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Abstract

This paper explores the expressive power of deep
neural networks through the framework of func-
tion compositions. We demonstrate that the re-
peated compositions of a single fixed-size ReLU
network exhibit surprising expressive power, de-
spite the limited expressive capabilities of the in-
dividual network itself. Specifically, we prove by
construction that £20g°" 0 L4 can approximate 1-
Lipschitz continuous functions on [0, 1] with an
error O(r~1/?), where g is realized by a fixed-
size ReLU network, £; and L, are two affine
linear maps matching the dimensions, and g°”
denotes the r-times composition of g. Further-
more, we extend such a result to generic contin-
uous functions on [0, 1]¢ with the approximation
error characterized by the modulus of continuity.
Our results reveal that a continuous-depth net-
work generated via a dynamical system has im-
mense approximation power even if its dynam-
ics function is time-independent and realized by
a fixed-size ReLU network.

1. Introduction

In recent years, there has been a notable increase in the ex-
ploration of the expressive power of deep neural networks,
driven by their impressive success in various learning tasks.
The increasing size of deep neural network models poses
significant challenges in terms of training and computa-
tional requirements. Consequently, numerous techniques
have emerged to compress and expedite these models, with
the goal of alleviating the associated computational com-
plexity. These techniques predominantly center around
parameter-sharing schemes, which efficiently reduce the
number of parameters, leading to reductions in memory us-
age and computation costs.
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This paper explores the expressive power of deep neural
networks, approaching it from the standpoint of function
compositions. We focus on a novel network architecture
constructed through the repeated compositions of a single
fixed-size network, enabling parameter sharing. To illus-
trate our ideas and concepts, we specifically utilize the rec-
tified linear unit (ReLU) activation function. Our investi-
gation reveals that the repeated compositions of a single
fixed-size ReLU network demonstrate surprising expres-
sive power, even though the individual network itself has
limited expressive capabilities. These findings provide new
insights into the potential of parameter-sharing schemes in
neural networks, showcasing their ability to reduce compu-
tational complexity while preserving a high level of expres-
sive power.

For ease of notation, we employ NNV{N, L; R% — Rd2}
to represent the set of functions ¢ : R%* — R% that can be
realized by ReLU networks of width N € NT and depth
L € Nt. In our context, the width of a network means
the maximum number of neurons in a hidden layer and the
depth refers to the number of hidden layers. Let g°" denote
the r-times composition of g, e.g., g°> = gogog. In
the degenerate case, g°° represents the identity map. We
use C([0,1]%) to denote the set of continuous functions on
[0, 1]¢ and define the modulus of continuity of a continuous
function f € C([0,1]%) via

wi(t) = sup {|f(@) = f@)| : |z —yll2 < t, @,y € [0,1]"}

for any ¢ > 0. Under these settings, we can construct
Lo 0 g° o L1 to approximate a continuous function f €
C(]0,1]%) with an error O (wy(r~'/)), where £, and £,
are two affine linear maps and g is realized by a fixed-size
ReLU network, as shown in the theorem below.

Theorem 1.1. Given any f € C([0,1]%), r € NT, and
p € [1,00), there exist g € NN{69d + 48, 5; R+5 —
R%4+5Y and two affine linear maps L1 : RY — R3+5 and
Lo : R5H5 5 R such that

H'C? © go(3r+1) oLy — fHLP([O,l]d) < Gﬁwf(ril/d)
It should be noted that in Theorem 1.1, the affine lin-

ear maps £, and Lo are used to ensure matching dimen-
sions and can be replaced by various other functions that
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achieve the desired input and output dimensions. In our re-
search, we choose a straightforward approach by consider-
ing them as affine linear maps. In Theorem 1.1, we propose
a novel network architecture constructed via repeated com-
positions of a single sub-network, which will be referred to
as repeated-composition networks (RCNets). The hypoth-
esis space of the RCNet corresponding to g is defined as

H(g) = {Eg 0g°"oLy:reN, Lyand Ls are afﬁne}.

Then we have an immediate corollary as follows.

Corollary 1.2. Given any p € [1,00), suppose H(g) is
defined as mentioned above and set G = NN{69d +
48, 5; R%4+5 — R545Y Then H = UgegH(g) is dense
in LP([0,1]%) in terms of the LP-norm.

The proof of Corollary 1.2 is straightforward. Theorem 1.1
implies H is dense in C(]0,1]%) in terms of the LP-norm
for any p € [1,00). Recall that C([0,1]¢) is dense in the
Lebesgue spaces LP ([0, 1]¢) for any p € [1, co). Therefore,
we can conclude that  is dense in L?([0, 1]%) in terms of
the LP-norm for any p € [1, 00). Furthermore, it should be
noted that the set G in Corollary 1.2 is generated by a fixed-
size ReLU network. As a result, G is a set of continuous
piecewise linear functions with (at most) a fixed number of
pieces.

It is important to note that the approximation error in The-
orem 1.1 is quantified by the LP-norm for any p € [1, c0).
However, it is possible to extend this result to the L°°-norm
as well, although the associated constants will be signifi-
cantly larger.

Theorem 1.3. Givenany f € C’([Oll}d) andr € N*, there
exist g € NN{44%d, 3 + 2d; R? — R} and two affine
linear maps £, : R — R and L5 : R — R such that

L5 0g°C+24=D o £ (z) — f(z)] < 6Vdws(r~'/%)
for any x € [0,1]%, where d = 3%(5d + 4) — 1.

The main ideas for proving Theorems 1.1 and 1.3 are pro-
vided in Section 3 and the detailed proofs of these two the-
orems can be found in Section A of the appendix.

In general, it is challenging to simplify the approxima-
tion error in Theorem 1.1 (or 1.3) due to the complexity
of wy(-). However, in the case of special target function
spaces like Holder continuous function space, one can sim-
plify the approximation error to make its dependence on r
explicit. If f is an Holder continuous function on [0, 1]¢ of
order o € (0, 1] with an Holder constant A > 0, we have

[f(@) — f(y)l < Mz — g5 forany z,y € [0,1)%,

implying w¢(t) < At® for any t > 0. Thus, the approx-
imation error in Theorem 1.1 (or 1.3) can be simplified to

6AV/dr—2/4. In the special case of @« = 1, where f is
a Lipschitz continuous function with a Lipschitz constant

A > 0, the approximation error can be further simplified to
6AVdr—1/4,

A constant-width ReLU network of depth O(r) can be rep-
resented as Lo 0 g, 0 ---0 g 0 g, o L1, where £ and
Lo are affine linear maps and each g; is a fixed-size ReLU
network. It has been shown in (Shen et al., 2020; Yarotsky,
2018; Zhang, 2020) that the optimal approximation error is
O(r~2/®) when using L3 0 g, 0 --- 0 gy 0 g1 0 L1 to ap-
proximate 1-Lipschitz continuous functions on [0, 1]¢. In
contrast, our RCNet architecture L5 o g°" o £ can ap-
proximate 1-Lipschitz continuous functions on [0, 1]¢ with
an error O(r‘l/d), where g is a fixed-size ReLLU network.
That means, at a price of a slightly worse approximation er-
ror, our RCNet architecture £, 0g°" o L1 essentially shares
most of the parameters in L5 0 g, 0---0gs 0g; o Ly
and reduce trainable parameters to a constant. Further-
more, our RCNet architecture L5 o g°" o £ is antici-
pated to exhibit improved gradient behavior compared to
Lo0g,0---0gy0g; o Ly as the gradient with respect to
the parameters in g is less likely to vanish for larger values
of r.

Next, we point out some relations between our approxi-
mation results and dynamical systems. Our results reveal
that a continuous-depth network generated via a dynamical
system has enormous approximation power even if the dy-
namics is time-invariant and realized by a fixed-size ReLU
network. Let us now delve into further details regarding
this matter. A dynamical system is generally described by
an ordinary differential equation (ODE)
t€[0,7],

42(t) = F(z(1),t,0), z(0) = zo, (1)

dt
where F' : R"T! x ©® — R" is the dynamics function of
this dynamical system, parameterized with 8 € ©, where
O is the parameter space.

For any y = 29 € R™, z(T') can be regarded as a function
of y and we denote this function by ®(-,8) : R* — R".
Such a map is known as the flow map (or Poincaré map) of
the dynamical system (1). Then we can use L2 o ®(-,0) o
L, to approximate a given target function f : RY — R,
where L£; and £, are two affine linear maps matching the
dimensions.

Choose a large S € N* and set § = T'/S. It follows from
ODE (1) that

o(s+1)
z(6(s+1)) :z(§s)+/ F(z(t),t,0)dt
ds
for s = 0,1,---,5 — 1. We denote z, as the numerical
solution and use it to approximate the true solution z(ds)

fors = 0,1,---,5. By using the forward Euler method to
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discretize ODE (1), we have
Zsi1 = 2Zs + (5F(zs,5s, 0)

fors = 0,1,---,5 — 1. Such an iteration step can be re-
garded as a residual network (He et al., 2016). Thus, a
dynamical system can be viewed as a continuous-time ver-
sion of a residual network. The network generated via a
dynamical system is generally called continuous-depth net-
work. The function L5 o ®(-,0) o £, mentioned above is
indeed generated by a continuous-depth network. As we
know, zg can approximate z(0S) = z(T') arbitrarily well
for sufficiently large S with some proper conditions on the
dynamics function F'.

Suppose F'(y,t,0) given in ODE (1) is independent of ¢
for any (y,0) € R™ x ©. Define gg : R™ — R" via

go(y) =y +0F(y,0,0).
Then, we have
Zsi1 = Zs + 5F(zs7 Js,0)
=zs+ 5F(z5,0,0) = go(zs)

fors =0,1,---,5—1,implying zs = g3°(2o). It follows
that, for any y = z9 € R™ and 8 € ©, we have

96°(y) = 96°(20) = zs =~ 2(65)
=2z(T) = ®(20,0) = 2(y,0).

Our results imply that £, o ggs o £, has immense approx-
imation power even if gg is realized by a fixed-size ReLU
network, where £, and £, are affine maps matching the
dimensions. Define F' : R"*! x ® — R" via

F(yv t 0) = (ge(y) - y)/&, 2

where gg is realized by a fixed-size ReLLU network. Then,
the function £ o ®(-, 6) o L1, modelled by a continuous-
depth network, can approximate Ly o ggs o L1 well and
hence also has immense approximation power. The defi-
nition of the dynamics function F' in Equation (2) implies
that F'(y, t, 0) is independent of ¢ for any (y,0) € R" x ©
and F’ can also be realized by a fixed-size ReLU network.
In short, we have shown that a continuous-depth network
can also have immense approximation power even if its
dynamics function is time-independent and realized by a
fixed-size ReLU network. One may refer to Section 2.1 for
a further discussion on dynamical systems.

The remaining sections of this paper are structured as fol-
lows. In Section 2, we discuss the connections between
our results and existing work. Section 3 outlines the main
ideas behind the proofs of Theorems 1.1 and 1.3. Next, in
Section 4, we provide two simple experiments to numer-
ically validate our theoretical results. Finally, Section 5
concludes this paper with a brief discussion.

2. Related Work

In this section, we will provide a comprehensive overview
of previous research that is pertinent to our results. We
commence by emphasizing the correlation between deep
learning and dynamical systems. Subsequently, we delve
into the subject of parameter-sharing schemes in neural net-
works. Finally, we compare our results with existing re-
search from the standpoint of function approximation.

2.1. Deep Learning via Dynamical Systems

A dynamical system is a mathematical framework that de-
scribes the evolution of a system over time. Its origins can
be traced back to Newtonian mechanics. For a compre-
hensive overview of the history of dynamical systems, one
may refer to (Holmes, 2007). In general, a dynamical sys-
tem consists of two fundamental components. First, we
have the state variable(s), which represent the variables that
fully describe the state of the system. These variables cap-
ture the relevant properties or quantities of interest in the
system. The second component is the time evolution rule,
which specifies how the future states of the system evolve
from the current state. It provides the mathematical equa-
tions or rules that govern the dynamics of the system over
time. By studying the behavior and properties of dynamical
systems, we gain insights into how systems change and de-
velop over time. This framework has found applications in
various fields, including physics, biology, economics, and
computer science. In the context of deep learning, the con-
nection to dynamical systems highlights the temporal as-
pect of learning and the potential for capturing complex
dynamics in neural networks.

