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Abstract
Recent works have identified that existing meth-
ods, which construct persistence diagrams in
Topological Data Analysis (TDA), are not robust
to noise and varied densities in a point cloud. We
analyze the necessary properties of an approach
that can address these two issues, and propose a
new filter function for TDA based on a new data-
dependent kernel which possesses these proper-
ties. Our empirical evaluation reveals that the
proposed filter function provides a better means
for t-SNE visualization and SVM classification
than three existing methods of TDA.

1. Introduction
Topological Data Analysis (TDA) is an important approach
to study the shape of a point cloud using techniques from
topology (Wasserman, 2016). An important and popular
technique is persistent homology (PH) (Edelsbrunner et al.,
2000), which typically produces a persistence diagram (PD)
to describe the topological characteristics of a point cloud.

PH has been applied to many fields. In biology, it has been
applied to (a) systematically study DNA structures, and suc-
cessfully discriminates three types of DNA (Meng et al.,
2020); and (b) protein-ligand binding affinity prediction
(Liu et al., 2022). In chemistry, it was employed to acceler-
ate a first-principle screening for the discovery of the next
generation of functionalized molecules and materials, such
as screening a large database to discover the CO2-philic
functional groups (Townsend et al., 2020).

PD is beneficial for machine learning methods because it
captures the topological structure information of a point
cloud (Hensel et al., 2021) which cannot be obtained by
other means. Recent efforts have been devoted to trans-
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forming a PD into some features, to be used as the input
representation for machine learning algorithms (Chan et al.,
2022; Kusano et al., 2017; Hofer et al., 2019). Most of
the work (Reininghaus et al., 2015; Adams et al., 2017;
Carrière et al., 2017; Kusano et al., 2017; Le & Yamada,
2018; Polanco & Perea, 2019; Bubenik, 2020) have focused
on different vectorization methods in order to improve the
results of machine learning algorithms, with a strong as-
sumption that a correct and good PD has been derived.

This work begins by asking a question: Do existing methods
produce a correct and good PD? Unless we are certain that
they do, any vectorization method used only propagates the
errors introduced by PD, leading to poor final task-specific
performance.

Existing works use a distance measure in their core compu-
tations, e.g., (Zomorodian & Carlsson, 2004). Some have
identified shortcomings in using a distance measure (Chazal
et al., 2017; Berry & Sauer, 2019; Vishwanath et al., 2020;
Blumberg & Lesnick, 2022; Vipond, 2020). There are two
fundamental issues, i.e., PD is not robust to outliers (Chazal
et al., 2017; Vishwanath et al., 2020) and varied densities
(Berry & Sauer, 2019) in a point cloud. Current research
has provided some solutions to each of these issues indepen-
dently.

The multi-parameter approach (Blumberg & Lesnick, 2022)
attempts to address both issues. But it still suffers from the
same flaw of the one-parameter approach (see Appendix B.6
for details). No attempts have been afforded to address both
issues in the one-parameter approach. To the best of our
knowledge, we are the first to address both issues, i.e., when
both noise and varied densities coexist in a point cloud.

The main contributions of this work are:

1. Investigating the shortcomings of existing methods to
produce correct and good PDs.

2. Highlighting the importance of the problem of the lack
of robustness of PD when noise and varied densities
coexist in a point cloud.

3. Proposing a new data-dependent kernel and a new
method to produce a PD in order to address the above
problem.
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4. Showing that using a good PD significantly improves
the visualization outcome of t-Distributed Stochas-
tic Neighbor Embedding (Van der Maaten & Hinton,
2008) and the classification accuracy of Support Vector
Machines (Hearst et al., 1998).

2. Background
Here we present the pertinent details on PH (see (Chazal &
Michel, 2021) for a detailed introduction). The key symbols
and notations are shown in Table 1.

Table 1. Key symbols and notations used

X A data set of x ∈ Rd, where |X| = n
X Sample space of X
D A subset of X , where |D| = ψ
Λ A Voronoi Diagram
θ A Voronoi cell in Λ
vi Seed of Voronoi cell θi
κ Kernel function
D Persistent diagram
ℓ(·, ·) Euclidean distance
ℓk(x) Distance to x’s k-th nearest neighbor

Let f : X → R+ be a function on metric space (X , ℓ) and
X ⊂ X be a parameter of f . At level ϵ > 0, the sublevel
set X f

ϵ = {x ∈ X | f(x) ≤ ϵ} encodes the topological
information in X . For s ≤ ϵ, the sublevel sets are nested,
i.e., X f

s ⊆ X f
ϵ . Thus {X f

ϵ }0≤ϵ<∞ is a nested sequence of
topological spaces, called a filtration, denoted by Sub(f),
and f is called the filter function.

The evolution of the topology (new cycles appear or exist-
ing cycles disappear through merging) is captured in the
filtration as ϵ ranges from 0 to ∞, where the 0-dimensional
cycle is connected component and the 1-dimensional cycle
is loop/ring whose numbers are denoted as Betti numbers
(Milnor, 1964) b0 and b1, respectively. A cycle is said to
have been born at c ∈ R when it starts to appear in X f

c ;
and it dies at g ∈ R when it no longer exists in X f

p for any
p > g. PH is an algebraic module that tracks the persistence
pair (c, g) in Sub(f). The persistence pairs (c, g) are shown
in the form of Persistence Diagram (PD) D(f), where c is
the x-coordinate and g > c is the y-coordinate. PD can be
equivalently represented by Persistence Barcode (Carlsson
et al., 2004), where (c, g) in PD corresponds to a bar ranging
from c to g.

There is an equivalent way to perform filtration from a
distance matrix, such as Rips filtration (Hausmann et al.,
1995). In Rips filtration, Rips complex at ϵ is V Rϵ(X) =
{σ ⊂ X | dia(σ) ≤ ϵ}, where X ⊂ X is a finite point
cloud and dia(σ) represents the diameter of σ. This process
is equivalent to connect x, y ∈ X if ℓ(x, y) ≤ ϵ.

Figure 1. An example filter function, three sublevel sets and a PD.

PH tracks the evolution of topology in {V Rϵ(X)}0≤ϵ<∞.
The same result can be obtained through a filter function
f(·) = 2min

x∈X
ℓ(·, x). An example is given in Figure 1.

3. Related Work
PH is a method that captures different topological features
of a point cloud at different spatial resolutions. Features
that persist over a wide range of spatial scales are regarded
to be the true features of the underlying space, rather than
the artifacts of sampling, noise, or specific selection of
parameters.

(Vietoris–)Rips (Hausmann et al., 1995) and Čech (Ghrist,
2014) complexes are most commonly used in PH to produce
a PD. However, the PD based on either (Vietoris–)Rips
complex or Čech complex is sensitive to noise (Lesnick
& Wright, 2015; Chazal et al., 2017). Furthermore, both
of them have trouble with varied densities (Berry & Sauer,
2019; Blumberg & Lesnick, 2022). As a result, they are not
robust to the stretching and shrinking of a point cloud.

In order to be robust to noise, Distance-to-a-measure (DTM)
is a commonly used approach to generate a robust PD from
a point cloud with noise. PD is obtained via a distance-to-a-
measure function which uses the average squared distances
of k-nearest neighbors (Chazal et al., 2017). However, we
found that DTM has difficulty in a point cloud with varied
densities.

