however, can not be directly
solved by the current algorithm due to the violation of the semi-definite and quadratic properties.

• Online learning: When dealing with graphs that come in sequence, it would be beneficial to build up a model
that can incrementally learn from new samples (Vincent-Cuaz et al., 2021). Although the current vanilla EM algorithm
is not applicable for online learning, the recent advance on stochastic EM algorithm (Chen et al., 2018) may provide a
feasible to develop an online generative GDL method.

• Learnable mass distribution over graphs: The current follows a common approach in OT-based
graph learning frameworks where probability mass is uniformly distributed on nodes. However, the recently proposed
srGW (Vincent-Cuaz et al., 2022) provides a semi-relaxed GW discrepancy by relaxing the marginal constraint over
the target graph. By relaxing the marginal constraint over the atom, each atom can function differently for different
graphs, hence further increase the representation power of the proposed model.

• Graph generation: It would be of great interest to explore FRAME’s ability of graph generation. In other words,
given a graph embedding space learned by FRAME, how to efficiently sample graphs from the model? This future
direction not only provides a feasible way to generate graphs obeying the input graph distribution, but also provides a
possible way to construct interpretable graph encoder-decoder and graph GAN models.
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