In recent years, there has been a growing body of research
establishing connections between dynamical systems and
deep learning. One such work (E, 2017) introduces a
novel concept that interprets the discretization of a con-
tinuous dynamical system as a continuous-depth residual
network. This approach utilizes continuous dynamical sys-
tems to model high-dimensional nonlinear functions com-
monly encountered in machine learning tasks. Another no-
table contribution by the authors in (Chen et al., 2018) pa-
rameterizes the derivative of the hidden state using a neural
network, introducing continuous-depth residual networks.
This work highlights several advantages of continuous-
depth models, including constant memory cost. The study
in (Li et al., 2023) establishes general sufficient conditions
for the universal approximation property of continuous-
depth residual networks, further connecting the dynami-
cal systems approach to deep learning. A similar result is
demonstrated in (Li et al., 2022), where the focus shifts to
specific invariant functions instead of generic continuous
functions. Additionally, the universal approximation prop-
erty of deep fully convolutional networks is explored from
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the perspective of dynamical systems in (Lin et al., 2022).
The authors demonstrate that deep residual fully convolu-
tional networks, along with their continuous-depth coun-
terparts of constant channel width, can achieve the univer-
sal approximation of specific symmetric functions. These
studies serve as exemplary demonstrations of the endeavors
made to establish connections between dynamical systems
and deep learning. They explore the potential benefits and
theoretical foundations of continuous-depth models in var-
ious contexts.

2.2. Parameter Sharing in Neural Networks

In recent years, deep neural network models have demon-
strated notable accomplishments across various domains.
Nonetheless, the growing size of deep neural network mod-
els frequently introduces complexities in terms of computa-
tion and memory usage. To tackle these challenges, several
techniques for model compression and acceleration have
been developed, many of which involve the concept of pa-
rameter sharing. Parameter-sharing schemes are utilized in
neural networks to minimize the total number of param-
eters, resulting in reduced memory and computational re-
quirements. Our network architecture, which involves the
repeated compositions of a single fixed-size network, can
be viewed as a particular instance of a parameter-sharing
scheme in neural networks.

To the best of our knowledge, parameter-sharing schemes
in neural networks can be broadly categorized into three ba-
sic cases. The first case involves sharing parameters within
the same layer, as seen in convolutional neural networks
(CNNs), where kernels (filters) are shared across all im-
age positions. The second case entails sharing parameters
among different layers of neural networks, as in recurrent
neural networks (RNNs). Our network architecture follows
this second scheme by sharing parameters through repeated
compositions of a single fixed-size network. We demon-
strate that this approach can yield immense approximation
capabilities by repeating a fixed number of parameters. In
addition to these two parameter-sharing schemes, there is
also the practice of sharing parameters across different neu-
ral networks or models, which is often employed in multi-
task learning scenarios. For further insights into parameter
sharing in neural networks, interested readers can refer to
the references (Savarese & Maire, 2019; Wang et al., 2020;
Plummer et al., 2022; Wang et al., 2020; Zhang et al., 2022;
Wallingford et al., 2022).

2.3. Discussion from an Approximation Perspective

The approximation power of neural networks has been
extensively studied, with numerous publications focusing
on constructing various neural networks to approximate
a wide range of target functions. Some notable exam-

ples include (Cybenko, 1989; Hornik et al., 1989; Barron,
1993; Yarotsky, 2018; 2017; Bolcskei et al., 2019; Zhou,
2020; Chui et al., 2018; Gribonval et al., 2022; Giihring
et al., 2020; Suzuki, 2019; Nakada & Imaizumi, 2020;
Chen et al., 2019; Bao et al., 2023; Li et al., 2023; Mon-
tanelli & Yang, 2020; Shen et al., 2019; 2020; Lu et al.,
2021; Zhang, 2020; Shen et al., 2022b;a). In the early
stages of this field, the focus was on exploring the universal
approximation power of one-hidden-layer networks. The
universal approximation theorem (Cybenko, 1989; Hornik,
1991; Hornik et al., 1989) demonstrated that a sufficiently
large neural network can approximate a certain type of tar-
get function arbitrarily well, without explicitly estimating
the approximation error in terms of the network size. Sub-
sequent work, such as (Barron, 1993; Barron & Klusowski,
2018), analyzed the approximation error of one-hidden-
layer networks of width n and showed an asymptotic ap-
proximation error of O(n~'/2) in the L?-norm for target
functions with certain smoothness properties.

Recent research has placed significant emphasis on the ap-
proximation of deep neural networks. Notably, the find-
ings presented in (Shen et al., 2020; Yarotsky, 2018; Zhang,
2020) indicate that ReLU networks with n parameters can
achieve an optimal approximation error of O(n~2/) when
approximating 1-Lipschitz continuous functions on [0, 1]%.
However, it is crucial to recognize that this optimal approx-
imation rate suffers from the curse of dimensionality. To
overcome the limitations imposed by the curse of dimen-
sionality and achieve better approximation errors, various
approaches have been proposed and explored. These ap-
proaches aim to enhance the quality of approximation or
even directly address the challenges arising from the curse
of dimensionality. One approach is to consider smaller
function spaces, such as smooth functions (Lu et al., 2021;
Yarotsky & Zhevnerchuk, 2020), band-limited functions
(Montanelli et al., 2021), and Barron spaces (Barron &
Klusowski, 2018; Barron, 1993; E et al., 2022). By re-
stricting the class of functions being approximated, it is
possible to achieve better approximation errors with neu-
ral networks. Another approach is to design new network
architectures that can improve the approximation capabil-
ities. Examples of such architectures include Floor-ReLU
networks (Shen et al., 2021a), Floor-Exponential-Step net-
works (Shen et al., 2021b), (Sin, ReLU, 2%)-activated
networks (Jiao et al., 2021), and three-dimensional net-
works (Shen et al., 2022). By exploring different func-
tion spaces and designing novel network architectures, re-
searchers have been able to push the limits of approxima-
tion accuracy in neural networks, providing more flexibil-
ity and better performance for various tasks. It is impor-
tant to note that the literature on the approximation analysis
of deep neural networks is vast, and the publications men-
tioned here represent only a subset of the existing research.
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Many other approaches, techniques, and architectures have
been proposed to address the challenge of improving the
approximation error for specific function classes.

In this paper, we propose a specific neural network ar-
chitecture generated by repeated compositions of a single
fixed-size network. Theorems 1.1 and 1.3 demonstrate that
repeating a small ReLU network block can enhance the ap-
proximation power of our network architecture. We will
conduct experiments in Section 4 to numerically verify our
theoretical results and evaluate the approximation capabil-
ities of our network architecture.

3. Ideas for Proving Theorems 1.1 and 1.3

Let us outline the main ideas behind the proofs of Theo-
rems 1.1 and 1.3. During the proofs, our main approach
involves constructing a piecewise constant function to ap-
proximate the desired continuous function. However, the
continuity of ReLU networks poses a challenge in uni-
formly approximating piecewise constant functions. To
bridge this gap, we first design ReLU networks to realize
piecewise constant functions outside a sufficiently small re-
gion to approximate the target function well. Then, we will
introduce a theorem to deal specifically with the approxi-
mation inside this small region for achieving uniform ap-
proximation.

Based on the aforementioned ideas, let us delve into the
specific details. We divide [0,1]¢ into a union of “im-
portant” cubes {Qg}geqo,1,.,k—1}¢ and a small region
), where K is a proper integer determined later. Each
() is associated with a representative g € ()g for each
B € {0,1,---, K — 1}9. See Figure 1 for an illustration
of g, Q, and Qg. Then, the construction of the desired
network approximating the target function can be divided
into three steps as follows.

1. First, we design a sub-network to realize a vector-
valued function ¥; mapping the whole cube Qg to
its index 3 for each 3. That is, ®;(x) = 3 for any
xe€QpandB € {0,1, -, K — 1}

2. Next, we design a sub-network to realize a function ¢o
mapping 3 approximately to f(xg) for each 3. That
is, p2(B) ~ f(zp) forany B € {0,1,---, K — 1},

3. Finally, by defining ¢ := ¢3 o ®1, we have ¢(x) =
¢z 0 P1(w) = ¢2(B) ~ f(xg) ~ f(x) for any
x € Qg and each B € {0,1,---, K — 1}¢. Addition-
ally, we must also address the approximation occur-
ring within {2 and demonstrate that ¢ = ¢5 o ¥ can
be represented in the desired form ¢ = L2 0g°" o L,
where £, and £, are affine linear maps and g is real-
ized by a fixed-size ReLU network.

* @ Qs P, (z) =L A set of

o ﬁ d-dimensional indices:
Qs | Qs | Qs | Qs Va e Qp Bef{01, - K- 1}tl

0 * * * * bt El
Qo Qi Q2 Qs2 ~ f

0.501 % * * * U{¢2(ﬂ) f(:l:ﬂ)
Qo Qu1 Q21 Q31 . .

0o5] % R R R A set of function values

at representatives:

Quo Qo Q20 Qsp

0.00] * * * * {f(z,@):ﬁe{ﬂ,l,--<,Kfl}d}

0.00 0.25 0.50 0.75 1.00
Figure 1. An illustration of the ideas for constructing the desired
function ¢ = ¢2 o ®1. Note that ¢ = f outside ) since ¢(x) =

P20 ®1(x) = ¢2(8) = f(xg) =~ f(x) for any & € Qg and
each 8 € {0,1,---, K —1}%.

See Figure 1 for an illustration of these three steps. More
details on these three steps can be found below.

Step 1: Constructing ®;.

As mentioned previously, the aim of ®; is to map € Qg
to B foreach 3 € {0,1,---, K — 1}%. Note that ®; can be
defined/constructed via

®)(z) = (d1(21), -+, ¢1(za))

for any x = (w1,---,74) € R% where ¢; : R — R is
a step function outside a small region and hence can be
realized by a ReLU network. It is generally challenging
to design a ReLU network with a limited budget and the
required architecture to realize such a function ¢;. Thus,
we establish a proposition, Proposition 3.1 below, to do this
step and place its proof in Section C of the appendix.

Proposition 3.1. Given any § € (0,1) and n,m € NT
with n < m, there exist g € /\/'/\/’{97 1; R® — R5} and
two affine linear maps £, : R — R® and L5 : R® = R
such that

Loog®™m VoL (x)=k

ifeelk k+1—0 Lty oy fork=0,1,---,n—1

Step 2: Constructing ¢o.

The objective of ¢ is to map B approximately to f(xg) for
each 3 € {0,1,---, K — 1}%. It is important to note that,
during in the construction of ¢», we only need to care about
the values of ¢, sampled inside the set {0,1,---, K — 1},
which is a key point to ease the design of a ReLU network
realizing ¢o. Indeed, if we can define a proper affine lin-
ear map £ : RY — R, then we only need to construct
¢2 : R — R to map £(3) approximatly to f(zg) since
$2 = ¢ o L can map B approximately to f (zg). Itis still
challenging to construct a ReLU network with a limited
budget and the required architecture to realize 52. Thus, we
establish Proposition 3.2 below to simplify the construc-
tion of ;52. The proof of Proposition 3.2 is complicated and
hence is placed in Section D of the appendix.
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Proposition 3.2. Givenanye > 0, n,m € NV withn <
m, and y, > 0fork =0,1,---,n—1with

lye —yp—1] <e fork=1,2,---,n—1,

there exist g € NN{16, 2; RS — R®} and two affine lin-
ear maps £, : R = RS and L5 : R® — R such that

|Egog°(m*1)oﬁl(k)fyk| <e fork=0,1,---,n—1.

Step 3: Representing ¢ = ¢2 o ®; properly.

With ®; and ¢ constructed in the first two steps, we can
define ¢ := ¢5 o ®; and we have

p(x) = g2 0 B1(x) = $2(B) =~ f(zp) =~ f(x)

for any z € Qg and each B € {0,1,---, K — 1}%. That
means ¢ can approximate f well outside (2. By making
¢ bounded and (2 sufficiently small, we can easily control
the LP-norm approximation error to prove Theorem 1.1 for
any p € [1,00). To prove Theorem 1.3, we require ¢ to
pointwise approximate f well. To this end, we use the idea
of Lemma 3.11 in (Zhang, 2020) (or Lemma 3.4 in (Lu
et al., 2021)) to control the approximation error inside a
small region.

