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Abstract
We focus on addressing the dense backward prop-
agation issue for training efficiency of N:M fine-
grained sparsity that preserves at most N out
of M consecutive weights and achieves practi-
cal speedups supported by the N:M sparse tensor
core. Therefore, we present a novel method of Bi-
directional Masks (Bi-Mask) with its two central
innovations in: 1) Separate sparse masks in the
two directions of forward and backward propaga-
tion to obtain training acceleration. It disentangles
the forward and backward weight sparsity and
overcomes the very dense gradient computation.
2) An efficient weight row permutation method
to maintain performance. It picks up the permuta-
tion candidate with the most eligible N:M weight
blocks in the backward to minimize the gradient
gap between traditional uni-directional masks and
our bi-directional masks. Compared with exist-
ing uni-directional scenario that applies a trans-
posable mask and enables backward acceleration,
our Bi-Mask is experimentally demonstrated to
be more superior in performance. Also, our Bi-
Mask performs on par with or even better than
methods that fail to achieve backward accelera-
tion. Project of this paper is available at https:
//github.com/zyxxmu/Bi-Mask.

1. Introduction
The past decade has witnessed thriving deep neural net-
works (DNNs) in various machine learning applications (He
et al., 2016; 2017a; Girshick et al., 2014). In large part, the
prosperity is driven by increasing parameters and computa-
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(a) Vanilla N:M Mask

(b) Transposable N:M Mask

Figure 1. Comparison between vanilla N:M mask and transposable
N:M mask (2:4 case). The vanilla N:M mask (Zhou et al., 2021;
Nvidia, 2020) generates sparse weights with N:M property in rows,
leading to forward acceleration but remaining dense backward
propagation as the weight transposition operation impairs N:M
blocks. The transposable N:M mask (Hubara et al., 2021) gen-
erates sparse weights that have N:M property in both rows and
columns, leading to forward & backward acceleration. Both meth-
ods consider only one sparse mask.

tions, which however, make DNN models too cumbersome
to be deployed on resource-constrained edge devices such
as cell phones and Internet-of-Things (IoT) devices. There-
fore, the research community is sorely in need of technical
renovation to compress the DNNs (Hubara et al., 2016; Tan
& Le, 2019; Lin et al., 2020).

By removing redundant network weights (LeCun et al.,
1989; Han et al., 2015; He et al., 2017b), network spar-
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Figure 2. Framework of the proposed Bi-direction Masks (Bi-Mask). It separately builds two N:M sparse masks in the forward and
backward direction, thus enabling training acceleration in both directions. During backward propagation, Bi-Mask performs an efficient
row permutation to make the sparse weights have more eligible N:M weight blocks before generating the backward mask.

sity has emerged as a piece of modern equipment to obtain
a lightweight sparse model. Through removing individual
weights at arbitrary positions, fine-grained sparsity is demon-
strated to reach a high sparse ratio with performance guaran-
tee (Han et al., 2015; Evci et al., 2020). Unfortunately, the
resulting unstructured sparse weights hardly produce accel-
eration on off-the-shelf hardware. Coarse-grained sparsity
is more hardware friendly as it typically removes an entire
weight block (Ji et al., 2018; Meng et al., 2020) or convolu-
tion filter (Liu et al., 2019a; Lin et al., 2020). In comparison
with fine-grained sparsity, the compressed model gains no-
ticeable speedup, yet suffers more performance degradation.
Therefore, it is a challenging yet valuable issue to simul-
taneously retain model performance of DNN models and
achieve hardware acceleration.

Luckily, recent N:M fine-grained sparsity has provided a
promising solution. By requiring at most N non-zero el-
ements out of every M contiguous weights, N:M sparsity
includes the performance advantage of fine-grained spar-
sity as well as practical acceleration thanks to the hardware
innovation of N:M sparse tensor core (Ronny Krashinsky,
2020; Fang et al., 2022). Nvidia (Nvidia, 2020) has pre-
sented the ASP (APEX’s Automatic Sparsity) paradigm that
achieves 2:4 sparsity within three steps, unfolded as training
a dense network, applying 2:4 fine-grained sparsity using
magnitude-based pruning (Han et al., 2015), and re-training
the sparse network. Despite the satisfying performance,
ASP exhibits drawbacks in its tedious training cost as it
contains dense network training and N:M sparse retraining.
This largely prohibits the application of N:M sparsity when
confronting with scarce training resources.