Several strategies have been proposed to address this issue,
and can be divided into two frameworks: 1-parameter and
multi-parameter frameworks. In the 1-parameter framework,
fixing a density threshold and fixing the scale parameter
are two commonly used approaches (Carlsson et al., 2008;
Chazal et al., 2011; 2013). The multi-parameter filtration
constructs a bi-filtration by using additional parameters,
e.g., using density to capture the topological features of
varied densities (Frosini & Mulazzani, 1999; Carlsson &
Zomorodian, 2007; Blumberg & Lesnick, 2022).
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However, none of the approaches mentioned above can deal
with the problem of varied densities satisfactorily: the de-
tected feature in the dense region is still less persistent than
that in the sparse region. Continuous k-nearest neighbors
(CkNN) has been claimed to be the only approach to iden-
tify the ‘correct topology’ by a filtration based on k-nearest
neighbors distance (Berry & Sauer, 2019) as far as we know;
and it belongs to the 1-parameter framework.

A common disadvantage of the above-mentioned ap-
proaches is that they cannot capture the correct topological
features when noise and varied densities coexist in a point
cloud. Because they are all proposed to address only one of
the two issues.

We analyze the reasons why they cannot obtain a correct
PD when noise and varied densities coexist in the following
section.

4. How to Construct a Correct PD
In this section, we provide two requirements that an ap-
proach must satisfy in order to construct a correct PD. Based
on these requirements, we analyze the reason why the ex-
isting approaches mentioned above cannot obtain a correct
PD. Furthermore, we propose the necessary properties of a
filter function in order to satisfy these requirements.

Proposition 4.1. A correct PD must be robust to noise and
varied densities.

A correct PD must be robust to noise in order to determine
the correct topological features because the topological fea-
ture can be severely affected by noise. Rips fails because
it uses the nearest Euclidean distance, which is sensitive
to noise. Improving upon Rips, DTM (Chazal et al., 2017)
uses a more robust measure, which is realized as the average
squared distances of k-nearest neighbors (k-nn). However,
DTM is not robust to varied densities because the k-nn
distance is easily affected by varied densities.

A correct PD must be robust to varied densities. With a
point cloud that has been either stretched or shrunk, the PD
produced should be the same before and after the data mod-
ification. This is because the topological features remain
unchanged before and after stretching or shrinking. Rips
and DTM are not robust to varied densities because they get
large DTM values in sparse regions and small DTM values
in dense regions. CkNN attempts to remove this effect by
normalization: the distance between two points x, y is nor-
malized by the square root of the product of x’s and y’s k-th
nearest neighbor distances. However, CkNN is not robust
to noise because the distance to the k-th nearest neighbor is
sensitive to noise.

No existing approaches are robust to both noise and varied
densities, as far as we know.

To satisfy the requirements in Proposition 4.1, a filter func-
tion must have the following properties.

Property 4.2. Tolerant to noise.
The filter function must produce approximately the same
value from a finite point cloud X , with and without noise,
i.e., f(x|X) ≈ f(x|X ∪ Xn), where Xn is a set of noise
points (defined in Definition 7.1).

Let a finite point cloud S sampled from S be obtained from
another finite point cloud T sampled from T , i.e., S =
{m(T ) + r(x−m(T ))|x ∈ T }, where r > 1 (stretching)
or r < 1 (shrinking), and m(·) denotes the center. This
definition of shrinking/shrinking is applicable globally or
locally in a point cloud.

Property 4.3. Tolerant to varied densities.
If sample space S is a stretched/shrunken version of T , i.e.,
S is sparser/denser than T , ∀x ∈ S, y ∈ T , f(x|S) ≈
f(y|T ).

5. Λ-kernel: Definition and Properties
Motivated by Properties 4.2 and 4.3, we propose a new
data-dependent kernel and its associated new filter function
which produces PDs that conform to Proposition 4.1.

Voronoi Diagram has been widely used in the geometric and
topological analyses because it has many favorable topolog-
ical properties. For example, it forms small partitions in
high-density regions and large partitions in low-density re-
gions (Aurenhammer, 1991; Aurenhammer & Klein, 2000;
Okabe et al., 2000).

Here we propose a new kernel called Λ-kernel as a similarity
measure, which is based on Voronoi Diagram.

Let X be a finite point cloud sampled from X ⊆ Rd, and
D = {v1, v2, ..., vψ} be randomly sampled uniformly from
X . A Voronoi Diagram Λ constructed from D has Voronoi
cell θi centred at vi ∈ D defined as follows:

θi = {x ∈ X | vi = argmin
v∈D

ℓ(x, v)}

An example of Voronoi Diagram is shown in Figure 2(a).
Λ-mapping Φ : Rd → Rψ is defined as:

Φ(x | Λ) = [
e−ηℓ(x,v1)

Υℓ
, ...,

e−ηℓ(x,vψ)

Υℓ
]⊤,

where Υℓ = (
∑ψ
j=1 e

−2ηℓ(x,vj))
1
2 is the normalization term

which ensures ∥Φ(x|Λ)∥2 = 1, and η is the hyperparameter
controlling the relative importance of the entries of Φ(x|Λ).

Φ(·|Λ)-mapped points in Rψ are distributed on the surface
of a (ψ − 1)-sphere Sψ−1 = {z ∈ Rψ : ∥z∥2 = 1}.
Figure 2(b) shows an example of S1 (ψ = 2), all mapped
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b

Figure 2. (a) Example Voronoi Diagram where the ψ red points
in Rd are sampled from a point cloud. (b) Data distribution after
Λ-mapping Φ(· | Λ) when ψ = 2.

points are located on the red arc. The enlarged black point
on the arc in the figure indicates the mapped location of
the boundary in Voronoi Diagram Λ for ψ = 2 points. The
points from the same cell in Rd are mapped to the same side
of the mapped boundary in Rψ .

Let V (X) be the set containing all the possible Voronoi
Diagrams derived from X and ex ≜ lim

η→∞
Φ(x|Λ).

Φ(x|Λ) has the following property:

Property 5.1. ∀ ϵ > 0, ∃ η̂ > 0,∀ η ≥ η̂, x ∈ X, Λ ∈
V (X), ∥Φ(x | Λ)− ex∥ ≤ ϵ, and ex is in one-hot form.

Property 5.1 shows that Φ(x|Λ) is increasingly influenced
by x’s nearest neighbors (in D) as η increases. When η
tends to infinity, Φ(x|Λ) is determined by x’s nearest point
only in D. See the proof in Appendix A.1.

The similarity between two points is defined as the inner
product after they have been mapped using Φ(·|Λ).
Definition 5.2. For any x, y ∈ Rd, the similarity of x and y
based on Voronoi Diagram Λ is defined as:

s(x, y | Λ) = ⟨Φ(x | Λ),Φ(y | Λ)⟩ .

This similarity has the following property:

Property 5.3. ∃ η̃,∀ η ≥ η̃,∀x, y, x′, y′ ∈ Rd, if x, y be-
long to the same Voronoi cell; and x′, y′ belong to different
Voronoi cells, then s(x, y|Λ) ≥ s(x′, y′|Λ).

See the proof in Appendix A.2.

