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Abstract

Federated Semi-supervised Learning (FedSSL)
has emerged as a new paradigm for allowing dis-
tributed clients to collaboratively train a machine
learning model over scarce labeled data and abun-
dant unlabeled data. However, existing works for
FedSSL rely on a closed-world assumption that all
local training data and global testing data are from
seen classes observed in the labeled dataset. It is
crucial to go one step further: adapting FL models
to an open-world setting, where unseen classes ex-
ist in the unlabeled data. In this paper, we propose
a novel Federated open-world Semi-Supervised
Learning (FedoSSL) framework, which can solve
the key challenges in distributed and open-world
settings, i.e., the biased training process for hetero-
geneously distributed unseen classes. Specifically,
since the advent of a certain unseen class depends
on a client basis, the locally unseen classes (ex-
ist in multiple clients) are likely to receive dif-
ferentiated superior aggregation effects than the
globally unseen classes (exist only in one client).
We adopt an uncertainty-aware suppressed loss
to alleviate the biased training between locally
unseen and globally unseen classes. Besides, we
enable a calibration module supplementary to the
global aggregation to avoid potential conflicting
knowledge transfer caused by inconsistent data
distribution among different clients. The proposed
FedoSSL can be easily adapted to state-of-the-art
FL methods, which is also validated via exten-
sive experiments on benchmarks and real-world
datasets (CIFAR-10, CIFAR-100 and CINIC-10).
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1. Introduction
To tackle the privacy issues in distributed machine learning,
Federated Learning (FL) (McMahan et al., 2017; Zhang
et al., 2021b) has emerged as a promising paradigm by col-
laboratively training a shared model among multiple clients
without exposing their private raw data. As a common
practice in FL, the global model is usually obtained by pe-
riodically averaging the updated model parameters from
distributed clients in a centralized server. While existing FL
methods assume that clients’ data is fully labeled so that su-
pervised learning can be conducted for local model update
on each client, in some real-world applications, the data
labeling process can be prohibitive due to the tremendous
overhead and the requirement of corresponding expertise
(Ouali et al., 2020) such as for medical diagnoses (Ng et al.,
2021) and object detection (Liu et al., 2021).

The scarce labeled data and the abundant unlabeled data give
the rise to the emergence of federated semi-supervised learn-
ing (FedSSL) (Jeong et al., 2021; Liang et al., 2022), which
can simultaneously exploit both the labeled and unlabeled
data to optimize a global model in distributed environments.
Existing FedSSL schemes have demonstrated to train mod-
els based on a small amount of labeled data on both client
or server side (Jin et al., 2020; Long et al., 2020). However,
these works rely on the closed-world assumption that all
local training data and global testing data are from the same
set of classes that are included in the labeled dataset (Zhou,
2022; Boult et al., 2019), which is often invalid for practical
scenarios. In contrast, the open-world settings allow novel
class discovery, and thus are common for data in-the-wild,
e.g., in medical image classification tasks, some diseases are
naturally scarce and never labeled before, while the model
may be required to both classify images into predefined
types (seen classes) and discover new unknown diseases
(unseen classes). Hence, a new fundamental question arises:
how to collaboratively train models on distributed data to
enable classification on both seen and unseen classes under
the open-world setting?

To this end, we first construct a new FedSSL benchmark that
extends the conventional closed-world training framework
to the open-world setting. Surprisingly, it is demonstrated
that there is a significant performance degradation due to
the existence of unseen classes in unlabeled data during the
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Figure 1: Framework of the proposed FedoSSL algorithm. Pipeline: ① Local Training: Each client first performs local
training on its private dataset for several epochs (i.e., via optimizing loss function in Eq. (1)), and then computes local
centroids via a Sinkhorn-Knopp based clustering algorithm (Genevay et al., 2019). ② Upload model parameters and local
centroids to the server. ③ The server performs standard model aggregation. ④ The server performs centroids aggregation by
again using Sinkhorn-Knopp clustering to obtain global centroids. ⑤ The global model and global centroids are returned to
the clients, who use them for local training.

training process. Although a few works explore the unseen
class problem to avoid misclassifying unlabeled examples
from unseen classes into seen classes, meanwhile alleviating
the undesired performance gap between seen and unseen
classes (Cao et al., 2022; Guo et al., 2022), there is no lit-
erature considers this problem in a distributed environment.
With multiple participants, the problem definition is differ-
ent, i.e., some unseen classes in one client may exist in other
clients’ side from a global view, and thus requires a novel
fine-grained definition on unseen classes as well as the train-
ing mechanism for different types of samples/classes. It is
worth mentioning that due to the heterogeneous distributed
classes across different clients, simply aggregating the pa-
rameters following traditional FL mechanism can cause
the biased training process for clients possessing different
unseen classes.