The above issue has been partially addressed by directly
training an N:M sparse network from scratch (Zhou et al.,

2021). Yet, the sparse tensor core is only utilized to acceler-
ate the forward multiplication during training. As illustrated
in Fig. 1a, the weight transposition operation in the back-
ward impairs N:M blocks and thus fails to support accelera-
tion in gradient calculation. To mitigate this, (Hubara et al.,
2021) proposed N:M transposable mask, where a binary
mask that indicates whether to remove weights is required
to have N:M property along the rows and columns. There-
fore, after performing transposition, it still satisfies the N:M
format as shown in Fig. 1b. Unfortunately, the transposable
requirement is observed to have more performance degrada-
tion, which is presumably caused by less flexibility of the
sparsity pattern (Hubara et al., 2021). In Sec. 3.2, we further
show severe performance degradation at a higher sparse
level such as 1:8 and 1:16. We therefore reflect on this:
how can we address the efficiency of N:M sparse training
without a compromise on performance?

In this paper, we attempt to answer the above question by
introducing a novel method of Bi-directional Masks (Bi-
Mask) that performs surprisingly well without any N:M
transposable constraint. Fig. 2 illustrates framework of our
Bi-Mask. In particular, along the forward and backward
directions, two separate binary masks are constructed ac-
cording to the weight magnitude (Han et al., 2015). As a
contrast, we require the forward mask to follow N:M prop-
erty in its rows while in columns for the backward mask.
By this way, we concurrently enable forward & backward
acceleration from the N:M sparse tensor core. Also, the bi-
directional masks benefit performance from more flexible
sparsity pattern. Nevertheless, they also bring about defi-
ciency of gradient gap since the backward mask modifies the
gradient of forward loss. Given this issue, an efficient row
permutation is further introduced before enforcing the back-
ward mask. In detail, we first change row order of weight
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Table 1. Advantage comparison between the vanilla N:M mask
(Mask) (Nvidia, 2020; Zhou et al., 2021), the transposable N:M
mask (T-Mask) (Hubara et al., 2021) and our proposed Bi-direction
Mask (Bi-Mask) for N:M sparse training.

Advantage Vanilla Mask T-Mask Bi-Mask

Forward Acceleration ! ! !

Backward Acceleration % ! !

Performance Maintenance ! % !

matrix and then pick up the permutation with the most el-
igible N:M weight blocks from a dozen of candidates. By
changing column order of output gradient accordingly, we
succeed in retaining the same outputs between with/without
row permutation, and at the same time well reducing the
gradient gap between uni-directional/bi-directional mask(s).

Our simple design of Bi-Mask turns out to achieve remark-
able results. Besides forward & backward training accelera-
tion, Bi-Mask well improves the performance of transpos-
able mask (T-Mask) across different N:M patterns, bench-
marks, and networks. For example, Bi-Mask achieves 71.5%
Top-1 accuracy when training 1:16 sparse ResNet-50 on Im-
ageNet, surpassing T-mask by 5.3%. More surprisingly, our
approach achieves comparable or even better results than
vanilla N:M methods, where the backward propagation can
not be accelerated. For example, our Bi-Mask exceeds Top-1
accuracy of SR-STE (Zhou et al., 2021) by 0.4% when train-
ing 2:4 sparse ResNet-50 on ImageNet. Table 1 provides
advantage comparison between different mask methods.

2. Related Work
2.1. Network Sparsity

Network sparsity has been one of the most effective tools to
relieve the complexity of DNNs over the past decades (Le-
Cun et al., 1989; Han et al., 2015). Pioneering works
implement network sparsity in a fine-grained granularity
where weights at arbitrary positions are removed to obtain
a compact network. (Han et al., 2015) presented a classic
three-step paradigm including pre-training a full network, re-
moving low-magnitude weights, and fine-tuning the sparse
networks. The lottery ticker hypothesis (Frankle & Carbin,
2019) further reveals the existence of randomly-initialized
sparse networks that can be trained independently to com-
pete with the performance of the dense model. In principle,
the fine-grained network sparsity can maintain the perfor-
mance of dense networks at an ultra-high sparse ratio like
90.0% (Mostafa & Wang, 2019; Blalock et al., 2020). Never-
theless, it receives very limited speedups since the resulting
sparse networks are in unstructured formats, which barely
take advantage of general hardware platforms.