Given a point cloud X , we denote the probability space of
Voronoi Diagram as (Ω, V (X), ρ), where Ω is the sample
space of V (X) and ρ(·) is the probability density function.
From Definition 5.2, Λ-kernel of x and y wrt X , a similarity
based on all possible Voronoi Diagrams derived from X , is
defined as follows:

Definition 5.4. ∀x, y ∈ Rd, Λ-kernel derived from X is
defined as:

κ(x, y|X) = EΛ[s(x, y|Λ)] =
∫
V (X)

ρ(Λ)s(x, y|Λ)dΛ.

In practice, κ(x, y|X) is estimated from a finite number of
Voronoi Diagrams Λi ∈ V (X), i = 1, . . . , t:

κ̂(x, y | X) =
1

t

t∑
i=1

s(x, y | Λi). (1)

Lemma 5.5. κ̂(x, y | X) is a valid kernel.

Proof. See the proof in Appendix A.3

The empirical feature map Φ̂(x) of kernel κ̂ is expressed
as Φ̂(x) = 1√

t
[Φ1(x)

⊤,Φ2(x)
⊤, ...,Φt(x)

⊤]⊤, where

Φi(x) ≜ Φ(x|Λi). Φ̂(·) has Property 5.6, which is a di-
rect result from Property 5.1.

Property 5.6. ∀ ϵ > 0,∃ η̂ > 0,∀ η > η̂, x ∈ X, ∥Φ̂(x)−
êx∥ ≤ ϵ, where êx ≜ lim

η→∞
Φ̂(x).

Here we propose distance dΛ which satisfies the follow-
ing Lemma and has data-dependent Property 5.8, whose
proof is included in Appendix A.7. The experiment that
demonstrates this property is given in Appendix B.2.

Lemma 5.7. dΛ(x, y|X) ≜ 1 − κ̂(x, y|X) is a distance
metric when η → ∞.

Proof. See the proof in Appendix A.4

Property 5.8. For any two points x, y in dense region S and
their corresponding x′, y′ in sparse region T , dΛ(x, y|S) ≈
dΛ(x

′, y′|T ) or equivalently κ̂(x, y|S) ≈ κ̂(x′, y′|T )),
where S ⊂ S , T ⊂ T , and S = {m(T )+r(x−m(T ))|x ∈
T } for r > 1.

Proof. See the proof in Appendix A.5, and an example is
shown in Appendix B.2.

6. Filter Function Based on Λ-kernel
Here we give a new filter function fΛ(·) called Λ-filter based
on Λ-kernel, whose corresponding filtration is referred to as
Λ-filtration. We also prove that PD built from Λ-filtration is
not only stable wrt fΛ, but also stable wrt the perturbation
of input point cloud X .

The new Λ-filter, is given as follows:

fΛ(x) = −max
y∈X

∫
V (X)

ρ(Λ)s(x, y | Λ)dΛ

A linearly-transformed version of fΛ(·): 4(1 + fΛ(·)) is
used for further analysis, whose empirical estimation is

f̂Λ(x) = 4min
y∈X

(1− κ̂(x, y|X)). (2)
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Let B(x, ϵ) ≜ {y ∈ Rd|ℓ(x, y) ≤ ϵ}, and X f̂Λ
ϵ ≜ {x ∈

X | f̂Λ(x) ≤ ϵ}. Then we have X f̂Λ
ϵ = Φ̂−1(U), where

U =
⋃
x∈Φ̂(X)B(x,

√
ϵ/2) and U is homotopy equiv-

alent to the geometric realization of the C̆ech complex
C√

ϵ/2
(Φ̂(X)), which is usually replaced with Rips com-

plex V R√
2ϵ(Φ̂(X)) to improve computational efficiency,

since only pairwise distance is needed in Rips.

So X f̂Λ
ϵ can be fully represented by a set of edges :

{(x, y) ∈ X2 |
∥∥∥Φ̂(x)− Φ̂(y)

∥∥∥
2
≤

√
2ϵ}, (3)

which is equivalent to {(x, y) ∈ X2 | dΛ(x, y|X) ≤
ϵ}, where dΛ(·, ·|X) is defined in Lemma 5.7 and

dΛ(x, y|X) = 1−
〈
Φ̂(x), Φ̂(y)

〉
=

∥∥∥Φ̂(x)− Φ̂(y)
∥∥∥2
2
/2.

This illustrates that using fΛ as a filter function for PH is
equivalent to using dΛ(x, y) to replace Euclidean distance
in the filter function of Rips.

A fundamental property of PD is stability, i.e., a small per-
turbation in the input point cloud only leads to a small
perturbation of its persistence diagram wrt bottleneck dis-
tance (Chazal & Michel, 2021). It is a Wasserstein distance,
defined as:

W∞(X,Y ) := inf
φ:X→Y

sup
x∈X

∥x− φ(x)∥∞, (4)

where the infimum is over all bijections between X and Y .

Furthermore, we show that Λ-filter is also stable to the input
point cloud X , i.e., a small perturbation in X implies a
small change in PD. The theorem is given as follows:

Theorem 6.1. The bottleneck distance between two per-
sistence diagrams D(f) and D(g), derived from Λ-filters
f(X) and g(X ′), respectively, is bounded as follows:

W∞(D(f),D(g)) ≤ ∥f − g∥∞ ≤ dH(X,X ′), (5)

where X ′ is the perturbed version of X; and dH(X,X ′) is
the Hausdorff Distance between X and X ′.

Proof. See the proof in Appendix A.6

7. PDs Built From Λ-filter Are Robust to Noise
and Varied Densities

7.1. Robust to Noise

We start by providing the definition of noise and the defini-
tion of robustness to noise.

1The code of Λ-filter is available at https:
//github.com/IsolationKernel/Codes/tree/
main/Lambda-kernel

Definition 7.1. Let ρ(·) and ρn(·) be the probability density
function of X and Xn, where X is the sample space of
normal points, and Xn is the sample space of noise points.
For any x ∈ Rd, ρ(x) · ρn(x) ≤ µ, where µ is a sufficiently
small positive real number.

Intuitively, we cannot distinguish between normal points
and points in high-density regions, and only points in low-
density regions are considered as noise, where the density
is denoted by ρ(x).

Definition 7.2. For two given point clouds X and Xn, sam-
pled from X and Xn, respectively, (δ,X,Xn)-D is a PD
which is robust to noise-corrupted point cloud X ∪Xn, and
it satisfies the following conditions:

(a) W∞(D(X),D(X ∪Xn)) < δ, and

(b) the numbers of valid persistent features remain the
same in D(X) and D(X ∪Xn),

DTM’s filter function is a robust approximation of that of
Vietoris-Rips (Chazal et al., 2017), estimated as:

f̂DTM (x) =

√√√√1

k

k∑
i=1

ℓ2i (x)

where ℓi(x) is the i-th nearest neighbor distance of x in
X ∪Xn and k is the user-specified number of neighbors.

f̂DTM (x) using ℓi(x) to reduce the effect of noise points.
When |Xn| is small, for any x ∈ Rd, its k nearest neighbors
in X have a small change only after adding Xn. Hence
f̂DTM (x) almost does not change. Therefore DTM has
Property 4.2.

Our proposed Λ-filter1 is robust to noise because it is based
on the Voronoi Diagram Λ constructed from the sampled
subset D. D sampled from X is close to D′ sampled from
X ∪Xn, i.e. D ≈ D′ when there is only a small amount of
noise. Therefore, fΛ(x|X) ≈ fΛ(x|X ∪Xn), i.e., Λ-filter
also has Property 4.2.