To tackle the above challenges, in this paper, we pro-
pose a brand-new Federated open-world Semi-Supervised
Learning framework (FedoSSL) that can achieve unbiased
training procedure among different types of samples. Specif-
ically, the unseen classes in local clients are first redefined
into locally unseen classes and globally unseen classes, re-
spectively. Then, we design a uncertainty-aware suppressed
loss to adaptively control the undesired training divergence
between locally and globally unseen classes, i.e. locally
unseen classes often have higher training efficiency than
globally unseen ones due to the cross-client collaboration.
Furthermore, considering the heterogeneously distributed
unseen classes across different clients that lead to potential
conflicting knowledge transfer during the aggregation phase,
we introduce a calibration module to produce correspond-
ing global centroids to perform dedicated local adjusting
on each client. We show that our method can significantly
improve the model accuracy in a open-world setting when

compared with the state-of-the-art baselines over widely
used models (i.e., ResNet-18) and downstream tasks (i.e.,
CIFAR-10, CIFAR-100, CINIC-10). The contributions of
the paper are summarized as follows.

• To the best of our knowledge, we are the first to con-
sider the open-world setting in FedSSL, where unseen
classes exist in the unlabeled data, which is challenging
due to the heterogeneously distributed unseen classes.

• We design a brand-new FedoSSL framework, that
can achieve unbiased learning among different types
of classes (i.e., locally unseen and globally unseen
classes) and calibrated knowledge aggregation given
heterogeneous data distributions.

• We conduct extensive experiments on three typical
image classification tasks. The empirical evaluation
shows the superior performance of FedoSSL over the
state-of-the-art approaches.

2. Related Work
2.1. Federated Learning

Federated Learning (FL) has emerged as a promising
paradigm to collaboratively train machine learning models
using decentralized training data with privacy protection. As
a most popular supervised FL training framework, FedAvg
(McMahan et al., 2017) periodically aggregates the local up-
dates at the server and transmits the averaged model back to
local clients for the next round of training. In FL, Non-IID
data is one of the key challenges due to the caused weight
divergence and performance drop (Li et al., 2020b). Many
solutions have been proposed to solve this problem, i.e.,
sharing a public dataset among clients to achieve an approx-
imately IID data (Zhao et al., 2018; Yoshida et al., 2019),

2



Federated Open-world Semi-supervised Learning

Table 1: Comparison between our proposed FedoSSL and other SSL-related methods.

Training Dataset Testing Dataset
Method Seen classes Unseen classes Seen classes Unseen classes FL Environment?

SSL Present Not Present Classify - ×
Open-set SSL Present Present Classify Detect & Reject ×
Novel Class Discovery Present Present - Discover & Cluster ×
Open-world SSL Present Present Classify Discover & Cluster ×
FedSSL Present Not Present Classify -

√

FedoSSL Present Present Classify Discover & Cluster
√

data augmentation (Jeong et al., 2018), knowledge distil-
lation (Li & Wang, 2019; Lin et al., 2020), regularization-
based methods (Fallah et al., 2020; Li et al., 2020a) and even
personalized FL (Collins et al., 2021; Zhang et al., 2021a).
However, FL in the semi-supervised setting is less explored.

2.2. Semi-supervised Learning

Semi-Supervised Learning (SSL) refers to the general prob-
lem of learning with partially labeled data, especially when
the amount of labeled data is much smaller than that of the
unlabeled data (Zhou & Li, 2005; Rasmus et al., 2015). The
mainstream of SSL can be divided into two types: pseudo-
labeling and consistency regularization. Pseudo-labeling
methods (Lee et al., 2013; Pham et al., 2021; Zou et al.,
2020) usually generate artificial labels of unlabeled data
from the model trained on labeled data and apply the filtered
high-confidence labels as supervised signals for unlabeled
data training. Consistency regularization methods (Tar-
vainen & Valpola, 2017; Wei et al., 2020; Lee et al., 2022)
focus on training models via minimizing the distance among
different perturbed outputs of the same input. All the above
literature assume a closed-world setting in which labeled
and unlabeled data come from the same set of predefined
classes. However, this assumption rarely holds for data in
real-world applications, namely, unseen classes would oc-
cur in unlabeled data. There are two recent lines of works
related to different scenarios:

Open-set Semi-supervised Learning. Open-set SSL con-
siders that unseen classes in unlabeled samples only exist
in training data, while not exist in testing data (Chen et al.,
2020b; Guo et al., 2020; Huang et al., 2021; Saito et al.,
2021). The goal is to detect these unseen classes and reject
them to ensure no performance degradation on seen classes.

Novel Class Discovery (NCD). Different from Open-set
SSL that fails to classify unseen classes, NCD (Han et al.,
2019; Hsu et al., 2019; Zhong et al., 2021) aims to classify
both seen and unseen classes during the testing phase but
assumes all unlabeled instances belonging to unseen classes
in training data.

To extend unseen classes into a more practical scenario,

open-world SSL (Cao et al., 2022; Guo et al., 2022) focus on
solving the class mismatch between labeled and unlabeled
data, where each test sample should be either classified into
one of existing classes or a new unseen class in the test time.