Apart from a good approximation error, we also need to
show that ¢ can be represented as the desired form Lo o
g°" o L4, where £, and L5 are two affine linear maps and
g is realized by a fixed-size ReL.U network. Note that &4
and ¢ are constructed based on Propositions 3.1 and 3.2,
respectively. Thus, both ®; and ¢, are expected to have
the following form:

‘CQ ogor O‘C’la

where L4, Lo are affine linear maps and g is realized by
fixed-size ReLU networks. Then, ¢ = ¢o0P; are expected
to have the following form:

p=1Lz0gs? o Lyogi™ oL, 3)

where El, Eg, Eg are affine linear maps and g;, g» are re-
alized by fixed-size ReLU networks. It is not trivial to con-
vert the form in Equation (3) to the desired form. A propo-
sition is established to facilitate such a conversion.

Proposition 3.3. Ler £, : R% — R%, £, : RU — R,
and L3 : R% — R be three affine linear maps. Suppose

g; € NN{N“ L;; Rdi *)Rdl}

andr; € NT fori = 1,2. Forany A > 0 and d € NT with
d > max{dy,ds}, there exist g € NN{N; + Ny + 6d +
2, max{L; + 2, Lo + 1}; R¥*2 — R4*2} and two affine
linear maps L1 : R% — R2 gnd L, : R42 — R
such that

L3095 0Lyogy" o L1(m) = L20g°" 72T o Ly ()
forany x € [—A, A]%.

The proof of Proposition 3.3 is technical and hence is de-
ferred to Section E of the appendix.

4. Numerical Experiments

The primary objective of this section is to numerically val-
idate the theoretical results presented in Theorems 1.1 and
1.3. To achieve this goal, we have designed two distinct ex-
periments. The first experiment, described in Section 4.1,
focuses on a function approximation task. Our aim is to
demonstrate that increasing r in our RCNet architecture,
denoted as L5 o g°" o L4, improves the error of function
approximation. In this architecture, £, and L, represent
affine linear maps, while g represents a ReLU network
block. The second experiment, outlined in Section 4.2,
focuses on a classification task. We intend to illustrate
that increasing the value of 7 in our RCNet architecture
L50g°" oL, leads to enhanced classification performance.
By evaluating the accuracy of the classification results,
we can empirically validate the advantages of incorporat-
ing multiple compositions of the fixed-size ReL.U network
block. Through these experiments, our goal is to provide
numerical evidence that supports the theoretical claims and
showcases the potential of our RCNet architecture in terms
of improving approximation power. The results obtained
from these experiments will contribute to a comprehensive
understanding of the practical implications and advantages
of our network design.

Next, let us briefly discuss the expected impact of increas-
ing r in our RCNet architecture L2 0g°" o L1 on the experi-
ment results. In this discussion, we will focus on the ReLU
activation function and consider the three main sources of
errors in the test results: approximation error, generaliza-
tion error, and optimization error. In our experiments where
r is small, we assume that the optimization error is well-
controlled due to the utilization of a good optimization al-
gorithm. Thus, we can primarily focus on the effects of in-
creasing r on the approximation and generalization errors.
Increasing r has the potential to reduce the approximation
error, as demonstrated by our theoretical results. However,
it may also lead to an increase in the generalization error.
Therefore, the performance improvement associated with
larger values of r depends on whether the approximation
error or the generalization error dominates. If the approx-
imation error is the leading term, then increasing r can be
beneficial. To emphasize the approximation error, we de-
sign our first experiment to involve a sufficiently complex
target function. By choosing a challenging binary classifi-
cation problem for our second experiment, we create con-
ditions where the approximation error is relatively large. In
both experiments, a sufficient number of samples are gener-
ated to control the generalization error, ensuring that it does
not overshadow the effects of the approximation error. By
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carefully setting up these experiments and controlling the
different sources of errors, we can gain insights into the
impact of increasing r in our RCNet architecture.

4.1. Function Approximation

To evaluate and compare the approximation capabilities of
our RCNet architecture Lo 0 g;" o £ across various values
of r and n, we will utilize it for a function approximation
task. This architecture comprises two affine linear maps,
L1 and L5, along with a ReLU network block g,,. To fa-
cilitate a comprehensive comparison, we have specifically
chosen a target function f that exhibits a high degree of
complexity. The function f : [0,1]? — R is defined as

2 2
f(x) = Z Z ai jsin(biwi+c; jvix;) cos(bjx+d; ja7)
i=1 j=1

for any = (71, 22) € [0, 1], where the coefficient matri-
ces are given by

w33 2. w2

2r 4w 47 67
(ei5) = |:87T 4%}’ and  (d; ;) = [87r 6%]

To visually represent the target function f, we have in-
cluded illustrations in Figure 2. By choosing this intricate
function as our target, we can effectively assess the approx-
imation capability of our network architecture across vari-
ous values of r and n.

0.0+
08 08 0.0 0.5 1.0

10 10

Figure 2. Tlustrations of the target function f.

In this experiment, we will employ the RCNet architec-
ture Lo o g;" o £ to approximate the target function f
for different values of r and n. Specifically, we consider
r=1,2,3,4and n = 100, 200. The ReLLU network block
gy, is constructed by combining an affine linear map and
the ReLLU activation function, i.e., g,, is defined as

gn(x) = 0(Ax +b)

for any z € R", where A € R"*™ and b € R" are pa-
rameters and o is the ReLU activation function that can
be applied element-wise to a vector. Then, the dimen-
sions of the input and output for the two affine linear maps,

L, :R?> 5 R*and £y : R® — R, are determined ac-
cordingly. Notably, the ReLU network block g,, consists
of n? 4+ n parameters. The affine linear map £; con-
tains 2n + n = 3n parameters, while £5 has n + 1 pa-
rameters. Consequently, the total number of parameters in
Lo0g2 oLy is (n?+n)+3n+(n+1) =n?+5n+1 for
different values of r and n. It is essential to note that when
r > 2, the parameters of L5 0 g;" o L are partially shared
through repetitions of the ReLU network block g,,. Our ob-
jective is to provide numerical evidence demonstrating that
increasing the value of r results in improved test losses for
each fixed n.

Before presenting the numerical results, let us delve into
the hyperparameters utilized for training our network ar-
chitecture Lo o g;" o £, for varying values of r and n,
specifically » = 1,2,3,4 and n = 100,200. To gener-
ate the training and test samples, we employ the uniform
distribution, resulting in 10° training samples and 10° test
samples in [0, 1]2. During the training process, we utilize
the RAdam optimization method (Liu et al., 2020), which
aids in optimizing the network parameters. We set the mini-
batch size for training to 500, which signifies the number of
training samples processed in each iteration. Our training
process comprises a total of 500 epochs, representing com-
plete passes through the training dataset. The learning rate
is adjusted every 5 epochs. More specifically, the learning
rate during epochs 5(i — 1) +1 to 5i is set to 0.002 x 0.9° !
fori = 1,2,---,100. This adaptive adjustment allows for
fine-tuning the model during training. To train our model,
we employ the mean squared error (MSE) loss function,
which measures the average squared difference between the
network-generated function and the target function. To en-
sure the reliability of our experiment, we repeat it 12 times.
From these repetitions, we discard 3 top-performing and
3 bottom-performing trials based on the average test accu-
racy of the last 100 epochs. The target accuracy is then de-
termined by taking the average of the test accuracies from
the remaining 6 trials for each epoch.

We are now prepared to present the experiment results that
compare the numerical performances of L 0 g2" o L for
different values of r and n, specifically » = 1,2, 3,4 and
n = 100, 200. The test losses over the last 100 epochs are
averaged to obtain the target losses, considering two types
of loss functions: mean squared error (MSE) and maxi-
mum (MAX) loss functions. Table 1 provides a compre-
hensive comparison of the numerical results obtained from
Lo 0 g, o L for the given values of r and n. Addition-
ally, Figure 3 illustrates the test losses measured in MSE on
a logarithmic scale, allowing for an intuitive comparison.
The values presented in Table 1 and the trends observed in
Figure 3 clearly indicate a significant improvement in test
losses with increasing values of r. These findings align
with the theoretical results stated in Theorems 1.1 and 1.3,
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providing further confirmation of the effectiveness of in-
creasing 7.

Lastly, it is crucial to acknowledge that further increasing
the value of  may not lead to additional improvements in
the results due to the inherent challenges involved in opti-
mizing deep learning models. Issues such as local minima,
saddle points, and vanishing gradients make it increasingly
difficult to identify the global minimizer, particularly for
larger values of .

Table 1. Test loss comparison.

n = 100 n = 200
Lyogy oLy
MSE MAX MSE MAX
r=1 122 x 1072 4.21 x 107! 892 x 1073 4.05 x 107!
r=2 2.02x 107 117 x 107" 4.60 x 107°> 7.28 x 1072
r=3 3.46 x 107°  4.65 x 1072 3.51 x 1076 1.66 x 102
r=4 1.27x107° 277 x1072 1.11x107% 8.61 x 103
””” r=1 r=3 s r=1 r=3
0 r=2 ——-r=4 0 r=2 ——-r=4
—2]
—4
—6 -6 e S
0 100 200 300 400 500 0 100 200 300 400 500
(a) n = 100. (b) n = 200.

Figure 3. Test losses measured in MSE across epochs: the x-axis
represents the epoch number, while the y-axis corresponds to the
base-10 logarithm of the test loss.

4.2. Classification

To assess and compare the approximation capabilities of
our RCNet architecture L£o0g;" oL across different values
of r and n, we will employ it for a classification task. This
architecture consists of two affine linear maps, £, and Lo,
along with a ReLU network block g,. For a comprehen-
sive comparison, we have selected a complex binary clas-
sification experiment utilizing the Archimedean spiral, as
proposed in (Shen et al., 2022). The objective of this clas-
sification problem is to accurately classify samples from
two distinct sets, denoted as Sp and S;. These two sets are
constructed based on the Archimedean spiral, as illustrated
in Figure 4.

Let us delve into the construction details of the sets Sy
and S7. An Archimedean spiral can be represented by the
equation r = a + b in polar coordinates (r, §) for proper
a,b € R. We begin by defining two curves

Ci =1 (rjcosf, r;sinf) : r; = a; + b;0, 0 €0, sm
{( ) 0,57}

fori = 0,1, where ag = 0, a; = 1, by = by = 1/, and

— s, 0.6
P/ \
0.4 A j

00 05 1.0 04 05 0.6

Figure 4. Mlustrations for Sp and S;.

s = 24. Next, we normalize C; to obtain C; C [0, 1] for
each i € {0, 1}, where C; is defined as

T+(s+2)
2(s+2) °

&= {e) o= — e, @) <)

for i = 0,1. With Cy and C; defined, we can construct the
target sets Sy and S; as

Si={ (e Ve G- oP <6 (e

for i = 0, 1, where € = 0.006 in our experiments. Refer to
Figure 4 for illustrations of Sy and S .

In this experiment, we will employ the network architecture
Lo0g;" oL to classify samples in SoUS; for different val-
ues of r and n, specifically r = 1,2,3,4 and n = 30, 40.
Here, £, and L5 represent two affine linear maps, and g,
corresponds to a ReLU network block. The construction of
the ReLU network block g,, involves combining an affine
linear map with the ReLU activation function. Mathemati-
cally, g, is defined as

gn(x) = o(Ax +b)

for any * € R", where A € R"*™ and b € R" are pa-
rameters and o denotes the ReLU activation function that
can be applied element-wise to a vector. Subsequently, the
input and output dimensions of the two affine linear maps,
Ly :R? —» R"and L, : R® — R2, are appropriately de-
termined. The total number of parameters in L2 0g," 0 L
can be easily verified to be (2n+2)+(n?+n)+(2n+n) =
n?+6n+2 for different values of r and n. An important ob-
servation is that for » > 2, the parameters in L5 0 g," 0 L4
are partially shared due to the repeated utilization of the
ReLU network block g,,. Our objective is to provide nu-
merical evidence demonstrating that increasing the value
of r results in improved test accuracies for each fixed n.