Furthermore, compared with DTM, Λ-filter considers more
topological information via ψ points sampled from a point
cloud: (i) Λ-filter contains the global distributional informa-
tion of the point cloud, while DTM utilizes local information
pertaining to k-nn only. (ii) In addition to the distance to
the ψ sampled points, Λ-filter utilizes the order of these
distances. While DTM only uses the square mean of these
distances.

We verify the behaviors of Λ-filter and DTM with respect to
Definition 7.2 on the Cassini dataset (Chazal et al., 2017),
where we add noise with ratio γ = |Xn|/|X| (|X|=1000 in
our experiments) from 0 to 0.5 in steps of 0.025, based on
Definition 7.1.

5
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Figure 3. (a) Bottleneck distance between D(X) and D(X ∪Xn)
at different values of γ. (b) Number of valid 1-dim features in
D(X ∪Xn) at different values of γ. Here we treat a feature (c, g)
as a persistent feature if its lifespan g − c is greater than half of
the maximum lifespan.

Figure 3 shows that Λ-filter outperforms DTM and GK-
filter2 from the following aspects (the details of the point
cloud and the PDs produced are provided in Table 4 in
Appendix B.1):

(i) The bottleneck distance due to Λ-filter is smaller than
those of DTM and GK-filter at most values of γ.

(ii) The bottleneck distances of Λ-filter and DTM are
0.03 and 0.08 respectively, while GK-filter is 0.17 when
γ = 0.025. This shows that GK-filter is very sensitive to
noise. When γ > 0.2, the bottleneck distance due to DTM
gradually increases as γ increases; while that due to Λ-filter
remains below 0.2.

(iii) The Cassini dataset has one ring only (see Table 4), so
the number of valid features is 1. GK-filter produces the
correct number only when γ < 0.05. DTM always yields
two rings incorrectly; while Λ-filter produces the correct
number except at γ=0.2.

7.2. Robust to Stretching and Shrinking

In addition to robustness to noise, as we stated earlier, robust-
ness to varied densities is also important, whose definition
is given as follows:

Definition 7.3. A PD produced by a filter function is ro-
bust to varied densities (due to stretching/shrinking) if the
PDs produced from two finite point clouds S and T (a
stretched/shrunken version of S) are approximately the
same, i.e., W∞(D(f(S)),D(f(T ))) ≈ 0.

CkNN (Berry & Sauer, 2019) is the only approach that
can handle the issue of varied densities as far as we know.
CkNN connects points x, y if ℓ(x,y)√

ℓk(x)ℓk(y)
< ϵ, where the

parameter ϵ is allowed to vary continuously to perform
filtration. With the normalization term

√
ℓk(x)ℓk(y), the

lifespan of the connection of the two points is almost the
same as that before stretching. Hence CkNN’s filtration is
robust to varied densities due to streching/shrinking.

2We use a filter function which employs data-independent Gaus-
sian Kernel (GK) in Equation 2 to represent noise-sensitive method
like Rips. We denote it as GK-filter.

Theorem 7.4. The PD produced via Λ-filter is robust to
varied densities.

The intuition behind the proof is that each point x’s mem-
bership in a Voronoi cell remains almost the same after
stretching/shrinking. Then the distance between x and other
points, as measured by dΛ, remains unchanged. Hence the
value of Λ-filer remains unchanged. The proof is provided
in Appendix A.7.

Figure 4(a) and Figure 5 show an example of the influence
of stretching and shrinking on PD. Xr is stretched from X
with ratio r: Xr = {m(X)+r(x−m(X))|x ∈ X}, where
m(X) denotes the center of X . Meanwhile, we keep the
Euclidean distance between the noise point x̂ and its nearest
neighbor x̃ in Xr to be constant. An example of X1 ∪ {x̂}
is shown in Figure 4(a).

Figure 4. (a) An example of Xr ∪ {x̂} when r = 1. (b) Point
cloud with noise and topological features of different density. (The
radius of the left ring is 10 times larger than that of the right one.)

The bottleneck distance between the PD of X and the PD
of Xr is shown in Figure 5, where we have the following
observations:

(i) The PD produced by Λ-filter is robust to stretching and
shrinking. It has almost zero bottleneck distance, outper-
forming the other three measures over all values of r.

(ii) DTM and Rips are very sensitive to stretching and shrink-
ing: their bottleneck distance grows as r increases.

(iii) CkNN’s robustness to stretching and shrinking is
severely affected by noise. Having only one noise point
x̂, its bottleneck distance grows dramatically as r decreases
when r < 1, as shown in Figure 5(b).

Figure 5. Comparisons in varied densities. (a) Without noise: The
bottleneck distance between D(X) and D(Xr) at different values
of r. (b) With one noise point x̂: The bottleneck distance between
D(X ∪ {x̂}) and D(Xr ∪ {x̂}) at different values of r.
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7.3. Noise and Varied Densities Coexist

The comparison of the four approaches (Rips, DTM, CkNN
and Λ-filter) is summarized in Table 2.

Table 2. Summary of filter functions and their robustness.

Approach Filter Function Robust to
f(x) noise varied densities

Rips 2miny∈X ℓ(x, y) × ×
DTM

√
1
k

∑k
i=1 ℓ

2
i (x) ✓ ×

CkNN3 miny∈X
ℓ(x,y)
2ℓk(y)

× ✓

Λ-filter 4miny∈X(1− κ(x, y)) ✓ ✓

A simple example is used to show the difference between
these four approaches.4 The point cloud contains two rings
with radius 5 (Figure 6(a)), whose filter function (Rips) was
shown in Figure 6(b). Then we stretch the left ring to radius
10, shrink the right ring to radius 1 and add 40 random
noises (as shown in Figure 4(b)).

Figure 6. (a) Data with no noise or varied densities. (b) The corre-
sponding filter function (Rips) values and its contour map.

Table 3 shows the results of the comparison. Both Rips and
DTM can detect one prominent (left) ring only because the
less persistent (right) ring is indistinguishable from the topo-
logical features introduced by the noise around the more
persistent (left) ring. We refer to this phenomenon as mask-
ing: the less persistent feature is masked by the noise.

The details of the growth of sublevel sets are given in Ap-
pendix B.3.

Although DTM is more robust to noise than Rips, DTM is
unable to provide a completely noise-free PD. The masking
effect still lingers for DTM.

CkNN and Λ-filter have no masking effect: the two rings are
identified as almost equally prominent, having their persis-
tences significantly greater than that of the noise. However,
there are some seeming persistent features due to noise in

3The original paper (Berry & Sauer, 2019) of CkNN gives
the distance definition as l(x,y)√

lk(x)lk(y)
only. Here we provide an

approximated filter function of CkNN (see Appendix A.8).
4The comparison with the multi-parameter approach is shown

in Appendix B.6.

the 1-dim barcode (and PD) of CkNN; but none in Λ-filter.

In a nutshell, only Λ-filter can handle the problem of noise
and varied densities at the same time. DTM fails when the
point cloud has varied densities; CkNN cannot handle the
influence of noise; and Rips fails in both cases.

8. Experiments with Real-world Datasets
We illustrate the performance of robust PDs in machine
learning applications through two tasks: 1. dimensionality
reduction and visualization of biological cells. 2. classifica-
tion of bone scripts. In addition to these two tasks, we also
explore the effect of parameter η on the classification task.
The parameter settings are provided in Appendix B.4.