2.3. Federated Semi-supervised Learning

Learning representations from unlabeled decentralized data
while preserving data privacy is still a nascent field. Exist-
ing FedSSL frameworks can be categorized into two types
according to the location of the labeled data: 1) Labels-at-
Server assumes that clients have purely unlabeled data and
the server contains a small amount of labeled data (Lin et al.,
2021; He et al., 2021; Zhang et al., 2021c; Diao et al., 2022);
2) Labels-at-Client considers labeled data are available at
local clients (Jeong et al., 2021; Lin et al., 2021; Liang
et al., 2022), which can be further subdivided into two sce-
narios: a) each client contains both labeled and unlabeled
data (Jeong et al., 2021); b) some clients are fully labeled
while some clients only contain unlabeled samples (Lin
et al., 2021; Liang et al., 2022; Liu et al., 2021). In this
paper, we focus on the type 2.a as it has been largely over-
looked and is more general in real-world FL scenarios.

2.4. Summary

To sum up, considering the existence of unseen classes in
FedSSL is still a vacancy. More importantly, the characteris-
tic of data heterogeneity among multiple clients brings new
challenges for the combination of open-world and conven-
tional FedSSL frameworks: how to tackle heterogeneous un-
seen classes among the clients in an efficient way? Inspired
by the above observations, we are motivated to develop a
novel federated open-world semi-supervised learning frame-
work to achieve high performance on both seen and unseen
classes. The detailed comparisons between or proposed
FedoSSL and other SSL-related methods are illustrated in
Table 1.

3. Methodology
In this section, we first define the problem and elabo-
rate the proposed FedoSSL framework, which contains an
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uncertainty-aware suppressed loss for local training and a
calibration module for model aggregation. Then, we present
the optimization process in Section 3.3.

3.1. Preliminary and Problem Definition

We focus on federated semi-supervised learning in an open-
world setting, where the data in each client is partially
labeled and the set of classes/categories in labeled data
and unlabeled data are not the same, i.e., unseen classes
exist in unlabeled data. Assuming K clients that each
client i holds a private classification dataset containing

a labeled part Dl
i = {(xj , yj)}

nl
i

j=1 and an unlabeled part

Du
i = {(xj)}

nu
i

j=1, where nl
i ≪ nu

i , x ∈ RN , 1 ≤ i ≤ K.
The whole label and unlabeled dataset can be represented
as Dl = {Dl

i}Ki=1 and Du = {Du
i }Ki=1, respectively. We

denote the set of classes seen in the full labeled data as Cl
and the set of classes in the unlabeled test data as Cu. Un-
like traditional (closed-world) FedSSL that Cl = Cu, in this
paper, we consider Cl ̸= Cu, and denote Cseen = Cl ∩ Cu,
Cunseen = Cu \ Cseen as the set of seen classes and unseen
classes, respectively.

The goal of FedSSL is to train a generalized global model
f with parameter θ from multiple decentralized clients, i.e.,
minθ L(θ) :=

∑K
i=1

ni

n Li(θ), where ni = nl
i + nu

i and
n =

∑K
i=1 ni is the total data amount. Li(θ) is the train-

ing loss function for client i. Specifically, the model f
can be decomposed of a feature extractor g with parameter
ϕ: RN → Rd to learn a low-dimensional feature z and
a classifier h with parameter w: Rd → R|Cseen∪Cunseen|.
The training loss of a semi-supervised learning algorithm
on each client i usually contains supervised loss Ls

i and
unsupervised loss Lu

i with weight parameters α, α > 0:

Li = Ls
i + αLu

i (1)

Typically, Ls
i applies the standard cross-entropy loss on

labeled instances:

Ls
i =

1

nl
i

∑
(xj ,yj)∈Dl

i

H(yj , p(xj ; θ)) (2)

where p(x; θ) = Softmax(f(x; θ)) denotes the predicted
probabilities produced by the model f for input x, and
H(·, ·) is the cross-entropy function.

In terms of unsupervised loss Lu
i , there are two typical

forms: pseudo-labels (Sohn et al., 2020) based on labeled
data and consistency regularization (Xie et al., 2020) based
on data augmentation. However, in an open-world setting,
the existence of unseen classes makes above methods fail to
classify seen classes and unseen classes. Therefore, similar
to ORCA (Cao et al., 2022) and NACH (Guo et al., 2022),
we use pairwise objective as unsupervised loss on unlabeled

data to classify unseen classes:

Lu
i = − 1

nl
i + nu

i

∑
zj ,z̄j∈

(Zl
i∪Zu

i ,Z̄l
i∪Z̄u

i )

H(p(w⊤ · zj), p(w⊤ · z̄j)) (3)

where Zl
i and Zu

i are the whole set of feature representations
for labeled and unlabeled data, respectively. Z̄l

i ∪ Z̄u
i is the

closet set of Zl
i ∪ Zu

i in a mini-batch by computing the
cosine distance between all pairs of feature representations.