Before proceeding with the numerical results, let us provide
an overview of the hyperparameters employed in training
our network architecture L4 o g;" o £, for different val-

ues of r and n, specifically » = 1,2,3,4 and n = 30, 40.
First, we generate training and test samples from Sy and S;
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using the uniform distribution. Specifically, we randomly
generate 3 x 10° training samples and 3 x 10* test samples
for each class. These 6 x 10 training samples are used for
network training, while 6 x 104 test samples are utilized
to compute the test accuracy. For optimization, we employ
the RAdam method (Liu et al., 2020). The training process
consists of 1000 epochs with a mini-batch size of 300. The
learning rate is defined as 0.001 x 0.95°~! during epochs
5(i—1) 4+ 1to 5i fori = 1,2,---,200. To evaluate the
model output, we apply the softmax activation function to
the network output and employ the cross-entropy loss func-
tion to measure the loss between the target function and the
network output. To guarantee the standardization of train-
ing and test samples, we perform a rescaling procedure to
adjust their mean to 0 and standard deviation to 1. To en-
sure reliability of our results, we conduct the experiment
12 times. Among these trials, we exclude 3 top-performing
and 3 bottom-performing trials based on the average test
accuracy over the last 100 epochs. The target accuracy is
then determined by averaging the test accuracies from the
remaining 6 trials for each epoch.

Let us now present the results of our experiments by com-
paring the numerical performances of L9 o g;" o L; for
for varying values of r and n, specifically r = 1,2,3,4
and n = 30,40. The target test accuracy is computed by
averaging the test accuracies over the last 100 epochs. Ta-
ble 2 provides a comprehensive overview of the test ac-
curacies obtained by Ly o gy o L for different values
of r and n. To enhance the information presented in Ta-
ble 2, Figure 5 serves as a complementary visual repre-
sentation. It showcases graphical depictions of the data,
enabling an intuitive comparison and facilitating a visual
analysis of the performance trends. The results presented
in Table 2 combined with the trends observed in Figure 5
confirm our initial expectation that increasing the value of r
leads to improved test accuracies. These experiment results
provide compelling numerical evidence demonstrating the
effectiveness of increasing r, which aligns with the theoret-
ical results stated in Theorems 1.1 and 1.3.

Finally, it is important to note that further increasing r may
not necessarily result in additional improvements in the re-
sults. This is because optimizing deep learning models is
notoriously challenging, as it involves various issues such
as local minima, saddle points, and vanishing gradients. In
our experiments, the primary difficulty lies in identifying
the global minimizer, especially when dealing with large
values of r.

Table 2. Test accuracy comparison.

Lyogy oLy r=1 r=2 r=3 r=4
n = 30 0.574781 0.729258 0.828750 0.874866
n =40 0.575149 0.797345 0.871617 0.904041

1.0 1.0

0.9 0.9

b 0 200 100 600 800 1000 05 0 200 400 600 800 1000

(a) n = 30. (b) n = 40.
Figure 5. Test accuracies across epochs: the x-axis represents the
epoch number, while the y-axis corresponds to the test accuracy.

5. Conclusion

This paper investigates the expressive power of deep neu-
ral networks from the perspective of function compositions.
We demonstrate that the repeated compositions of a sin-
gle fixed-size ReLU network exhibit surprising expressive
power, despite the limited expressive capabilities of the in-
dividual network itself. As shown in Theorems 1.1 and
1.3, our RCNet architecture L5 o g°" o £ can approxi-
mate any continuous function f € C([0,1]¢) with an er-
ror O(ws(r=1/4)). Here, g represents a fixed-size ReLU
network, while £; and L5 correspond to two affine linear
maps matching the dimensions. Furthermore, we explore
the connection between our findings and dynamical sys-
tems. Our results reveal that a continuous-depth network
generated through a dynamical system possesses enormous
approximation capabilities, even when the dynamics func-
tion is time-independent and realized by a fixed-size ReLU
network. Finally, we conduct experiments to provide nu-
merical evidence that validates the theoretical results stated
in Theorems 1.1 and 1.3.

It is worth mentioning that our analysis is currently focused
on the ReLU activation function and fully connected net-
work architectures. Extending our results to other activa-
tion functions, such as the sigmoid and tanh functions, as
well as different neural network architectures, such as con-
volutional neural networks, would be of great interest for
future research. Additionally, the numerical examples pre-
sented in this paper are relatively simple. Further explo-
ration of the numerical performance of our network archi-
tecture and its application to real-world problems would be
an intriguing direction for future studies.
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A. Proofs of Theorems 1.1 and 1.3

As we shall see later in the proofs of Theorems 1.1 and 1.3, our main approach involves constructing a piecewise constant
function to approximate the desired continuous function. However, the inherent continuity of ReLU networks hinders their
ability to uniformly approximate piecewise constant functions effectively. To address this limitation, we introduce the
concept of the trifling region ([0, 1]¢, K, §) as defined in Equation (4). By utilizing ReLU networks, we can accurately
represent piecewise constant functions outside the trifling region.

To streamline the proofs of Theorems 1.1 and 1.3, we introduce an auxiliary theorem, referred to as Theorem A.1 below,
where we disregard the approximation within the trifling region Q([0, 1]¢, K, §).

Theorem A.1. Given a continuous function f € C([0,1]%), for any r € N¥, there exist g € NN{ 39d + 24, 3; R%4+3 —
R%43 Y and two affine linear maps L1 : R? — RT3 and Lo : R*+3 — R such that

|£20g°Cm Vo £y(z) — f(z)| < 5Vdws(r~/?) forany € [0,1]"\Q([0,1)4, K., ),

where K = |r'/?| and § is an arbitrary number in (0, 5k].

The proof of Theorem A.1 will be presented in Section B. Assuming the validity of Theorem A.1, we will provide the
detailed proofs of Theorems 1.1 and 1.3 in Sections A.2 and A.3, respectively. To enhance clarity, Section A.1 offers a
concise overview of the notations employed throughout this paper.

A.1. Notations

Below is a summary of the fundamental notations employed in this paper.

* The set difference of two sets A and B is denoted as A\B := {x : x € A, = ¢ B}.

¢ The sets of natural numbers (including 0), integers, rational numbers, and real numbers are denoted as N, Z, Q, and
R, respectively. Set N* = N\{0}.

¢ The indicator (characteristic) function of a set A is denoted as 1 4, which takes the value 1 on elements of A and 0
otherwise.

* The floor and ceiling functions of a real number z are denoted as |z | = max{n : n <z, n € Z} and [z] = min{n :
n>xz necZ}

* Vectors and matrices are represented by bold lowercase and uppercase letters, respectively. For example, a =
(ai,---,aq) € RY, A € R™*" is a real matrix of size m x n, and AT denotes the transpose of A.

* Slicing notation is used for a vector ¢ = (w1, --,z4) € RY, where [z] [n:m) denotes a slice of = from its n-th to
the m-th entries and [x][,] denotes the n-th entry of x for any n,m € {1,2,---,d} with n < m. For example, if
@ = (71,22, x3) € R3, then [5a]9.3) = (512, 5a3) and [62 + 1][3) = 6x5 + 1.

* Given any p € [1, 00|, the p-norm (or /P-norm) of a vector = (w1, -+, z4) € R?is defined via
1 .
lllp = lzller = (l22? + -+ + |zal?)' " ifp € [1,00)
and
|z]lco = ||]|e = max{|xi| 1= 1,2,--~,d}.

* By convention, Z;n:n a; = 0if n > m, no matter what a; is for each j.

e Forany 0 = > 1 6;27" € [0,1), we use bin0.0102--- 6, to denote the binary representation of 6, i.e., § =
Z;L:l 91,2—1' = bin0.0:65---0,,.

* Givenany K € N and 6 € (0, 1), we define a trifling region ([0, 1], K, §) of [0, 1] via

d

K-1
(0,1, K,6) = J {a: = (21, 2a)€ [0,1) 125 € (% -4, I’g)} 4)
k=1

j=1

In the degenerate case K = 1, ([0, 1]¢, K, §) = (). Figure 6 presents two examples of trifling regions.
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Q([0,1)%, K,8) for K =5and d =1 Q([0, 1), K, 8) for K =4 and d =2
1.00

0.25

0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.00 025 050 0.7 1.00

(@ (b)
Figure 6. Two examples of trifling regions. (a) K =5,d =1. (b) K =4,d = 2.

* The rectified linear unit (ReLU) is denoted as o(x) = max{0, 2} for any = € R. With a slight abuse of notation, we
allow o to be applied element-wise to a vector, i.e., o(x) = (o(z1), -, 0(xq)) forany & = (z1,---,zq) € R

* Suppose ¢ is a function realized by a ReLU network, whether scalar or vector-valued. Then, ¢ can be expressed as

T Wo, bo o 7 Wir_1,br_1 o 7 Wi, b -
*=hy—F——h hi o, ho hy —F——hp = ¢(x),

where W; € RMi+1%XNi and b; € RNi+1 are the weight matrix and the bias vector in the i-th affine linear map L;,
respectively, i.e.,

hi+1 = Wzﬁl+bl = [:1(77,1) fOI‘i:O717"'7L,
and
hi :0'<hi) fori = 1,2,~--7L.

Furthermore, ¢ can be expressed as a composition of functions. Specifically, it can be written as
¢p=Lpocgo ---oLyjoc0Ly.

Refer to Figure 7 for an illustration.

=
Q
_‘:‘I

&

@

g‘l

)

O hi
has G hos
hy3 12 his
~
\ hoa & hay
hig (%a hig \ /
Wo, bo ReLU ~ Wi, b ReLU ~ W, by
(21, 22) ———— M o T e e hy ———— ®(1,22)

Figure 7. An example of a ReLU network of width 5 and depth 2. The network realizes a vector-valued function ¢ = (¢1, ¢2).

* A network is referred to as ’a network of width [V and depth L” if it satisfies the following conditions.

— The number of neurons in each hidden layer of this network is less than or equal to N.
— The number of hidden layers of this network is less than or equal to L.

A.2. Proof of Theorem 1.1 with Theorem A.1

By assuming the validity of Theorem A.1, we can proceed to prove Theorem 1.1.

15



On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLLU Network

Proof of Theorem 1.1. We assume that f is not a constant function, as considering constant functions would lead to a trivial
case. Therefore, for any ¢ > 0, we have w(t) > 0. Set K = [r'/¢] and let § € (0 be an arbitrary number determined
later. By Theorem A.1, there exist

’ BK]
g1 € NN{39d + 24, 3; R¥H3 , RP+3}

and two affine linear maps L, :R? — R5+3 and L, : R%+3 5 R such that

|L20g7% Vo £y(x) — f(=)| < 5Vdws(r~?)  forany € [0,1]N\Q([0,1]% K, 5). (5)

That means the approximation error is well controlled outside the trifling region ([0, 1]¢, K, §). To control the LP-norm
of Lo 0 gf(%*l) o L, — f, we need to further bound it inside ([0, 1]%, K, §). To this end, we define

M ife >M
@) =<z if o] < M where M = My = || f|| oo 0,112y + 5Vdwy(1).
-M ifz < —M,
Clearly, ||g2 o /32 ) g;(3r71) o E,l HLOQ(Rd) < M. Moreover, for any z € [0, 1]9\Q([0, 1]¢, K, §), we have
L2067V o £1() € [f(@) — 5vdwy(1), flw) +5Vdwy(1)]
{_ Hf”LOO ([0,1]4) — 5\fo( ), ||fHL<>°([o,1]d) + 5‘/&0]‘(1) = [-M, M],
implying

g2 0 Ls og;(Sr—l) o 21( ) = Lo go(3r 1) £1(m).

We claim g, € NN{4, 2; R — R}. To see this, we need to show how to realize g, by a ReLU network. Clearly, we have
g2(xz) + M = min {o(z + M), 2M} forany z € R,

implying

g2(z) =min {o(z + M), 2M } — M
= Ho(o(e+ M)+ M) = o( = o(z+ M) = M) —o(o(z+ M) — M) — o = oz + M) + M)) = M,
where the last equality comes from
min{a,b} = i(a+b—|a—1b|) = 3(c(a+b) —o(—a—b) —o(a—b) —o(—a+b)) foranya,beR.
As shown in Figure 8, go € MN{4, 2; R— R} as desired.
(oot + 2+ )

\ o(o(e+ M) — A)//
o(—o(z+ M)+ M)

Figure 8. An illustration of the ReLU network realizing g-.