8.1. Visualization of Immune Cells by Capturing Spatial
Patterns via Persistent Homology

Here we treat each image independently, where its set of
pixels is treated as a point cloud. The point cloud is trans-
formed into a PD using each of Rips, DTM, CkNN, and
Λ-filter. The distance between two images can then be com-
puted as Wasserstein distance between two PDs. Following
(Vishwanath et al., 2020), Wasserstein-1 distance matrices
∆h[i, j] = W1(D(Ci),D(Cj)) for h-dimensional PDs is
computed, where h = 0, 1, and C is a point cloud. Finally,
we feed ∆max = max{∆0,∆1} to t-SNE (Van der Maaten
& Hinton, 2008) and get the visualization result, which is
shown in Figure 8.

The dataset we used consists of 150 images (or point
clouds C1, ..., C150) from 3 types of cells in tumor regions
(Vipond et al., 2021), each type contains 50 point clouds.
CD8, FoxP3 and CD68 are 3 types of immune cells, and
their cell locations are extracted from IHC slides as (x, y)-
coordinates, shown in Figure 7(b), as conducted by (Vipond
et al., 2021).

Figure 7. (a) An example of bone scripts5. (b) A region of a head
and neck tumor IHC slide stained to show CD8 cells. The regions
of interest are highlighted.6

5Sourced from https://en.wikipedia.org/wiki/
Oracle_bone_script.

6Sourced from https://www.pnas.org/doi/full/
10.1073/pnas.2102166118. The image is used with per-
mission from Christopher W. Pugh, one of the authors of (Vipond
et al., 2021).
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Table 3. A comparison result based on the point cloud shown in Figure 4(b).
Rips DTM CkNN Λ-filter

Persistence Diagram

Persistence Barcode

Filter function

Figure 8. t-SNE visualization results.

The results show the superiority of Λ-filter over Rips, DTM,
and CkNN. CD68 is well separated from the other two
classes in the case of Λ-filter, except two points. CD8 has
three groups at the fringes of FoxP3. DTM is the second
best, followed by CkNN and Rips. DTM has a slightly
poorer outcome than Λ-filtration, with seven points from
CD8 and one point from CD68 mixed with FoxP3, and the
fringe between CD8 and CD68 has some minor mixing up.
Using the data after dimensionality reduction by t-SNE for
kNN classifier over 10 trials of 5-fold Cross-Validation, the
average accuracies of DTM and Λ-filter are 0.8 and 0.89,
respectively.

8.2. Classification of Bone Scripts

Bone scripts are the earliest known written characters in
China, so named because they are engraved on bones. In this
experiment, we examine the use of PDs in a classification

task on a bone-scripts dataset7, as shown in Figure 7(a).
Details of this experiment are provided in Appendix B.5.

1-dim PDs from Rips, DTM, CkNN, and Λ-filter are
constructed and then vectorized as Persistence Image
(PI) (Adams et al., 2017) which is a finite-dimensional vec-
tor representation for PD. We restrict the vector length to
400, which corresponds to 20× 20 PI resolution. A SVM
classifier using rbf kernel is then trained on the PIs.

Figure 9. (a) Accuracy of SVM classification of bone scripts. (b)
Accuracy at different values of η as ψ increases.

We vary the PI bandwidth from 0.1 to 0.4, and report the
mean classification accuracy and the corresponding standard
deviation of 10 random train/test splits for each PI band-
width. All the methods are relatively stable with respect
to the bandwidth. But in terms of classification accuracy,
Λ-filter outperforms the other three methods for every band-
width, as shown in Figure 9(a).

In addition, we show the accuracy of SVM classification
employing Λ-filter at different values of η and ψ in Figure
9(b). When η ̸= ∞, the accuracy is significantly higher and

7The dataset is available at http://jgw.aynu.edu.cn/.
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much more stable respective to ψ than that when η = ∞.

9. Discussion
9.1. Valid Short-persistence Features

Note that we do not claim that all short-persistence features
are noise. There are short-persistence features which are im-
portant for some intended task, for example in protein struc-
tures (Xia & Wei, 2014). However, these short-persistent
features can be easily mistaken as noise if the measure is
sensitive to noise. The Λ-filter we proposed aims to sup-
press the persistence of noise and preserve the persistence
of real features.

9.2. The need of data-dependent measure in topology

As defined in (Prasolov, 1998), topology studies the prop-
erties of geometrical objects that remain unchanged under
transformations called homeomorphisms and deformations,
such as stretching, twisting, crumpling, and bending.

However, the persistence of a topological feature in existing
methods to produce PD is sensitive to the scale of a point
cloud. In the case of Rips and DTM, a stretched point cloud
leads to a more persistent feature than that of the original
point cloud. This contradicts with the stated aim of topology
mentioned above.

Hence, a data-dependent measure is a way to ensure that the
persistence of a topological feature remains the same after
continuous deformations while keeping the number of valid
features unchanged. Λ-filter and CkNN are examples of this
attempt.

Note that Λ-filter only works in a dataset with simple stretch-
ing/shrinking. Finding a filter function for more complicated
continuous deformation remains an open problem.

10. Conclusions
We are the first to address the problem of the lack of robust-
ness of existing PDs when noise and varied densities coexist
in a point cloud in the field of PH. Existing methods are
partial, solving either noise or varied densities issue only.

The key to addressing the varied densities issue is a data-
dependent kernel that adapts to local distribution with Prop-
erty 5.8; and the key to addressing the noise issue is a
noise-tolerance kernel. The proposed Λ-kernel possesses
both properties. Existing methods use a distance measure
which does not have both properties.

We have verified the superiority of the proposed Λ-filter
over three existing methods in t-SNE visualization and SVM
classification tasks.
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A. Proofs
A.1. Proof of Property 5.1

Property 5.1 ∀ ϵ ∈ (0, 1), ∃ η̂ > 0,∀ η ≥ η̂, x ∈ X, Λ ∈ V (X), ∥Φ(x | Λ)− ex∥ ≤ ϵ, where ex ≜ lim
η→∞

Φ(x|Λ) and it is

in one-hot form.

Proof. First we start by proving that ex is in one-hot form when η → ∞. Denote the i-th component of Φ(x|Λ) as Φ(x|Λ)[i]
as follows :

Φ(x|Λ)[i] = e−ηℓ(x,vi)

(
ψ∑
j=1

e−2ηℓ(x,vj))
1
2

,

where i = 1, ..., ψ. Then we know that

lim
η→∞

Φ(x|V )[i] =

{
1, i = î,

0, i ̸= î
,

where î ≜ argmin
i
ℓ(x, vi).

This means that the points are limited in a very small angle near the î-axis when η is very large.
∀x ∈ X,Λ ∈ V (X), set η̂x,Λ = 1

2qx,Λ
ln (ψ−1)(2−ϵ2)

ϵ2 , where qx,Λ = argmin
i ̸=î

(ℓ(x, vi)− ℓ(x, vî)), then

∥Φ(x|Λ)− ex∥2 = (Φ(x|Λ)[̂i]− 1)2 +

ψ∑
j=1,j ̸=î

Φ(x|Λ)[j]2

= 2− 2e−η̂x,Λℓ(x,vî)

(
ψ∑
j=1

e−2η̂x,Λℓ(x,vj))
1
2

= 2− 2

(1 +
ψ∑

j=1,j ̸=î
e−2η̂x,Λ(ℓ(x,vj)−ℓ(x,vî)))

1
2

≤ 2− 2

(1 + (ψ − 1)e−2η̂x,Λqx,Λ)
1
2

≤ ϵ2.