3.2. Overview of FedoSSL

Previous FedSSL methods do not consider the existence
of unseen classes on each client, which leads to a number
of data from unseen classes being misclassified into seen
classes. Besides, inconsistent data distribution on different
clients raises another new problem: some unseen classes
may exist in more than one client, resulting in biased train-
ing among different unseen classes, e.g., in Figure 1, both
client 1, 2 and K have class 4, while class 5, 6, 7, 8 and 9
only exist in one of the clients. In this case, we need a more
fine-grained definition on unseen class in a global view.

Definition 1 (locally unseen & globally unseen class). In
FedoSSL, the unseen classes Ci,unseen on client i can be
divided into two types: locally unseen classes Ci,lu, in which
Ci,lu = C1,unseen ∩ · · · ∩ CK,unseen; and globally unseen
classes Ci,gu, in which Ci,gu = Ci,unseen \ Ci,lu.

When unseen classes exist among multiple clients in Fe-
doSSL, two main challenges need to be considered. Firstly,
locally unseen classes may be learned faster than globally
unseen classes due to the facilitation of client collabora-
tion on locally unseen classes. The existing unsupervised
pairwise loss Lu

i treats each class equally, while the imbal-
anced training progresses among unseen classes will result
in a big bias on pseudo-label generation and even perfor-
mance degradation in seen classes. Thus, we propose an
uncertainty-aware regularization loss to alleviate training
bias among different classes. Moreover, feature-level unsu-
pervised pairwise loss on unlabeled data makes the gener-
ated cluster/class id heterogeneous among different clients
since both labeled data and unlabeled data are required to
feed into the same model classifier. It is critical to design a
calibration strategy to align the outputs of the same unseen
classes during the model aggregation phase.

3.2.1. OBJECTIVE

To achieve unbiased training among different unseen classes
in FedSSL, we present the proposed FedoSSL method. The
overall objective consists of three parts: 1) fundamental
semi-supervised loss for all data; 2) an uncertainty-aware
regularization loss to reduce the training gap among locally
unseen and globally unseen classes; 3) a calibration loss to
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achieve efficient model aggregation:

L∗
i = Li + βRi + γLcal

i (4)

where β and γ are trade-off hyper-parameters.

3.2.2. UNCERTAINTY-AWARE LOSS

Considering that different types of unseen classes have var-
ious training progress, i.e, locally unseen classes can be
facilitated from model collaboration, we seek to add a reg-
ularization term to alleviate training divergence between
locally unseen and globally unseen classes. Specifically, we
use the uncertainty of the generated cluster/class id to reflect
the training progress and apply a larger penalty for samples
with high uncertainty. Then, the uncertainty-aware loss can
be defined as:

Ri =
1

nu
i

∑
xu
j ∈Du

i

|π(xu
j )| (5)

where π(·) is the data uncertainty function. To precisely
explore the uncertainty, we rely on both the confidence of
the pseudo-label computed from the output of the softmax
function and the proportion of samples belonging to related
pseudo-label, i.e.,

π(xu
j ) = ρ(nc| argmax

c
p(xu

j ; θ))[1−max
c

p(xu
j ; θ)] (6)

where ρ(nc) = −τ1−
nc

nmax is the weight for class c, which
can be estimated from the labeled data, τ ∈ (0, 1]. nc is the
number of training samples of the class c predicted by the
model. nmax is the number of samples of the class with the
maximal size. Note that ρ(nc) can be any function inversely
proportional to nc. In this paper, we focus more on unbiased
training among locally unseen and globally unseen classes,
while the training inconsistency between seen classes and
unseen classes is ignored as both ORCA (Cao et al., 2022)
and NACH (Guo et al., 2022) have tackled this problem.

3.2.3. CALIBRATION MODULE

Due to the unseen classes being classified into new clusters
by the pair-wise objective, i.e., Lu

i , which only ensures
similar samples are classified into one group/cluster, the
same unseen class may be classified with different cluster id
on different clients. For example, in Figure 2, unseen classes
4, 5 and 6 would be classified with any labels between
4∼9 because of lacking supervision from the labeled data.
Such label heterogeneity would significantly degrade the
aggregation performance. Therefore, it is required to design
a calibration module to align the heterogeneous outputs of
local classifiers before the aggregation phase.