Let 23 : R — R as the identity map. Then, b)LProposition 33 with Ny =39d+ 24, No =4, L1 =3,Ly =2,dy =d,
dy = 5d + 3, do = d3 = 1 therein and setting d = 5d + 3 > max{dy, da}, there exist

g € NN{(39d + 24) +4+46d+ 2, max{3+2,2+ 1}; R‘1~+2—>RJ+2}
= NN{69d + 48, 5; R?¥+5 — RO¥51
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and two affine linear maps £ : R? — R%¥+5 and £, : R®¥*> — R such that
23 0gg0 22 Og;’(Sr—l) o 21(513) _ Ez OgO(3T71+1+1) o Ll(w) _ £2 Ogo(3r+1) ° L'«l(ﬂ))
for any x € [—1,1]¢ D [0, 1] By defining ¢ := L5 0 g°®"*1) o L1, we have

$(x) = Lo0g°C Vo £(x) = LyogaoLarogy™ Vo Li(ax)=groLrogy™ Vo Ly(x)

< M and

for any = € [0, 1]¢. Recall that ||92 oLs0 gf(?’T_l) o E’lHLw(Rd) <

~

g20Ly0g}® Vo Ly(x)=L0g,% Vo Li(x) foranyx € [0,1)N\Q([0,1], K, ).
Thus, we have
|o(z) — f(@)] < 16l poo o)) + Il (po,170) < [|g2 © Le 0gi® Vo E1HL°0([0’1]CL) + M <2M
for any = € [0,1]¢ and
|6(x) - f(z)| = ‘92 0Ly0g7" Vo Ly(x) — f(w)‘ = ‘22 0gy Vo Ly(x) ~ f(a:)‘ < 5Vdwg(r~t9)

for any = € [0, 1]4\Q([0, 1], K, §), where the last inequality comes from Equation (5).
Observe that the Lebesgue measure of ([0, 1]4, K, ) is bounded by K dd. Hence, by choosing a small § € (0, 55| with
P
KdS@2MY? = [+~ |ds(2M)P < (wf(r—l/d)) :

we have

() — f(@)Pde + / 6(@) — f(a)Pde

[0,1]9\Q([0,1]%,K,6)

¢ — inp([o,l]d) - /Q
< Kd§(2M)? + (Wwa(v"’”d))p
< (wf(r_l/d))p + (5\/ng(7"_1/(1))1) < (6\/gwf(7”_l/d))p'

([0,1]4,K,6)

Therefore, we can conclude that || £3 0 g° ™D o L1 — f|| o(0.110) = |6 — fll o014y < 6Vdwy(r~1/4). Thus, we have
completed the proof of Theorem 1.1. O

A.3. Proof of Theorem 1.3 with Theorem A.1

To establish Theorem 1.3, we will rely on Theorem A.1, which permits unbounded approximation errors in the trifling
region ([0, 1]%, K, ). However, when it comes to proving Theorem 1.3 using pointwise approximation, it becomes
essential to control the approximation error within the trifling region. To address this, we introduce a separate theorem that
specifically deals with the approximation within the trifling region.

Theorem A.2 (Lemma 3.11 of (Zhang, 2020) or Lemma 3.4 of (Lu et al., 2021)). Given any ¢ > 0, K € N*, and
§ € (0, 5%=], assume f € C([0,1]%) and g : RY — R is a general function with
lg(@) — f(z)| <e forany = € [0,1]\Q([0,1]% K, ).

Then
|p(x) — f(x)] <e+d-ws(d) foranyx € [0,1]%

where ¢ = ¢q is defined by induction through ¢y = g and
Gi1(x) == mid(¢;(x — dei11), di(x), ¢i(w + deir1)) i=0,1,---,d—1,

where {e;}?_, is the standard basis in R? and mid(-, -, -) is the function returning the middle value of three inputs.
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Now, we are prepared to provide the detailed proof of Theorem 1.3 by assuming the validity of Theorem A.1.

Proof of Theorem 1.3. We may assume f is not a constant function since it is a trivial case. Then w¢(t) > 0 for any ¢ > 0.
Set K = |r'/] and choose a sufficiently small § € (0, 5] such that
d-ws(0) <wg (r_l/d).

By Theorem A.1, there exist go € NN{39d + 24, 3; R — R5¥*3} and two affine linear maps Lo ; : R? — R%4+3
and Lo 2 : R5¥*3 — R such that

1Lo20g5¢ o Lo(x) - f(=)] < 5Vdws(r~V9) forany z € [0,11\Q([0,1]% K, §).

Define ¢ = Lo 2 0 98(3“1) o Lo,1. By Theorem A.2 with g = ¢ and & = 5v/dw; (r~/¢) > 0 therein, we have
lp(x) — f(x)] <e+d-wp(d) < 6\/3wf(r_1/d) for any = € [0,1]%, (6)
where ¢ = ¢, is defined by induction through
dit1(x) = mid(gbi(a: —deir1), ¢i(x), ¢i(x+ 5ei+1)) for any x € R?andi=0,1,---,d — 1.

Here, {e;}¢_, is the standard basis in R? and mid(-, -, -) is the function returning the middle value of three inputs.
It remains to show ¢ = ¢4 can be represented as the desired form. We claim that ¢; can be represented as
¢i =Ligogi" oLy on[-A;A]" fori=0,1,---,d,
where 15, A;, L£; 1, L; 2, and g; satisfy the following conditions:
er,=3r+2i—1land A, =d+1—1;
e L;71:RY— R% and £; 5 : R% — R are two affine linear maps with d; = 3¢(5d + 4) — 1;

* g; € NN{NZ, L“ Rdi —)Rd‘} with Nl = 4i+5d and Lz =3+ 2.

We will prove this claim by induction. First, let us consider the base case 7 = 0. Clearly, ¢pg = Ly 0 gS @Br=1) Loy =
Lo20gg" 0 Ly1onRE D [—Ag, Ag]?, where dy = 3°(5d +4) — 1 =5d +3, Lo : R? — R and L 5 : R% — R are
two affine linear maps and

go € NN{39d + 24, 3; R¥+3 , RP+3} C NN{NO =40+50 =1024d, Ly = 3+ 0 = 3; R% —>Rd°}.

Next, let us assume the claim holds for the case i = j € {0,1,--,d — 1}. We will prove the claim for the case i = j + 1.
By the induction hypothesis, ¢; can be represented as

(ﬁj = ;Cj,g o g;)rj o ACj,l on [—Aj, Aj]d fOI‘j =0,1,---, d,

where £; 1 : R? — R% and £, : R% — R are two affine linear maps and g; € NN{N;, L;; R% — R%}.
Define Ej+171 : Rd — Rde via

EjJrl’l(w) = (Ej@((l} — (5€j+1), Ej,l(:c), EjJ(iL’ + 5€k+1)) for any x € Rd,

§j+1 : Rgdj — Rgdj via

gi+1(u,v,w) = (gj(u), g;(v), gj(w)) for any u, v, w € RY,
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£j+172 :R3% — R3 via

~

Lii2(u,v,w) = (ﬁj,g(u), Lj2(v), ,Cjﬁg(’ll})) for any u, v, w € R%,
G:R® = R3via
G(yh Y2, y3) = (mld(yla Y2, y3)a 07 0) for any (yla Y2, y3) S R3s

and L3 : R3 — R via R
L3(y1,y2,y3) =11 forany (y1,y2,y3) € R®.

Note that Aj 11 =d+1—(j+1)=A; —1 < A; —§. Forany x € [—Aj1,A4;11] C [-4; + 5, 4; — §]%, we have
x —deji1, T, T +0ejq € [—A;, Aj]%, implying

0541(@) = mid (0(@ — Gej11), 05(@), 65(@ + deji1)) = Ly 0 G(65(m — dejin), 65(), 6;(@ +dejin))

-~

=L3oG <~Cj,2 0og;” oLji(x—dej1), Ljpog; oLji(x), Ljzog; oLji(x+ 5ej+1)>
= 23 ¢} é o Ej+172 <g;rj o Lj,l(l' — (;6j+1), g;Tj o [,j,l(:c), g;rj o LjJ(IB + 56j+1)>

= ,Cg oGo £j+1’2 o ./g\jov:_jl <£j’1($ — (5€j+1), £j’1(:1:), Ej,l(w + 5€k+1)>
=L30GoLj11208; 0 Lj1a(x).

Clearly, g; € NN{N;, L;; R% — R%} implies g;+1 € NN{3N;, L;; R34 — R34}, By Lemma 3.1 of (Shen et al.,
2021b), mid(-, -, -) can be reahzed by a ReLU network of width 14 and depth 2, implying G € NN{14, 2; R — R3}.

Then, by Proposition 3.3 with N1 = 3NJ, N2 = 14, L1 = Lj, L2 =2, do =d, d1 = 3dj, d2 =3, d3 = 1 therein and
setting d = 3d; = max{3d;,3} = max{dl, dg} there exist

gj+1 € NN{Nl + ]/\\72 + GC/Z\‘F 2, max{fl + 2, EQ + 1}; Rg+2 —)RJJFQ}

= NN{3N; + 14 +18d; + 2, max{L; +2, 2+ 1}; R3%+2 dejH}

C NN33

QNN{4(J+1 54, 3+2(j+1); R3j+1(5d+4)*1A)R3j+1(5d+4)*1} :NN{Nj+1, Ljti; R%i+1 %Rdjﬁd}

= N/\/{3 (479d) + 18(37 (5d +4) — 1) +16, 3+ 2j +2; R3E Gd+D-D+ —>R3(3j(5d+4)_1)+2}

(41%5d) + 37494, 342(j +1); RY T D1 g0

and two affine linear maps £;111 : R? — R%+1 and £; 1 5 : R%+1 — R such that

-~ P -~ ~or; < o(rj+1+1) _ orj41
L30GoLjt1209; 71 0Lj111(x) =Ljt1,208;,{ oLjyi(x) =Lijt1209; 7 o Ljr11(x)

forany @ € [—A; 1, Aj 1], where the last equality comes from 7;+1+1 = (3r4+2j—1)+14+1 = 3r+2(j+1)—1 = rj41.
Therefore, for any & € [—A;4+1, A;j11], we have

$jp1(x) =LsoGoLj120g, 0 Ljria(x) = L1200, 0 Ljpra(wm).
By the principle of mathematical induction, we finish the proof of the claim.

Then, by the claim and setting d= 3%(5d +4) — 1, ¢ = ¢4 can be represented as
¢=¢i=Li20g5" 0 Lay =Laz0gs" oLy on[-Ag At =[-1,1] 2 [0,1)7,
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where L£41 : R — R? and Lio: R? — R are two affine linear maps and

g1 € NN{Ny, Lg; RY R} = AN{49+5d, 3 + 2d; RY - R7}.

By defining £, = L1, g = ga, and Lg = Lq2, we have L0 g°3 2D 0 £, = L5050 Vo £, = . Tt
follows from Equation (6) that

Lo o0 g°(3r+2d*1) o Ly(x) — f(x)| = |o(x) — f(x)| < Gﬁwf(rfl/d) for any « € [0, 1]d.

Thus, we finish the proof of Theorem 1.3. O

B. Proof of Theorem A.1 with Propositions

In this section, we will provide the proof of the auxiliary theorem, Theorem A.1, by relying on Propositions 3.1, 3.2, and
3.3. The detailed proofs of these propositions can be found in Sections C, D, and E, respectively. By assuming the validity
of these three propositions, we now proceed to prove Theorem A.1.

Proof of Theorem A.1. We may assume wy(t) > 0 for any ¢ > 0 since wy(t9) = 0 for some ¢y > 0 implies f is a constant
function, which is a trivial case. Clearly, | f(z) — £(0)| < wy(v/d) for any = € [0, 1]. By defining

fi=f = 1(0) +ws(Va),
we have w(t) = wy(t) forany ¢t > 0and 0 < flz) < 2w (v/d) for any x € [0,1]%.

Set K = |r!/?] and let § be an arbitrary number in (0 The proof can be divided into four main steps as follows.

3k -
1. Divide [0,1]* into a set of cubes {Qg}ge{o,1,..k—13e and Q([0,1]%, K,§). Denote &g as the vertex of Qg with
minimum || - ||; norm, where Q([0, 1]¢, K, §) is the trifling region defined in Equation (4).

2. Use Proposition 3.1 to construct a vector function ®; = Lo G(l)(r_l) o El mapping x € (g to 3 for each
Be{0,1,--,K—1}% ie, ®;(z) = Bforall z € Qg, where L and L are affine linear maps and G is realized
by a fixed-size ReLU network.