To find the η for the entire point cloud, take η̂ = max
x∈X,Λ∈V (X)

η̂x,Λ, then ∀x ∈ X,Λ ∈ V (X), we have

∥Φ(x|Λ)− ex∥2 ≤ 2− 2

(1 + (ψ − 1)e−2η̂qx,Λ)
1
2

≤ 2− 2

(1 + (ψ − 1)e−2η̂x,Λqx,Λ)
1
2

≤ ϵ2.

A.2. Proof of Property 5.3

Property 5.3 ∃ η̃,∀ η ≥ η̃,∀x, y, x′, y′ ∈ Rd, if x, y belong to the same Voronoi cell θi; and x′, y′ belong to different
Voronoi cells θj and θk, then s(x, y|λ) ≥ s(x′, y′|Λ).

Proof. Set ϵ̃ =
√
2
4 , according to Property 5.1, ∃ η̃,∀η ≥ η̃,∀x ∈ X, ∥Φ(x|Λ)−ex∥2 ≤ ϵ̃. And we have ex = ey, ex′ ̸= ey′ ,

since x, y are in the same cell and x′, y′ are in different cells. So we have
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∥Φ(x|Λ)− Φ(y|Λ)∥2 ≤ (∥Φ(x|Λ)− ex∥2 + ∥Φ(y|Λ)− ey∥2) ≤ 2ϵ̃ and

∥Φ(x′|Λ)− Φ(y′|Λ)∥2 ≥ (∥ex′ − ey′∥2 − 2ϵ̃) ≥
√
2− 2ϵ̃.

Then because ϵ̃ =
√
2
4 , we have

∥Φ(x|Λ)− Φ(y|Λ)∥2 ≤ ∥Φ(x′|Λ)− Φ(y′|Λ)∥2,

which indicates that s(x, y|Λ) ≥ s(x′, y′|Λ), since ∀x ∈ X , ∥Φ(x|Λ)∥2 = 1.

A.3. Proof of Lemma 5.5

Lemma 5.5 κ̂(x, y | X) is a valid kernel.

Proof. We only need to show that the matrix produced by κ̂ is a positive definite matrix (Muandet et al., 2017). The
symmetry of the matrix comes from κ̂(x, y|X) = κ̂(y, x|X), since ∀Λ ∈ V (X), s(x, y|Λ) = s(y, x|Λ).

Equation 1 can be re-expressed in a quadratic form as follows:

κ̂(x, y | X) =
1

t

t∑
i=1

Φ(x | Λi)⊤Φ(y | Λi).

So the matrix produced by κ̂ is positive definite.

A.4. Proof of Lemma 5.7

Lemma 5.7 dΛ(x, y|X) ≜ 1− κ̂(x, y|X) is a distance metric when η → ∞.

Proof. We prove dΛ is a distance metric when η → ∞ from four aspects:

1. The distance from a point to itself is zero: dΛ(x, x|X) = 0, since κ̂(x, x|X) = 1.

2. The distance between two distinct points x, y is always positive when η → ∞:

dΛ(x, y|X) can be re-expressed as

dΛ(x, y|X) =
1

t

t∑
i=1

(1− s(x, y|Λi)).

And we have lim
η→∞

s(x, y|Λi) = 0, if x, y are in the same Voronoi cell of Λi. Otherwise, lim
η→∞

s(x, y|Λi) = 1. If t is

large enough, then there will be at least one î ∈ [t], such that lim
η→∞

s(x, y|Λî) = 0. So lim
η→∞

dΛ(x, y|X) > 0.

3. The distance from x to y is always the same as the distance from y to x: dΛ(x, y) = dΛ(y, x), since dΛ(x, y|X) =
1− κ̂(x, y|X) = 1− κ̂(y, x|X) = dΛ(y, x|X).

4. The triangle inequality holds, when η → ∞:

dΛ(x, y|X) can be re-expressed as

dΛ(x, y|X) =
1

2t

t∑
k=1

d′(x, y|Λi),

where d′(x, y|Λi) = ∥Φ(x|Λi)− Φ(y|Λi)∥22.

So it suffices to prove that triangle inequality holds for d′(x, y|Λ) when η → ∞. The positions of x, y, z wrt Voronoi
cells of Λ when η → ∞ can be divided into 4 cases:
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a) x, y, z are in the same Voronoi cell θi: d′(x, y|Λ) = d′(x, z|Λ) = d′(y, z|Λ) = 0. Hence d′(x, z|Λ) ≤
d′(x, y|Λ) + d′(y, z|Λ) holds.

b) x, z are in the same Voronoi cell θi; and y is in a different Voronoi cell θj : d′(x, z|Λ) = 0, d′(x, y|Λ) =
d′(y, z|Λ) = 2. Hence d′(x, z|Λ) ≤ d′(x, y|Λ) + d′(y, z|Λ) holds.

c) x, z are in different Voronoi cells θi and θj , respectively; and y is in either θi or θj : d′(x, z|Λ) = 2, d′(x, y|Λ) =
0 (or 2) and d′(y, z|Λ) = 2 (or 0). Hence d′(x, z|Λ) ≤ d′(x, y|Λ) + d′(y, z|Λ) holds.

d) x, y, z are in three different Voronoi cells θi, θj and θk, respectively: d′(x, y|Λ) = d′(x, z|Λ) = d′(y, z|Λ) = 2.
Hence d′(x, z|Λ) ≤ d′(x, y|Λ) + d′(y, z|Λ) holds.

A.5. Proof of Property 5.8

Property 5.8 For any two points x, y in dense region S and their corresponding x′, y′ in sparse region T , dΛ(x, y|S) ≈
dΛ(x

′, y′|T ) , where S ⊂ S, T ⊂ T , and S = {m(T ) + r(x−m(T ))|x ∈ T } for r > 1.

Proof. Because one of S and T can be obtained by isotropic stretching from the other, there is a mapping h such
that: ∀x ∈ S, x′ ∈ T , h(x) = x′, where x′ is the stretched version of x. S and T have the same topology implication:
Ox = Oh(x) = Ox′ , ∀x ∈ S, where Ox is the order: y ≤x z ⇐⇒ ||x− y|| ≤ ||x− z||.

Let D be the subset sampled uniformly from S: D = {x1, x2, ..., xψ}, D′ = h(D) = {h(x1), h(x2), ..., h(xψ)} =
{x′1, x′2, ..., x′ψ}. The j-th Voronoi cell built from S and T : θj and θ′j can be expressed as:

θj = {x ∈ S|xj ≤x xi,∀i ∈ [ψ], i ̸= j}

θ′j = {x′ ∈ T |x′j ≤x′ x′i,∀i ∈ [ψ], i ̸= j} = h(θj)

Then ∀x, y ∈ θj ⇐⇒ x′, y′ ∈ θ′j , where x′ = h(x), y′ = h(y). And the following two equations hold when η → ∞:

e−ηℓ(x
′,x′

i)

Υ
′m
ℓ

=
e−ηℓ(x,xi)

Υmℓ
, i ∈ 1, ...ψ,

e−ηℓ(y
′,x′

i)

Υ
′m
ℓ

=
e−ηℓ(y,xi)

Υmℓ
, i ∈ 1, ...ψ.