Inspired by a clustering-based FL technique (Lubana et al.,
2022) that aims to align local clustering performances

x x x x x x

0 1 2 3 4 5

Client 0

Feature
extractor

…

Classifier

x x x x x x

0 1 2 3 4 6

Classifier

Client 𝑖

Feature
extractor

Figure 2: Illustration of label heterogeneity in FedoSSL. In
a 10-class classification example, classes {0, 1, 2, 3} are
seen classes, while classes {4, 5, 6} are unseen classes. Due
to the feature-level pair-wise unsupervised loss (i.e., Lu

i ) on
unlabeled data, same unseen class would be classified with
different label id on different clients, e.g., unseen class 4
would be classified into the sixth position of the client 0’s
classifier, while in client i class 4 would be classified into
the eighth position of the classifier.

among different clients via adding a global centroids aggre-
gation mechanism, we extend this technique to our FedoSSL
scenario and use the global centroids as a self-supervised
signal to guide the classification process on unseen classes.
The loss of the calibration module can be represented as

Lcal
i = Lce

i + Lcluster
i (7)

Specifically, we first aggregate local centroids from all
clients to obtain global clusters at the server, i.e, by us-
ing Sinkhorn-Knopp (Genevay et al., 2019) clustering. The
global centroids are then returned to the clients for further
calibration. Taking the global centroids as guidance, the
outputs of the classifier on unseen classes can be updated by
approaching the cluster assignments with a cross-entropy
loss:

Lce
i =

1

nu
i

∑
zj∈Zu

i

H(q(zj ;m), p(w⊤ · zj)) (8)

where m denotes the global centroids. Moreover, to prevent
the cluster assignment of one class from changing dramat-
ically during the training process, we additionally design
the following loss function for promoting clusterability of
feature representations:

Lcluster
i =

1

nu
i

∑
zj ,z̄j∈Zu

i ,Z̄u
i

H(q(zj ;m), q(z̄j ;m)) (9)

where q(zj ;m) and q(z̄j ;m) are corresponding cluster as-
signments, which are computed by matching representations
with global centroids.

3.3. Algorithm Workflow

In this subsection, we illustrate the overall learning frame-
work of FedoSSL, which is summarized in Algorithm 1.
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Algorithm 1 FedoSSL Algorithm

Input: Number of clients K, learning rate η, local epochs
E, labeled data {Dl

1,Dl
2, . . . ,Dl

K}, unlabeled data
{Du

1 ,Du
2 , . . . ,Du

K}, hyperparameter α, β, γ
Output: Final model θ
1: Initialize the model parameter θ
2: repeat
3: Sample a set of clients S.
4: for each client i ∈ S in parallel do
5: for j = 1 to E do
6: Update local model: θi ← θi − η∇θL∗

i (θi)
7: end for
8: Calculate local centroids mi

9: end for
10: Update global model: θ ← ni∑

i∈S nin

∑
i∈S θi

11: Update global centroids m
12: Distribute θ and m to all clients
13: until Model converges

Client Update. In each communication round, the clients
download the global model and global centroids from the
server. In the client update phase, each of them makes
several local gradient-based updates (e.g., E epochs) to
optimize the local objective in Eq. (4). Then, local cen-
troids are computed via a Sinkhorn-Knopp based clustering
algorithm (Genevay et al., 2019).

Server Aggregation. After training the local models at the
client-side, both updated models and local centroids will be
sent to the server for further aggregation. Specifically, the
server first aggregates the local models by taking a weighted
average of them. Then, global centroids are calculated
by aggregating local centroids (i.e., again using Sinkhorn-
Knopp clustering). The above steps will be repeated until
the model achieves convergence.

4. Experiments
4.1. Experimental Setup

Dataset. We evaluate the FedoSSL framework over three
datasets CIFAR-10, CIFAR-100, and CINIC-10 (Darlow
et al., 2018). CINIC-10 is a larger dataset that is constructed
from CIFAR-10 and ImageNet. For all datasets, we first
divide classes into 60% seen and 40% unseen classes, then
select 50% of seen classes as the labeled data and the rest as
unlabeled data. For CIFAR-10 and CINIC-10 datasets, one
class of unseen classes is selected as the globally unseen
class and rest 3 classes are locally unseen classes, each
client owns all 6 seen classes, one globally unseen class and
one locally unseen class. For CIFAR-100 dataset, 10 classes
of unseen classes are selected as the globally unseen class
and rest 30 classes are locally unseen classes, each client

owns all 60 seen classes, 10 globally unseen classes and 10
locally unseen classes.

Baselines. To compare our FedoSSL with state-of-the-art
methods, we conduct experiments from two perspectives:
1) extending existing open-world SSL methods to FL en-
vironments; 2) extending existing FedSSL methods to the
open-world scenarios.

For the former one, we extend ORCA and NACH to be
applicable to federated learning scenarios by implement-
ing two representative FL algorithms with them, i.e., Fe-
dAvg (McMahan et al., 2017) and FedRep (Collins et al.,
2021). Specifically, the extended baselines are named Fe-
dAvg+ORCA (Fed-AO), FedRep+ORCA (Fed-RO), Fe-
dAvg+NACH (Fed-AN) and FedRep+NACH (Fed-RO).
Note that FedRep is a personalized federated learning al-
gorithm that keeps each client’s classifier updating locally,
while the other parts are aggregated at the server. The reason
for implementing FedRep is that the same unseen class may
be classified with different labels on different classifiers due
to the lack of uniform labels among different clients when
extending ORCA and NACH to a distributed environment.
In order to avoid the confusion caused by the aggregation of
local classifiers, FedRep does not aggregate the classifiers.