3. Construct a function ¢ = £5 o gO(QT Do 24 o L 3 mapping the index (3 approximately to f(wﬁ) for each 3, where

£3, £4, and £5 are affine linear maps and g- is realized by a fixed-size ReLU network. This core step can be further
divided into two sub-steps:

3.1. Design an affine linear map Eg bijectively mapping the index set {0,1,---, K — 1}9 to an auxiliary set .A; C
{QJW :j=0,1,--- 2K d} defined later. See Figure 10 for an illustration.

3.2. Apply Proposmon 3.2 to design a sub-network to realize a function £5 0g, o(@r
imately to f(:l:@) foreach 3 € {0,1,---, K —1}¢. Then, ¢o = Ls og2 o(2r—1)
to f(xg) for each 3.

Vo L4 mapplng Lg(ﬁ) approx-
oL40Ls maps 3 approximately

4. Construct the desired function ¢ via ¢ = ¢o0®1 +f(0)—w;(Vd) = Lsogs > oL yo L0 LyoG " Vo Ly +f(0)—
w f(ﬁ) and we use Proposition 3.3 to show ¢ can be represented as Lo 0 g°3"=1) o £, where £, and £, are affine
linear maps and g is realized by a fixed-size ReLU network. Then we have ¢ 0 ®4(x) = ¢2(3) = f(acg) ~ f(z) for
iy s € Qo e (01, (K 1}, implying (@) = ¢30®1 () + £(0) —w; (V) = f(@)+F(0) —ws (V) =
f(x).

The details of the above steps are presented below.
Step 1: Divide [0, 1]? into {Qg} g1, x—132 and Q([0, 1]%, K, §).
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For each d-dimensional index 8 = (51, B2, +, 8a) € {0,1,--+, K — 1}%, define zg := 3/K and

Qp = {:c = (x1,29, -, xq) € [0,1]: z; € [%, *Bi;(rl —6-Nyp<kx_oy|, i= 1,2,---,d}.
Clearly, xg = 3/ K is the vertex of Qg with minimum || - ||; norm and
[Oa 1]d = ( U,HG{O.,Lm,K—l}d QB) U Q([Oa 1]da Ka 5)a

where ([0, 1]%, K, §) is the trifling region defined in Equation (4). See Figure 9 for illustrations of ([0, 1]¢, K, ), Qg,
and zg for 8 € {0,1,---, K — 1}

Q([0,1), K, 0) for K =4 and d =1
Qg for B €{0,1,2,3}
* xgfor Be{0,1,23}

Q([0,1]%, K, 0) for K =4 and d =2
Qg for B € {0,1,2,3}?
* xgfor B €{0,1,2,3}

QU,S Ql$ Q2.3 Q3,3

0.75 * * * *
o ) ) : : !
" o " o ol Qo2 1 Q12 1 Q22 1 Q32
Qo @ Q> Q3 -

Qo1 | Qui | @21 | Qs
0.25 * * * *

Qoo | Qo - @20 = Q3o
0.00 * * * *

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(a) (b)

Figure 9. llustrations of ([0, 1]%, K, §), Qg, and xg for 3 € {0,1,---, K —1}*. (@ K =4andd = 1. (b) K =4 and d = 2.

Step 2: Construct ®; mapping © € Qg to 3.

By Proposition 3.1 withm = randn = K = Lrl/dj < r = m therein and setting 5 = K, there exist g1 €
NN{9, 1; R5 — R} and two affine linear maps £; : R — R5 and £, : R® — R such that

Lo ogij(r_l) oLy\(t)=Fk foranyte [k, k+1— 5 Li<k-2y) andk=0,1,--- K — 1.
Define G4 : R®® — R5¢ via
Gi(y1, - ya) = (gl(yl), E gl(yd)) forany y1,- -, ya € R°,
L, : R 5 R via

~

Li(z1,- -, xq) = <21(Kx1), El(md)> for any (1, -, 2q4) € RY,

and Lo : R?? — RY via

o~

£2(y17"'ayd) = (52(y1)a Tty Z2(?Jd)> for any yi, -, Yd S R5-

It is easy to verify that G € NN{9d, 1; RSd—>R5d}.
Foranya2 = ($17"'7.'13d) € Qﬁ andﬂ = (Bl)"'aﬁd) € {Oala"'7K_ 1}d,wehave

Kuxi € [Bi, Bi+1— K& Lyg<x_o] = [Bi, Bi +1— 5 Lig<r—2})

fori =1,2,---,d, implying
EQ o g;(ril) o Ll(sz) = Bl

21



On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLLU Network

Therefore, for any = (21, ,24) € Qg and 8= (B1,- -+, B4) € {0,1,---, K — 1}, we have

Ly0G " Vo Ly(x)=Ly0G0 Y <El(Kx1), " El(de)>

:EQ<g;(T_1) OEl(le)v Ty gi(r_l)ozl(de)>

_ Z o(r—1) E K . E o(r—1) E K
20431 o 1( m1)a ) 2040, o 1( .’L'd)

= (617 R Bd) :/8

By defining ®; = L5 o Gi(rfl) o L, we have

P (x)=0 foranyacGanndﬁE{0,1,--~,K71}d. @)

Step 3: Construct ¢, mapping 3 approximately to f(xg3).

We will use Proposition 3.2 to construct the desired ¢2. To meet the requirements of applying Proposition 3.2, we first
define two auxiliary sets .A; and A; as

' k
Al:{ 4 F =01, K1~ 1 and k:O,l,-u,K—l}

K1 " 2Kd
and _
./42::{]{;1+w:i20,1,~--,l(d1—1 and k:0,1,~~-,K—1}.
Clearly,

A1UA2U{1}:{ﬁ:j:0717~--,2Kd} and Ay N Ay =0.

See Figure 9 for an illustration of .A4; and A,. Next, we further divide this step into two sub-steps.
Step 3.1: Construct L3 bijectively mapping {0,1,---, K — 1} to A;.
Inspired by the base- K representation, we define

~

d—1
x €Z;
Ly(x) = grg + ) 25 foranyw = (a1, za) €R™. (®)
=1

Then L5 is a linear function bijectively mapping the index set {0,1,---, K — 1}¢ to

d—1
{23(@3,36{071,'“,1(1}d}—{2€?d+2?i:ﬂ€{0,1,m,l{1}d}
i=1

i ko d-1
:{W+W:z:0,1,~~-7K —1 and k:0,1,~-,K—1}:A1.

Step 3.2: Apply Proposition 3.2 to construct a sub-network mapping £A3 (B) approximate to f(wg)

Recall that R
{Es@:Befo1, - K-1}1} =4

and .
d'j gLy 1U QU{}
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We will use a set of K¢ + 1 points
{@fo U { (Zs(8). F(wp)) : B {01, K - 1}d} € [0.1]x [0, 2ws(Vd)]

to construct a continuous piecewise linear function % : [0,1] — [0, 2w;(V/d)], where 1 = (1,---,1) € R?. Precisely, we
design h by making it satisfy the following two conditions.
* First, we set h(1) = f(1) and h(Eg(,B)) = f(w,@) forany 3 € {0,1,---, K — 1}4, where 1 = (1,---,1) € R%.
* Next, we let & be linear between any two adjacent points in .4; U {1}.
See Figure 10 for an illustration of /. Recall that w (t) = w#(t) and wg(n - t) < n-wy(t) forany n € Nt and ¢ € [0, 00).
It is easy to verify that
wz(Vd)
(), B2} <wp() = wi ()

< max )74

forj=1,2,---,2K¢%
e 4
® .AQ
e {1}
— h
0 L B B BN BN BN BN BN BE R BN BN S SN SN BN BN BN B BN BN SN SN S B B B BN BN BN BN BN J
0.00 0.25 0.50 0.75 1.00

Figure 10. An illustration of Ay, Az, {1}, and h for K =4 and d = 2.

By Proposition 3.2 with y; = h(547), & = wi(¥) > 0,m = 2r, and n = 2K = 2[r/4|? < 2 = m therein, there
exist g2 € NN{16, 2; R® — RS} and two affine linear maps £4 : R — RS and L : RS — R such that

<wi(¥d) forj=0,1,---,2K% — 1.

|25095% Y 0 £4) ~ h(5ea)

By defining 24(x) = L£4(2K%z) for any z € R, we have

= |20 g3 0 £45) ~ hloh)| < (D) ®

250652 o £u(of) — i)

forj =0,1,---,2K% — 1. Then, we can define ¢ via ¢y = 25 o 92(2”71) o 54 ) 63.
-+, K —1}4, we have

By Equation (9) and Eg(ﬂ) e A C {ZJW :j=0,1,---,2K%— 1} forany 3 € {0, 1,
62(8) — F(@p)| = |£5 0.5V 0 L0 £4(8) — [(wp)| o)
= |2509507 Y 0 £4(£4(8)) — h(£4(8))| < ws (%),

S

Step 4: Construct the desired function ¢ and show it can be represented by the desired form.

We are ready to define the desired function ¢ via
¢ =20 ®1+ (0) —wy(Vd) = L5095V 0 Ly0 L350 L0 GV 0 £y + F(0) — wy(Vd).
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By defining £ := L£40 L350 L5 and L7 : RS — R via
Lq7(2) = Ls(z) + f(0) — ws(Vd) forany z € RS,
we have ¢ = L7 o g;(zr_l) o Lgo Gi(r_l) o Ly.

Recall that G; € NNV{9d, 1; R? — R>?} and g» € NN{16, 2; RS — R®}. By Proposition 3.3 with N; = 9d,
No=16,L1 =1, Ly =2,dy = d, dy = 5d, dy = 6 and d3 = 1 therein and setting d = 5d + 1 > max{5d, 6}, there exist

g € NN{9d + 16 + 6d + 2, max{1 + 2, 2+ 1}; R¥+2 5 RI+2}
= NN{39d + 24, 3; R%+3 - R%+3}
and two affine linear maps £ : R? — R%+3 and £, : R®¥*3 — R such that
¢($) — 27 og;(Qrfl) 056 ° GT(T*I) of,l(w) — L ogo(21>_1+r—1+1) O£1<£L') =L, Ogo(Sr—l) o L:l(ili)
for any x € [-1,1]¢ D [0, 1]¢.

Next, let us estimate the approximation error. Recall that f = f + f(0) — wf(v/d) and ¢ = ¢y 0 ®1 + f(0) — w;(V/d).
By Equations (7) and (10), for any « € Q,@ and B € {O7 1,---, K —1}4, we have

|£20g°C" Vo Ly(z) - f(z)| = |d(x )| = |g2 0 @1 () — f(z)| = |62(8) - f(=)|
|¢2 Flxs)| + |f(zp) - f(=)]
<wf<%> wi(llzs — l2) < wp(¥d) +wz (D),

where the last inequality comes from ||xg — x|z < L

Recall that K = |r1/4] > T wf(t) =wz(t),and wy(n - t) < m-wy(t) forany n € N* and ¢ € [0, 00). Therefore, for
any x € Ugeqo1,.. x_1}4 Qg—[O, 14N\Q([0,1]4, K, §), we have

|£209°F" Vo £4(x) — f(@)] < wr(F) +wi(¥) < 2wp(¥2) = 2wy (5¥hy) < 2wp(2Vdr 17
< 24@([2\[] r l/d) < 2[2\/ngf(r71/d) < 5\[wf(r 1dy,

where the last equality comes from the fact 2 [2\/75 ] < 54/n forany n € NT. So we finish the proof of Theorem A.1. [

C. Proof of Proposition 3.1

The main idea behind proving Proposition 3.1 lies in the composition architecture of neural networks. To streamline the
proof, we begin by introducing a lemma, Lemma C.1 below, which can be seen as a weaker version of Proposition 3.1.

Lemma C.1. Givenany § € (0,1) andn € Nt withn > 2, there exist g € NN{9, 1; R® — R} and two affine linear
maps £1 : R — R% and L5 : R> — R such that

n—1
Loog®™ VoL (x)=|x] foranyze U [6,¢+1—6]
=0

We will prove Proposition 3.1 with Lemma C.1 in Section C.1. The proof of Lemma C.1 can be found in Section C.2.

C.1. Proof of Proposition 3.1 with Lemma C.1

Now, let us provide the detailed proof of Proposition 3.1 by assuming Lemma C.1 is true.