Hence Φ(x|Λ) = Φ(x′|Λ′) and Φ(y|Λ) = Φ(y′|Λ′). This directly produces the following result:

κ(x′, y′|T ) = EΛ′ [s(x′, y′|Λ′)] =

∫
V (T )

ρ(Λ′)s(x′, y′|Λ′)dΛ′ =

∫
V (T )

ρ(Λ′) ⟨Φ(x′|Λ′),Φ(y′|Λ′)⟩ dΛ′

=

∫
V (S)

ρ(Λ) ⟨Φ(x|Λ),Φ(y|Λ)⟩ dΛ =

∫
V (S)

ρ(Λ)s(x, y|Λ)dΛ = EΛ[s(x, y|Λ)]

= κ(x, y|S).

Since κ̂ is the empirical estimation of κ, for x, y ∈ S, x′, y′ ∈ T , and x′ = h(x), y′ = h(y), we have the following result:

dΛ(x, y|S) ≈ dΛ(x
′, y′|T ) ≡ κ̂(x, y|S) ≈ κ̂(x′, y′|T ).

A.6. Proof of Theorem 6.1

Theorem 6.1 The bottleneck distance between two persistence diagrams D(f) and D(g), derived from Λ-filters f(X) and
g(X ′), respectively, is bounded as follows:

W∞(D(f),D(g)) ≤ ∥f − g∥∞ ≤ dH(X,X ′),

where X ′ is the perturbed version of X; and dH(X,X ′) is the Hausdorff distance between X and X ′.
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Proof. Let X be the original point cloud and X ′ be the perturbed point cloud. Let D and D′ be two given nonempty
subsets from X and X ′, respectively, where |D| = |D′| = ψ. ∀ϕ ∈ Ψ = {1, 2, ..., ψ}. Let Aϕ = ∪j ̸=ϕDj , A′

ϕ = ∪j ̸=ϕD′
j ,

δ = dH(X,X ′).

Definition A.1. Given two nonempty subsets A,B ⊆ X , ∀x ∈ X , dom(A,B) = {x ∈ X : ℓ(x,A) ≤ ℓ(x,B)}, here
ℓ(x,B) = inf{ℓ(x, b) : b ∈ B}, ℓ(A1, A2) = inf{ℓ(a1, a2) : a1 ∈ A1, a2 ∈ A2}.

Definition A.2. Rϕ = dom(Dϕ,∪j ̸=ϕDj) = {x ∈ X : ℓ(x,Dϕ) ≤ ℓ(x,Dj), ∀j ∈ Ψ \ ϕ}.

In other words, the Voronoi cell Rϕ associated with the partition point Dϕ is the set of all x ∈ X whose distance to Dϕ is
not greater than their distance to the union of the other sites Dj .

Suppose that the following conditions hold:

(1) η := inf{ℓ(Dϕ,D′
j) : j, ϕ ∈ ψ, j ̸= ϕ} > 0,

(2) ∃α ∈ (0,∞) such that for all ϕ ∈ Ψ and for all x ∈ X , the open ball B(x, α) intersects Aϕ.

Then the following theorem holds (Reem, 2011):

Theorem A.3. For each ϕ ∈ Ψ let Rϕ = dom(D, Aϕ), R′
ϕ = dom(D′

ψ, A
′
ϕ) be the Voronoi cells associated with the

original Dϕ and the perturbed one D′
ϕ respectively. Then for each ϵ ∈ (0, η/6), ∃∆ > 0 such that if dH(Dϕ,D′

ϕ) < ∆ for
each ϕ ∈ Ψ, then dH(Rϕ, R

′
ϕ) < ϵ for each ϕ ∈ Ψ.

Consider the points close the boundary l and l′ of two partitions, which may belong to different partitions after perturbation.
Let Rc = {x ∈ X : d(x, l) < δ||d(x, l′) < δ}, where the δ > ϵ is the maximum perturbation distance. Rc can be divided
into two parts. First, the region between l and l′, the points in this region must be changed. Second, the partition of other
points in the other area be changed with 50 percent probability. So the probability for a point x to change the partition is:

P (C(x)) =
ϵ+ δ−ϵ+δ

2

η
=

0.5ϵ+ δ

η
≤ 3δ

2η
.

After doing partition for t times, the probability of the partitions of point x be changed δ′ ∗ t (0 < δ′ ≤ δ) times is:

P (dkH(Φ(X),Φ(X ′)) ≤ δ′) =

⌊t∗δ′⌋∑
i=0

t!

(t− i)!(i)!
(
3δ

2η
)i ∗ (1− 3δ

2η
)t−i.

where Φ(x) is the feature of x mapped by kernel k, and dkH(Φ(X),Φ(X ′) is the Hausdorff distance between X and X ′

based on 1− < Φ(X),Φ(X ′) >.

As δ << η. dkH(Φ(X),Φ(X ′)) ≤ δ holds with high probability.

For c > 4, we have

P (dkH(Φ(X),Φ(X ′)) ≤ δ/c) =

⌊t∗δ/c⌋∑
i=0

t!

(t− i)!(i)!
(
3δ

2η
)i ∗ (1− 3δ

2η
)t−i

So dkH(Φ(X),Φ(X ′)) ≤ δ/c holds with high probability. And we have

∥f − g∥∞ = 2∥ℓ2(Φ(·),Φ(X))− ℓ2(Φ(·),Φ(X ′))∥∞
≤ 2∥(ℓ(Φ(·),Φ(X))− ℓ(Φ(·),Φ(X ′))(ℓ(Φ(·),Φ(X)) + ℓ(Φ(·),Φ(X ′))∥∞
≤ 4∥ℓ(Φ(·),Φ(X))− ℓ(Φ(·),Φ(X ′)∥∞
≤ 4 ∗ dkH(Φ(X),Φ(X ′))

Finally, we get
W∞(D(f),D(g)) ≤ ∥f − g∥∞ ≤ 4 ∗ dkH(Φ(X),Φ(X ′)) ≤ δ ≤ dH(X,X ′),

where the dH is the Hausdorff distance, f and g is the filter function of X and X ′ respectively.
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A.7. Proof of Theorem 7.4

Theorem 7.4 The PD produced via Λ-filter is robust to varied densities.

Proof. Because one of S and T can be obtained by isotropic stretching from the other, there is a mapping h such that:
∀x ∈ S, x′ ∈ T , h(x) = x′, where x′ is the stretched version of x. For x, y ∈ S, let x′ = h(x), y′ = h(y). From Section
A.5 we have κ̂(x, y|S) ≈ κ̂(x′, y′|T ), hence

f̂Λ(x|S) = 4min
y∈S

(1− κ̂(x, y|S)) ≈ 4 min
y′∈T

(1− κ̂(x′, y′|T )) ≈ f̂Λ(x
′|T )

A.8. Proof of CkNN’s Filter Function

In CkNN, xi and xj are connected if ℓ(xi, xj) ≤ ϵ
√
ℓk(xi)ℓk(xj). And the filtration is formed by varying ϵ. We state the

connection between xi and xj in an equivalent form in Lemma A.4, which is used for the proof of Theorem A.5.