Coarse-grained sparsity targets at removing entire weight
blocks (Ji et al., 2018; Meng et al., 2020) or convolution

filters (Liu et al., 2019b; Lin et al., 2020) to make the sparse
networks compatible with off-the-shelf hardware. For in-
stance, (Li et al., 2017) removed convolution filters with
smaller ℓ1 norm, while (Lin et al., 2020) considered the
rank of feature maps as the filter importance measurement.
Unfortunately, coarse-grained sparsity suffers severe per-
formance drops at sparsity levels higher than 50% due to
the flexibility constraint on network sparsity (Renda et al.,
2021). Different from the existing sparsity granularity, this
paper focuses on N:M fine-grained sparsity (Zhou et al.,
2021; Sun et al., 2021; Pool & Yu, 2021), which preserves
at most N out of M consecutive weights. In addition to per-
formance maintenance, N:M sparsity is also able to obtain
practical acceleration from the hardware innovation of N:M
sparse tensor core (Nvidia, 2020; Fang et al., 2022).

2.2. Sparse Training

Sparse training serves as an effective tool to boost the per-
formance of network sparsity (Hoefler et al., 2021; Evci
et al., 2020; Sanh et al., 2020). It dynamically prunes
and revives weights of the sparse networks during train-
ing according to specific criteria. For example, RigL (Evci
et al., 2020) removes smaller-magnitude weights and revives
weights with larger-magnitude gradients. Besides, sparse
momentum (Dettmers & Zettlemoyer, 2019) considers mag-
nitude of mean weight momentum as a guide to redistribute
the sparse weights. In this paper, we focus on training
N:M sparse networks. As a study mostly related to ours,
the transposable N:M masks (Hubara et al., 2021) requires
one single sparse mask with N:M blocks in both rows and
columns such that the transposition in the backward also
embraces hardware acceleration. In contrast, our method
separately builds sparse masks in the forward and backward
propagation without additional sparse constraints and gains
significantly better performance under the same N:M case.
Besides, (Pool & Yu, 2021) proposed to permute the input
channel of pre-trained CNNs to maximally preserve the
magnitude of N:M sparse networks. Very differently, our
Bi-Mask permutes the row dimension of sparse weights that
are trained from scratch, with a diverse object of obtaining
more eligible N:M weight blocks to mitigate the gradient
gap in the backward sparsity.

3. Methodology
3.1. Revisiting N:M Sparse Training

We first introduce some basic knowledge about the N:M
fine-grained sparsity. Let W ∈ RI×J be the parameter
matrix from a specific network layer. Considering the input
tensor X, the forward propagation represented with form of
matrix multiplication can be formulated as:

Y = W ∗X, (1)
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where Y is the output tensor and ∗ is the matrix multipli-
cation operation. N:M sparsity forces at most N out of M
consecutive weights in the rows of W to have non-zero
values. The sparsity can be achieved via a binary matrix
B ∈ {0, 1}I×J where a block of every M contiguous ele-
ments contains at most N as:

∥Bi,j:j+M∥0 ≤ N, (2)

in which i = 1, 2, 3, ..., I and j = 1,M, 2M, ..., J . Then,
the sparse forward propagation can be formulated as:

Y = (B⊙W) ∗X, (3)

where ⊙ denotes the element-wise multiplication. Since
B⊙W meets N:M requirement, the matrix multiplication
with X can be efficiently implemented by the N:M sparse
tensor core, as illustrated in Fig. 1a.

N:M sparse training starts from randomly-initialized net-
works (Zhou et al., 2021; Zhang et al., 2022), thus avoiding
heavy burden of pre-training a dense model (Nvidia, 2020).
We base our study on the popular SR-STE (Zhou et al.,
2021) for N:M sparse training, simply illustrated for ease of
understanding in the following. During forward propagation,
it adapts the binary mask B at each iteration as:

Bi,j+m =

{
0, if |Wi,j+m| < Top(|Wi,j:j+M|,N),
1, otherwise,

(4)
where 1 ≤ m ≤ M, | · | represents the absolute function, and
Top(|Wi,j:j+M|,N) returns the N-th largest value within
|Wi,j:j+M|. Therefore, we obtain the forward binary mask
according to the weight magnitude in each block. During
backward propagation, the gradients of B⊙W are directly
passed to W according to the straight-through-estimator
(STE) (Bengio et al., 2013).