For FedSSL methods, we adopt one state-of-the-art method
SemiFL (Diao et al., 2022) to the open-world setting in
the following way: we use SemiFL to classify samples into
seen classes and estimate out-of-distribution (OOD) samples
based on softmax confidence scores. Note that SemiFL
has already shown superiority over FedMatch (Jeong et al.,
2021), thus we ignore FedMatch as a baseline in the paper.

To ensure fairness in performance comparison, we also run
the open-world SSL methods (i.e., ORCA, NACH) in the
centralized (i.e., Cen-O, Cen-N) and distributed (i.e., Local-
O, Local-N) environment without aggregation, respectively,
to indicate the upper bound and lower bound of the perfor-
mance of our FedoSSL method.

Implementation Details. For all datasets, we use ResNet-
18 as the backbone model and train the model using stan-
dard SGD with a momentum of 0.9 and a weight decay of
5 × 10−4. The dimension of the classifier corresponds to
the number of classes in each dataset. Unless otherwise ex-
plicitly specified, α, β, γ are set to 1. The model is trained
for 50 global rounds with 5 local epochs in each round. The
batch size is 512 for all experiments. Similar to ORCA (Cao
et al., 2022), we only update the parameters of the last block
of ResNet in the second training stage to avoid over-fitting.
For Sinkhorn-Knopp clustering (Genevay et al., 2019) in
our FedoSSL, we compute 32 local centroids and 10 global
centroids for CIFAR-10 and CINIC-10 and 128 local cen-
troids and 100 global centroids for CIFAR-100. We evaluate
all baselines and our FedoSSL in two settings: 10 clients
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Table 2: Classification accuracy of compared methods on seen, unseen and all classes with 10 clients over three benchmark
datasets. Asterisk (∗) in ∗SemiFL denotes that the original methods cannot classify unseen classes (and we had to extend
it). On unseen classes, LU. denotes locally unseen classes, while GU. denotes globally unseen classes. AU. represents the
overall accuracy of all unseen classes. Gray rows indicate the upper bound of the model performance of FedoSSL.

CIFAR-10 (%) CIFAR-100 (%) CINIC-10 (%)

#Method All Seen Unseen All Seen Unseen All Seen Unseen

LU. GU. AU. LU. GU. AU. LU. GU. AU.

Cen-O 78.26 86.63 - - 71.95 56.92 73.68 - - 44.28 69.32 83.18 - - 58.86
Cen-N 81.02 89.47 - - 74.64 58.98 75.10 - - 46.82 71.89 83.82 - - 62.89

Local-O 65.98 79.57 - - 45.60 43.10 54.33 - - 26.25 55.33 65.23 - - 40.48
Local-N 67.67 83.95 - - 43.26 45.28 57.24 - - 27.34 57.31 65.70 - - 44.73

Fed-AO 69.46 81.01 89.38 42.03 52.15 47.91 59.67 38.07 29.12 30.26 54.85 63.22 71.31 37.88 42.29
Fed-RO 71.72 82.22 89.84 53.43 55.96 47.72 59.79 44.13 28.86 29.62 57.16 62.26 72.24 42.09 49.50
Fed-AN 66.58 84.18 78.76 37.58 40.15 47.25 58.24 42.11 30.44 30.77 53.49 63.61 66.78 36.06 38.32
Fed-RN 68.83 85.52 79.84 41.79 43.81 48.02 59.4 48.77 30.36 30.96 58.11 65.97 68.81 39.01 46.33
∗SemiFL 64.91 81.57 86.33 31.16 39.92 42.28 54.94 31.68 21.46 23.29 52.27 62.72 64.53 37.21 37.34

FedoSSL 76.26 84.29 90.68 59.69 64.22 51.58 61.12 45.76 33.82 31.13 63.82 68.40 79.79 47.78 56.96

Table 3: Analysis of Loss function: classification accuracy
on CIFAR-10 (the number of clients: 10).

METHOD SEEN UNSEEN ALL

FED-AO 81.01 52.15 69.46
FEDOSSL-Ri-Lce

i 83.53 52.24 71.01
FEDOSSL-Ri 83.13 62.98 75.07
FEDOSSL 84.29 64.22 76.26

with 50% participation ratio and 50 clients with 10% par-
ticipation ratio. The final average model accuracy of all
clients is obtained from the best round among all global
rounds. All compared methods are implemented based on
the pre-trained model using the contrastive learning algo-
rithm SimCLR (Chen et al., 2020a).

We simulate all clients and the server on a workstation with
an RTX 2080Ti GPU, a 3.6-GHZ Intel Core i9-9900KF
CPU and 64GB of RAM.