Proof of Proposition 3.1. We may assume m > n > 2 since n = 1 is a trivial case. Set 5 = @ € (0,1). By
Lemma C.1, there exist g € J\/N{Q, 1; R> — R5} and two affine linear maps £1 : R — R and £, : R> — R such that

m—1 n—1
Lr0g°™ Vo Ly(y)=y] foranyye |J [k k+1-0]2 () [k k+1-14]. (11)
k=0 k=0
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Define Lo(x) := ”_5_595 + ¢ forany x € Rand £, = El o L. We claim

n

£0([k, k+1—5.11{k§n_2}}) Clhkk+1-3] fork=0,1,--,n—1. (12)
Then, by Equations (11) and (12), forany = € [k, k +1—0 - Lip<p_93] and £ = 0,1,---,n — 1, we have
y=~Lo(x) e[k, k+1—0] fork=0,1,---,n—1,
from which we deduce
Lyo0 go(m_l) oLy(x) = Lo OQO(T_l) © El o Lo(x) = L2 Ogo(m_l) © El (ﬁo(ff))
=L50g°" Vo Ly(y) = y| = k.
It remains to prove Equation (12). Clearly,

n0=8 _ Lp 5 U030y > 1 _§5_(1-§)5)=L(1-6)>>0,

n n - n

implying L is increasing. To prove Equation (12), we only need to prove
k< Lo(k) fork=0,1,---,n—1 (13)

and
Lo(k+1—-06-Tipenoy) <k+1-0 fork=0,1,---,n—1 (14)

Let us first prove Equation (13). Clearly, for k = 0,1,---,n — 1, we have

,C(](k) = n_g_ék 4+ =

where the inequality comes from the fact —kn — (1 — §)k +n? = (n —k)n — (1 —§)k >n—k > 0.

Next, let us prove Equation (14). In the case of K = n — 1, we have

Lo(k+1=6 Tgpen o)) = Lo(n) = 2=0=0p 4§ =n—5=k+1—5.

n

In the case of k € {0,1,---,n — 2}, we have

Lo(k+1=6Tghen_oy) = Lo(k+1—0) = =28 (k41— 5)+5

543 543
=(1-)k+1-686)+6=(k+1—-06)—E2(k+1—6)+6
=(k+1) -0k +1-0) < (k+1) - 2(1—8) =k+1-34.
So we finish the proof of Proposition 3.1. O
C.2. Proof of Lemma C.1
To ensure the completeness of the proof of Proposition 3.1, we now provide the proof of Lemma C.1.
Proof of Lemma C.1. Define
hi(z) =o(E(@z—k+0) —o(E(x—k)+o(b(—z+k+1) —o(b(—z+k+1-06)) —k
R SR CEE SRTIEE S ROETEE B S ELRY

fork=0,1,---,n—1and any € R. See an illustration of hj in Figure 11.
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- k+1—0,k
b hy, ( )
(k—46,0)
0
k—2 k-1 k k+1 k42
Figure 11. An illustration of hy.
It is easy to verify that
k ifzelkk+1-90
by (z) { 0 [ ]

ifz e (—o0,k—9]U[k+1,00).

To see this, let us fix & € {0,1,---,n — 1} and consider three cases below. If z € [k, k + 1 — d], we havex — k + § > 0,
r—k>0,—x+k+1>0,and —x + k+1—6 >0, implying

hi(z) =o(5(x—k+6)) —o(k

Ya—k)+o(b(—z+k+1)—o(b(—x+k+1-0)) —k

(x—k+0)—2@—k)+E&—a+k+1) - E(-2+k+1-06)—k=k
=k

=k
Ifz € (—oo,k—¢],wehavex —k+06 <0,z —k<0,—-x+k+1>0,and —z+ k+1— ¢ > 0, implying
hi(z)=0c(5(x—k+0))—o(k(@—k) +o(b(—z+k+1) —o(E(—z+k+1-0)) —k

=0-0+%—2+k+1)—E(—a+k+1-06)—-k=0.

=k

Ifzelk+1,00),wehavex —k+6>0,2—k>0,—z+k+1<0,and —z+ k+1— 9§ <0, implying
hi(z) =o(%(x—k+6)) —o(k

Eao—k) +o(b(-z+k+1) —o(i(—z+k+1-0)) —k
=%z—k+6)—5@x—-k)+0-0—k=0.

=k

Obviously, forany z € [k,k+1—4d]and k =0,1,---,n — 1, we have

z_: hi(z) = hi(x) =k = |z].
i=0

It remains to construct g, £1, and L5 such that

n—1 n—1
Egogo"oﬁl(a:):Zhi(a:) forany z € U[i,i+1—6].
=0 i=0

By defining h : R? — R via

aorone) = o(5 = % +a0) ~o(3 = %) +o(-F 45 +5) - o(- %

¥+ —as) —o(as),
we have

B k) ol oK) ro(— ) o(— B Kl k() (5)
fork=0,1,---,n— 1.

h(kz, k* k) = o (ke — &
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Now we are ready to construct g : R® — R®. Define
g(x1, 29,23, x4, T5) = (0(:01 +ax4), o(xa+2x3+1), o(xs)+1, o(zs), o(zs)+ h(xy, {Z}Q,.’Eg)),

for any (y1, Y2, Y3, Y4, y5) € RS, where

h(zy,20,x3) =0 (& — 22 4 a3) —o (& —22)fo(— L+ 22+ 23) —g(— L1 4 22 4 23 gq) — g(x3).

o(zy + x4)

o(xzy + 223 + 1)

Figure 12. An illustration of g : R5 — R,

Fix € U'Z;'[4, i + 1 — &) and set
k—1

& =Er(x) = (kx, k2, k, Zhl(az)> €[0,00)° fork=1,2,---,n.

=0

Fork=1,2,---,n — 1, we have
k—1
ﬂ&)=gGmk?kwm§:m@0
i=0

k—1
- (cr(kx+m), o> +2k+1), ok)+1, o), O’<Zhi(1})) +h(kx,k2,k)>

=0 =hy,(z) by (15)
(k+1)—1
= ((k + 1)1:7 (k + 1)27 (k + 1)5 xz, Z hz($)> = €k+1a
=0

implying &, = g(€n—1) = -+~ = g°" V(&)
Define £ : R — R® via £(7) :== (z,1,1,2,0) and L : R® — R via Lo(x1, T2, 23, T4, T5) := 5. Then, we have
& = (w, 1, 1,x,ho(:c)) = (z,1,1,2,0) = L1(x),
from which we deduce
Lyog®" Vo Li(x) = Ly0g°" V(&)

n—1
= L2(€0) = [€n] 5 = D _ hila).
=0
So we finish the proof of Lemma C.1.
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D. Proof of Proposition 3.2

The bit extraction technique proposed in (Bartlett et al., 1998) plays a crucial role in proving Proposition 3.2. Before we
delve into the proof of Proposition 3.2, we first establish Lemma D.1, which serves as a key intermediate step in the proof
of Proposition 3.2.

Lemma D.1. Given any r € NT, there exist g € NJ\/{S, 2; R® — R?’} and two affine linear maps L : R?> — R® and
Lo : R% — R such that: For any 61,0z, ,0, € {0, 1}, it holds that

Ly0g° o Ly(k, bin0.60162---0,) = > 6, fork=0,1,---,r. (16)

o~
I\Mw
I

We will prove Proposition 3.2 by assuming the validity of Lemma D.1, which will be proved later in Section D.2.

D.1. Proof of Proposition 3.2 with Lemma D.1

Now we are ready to give the proof of Proposition 3.2 by assuming Lemma D.1 is true.

Proof of Proposition 3.2. We may assume n = m since we can set y,—1 = Yp = -+ - = Ym—1 if n < m. Set
a; = L%J fori =0,1,---,n—1

and
bi:ai—ai,l fori:1,2,-~-,n—1.

Since |y; — yi—1]| < efori=1,2,---,n— 1, wehavey; € [yi_1 — €, yi—1 + . Thus, fori =1,2,---,n — 1, we have

Sl e Rl e N e e e e el el e B

implying
bi =a; — Qj—1 = L%J — Vh;lJ S [—17 1]

g

It follows from b; = a; — a;—1 € Z that b; € {-1,0,1} fori = 1,2,---,n — 1. Hence, there exist ¢; € {0,1} and
d; € {0,1} such that
bi:Ci—di fori:172,~--,n—1.

Then, for any k € {1,2,---,n — 1}, we have
k k
ak = ao + Z(ai —ai—1) =ap + Z(ai —ai_1)
i=1 i=1

k k k
ST DTS 2 3
i=1 i=1 i=1
Clearly, ap = ap+0—0=ao + Z?:l ci — Z?:l d;. Thus, we have

k k
ak:ao—i—Zci—Zdi fork=0,1,---,n—1.
i=1 i=1

By Lemma D.1 with r = n — 1 therein, there exist §,§ € ANN{8, 2; R3 — R3} and four affine linear maps £, L, :
R2? — R? and £, L5 : R3 — R such that

k k
ZQ o go(nfl) e} El (]{3, binO.c1 e Cn—l) = ZCZ‘ and 22 e} go(n—l) o El (k, bandl cee dn—l) = Zdz

=1 =1
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fork=0,1,---,n — 1, implying
k k
o=t Yo=Y
i=1 i=1 a7
=ag+ £~2 ogo("_l) o Zl (k, bin0.c; - - - cn,l) — 22 o §°(”_1) o El (k, bin0.d; - - - dn,l).

Define g : R® — RS via
glx,y) = (g(m), §(y)) for any x,y € R3,
L :R— Rbvia

Li(z) = (El(x, bin0.cy -+ - ¢p_1), 21(17, bin0.dy - - - dn_1)> for any x € R,

and £ : R® — R via
Lo(x,y) = g(ao + Lo(x) — Eg(y)) for any x,y € R,

It is easy to verify that g € NN{16, 2; RS — RS}. Moreover, we have
gD (a,y) = (57" (@), §°"V(y)) forany @,y € R,
Therefore, for k =0,1,---,n — 1, we have
L20g°M" Vo Ly(k)=Ly0g°" Y <£~1(k, bin0.cy -+~ cp_1), Li(k, bin0.dy--- dn_1)>
=L, (§°<n1> o Ly(k, bin0.cy - cn_1), g°™ Vo Ly(k, bin0.dy --- dn_l))
= E(ao +Lr0g° Do Zl(k;, bin0.cy -+ cp_1) — Lr0g°" Vo El(k‘, bin0.d; -~-dn_1))

= eagk,

where the last equality comes from Equation (17). It follows that, for k = 0,1,---,n — 1,

‘[,2 ogo("fl) o Ly(k) _yk’ = |€ak _yk| = ‘EL%J -k

=cf|) -

So we finish the proof of Proposition 3.2. O

D.2. Proof of Lemma D.1

To make the proof of Proposition 3.2 complete, we now provide the proof of Lemma D.1.

Proof of Lemma D.1. Set § = 27" and define
T(@)=0(%+1)—0o(%) foranyz €R.

See an illustration of 7 in Figure 13.

For any 61,602, --,0, € {0, 1}, set
B; =bin0.6;---60, fori=1,2,---,r.

It is easy to verify that
0; = T (bin0.6;---0, — 1) =T (8, — %) fori=1,2,---,r,

implying
Bis1=2B; —0; =28, = T (B —3) fori=1,2---,r—1.
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—T

Figure 13. An illustration of 7.

By setting 3,41 = 28, — T(B, — 3) = 0, we have

Biy1 =26, —T(Bi—3) fori=1,2--- 7.
Fix k € {0,1,---,r}. The fact that zy = max{0, v +y — 1} = o(z +y — 1) for any =,y € {0, 1} implies

a(@i—l—’f(k—i)—l)

i=1 i=1 i=k+1 i=1 ljl (18)
>

o(TB =)+ Tk—1) - 1).

Define g : R x [0,00)? — R3 via
g(x1, 70, 73) == (xl -1, 2x3—T (22— 3), O'(T(.’L‘Q —3)+ T(z1) - 1) +3:3>

for any (71,22, 73) € R x [0,00)2.
For{=1,2,---,7r+ 1, we set

£—1

& = <k’—f, Be, ZO’(T(BZ — %)+T(l€—2) — 1)) € R x [0,00)2.

i=1

Then, for { = 1,2,---,r, we have

-1
9(55) :g(k—é, Be, ZO’(T(Bi— é)—FT(k—Z‘)—l))

-1

—((kal, 260=T(Be—3), o(TB—-H+Th-0-1)+ o(nm;HT(ki)l))

i=1

(e+1)—1

- (k —(t+1). B, Y o(TB-H+Tk—i)- 1)) =&,
i=1

implying &-41 = g(&;) = -+ = g°"(&1).