3.2. Rethinking the Transposable N:M Mask

The above sparse mask is indeed uni-directional towards
forward propagation. By forming N:M blocks in rows of the
mask, Eq. (3) permits forward acceleration from the N:M
sparse tensor core between the weights and inputs. Unfortu-
nately, such a vanilla mask crashes backward acceleration
due simply to the transposition operation. To explain, the
gradient in the backward propagation is computed as:

g(X) = (B⊙W)T ∗ g(Y), (5)

where g(·) denotes the gradient with respect to its input. The
above equation requires (B⊙W)T to have N:M blocks in
rows for accelerating multiplication with g(Y), however,
it is in columns on account of the transposition operation.
Thus, the backward propagation remains dense and fails to
be accelerated, as illustrated in Fig. 1a.

N:M Mask
N:M Transposable Mask

(a) Flexibility Comparison
N:M Mask
N:M Transposable Mask

(b) Performance Comparison

Figure 3. Comparison between vanilla mask and transposable mask
including (a) flexibility measured by mask diversity (Hubara et al.,
2021) and (b) performance of training sparse ResNet-50 (He et al.,
2016) on ImageNet (Deng et al., 2009).

To address this issue, (Hubara et al., 2021) presented trans-
posable N:M mask that is required to satisfy row-wise and
column-wise N:M blocks such that the transposition also
undertakes an important mission of N:M property in rows.
Consequently, the binary mask B is constrained as:

∥Bi,j:j+M∥0 ≤ N, ∥Bk:k+M,l∥0 ≤ N, (6)

where i = 1, 2, 3, ..., I , j = 1,M, 2M, ..., J , k =
1,M, 2M, ..., I , and l = 1, 2, 3, ..., J . Besides, (Hubara
et al., 2021) further introduced a 2-approximation algorithm
to reduce complexity of finding the transposable mask.

Here we rethink the transposable pursuit for N:M sparse
training. Although it enables backward acceleration, the
flexibility of sparse networks is greatly restricted, which
comes at the cost of performance degradation. We first re-
port the flexibility comparison between vanilla mask and
transposible mask under different N:M cases. Fig. 3a mea-
sures the flexibility using mask diversity that calculates
the number of all possible masks under a given N:M mask
case (Hubara et al., 2021). We can see a drastic flexibility
degradation, in particular in cases of a small N or M. As a
consensus (Gale et al., 2019; Nvidia, 2020), more restric-
tions on sparse patterns incur worse performance of sparse
networks. For example, unstructured sparsity (Han et al.,
2015) that removes arbitrary weights generally performs
much better than structured sparsity (Li et al., 2017) that
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removes entire filter weights. Consequently, severe perfor-
mance occurs in transposable mask in comparison with the
vanilla method, as we experimentally verify in Fig. 3b, no-
tably very poor 1:8 and 1:16. The uni-directional masks,
either vanilla or transposable, do not accomplish N:M back-
ward acceleration without a compromise on performance.
Therefore, in what follows, we address this issue from the
perspective of bi-directional masks.

3.3. Bi-directional N:M Masks

In this section, we formally present our Bi-directional N:M
masks (Bi-Mask). As its name suggests, our Bi-Mask dis-
entangles the forward & backward weight sparsity by in-
volving two different masks during N:M sparse training.
Concretely speaking, in the forward direction, we count on
the vanilla N:M mask B from Eq. (2) that calls for N:M in
rows to ensure the forward acceleration and results in better
flexibility than the transposable N:M mask as we report in
Fig. 3a. Very differently, we additionally build another mask
B̄ ∈ {0, 1}I×J in the backward direction with the N:M
requirement on its columns as:

∥B̄k:k+M,l∥0 ≤ N, (7)

in which k = 1,M, 2M, ..., I , and l = 1, 2, 3, ..., J . In
this fashion, the backward acceleration is supported as well
without a compromise on the flexibility of backward mask,
and the backward gradient g(X) in Eq. (5) is represented by
the following approximation:

ḡ(X) = (B̄⊙W)T ∗ g(Y). (8)

Nevertheless, the forward B requires gradient of g(X) for
our Bi-Mask, which yields a gradient gap between practi-
cal bi-directional gradient ḡ(X) and ideal uni-directional
gradient g(X). To solve this issue, we adapt the backward
mask B̄ to the magnitudes of masked weights during sparse
training as follows:

B̄k+m,l =

 0, if |(B⊙W)k+m,l|
< Top(|(B⊙W)k:k+M,l|,N),

Bk+m,l, otherwise,
(9)

where k = 1,M, 2M, ..., I , l = 1, 2, ..., J , and 1 ≤ k ≤ M.
For a deeper analysis, it is easy to understand that Bk+m,l =
0 is a fully not necessary condition of Bk+m,l = 0. That is,
the event Bk+m,l = 0 will produce the event Bk+m,l = 0,
but is not the only way for Bk+m,l = 0 to occur.