Remark. We are aware that many tricks, e.g., a diversity-
constrained regularization loss to avoid trivial solutions (Cao
et al., 2022; Guo et al., 2022) or a dynamic threshold to filter
samples with lower confidence (Guo et al., 2022), etc., both
can be added to our FedoSSL framework. However, to avoid
losing focus, we ignore these tricks in this paper.

4.2. Performance Comparison

First, we compare our proposed FedoSSL methods with the
baseline methods over three benchmark datasets. The classi-
fication accuracy on CIFAR-10, CIFAR-100 and CININ-10
dataset are listed in Table 2. It should be noted that the over-
all unseen accuracy (AU.) is not always a weighted average
of locally unseen accuracy (LU.) and globally unseen accu-

Table 4: Analysis of Loss function: classification accuracy
on CINIC-10 (the number of clients: 10).

METHOD SEEN UNSEEN ALL

FED-AO 63.22 42.29 54.85
FEDOSSL-Ri-Lce

i 69.10 40.31 57.58
FEDOSSL-Ri 67.59 47.73 59.65
FEDOSSL 68.40 56.69 63.82

racy (GU.). Because sometimes most samples of a locally
unseen class and most samples of a globally unseen class
will be classified in the same label, in this case, when calcu-
lating overall unseen accuracy, we have to choose another
label (i.e., with the second largest number of samples) for
one of those two classes.

From the results, it can be observed that our proposed Fe-
doSSL provides superior performance of overall classifi-
cation accuracy than baselines and the locally trained ver-
sions (i.e., Local-O, Local-N) over all three datasets. In
most cases, FedoSSL maintains robust performance on seen
classes and locally unseen classes. On globally unseen
classes and overall unseen classes, FedoSSL achieves re-
markable performance gains. For example, for globally
unseen classes, FedoSSL outperforms the best baselines by
11.72% on CIFAR-10, 11.10% on CIFAR-100 and 13.52%
on CINIC-10. For overall unseen classes, FedoSSL out-
performs the best baselines by 14.76% on CIFAR-10 and
15.07% on CINIC-10. Moreover, we prove that the perfor-
mance gap between locally and globally unseen classes on
FedoSSL has significantly reduced when compared with
other methods, i.e., there is a 47% gap between locally and
globally unseen classes in Fed-AO, while FedoSSL reduces
this gap to 31% on CIFAR-10.
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Figure 3: Visualization of the predicted clustering assignments in different training stages.

Table 5: Classification accuracy of compared methods on seen, unseen and all classes with 50 clients over three benchmark
datasets.

CIFAR-10 (%) CIFAR-100 (%) CINIC-10 (%)

#Method All Seen Unseen All Seen Unseen All Seen Unseen

Fed-AO 70.22 83.34 50.54 45.63 56.25 29.69 53.81 60.49 43.80
Fed-RO 71.36 84.31 51.93 45.18 56.78 27.79 57.26 61.70 50.61
Fed-AN 69.89 85.36 46.68 45.22 56.30 28.59 53.42 63.62 38.13
Fed-RN 71.49 86.28 49.30 45.57 56.79 28.73 57.81 65.29 46.60

FedoSSL 76.41 85.71 62.46 47.01 58.34 30.17 64.02 69.56 55.71

4.3. Ablation Study

In this subsection, detailed analyses are shown to help under-
stand the superiority of our proposed FedoSSL framework,
including analysis on the two additional modules: Ri and
Lcal
i , effect of the number of seen classes, robustness on

large-scale of FL scenarios, and hyper-parameter sensitivity
analysis.

Analysis on Objective Functions. We evaluate our pro-
posed two objective functions Ri and Lcal

i (i.e., Lcal
i con-

sists of Lce
i and Lcluster

i ) of FedoSSL on CIFAR-10 and
CINIC-10 dataset. We use the Fed-AO as the basic baseline.
First, FedoSSL-Ri-Lce

i means that only adding Lcluster
i

to the baseline, it can be observed that the accuracy of
seen classes has improved. Then, FedoSSL-Ri means that
adding both Lce

i and Lcluster
i could greatly improve the ac-

curacy of unseen classes. Finally, the case of using all two
objective functions, i.e., the complete FedoSSL, further im-
proves the accuracy of the unseen classes and achieves the
best performance. Results in Table 3 and 4 give a clear abla-
tion study to demonstrate the effectiveness of our proposed
objective functions. Besides that, we record the calculated
clustering assignments in the initial stage, intermediate stage
and final stage, respectively. Figure 3 shows that sharing
local centroids can significantly help to calibrate the hetero-
geneous outputs of the classifier on unseen classes.

Number of Seen Class. To demonstrate the effectiveness
of our proposed FedoSSL, we systematically evaluate the
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Figure 4: Performance of Fed-RO and FedoSSL with differ-
ent numbers of seen classes on CIFAR-10.

performance when changing the ratio of seen classes on
CIFAR-10 dataset with 10 clients. Fed-RO is selected as the
baseline because it is the best among the 4 baselines. The
results in Figure 4 show that FedoSSL always outperforms
Fed-RO in all cases. For example, with 40% of seen classes,
FedoSSL achieves a 9.8% overall accuracy improvement
from Fed-RO. Besides, the performance of FedoSSL is sta-
ble for all ratio values and improves significantly with the
increasing ratio of seen class.