Define £, : R? — R3 via L, (1, 22) = (71 —1,22,0) and Lo : R?* — Rvia Lo(x1, 22, x3) = x3 forany x1, z2, x3 € R.

Then, we have

0
€& = (k:— 1, b1, ZO’(T(ﬁi Y T(k—i) - 1)> - (k— 1, bin0.61 -6, 0) = £y (k, bin0.6; ---6,),

=1
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from which we deduce

Ly0g°" o La(k, bin0.01--0;) = L3209 (£1) = L2(&+1) = [€r41] 4

(r+1)—1 k
= Y (TG H+Th-) 1) =36
i=1 i=1
where the last equality comes from Equation (18). Furthermore, g, £1, and L9 are independent of 61, - - -, 6,.

It remains to show g can be realized by a ReLU network with the desired size.

nput hidden hidden output

Figure 14. Anillustration of the ReLU network realizing g(z1, z2, x3) for (21, 2, 23) € Rx[0,00) basedon 7 (t) = o (1+1)—c (%)
and ¢t = o(t) — o(—t) forany t € R.

As shown in Figure 14, g(x1,z2,23) can be realized by a ReLU network of width 8 and depth 2 for (x1,z2,23) €
R x [0, 00)%. That means, g € NN{8, 2; R?* — R3}. So we finish the proof of Lemma D.1. O

E. Proof of Proposition 3.3

The objective of this section is to prove Proposition 3.3. To facilitate the proof, we introduce the following lemma.
Lemma E.1. Forany A >0, g; € NN{N;, L;; R =R} and r; € N* fori = 1,2, there exists

®c N/\/{N1 + Ny +2d, max{Ly, Lo} +1; R4+ —>Rd+1}

such that
Pt (g, 20y 4 1) = (g;’r2 0gy" (x), —2ry + 1)

forany x € [—A, A]%
We will prove Proposition 3.3 with Lemma E.1, which will be proved later in Section E.2.

E.1. Proof of Proposition 3.3 with Lemma E.1

Now, let us present the proof of Proposition 3.3 by assuming Lemmas E.1 is true.

Proof of Proposition 3.3. Set

A=100(r; +7m2+ 1)+ sup  |[L1(@)] -
ze[—A,A)do
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Since d > max{d,ds}, we can define g; : R? — R? via
gi(u,v) = (gl(u), O) €R? foranyu € R" and v € R4

and g : R? — R via
glu,v) = (Eg(u), 0) eR? forany u € RY and v € R4 ™41,

Clearly, g1 € NN{Ny, Li; R% — R4 implies g1 € NNV{Ny, Li; R? — R4}, Note that Lo : RU 5 R can be
represented as
Lo(u) = a(fg(u)> - 0’( - Eg(u)) for any u € R%

which means £, can be realized by a one-hidden-layer ReLU network of width 2d,. Thus, § € NN{2ds, 1; R? — R4},
By Lemma E.1, there exists G; € NN{N; + 2dy + 2d, Ly + 1; R4 — R4+1} such that

G (w, 2 4+ 1) = (ﬁogf” (w), *1> for any w € [~ A, A]*.
Define g, : R4 — R4+ via
g2(u,v) = (gz(u), 0) e R forany u € R* and v € R 7%,

Clearly, g € NN{N,, Lo; R% — R} implies go € NN{Ny, Ly; R 5 RIFLY
By Lemma E.1, there exists
gce NN{(M + 2dy 4 2d) + Ny + 2(d + 1), max{L; 4+ 1, Ly} + 1; R%*+2 —>Rd+2}

c NN{M + No+6d+2, max{L1 + 2, Ly +1}; R*2 Rd+2}

such that
g°(rititra) (z, 2(r + 1)+ 1) = (Q\;“ o G‘i(rﬁ'l)(z), —2ry + 1) forany z € [— A, A]*H,

implying

[QO(HMQH) (Z7 2r1 + 3)} =g, %o Gc{(nﬂ)(z) forany z € [— A, A]%H1,

[1:d+1]

Therefore, for any y € [—A, A]*, we have

[g°<ﬁ+r2+1> (y 0, 2r +1, 21 + 3)} =57 oG (y, 0, 21y +1)
—_— [1:d+1]
€[— A, A)d+1

— (3007 0.0 -1) =5 (s ). 0), 1)

=55 (L2097 (), 0, 1) = (957 0 £20 97" (), 0),

implying

{90(r1+m+1) (y 0, 2r, +1, 2r + 3)} =g5" 0 L3097 (y).
[1:d2]

Define £, : R% — R9t2 yia
Li(x) = ([:1(&:), 0, 2r; +1, 2ry + 3) e R™2  forany x € R%
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and Lo : R4T2 — R% via -
Lo(u,v) = L3(u) forany u € R* and v € R*27%,

Then, for any & € [—A, A]%, we have y = L, (x) € [~ A, A]:, implying
Lo ogo(r1+r2+1) o Li(x) = Lo Ogo(r1+r2+1) (El(w)7 0, 2r1 +1, 2r, + 3)

- L (go(r1+r2+1) (y7 0, 2ry +1, 2r; + 3))

3(|:go(7"1+7'2+1) (y7 0, 2r +1, 2ry + 3)} )
[l:dz]
3(957 0 £> 097" () = L3095 0 L2 067" 0 £a(a).
So we finish the proof of Proposition 3.3. O

E.2. Proof of Lemma E.1

The proof of Lemma E.1 will be provided after establishing an auxiliary lemma, namely Lemma E.2 below. As we shall
see later, the auxiliary lemma plays a crucial role in the proof of Lemma E.1.

Lemma E.2. Forany M > 0 and d € N*, there exists ¢ € NN{2d + 2, 1; R2+1 - R} such that

xz ift>1
x,y,t) =(z,t) with z= T
By, 0) = (=1) {y S
forany z,y € [-M,M]% and t € (—oo0, —1] U [1, ).

Proof. The key idea for proving this lemma is to use a ReLU network to realize a selector function g : R® — R such that

P T
u7v7 - .
g voift< -1

for any u,v € [-M, M]and t € (—oo, —1] U[1, 00). To this end, we define
g(u,v,t) == o (u+ Mt) + o(v— Mt) — Mo(t) — Mo(—t). (19)

Let us verify that g meets the requirements.

In the case of ¢ > 1, we have u + Mt > 0 and v — Mt < 0 for any u, v € [—M, M|, implying
g(u,v,t) =o(u+ Mt) +o(v— Mt) — Mo(t) — Mo(—t)
=(u+Mt)+0-Mt—0=mu.
In the case of t < —1, we have u + Mt < 0 and v — Mt > 0 for any u,v € [—M, M|, implying
g(u,v,t) =o(u+ Mt) +o(v—Mt) — Mo(t) — Mo(—t)
=0+(v—Mt)-0—-M-(—t)=0.
Based on g, we can design a ReLU network to realize ¢ : R24+1 — R+ that maps (x, y,t) to
(Z,t) = (Zl,"'7Zd,t) = (g($17y17t)7 R g(xdvydat)v t)

forany © = (z1,---,74),y = (Y1, *,ya) € [-M, M]%and t € (—o0, —1] U [1, 00).

We present the ReLU network realizing ¢ in Figure 15. Clearly, ¢ € NN{2d + 2, 1; R4+ — R4+, So we finish the
proof of Lemma E.2. O
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@ o(xy + Mt)
: / : \

T o(xq + Mt)
Y1 /a;yl = ]V[t)

: / : 24 = 9(a,Ya, 1)
@ o(ya — Mt)
/ o(t)

\ )

Input hidden output

z1 = g(w1,y1,t)

t=o(t) —o(—t)

Figure 15. An illustration of the target ReLU network realizing ¢ based on Equation (19).

Equipped with Lemma E.2, we are prepared to demonstrate the proof of Lemma E.1.
Proof of Lemma E.1. We will construct ® = 1) o G via two steps below.

« First, we construct G : R*! — R24+1 by stacking g1, g2, and go, where go(t) =t — 2.

* Next, we will apply Lemma E.2 to construct a selector function ¢ : R24+1 — R*1 determining which sub-block
(g1 or g2) in G is used in each composition.

More details can be found below.

Step 1: Constructing G.
Recall the /°°-norm of a vector @ = (a1, as,---,aq) € R is given by

lalle~ = lla]loo = max {|a;| : i = 1,2, ,d}.

Set
M =max{My : k=0,1,---,r; + 72},

where My = max{A, 100(r1 + r2 + 1)} and M}, is given by
M;, = sup {Hhk 0---0 hl(ﬂ?)mm cxc[-A A% hy,--- b€ {91,92}}
fork=1,2,---,r1 + ro.
Define G : [-M, M]?+! — [— M, M]?4*! via
G(2.1) = (9:(), ga(®). 9o()) forany (@.1) € [~M, MJ"*",

where go(t) = t— 2. Recall that g; € NV{N;, L;; R — R¢} fori = 1, 2. To make g1, g2, and go have the same number
of hidden layers, we need to manually add some “trifling” layers.

Then, by setting L = max{L, Ly} and

we have

gi(x) = ooL=L) ¢ (g1 + M)(z) — M,
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ga(x) = gOE—L2) o (g2 + M)(x) — M,

and
go(t) =L ogo(t + M +2) — M —2

for any (x,t) € [-M, M]?*1. Then, g; € NN{ max{N;,d}, L; R? - R%} fori = 1,2 and go € NN{1, L; R - R}.
It follows that

G e NN{ max{N,d} + max{Ny,d} + 1, L = max{Ly, Ly}; R4*! HRMH}.

Step 2: Constructing ).

Next, let construct a selector function ) to “select” g; or g in G.

By Lemma E.2, there exists
W € NN{2d + 2, 1; R¥F!1 L, RI+1}

such that

u ift>1

P(u,v,t) = (w,t) with w= {v i< 1 (20)

for any u,v € [-M, M]% and t € (—o0,—1] U [1,00). Then, we can define the desired ® via ® = 1) o G. Clearly,
G € NN{max{Ny,d} + max{Na,d} + 1, max{L1, Lo }; R¥ — R?**1} and ¢ € NN{2d + 2, 1; R¥+ — R}
imply
d=1oGc /\/N{ max { max{Ny,d} + max{No,d} + 1, 2d + 2}, max{Li, Ly} + 1; R**H? —>Rd+1}
c /\//\/{N1 + Ny + 2d, max{Ly, Ly} + 1; R4+ —>Rd+1}.

It remains to verify that

®°tr2) (g 9y 4 1) = (ggr2 og!" (x), —2ry + 1) for any x € [~ A, A].

Fix € [~ A, A]? and we can write
(& t) = ®°F (@, 21 +1) with& € RY fork =0,1,--,71 + 79,

where ®°0 means the identity map.

Observe that, for k = 1,2, .-+ 1y + 1o,
(5167 tk) = <I’°k(m, 27"1 —+ 1) = (P [e] q)o(kil)(m, 27"1 + 1)

=®r1,th-1) =Y o G(&p—1,th—1) = 1#(91(5/@71), 92(€k-1), go(tkq))-

Then, by Equation (20), it is easy to verify that t, = go(tp_1) = tr_1 — 2 and g1 (§x_1), g2(€x—1) € [~ M, M]? for
k=1,2,---,r1 + r9, from which we deduce

tk=t0—2k‘:27‘1+1—2k:2(r1—k)—l—l

and

€ — 91(&k—1) ifty =go(tp—1) >1
g g2(&p—1) ifty = go(tk—1) < -1

fork=1,2,---,r1 +ro.
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Moreover, for k = 1,2,---,r1, we have t;, = 2(r;y — k) + 1 > 1 and hence & = g1 (€x—1), implying
& =91(&-1)==97" (%) =9 ().

Fork=r1+ 1,71 +2,---,71 + 1, we have t;, = 2(ry — k) + 1 < —1 and hence &, = g2(&x—1), implying

Eriiry = G2(&rigra—1) = =952 (&) = 9572 (977" () = 9572 0 g7 ().

Therefore, we have

@ e 2 D] =0 egl @)
1:

and

[@O(T1+T2)(m, 2ry + 1)} ey — I = (r1—(ri+72) +1) = =2r2 +1,
+1

from which we deduce
(I)o(r1+7”2)(m, 2r1 + 1) — (g;rz oginq (SC), —2rg + 1)_

Thus, we complete the proof of Lemma E.1.
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