The rationale behind Eq. (9) is two-fold: 1) It maximizes
the similarity of forward and backward masks by setting
B̄k+m,l = Bk+m,l if the magnitude of Wk+m,l is beyond
the top-N largest. 2) Applying our backward mask does
not affect the updating of these weights with zero forward
masks since Bk+m,l = 0 always results in B̄k+m,l = 0.

Algorithm 1 Bi-Mask for Efficient N:M Sparse Training.
Require :Iteration interval ∆T , permutation candidate num-

ber K, weight matrix W, training iteration T .
Output : Trained sparse weights W ⊙B.

1 for t ∈ [1, 2, . . . , T ] do
2 Obtain the forward mask B via Eq. (4);
3 Forward propagation via Eq. (3);
4 if t % ∆T = 0 then
5 Randomly generate K permutations and pick up the

one as P with the most eligible N:M blocks;
6 end
7 Obtain the backward mask B̄ via Eq. (11);
8 Backward propagation via Eq. (10);
9 Update via the SGD optimizer;

10 end
11 Return W ⊙B.

Unfortunately, it is a possibility that B̄k+m,l = 0 does
not necessarily result from Bk+m,l = 0, in which case
gradients of some non-zero masked weights are mistakenly
eliminated, incurring performance degradation.

To decrease this possibility, we continue a row permutation
method along the row dimension of B ⊙ W. Our major
motivations are also two-fold: 1) We can see from Eq. (9)
that the resulting mask block B̄k:k+M,l would exactly match
with Bk:k+M,l if (B⊙W)k:k+M,l has N:M sparsity, and no
gradient gap would occur. 2) Performing row permutation
of B ⊙ W improves the number of eligible N:M blocks
as illustrated in Fig. 2. Importantly, it does not violate the
gradient computation. Denoting P ∈ NI as a permutation
of {1, 2, 3, ..., I}, the backward gradient ḡ(X) in Eq. (8) can
be equally computed as:

ḡ(X) =
(
B̄⊙ (WP,:)

)T ∗
(
g(Y):,P

)
, (10)

where the backward mask B̄ is computed based on the
permutated (B⊙W)P,: accordingly:

B̄k+m,l =


0, if

∣∣∣((B⊙W)P,:

)
k+m,l

∣∣∣
< Top(

∣∣∣((B⊙W)P,:

)
k:k+M,l

∣∣∣,N),

(BP,:)k+m,l, otherwise.
(11)

Therefore, we only need to find a permutation P that results
in more eligible N:M blocks in each column of (B⊙W)P,:.
More N:M blocks decrease the possibility of eliminating
gradients of non-zero masked weights. To avoid the cum-
bersome I! possible permutations at each training iteration,
we update a good permutation at a regularly spaced interval
of every ∆T training iterations, and at each interval pick
up the one that leads to the most eligible N:M blocks from
randomly generating K permutation candidates.
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In Sec. 4.4, we analyze that the permutation candidate num-
ber K = 100 already returns good performance. Compared
with the aforementioned 2-approximation algorithm for the
transposable N:M mask (Hubara et al., 2021), our method
brings negligible runtime burden as we experimentally re-
ported in Sec. 4.3. Our algorithm presented in this paper is
outlined in Alg. 1.

4. Experimentation
4.1. Settings

Datasets and Backbones. We conduct experiments on rep-
resentative benchmarks for image classification. For small-
scale dataset, we choose the CIFAR-10 dataset (Krizhevsky
et al., 2009), which contains 60,000 32×32 color images
from 10 different classes, with 6,000 images for each class.
For large-scale dataset, we choose the challenging Ima-
geNet (Deng et al., 2009), which contains over 1.2 million
images for training and 50,000 validation images in 1,000
categories. On CIFAR-10, we train N:M sparse ResNet-
32 (He et al., 2016) and MobileNet-V2 (Sandler et al., 2018).
On ImageNet, we train N:M sparse ResNet-18/50 (He et al.,
2016) and DeiT-small (Touvron et al., 2021). We compare
our Bi-Mask with classic N:M sparse training methods in-
cluding ASP (Nvidia, 2020) and SR-STE (Zhou et al., 2021)
that fail backward acceleration, and transposable N:M mask
(T-Mask) (Hubara et al., 2021) that has backward accelera-
tion. Top-1 classification accuracy is reported for compari-
son on both datasets.