Analysis on Robustness of FedoSSL. To further demon-
strate the robustness of our proposed FedoSSL at different
experimental scales, we evaluated it in a 50-client scenario
with the same other client settings, as shown in Table 5. The
results show that FedoSSL still has the best overall accuracy
in all datasets, and the performance advantage of unseen
classes remains significant. For CIFAR-10 dataset, FedoSSL
outperforms the best baselines by 6.88% on the overall accu-

8



Federated Open-world Semi-supervised Learning

Table 6: Sensitivity to number of local clusters on CIFAR-
10. The number of global centroids is 10.

L All Seen Unseen

LU. GU. AU.

8 74.28 84.26 88.90 54.09 59.29
16 75.76 84.17 89.28 58.36 63.15
32 76.26 84.29 90.68 59.69 64.22

Table 7: Accuracy obtained using different privacy-
guarnteed version of FedoSSL on CIFAR-10. ‘No Privacy’
represents the idealized setting when local representations
are shared with the server. The number of global centroids
is 10.

All Seen Unseen

LU. GU. AU.

No Privacy 77.19 85.95 89.76 58.77 64.05
K-anonymity 76.26 84.29 90.68 59.69 64.22

racy and 20.28% on the unseen accuracy, which is 10.74%
and 10.08% for the CINIC-10, respectively. Overall, our
results demonstrate that FedoSSL has good robustness in
large-scale FL scenarios.

Number of Local Centroids. In the calibration module,
the key insight is to upload local centroids instead of the
representations of all data to enable computation of the
global clusters. The local clustering methods can be flexibly
chosen, depending on the system’s constraints, e.g., for
strong privacy guarantees at possibly high loss in utility,
locally differentially private (local-DP) clustering methods
can be used (i.e., DP-k-Means (Balcan et al., 2017), Local-
DP (Chang et al., 2021)); for slightly weaker guarantees but
higher utility, K-anonymous clustering methods can be used
(i.e., r-Gather clustering (Aggarwal et al., 2010), Sinkhorn-
Knopp based clustering (Genevay et al., 2019)). To further
demonstrate the effectiveness of FedoSSL, we study the
sensitivity of FedoSSL to the number of local centroids (i.e.,
L). Table 6 shows that FedoSSL is robust to the number of
local clusters as long as it even slightly exceeds the number
of classes, achieving similar performance in all settings.

Analysis on Privacy. Our proposed FedoSSL uses
Sinkhorn-Knopp based clustering algorithm to compute L
equally-sized local clusters. This operation enables a n/L-
anonymity privacy guarantee across all n samples present
on a client (Lubana et al., 2022). Furthermore, it is also
feasible to use other local-DP based clustering methods
instead of Sinkhorn-Knopp based clustering to provide
stronger privacy guarantees. Therefore, we compare our
proposed K-anonymity-guaranteed FedoSSL with the no-
privacy-guaranteed version (i.e., replace Sinkhorn-Knopp
based clustering with general k-means method). As we
can see from the Table 7, FedoSSL witnesses only a small
performance drop w.r.t K-anonymity.
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Figure 5: Classification accuracy on different setting of β
(a) and γ (b).

Analysis on Hyperparameters. We further analyze the im-
pact of hyper-parameters β and γ on CINIC-10 dataset with
10 clients. Figure 5(a) and 5(b) provide the performance
of different β and γ respectively. For β, the bigger value
means the bigger effect of Ri. When β = 1, the proposal
achieves the best performance on all three accuracies and
the performance does not degrade severely with β changes.
This demonstrates that FedoSSL is quite robust with the
selection of β. For γ, the bigger value means the bigger
effect of Lcal

i , namely, the model will be more influenced
by global centroids. The results show that when γ = 0.5 the
proposal achieves the best overall accuracy. When γ = 0.1,
unseen classes’ accuracy degrades severely, which demon-
strates that the value of γ should not be too small.

5. Conclusion
In this paper, we have investigated a new federated semi-
supervised learning framework under the open-world setting,
FedoSSL, to provide unbiased training for both labeled
and unlabeled data. Specifically, we categorize the unseen
classes as locally and globally unseen with the principle of
whether the related unseen classes exist in only one client or
not. An uncertainty-aware suppressed loss and a calibration
module are then designed to balance the training pace among
locally unseen and globally unseen classes and supplement
global model aggregation phase, respectively. We have
proved that FedoSSL is a general framework for FedSSL and
can be easily compatible with state-of-the-art FL methods.
Extensive empirical experiments have been conducted over
various models and datasets to verify the effectiveness and
superior performance of FedoSSL framework.
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