Implementation Details. Our implementation of Bi-Mask
is based on the PyTorch framework (Paszke et al., 2019).
All experiments are conducted on the NVIDIA Tesla A100
GPUs. The training iteration interval ∆T is set to 100
and the number of permutation candidates K is set to 100.
We use the stochastic gradient descent (SGD) optimizer to
perform sparse training. In the first 5 training epochs, the
learning rate linearly increases from 0 to 0.1 and then is
decayed using the cosine annealing (Loshchilov & Hutter,
2017). The momentum and batch size are respectively set
to 0.9 and 256. On CIFAR-10, we train all networks for
300 epochs with a weight decay of 1 ×10−3. On ImageNet,
we follow (Zhou et al., 2021) to train ResNet-18/50 for a
total of 120 epochs. For DeiT-small, we follow (Zhang
et al., 2022) to train for 300 epochs in total using the timm
framework (Wightman, 2019).

4.2. Comparison on CIFAR-10

ResNet-32. We first apply our Bi-Mask to train ResNet-32
model. The quantitative results are reported in Table 2. We
can see from the table that the proposed Bi-Mask yields
significantly better performance than the transposable mask
at all N:M cases, and achieves comparable performance

Table 2. Comparison between different methods for training the
N:M sparse ResNet-32 on CIFAR-10.

Method N:M Top-1 Forward Backward
Pattern Accuracy (%) Acceleration Acceleration

Baseline - 94.52 % %

SR-STE 2:4 94.68 ! %

T-Mask 2:4 94.52 ! !

Bi-Mask 2:4 94.78 ! !

SR-STE 1:4 94.52 ! %

T-Mask 1:4 94.04 ! !

Bi-Mask 1:4 94.43 ! !

SR-STE 1:16 92.92 ! %

T-Mask 1:16 92.02 ! !

Bi-Mask 1:16 92.77 ! !

Table 3. Comparison between different methods for training the
N:M sparse MobileNet-V2 on CIFAR-10.

Method N:M Top-1 Forward Backward
Pattern Accuracy (%) Acceleration Acceleration

Baseline - 94.43 % %

SR-STE 2:4 94.26 ! %

T-Mask 2:4 94.12 ! !

Bi-Mask 2:4 94.46 ! !

SR-STE 1:4 94.48 ! %

T-Mask 1:4 93.81 ! !

Bi-Mask 1:4 94.28 ! !

SR-STE 1:16 93.14 ! %

T-Mask 1:16 90.12 ! !

Bi-Mask 1:16 92.48 ! !

with the vanilla N:M mask that fails to achieve backward
acceleration. For example, Bi-Mask obtains 94.78% Top-
1 accuracy at 2:4 sparse pattern, surpassing SR-STE and
T-Mask by 0.10% and 0.26%. Therefore, these accuracy
results well demonstrate the efficacy of our Bi-Mask.

MobileNet-V2. We further investigate the effectiveness of
Bi-Mask for training N:M sparse MobileNet-V2, a prevail-
ing network with a compact design of depth-wise separable
convolution. Table 3 again suggests a significantly higher
accuracy of Bi-Mask compared with T-Mask under the same
backward acceleration. For instance, Bi-Mask maintains
the performance of the dense model at 1:4 pattern, while
T-Mask suffers apparent accuracy drops (94.28%, 94.43%,
and 93.81%) for Bi-Mask, dense model, and T-Mask, re-
spectively).

4.3. Comparison on ImageNet

ResNet-18. Table 4 shows the performance comparison
of different methods for training 2:4 sparse ResNet-18 on
ImageNet. Compared with T-Mask (Hubara et al., 2021),
the proposed Bi-Mask achieves 1.6% performance gains.
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Table 4. Comparison between different methods for training the
N:M sparse ResNet-18 on ImageNet.

Method N:M Top-1 Forward Backward
Pattern Accuracy (%) Acceleration Acceleration

Baseline - 70.9 % %

ASP 2:4 69.9 ! %

SR-STE 2:4 71.2 ! %

T-Mask 2:4 69.2 ! !

Bi-Mask 2:4 70.8 ! !

Table 5. Comparison between different methods for training the
N:M sparse ResNet-50 on ImageNet.

Method N:M Top-1 Forward Backward
Pattern Accuracy (%) Acceleration Acceleration

Baseline - 77.1 % %

ASP 2:4 76.8 ! %

SR-STE 2:4 77.0 ! %

T-Mask 2:4 76.2 ! !

Bi-Mask 2:4 77.4 ! !

Baseline - 77.1 % %

SR-STE 4:8 77.4 ! %

T-Mask 4:8 77.1 ! !

Bi-Mask 4:8 77.5 ! !

Baseline - 77.1 % %

SR-STE 1:4 75.3 ! %

T-Mask 1:4 73.8 ! !

Bi-Mask 1:4 75.6 ! !

Baseline - 77.1 % %

SR-STE 2:8 76.2 ! %

T-Mask 2:8 73.6 ! !

Bi-Mask 2:8 76.3 ! !

Baseline - 77.1 % %

SR-STE 1:16 71.5 ! %

T-Mask 1:16 66.4 ! !

Bi-Mask 1:16 71.5 ! !

Notably, Bi-Mask even surpasses ASP (Nvidia, 2020) by
0.9%, later of which fails backward acceleration. Therefore,
the superiority of our proposed Bi-Mask on the large-scale
dataset is validated.

ResNet-50. We further show the performance of training
N:M sparse ResNet-50 on ImageNet. As shown in Table 5,
Bi-Mask beats all the competitors across all N:M cases
with the same or superior acceleration results. In partic-
ular, in comparison with SR-STE that gets stuck in dense
backward propagation, Bi-Mask results in backward acceler-
ation, meanwhile shows the best performance. For example,
it surpasses SR-STE by 0.3% at 1:4. As for T-Mask that also
accelerates the backward propagation, our T-Mask shows su-
perior performance in particular to the cases with a smaller
N value. As analyzed in Sec. 3.2, a small N or M greatly
degrades the mask flexibility of T-Mask, therefore severe

Table 6. Time comparison (s) between T-Mask and Bi-Mask for
searching N:M masks of ResNet-50 at different patterns.

Method 2:4 4:8 1:4 2:8 1:16

T-Mask 155.1 193.2 168.6 200.1 278.4
Bi-Mask 15.5 14.3 13.6 15.7 15.0

Table 7. Comparison between different methods for training the
N:M sparse DeiT-small on ImageNet.

Method N:M Top-1 Forward Backward
Pattern Accuracy (%) Acceleration Acceleration

Baseline - 79.8 % %

SR-STE 2:4 75.7 ! %

T-Mask 2:4 71.5 ! !

Bi-Mask 2:4 77.6 ! !

performance drops occur.

Next, we compare the efficiency between searching the
optimal N:M transposable mask (Hubara et al., 2021) and
our permutation for the backward mask. We report the
runtime for searching ResNet-50 with different N:M cases
on one NVIDIA Tesla A100 GPU. Table 6 suggests superior
efficiency of our Bi-Mask. For example, it takes negligible
15.0s for our Bi-Mask to find a good permutation at 1:16. As
a contrast, T-Mask requires around 278.4s under the same
N:M setting. Given the efficiency and accuracy, the efficacy
of Bi-Mask is evident.

DeiT-small. We further continue to compare the efficacy of
Bi-Mask for training 2:4 sparse DeiT, an advanced vision
transformer model. As manifested in Table 7, the proposed
Bi-Mask consistently obtains the best Top-1 under different
N:M cases, with its additional merit in backward acceler-
ation for N:M sparse training. For instance, Bi-Mask im-
proves the Top-1 accuracy of SR-STE by 1.7% at 2:4, and
gains 5.9% Top-1 improvements over off-the-shelf T-Mask.
The above observations well demonstrate the ability of Bi-
Mask in compressing and accelerating the recent advanced
vision transformer models.

4.4. Performance Study

In this section, we investigate the performance of Bi-Mask
to respectively explore the effectiveness of its components.
All the experimental results are conducted on ImageNet
using ResNet-18.

Permutation Updating. We first perform ablation stud-
ies of the permutation updating. In Fig. 4, we examine the
performance of Bi-Mask under different training iteration
intervals ∆T ∈ [1, 10, 100, 1000] and permutation candi-
date number K ∈ [10, 100, 1000]. As can be observed, the
best accuracy is obtained when the permutation updating is
performed every 100 training iterations. To analyze, small
intervals incurs unstable sparse training as the typology

7
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Figure 4. Performance influence of the training iteration inverval
∆T and candidation number K in our permutation updating.

of computing graph change in an excessive frequency. In
contrast, large intervals outdate the optimal permutation,
thus also leading to worse performance. Besides, the per-
formance becomes saturated when the candidate number
reaches 100 or more. The result shows that it is unnecessary
to construct a time-consuming greedy algorithm to find out
the optimal permutation.

Binarization Criteria. We further investigate the binariza-
tion criteria used to force the transposed weights to be N:M
sparse after the permutation. Recall we opt magnitudes of
sparse weights in Eq. (11) for a better fit with the forward
mask to reduce the gradient gap. For comparison, we con-
sider three variants including 1) preserving weights with the
Top-N largest magnitudes of their gradients; 2) sampling
N weights from the multinomial probability distribution
according to their magnitudes; 3) randomly preserving N
weights. Table 8 manifests our experimental results for the
comparison. We can observe that the variants reduce the
accuracy more or less. Among them, random one incurs
the most performance drops since it severely enlarges the
dissimilarity between the forward and backward masks and
causes great gradient gaps. As for our weight magnitude, it
well complies with the forward mask settings, therefore a
better result can be observed.

Ablation Study. To further understand the effect of each
component in our Bi-Mask, we conduct an ablation study
by starting from our training baseline of the vanilla N:M
mask (Zhou et al., 2021) (denoted by Baseline), and gradu-
ally including the backward mask and permutation updating.
Table 9 shows that our backward mask enables backward
acceleration with a Top-1 accuracy drop of 0.3%. As an
analysis, the little degradation mainly yields from that our
backward mask sometimes mistakenly eliminate gradients
of some non-zero masked weights, as discussed in Sec. 3.3.
After further adding our proposed permutation updating, the
performance of sparse ResNet-18 even increases by 0.3%
on the basis of the Baseline method. This is because our

Table 8. Performance of different binarization criteria for backward
mask in Bi-Mask.

Model Criteria Pattern Top-1 Accuracy(%)

ResNet-18 Gradient Magnitude 2:4 70.56
ResNet-18 Multinomial Sampling 2:4 70.42
ResNet-18 Random 2:4 67.76
ResNet-18 Weight Magnitude 2:4 70.73

Table 9. Ablation study for the proposed Bi-Mask.
Model Criteria Pattern Top-1 Accuracy(%)

ResNet-18 Baseline 2:4 70.5
ResNet-18 + Backward Mask 2:4 70.2
ResNet-18 + Permutation Updating 2:4 70.8

permutation updating operation results in more eligible N:M
blocks and reduce the possibility of incorrect gradient elimi-
nation. In conclusion, each part of our proposed Bi-Mask in
this paper plays a unique role in boosting the performance
of our N:M sparse training.

5. Limitations
In this section, we further discuss unexplored limitations
of Bi-Mask in this paper, which will be our major future
focuses. First, following the compared methods, we only
train N:M sparse networks on the image classification task.
More efforts can be made to verify the effectiveness of
Bi-Mask on other tasks such as object detection. Besides,
we only explore the acceleration on the forward and back-
ward propagation, while accelerating the update phase of
weights (Chmiel et al., 2022) remains to be excavated in the
near future. At last, our random generation for the permu-
tation does not always guarantee to maximize the number
of N:M blocks. Though it does not damage the overall per-
formance, a better solution is expected to be explored for
possibly locating the best permutation.

6. Conclusion
In this work, we have presented a novel Bi-direction Mask
(Bi-Mask) for efficient N:M find-grained sparse neural net-
work training. Instead of imposing a transposable constraint
on the N:M sparse mask, our Bi-Mask independently builds
masks in the forward and backward directions. The mask
in the backward direction is obtained through an efficient
permutation in the weight rows and a following magnitude-
based pruning to enable acceleration on the N:M sparse
tensor core. Extensive experiments have demonstrated the
superiority of Bi-Mask over several SOTAs. Particularly,
Bi-Mask surpasses its competitor by a large margin under
the same acceleration effects, and can even perform on par
or even better than off-the-shelf methods that often fail to
achieve backward acceleration.
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