Lemma A.4. ∀ϵ > 0,
ℓ(xi,xj)√

(ℓk(xi)ℓk(xj)
≤ ϵ iff ∃x, s.t. ℓ(x,xi)√

ℓk(xi)
w(i, j) ≤ ϵ and ℓ(x,xj)√

ℓk(xj)
w(i, j) ≤ ϵ, where w(i, j) =

1√
ℓk(xi)+

√
ℓk(xj)

.

Proof. 1. If ∃x, s.t. ℓ(x,xi)√
ℓk(xi)

≤ ϵ
w(i,j) and ℓ(x,xj)√

ℓk(xj)
≤ ϵ

w(i,j) , then by triangle inequality we have

ℓ(xi, xj)√
ℓk(xi)ℓk(xj)

≤ ℓ(x, xi) + ℓ(x, xj)√
ℓk(xi)ℓk(xj)

≤ ϵ.

2. If ℓ(xi,xj)√
ℓk(xi)ℓk(xj)

≤ ϵ, choose x = µxi + (1− µ)xj ,where µ =

√
ℓk(xi)√

ℓk(xj)+
√
ℓk(xj)

. Then we get

ℓ(x, xi)

ℓk(xi)
=
ℓ(x, xj)

ℓk(xj)
=

1

w(i, j)

ℓ(xi, xj)√
ℓk(xi)ℓk(xj)

≤ ϵ

w(i, j)
.

Define the graph G(ϵ) formed via CkNN under the scale parameter ϵ as

Gϵ(X) = {(xi, xj) ∈ X2| ℓ(xi, xj)√
ℓk(xi)ℓk(xj)

≤ ϵ}.

Then we can have an approximation of CkNN’s filter function, as shown in Theorem A.5.

Theorem A.5. ∀ϵ > 0, Gfϵ (X) ⊂ Gϵ(X) ⊂ Ggϵ (X), where

Gfϵ (X) = {(xi, xj) ∈ (X ∩ X f
ϵ )

2|B(xi, r
f
i (ϵ)) ∩B(xj , r

f
j (ϵ)) ̸= ∅},

Ggϵ (X) = {(xi, xj) ∈ (X ∩ X g
ϵ )

2|B(xi, r
g
i (ϵ)) ∩B(xj , r

g
j (ϵ)) ̸= ∅},

f(x) = min
i∈[n]

max
j∈[n]

( ℓ(x,xi)√
ℓk(xi)

w(i, j)), g(x) = min
i∈[n]

min
j∈[n]

( ℓ(x,xi)√
ℓk(xi)

w(i, j)), X f
ϵ = {x ∈ X |f(x) ≤ ϵ} = ∪ni=1B(xi, r

f
i (ϵ)),

X g
ϵ = {x ∈ X |g(x) ≤ ϵ} = ∪ni=1B(xi, r

g
i (ϵ)), r

f
i (ϵ) =

√
ℓk(xi)

maxp∈[n]w(i,p)ϵ and rgi (ϵ) =

√
ℓk(xi)

minp∈[n]w(i,p)ϵ. B is defined in
Section 6, and w(·, ·) is defined in lemma A.4.

Proof. Unlike the case in the Rips filtration, where the radius of a ball centered at xi is the given scale parameter ϵ, we

assign individual radius rfi to each xi under given rfi (ϵ) =
√
ℓk(xi)

maxp∈[n]w(i,p)ϵ.
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If (xi, xj) ∈ Gfϵ (X)), B(xi, r
f
i (ϵ)) intersects B(xj , r

f
j (ϵ)). We have that ∃x, s.t. ℓ(x, xi) ≤ rfi (ϵ), ℓ(x, xj) ≤ rfj (ϵ) ,

then we have
ℓ(x, xi)√
ℓk(xi)

w(i, j) ≤ ℓ(x, xi)√
ℓk(xi)

maxp∈[n]w(i, p) ≤ ϵ,

ℓ(x, xj)√
ℓk(xj)

w(i, j) ≤ ℓ(x, xj)√
ℓk(xj)

maxp∈[n]w(j, p) ≤ ϵ.

So according to Lemma A.4, we can get ℓ(xi,xj)√
ℓk(xi)ℓk(xj)

≤ ϵ, that is to say, (xi, xj) ∈ Gϵ(X). Hence Gfϵ (X) ⊂ Gϵ(X).

Similarly, we can have Gϵ(X) ⊂ Ggϵ (X) with rgi (ϵ) =
√
ℓk(xi)

minp∈[n]w(i,p)ϵ.

As for the precision of the approximation, r
f
i

rgi
measures how well the approximation is. We have the bound of r

f
i

rgi
as follows:

√
minp∈[n]ℓk(xp)

maxp∈[n]ℓk(xp)
≤

1 +

√
ℓk(xi)√

maxp∈[n]ℓk(xp)

1 +

√
ℓk(xi)√

minp∈[n]ℓk(xp)

≤ rfi
rgi

≤ 1.

A higher lower bound leads to a better approximation of CKNN’s filter function. But this lower bound can be very small if
the densities are hugely different.

To get a better approximation, it is reasonable to assume that xi only connects with its k nearest neighbors when ϵ is
relatively small. Then we can get f̂ , ĝ as better approximations of CkNN’s filter function, where

f̂(x) = min
i∈[n]

max
j∈IDk(xi)

(
ℓ(x, xi)√
ℓk(xi)

w(i, j)),

ĝ(x) = min
i∈[n]

min
j∈IDk(xi)

(
ℓ(x, xi)√
ℓk(xi)

w(i, j))

and IDk(xi) is the set of indexes of xi’s k nearest neighbors in X .

Then for each xi, we can improve the lower bound from
√

minp∈[n]ℓk(xp)

maxp∈[n]ℓk(xp)
to
√

minp∈IDk(xi)
ℓk(xp)

maxp∈IDk(xi)
ℓk(xp)

, whileGϵ(X) is bounded

by Gf̂ϵ (X) and Gĝϵ (X).

However, the goal is to use one function to approximate CkNN’s filter function instead of two bounds f̂ and ĝ. To achieve
this goal, the neighborhood of xi is assumed to be uniformly distributed. Then we have

min
p∈IDk(xi)

ℓk(xp) ≈ max
p∈IDk(xi)

ℓk(xp) ≈ ℓk(xi).

And finally we can have a good approximation of CkNN’s filter function h(x) in the early stage of the topological feature’s
formation process (small ϵ), where

h(x) = min
i∈[n]

ℓ(x, xi)

2ℓk(xi)
.

B. Additional Experiments
B.1. Robustness to noise

This section provides the details of Figure 3 described in Section 7.1. It presents the advantages of Λ-filter over other
methods in terms of robustness to noise.

Table 4 shows the Cassini dataset and corresponding 1-dim PDs, built from GK-filter, DTM and Λ-filter when γ = 0, 0.025
and 0.5.
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Table 4. The PDs (1-dimensional homology are reported) of the data with noise of three different ratios (γ = 0, 0.025, 0.5).
Dataset GK-filter DTM Λ-filter

When γ = 0 (no noise), only Λ-filter detects one single ring without any noise feature. GK-filter detects the valid ring, but
with two additional rings due to noise. DTM detects two equally persistent rings (two overlapping points in PD).

When adding some noise (γ = 0.025) in the Cassini dataset, shown in the second row, the PD of GK-filter is dramatically
different from that obtained previously (γ = 0). There are many misleading rings due to the effect of noise, resulting in the
structure of the data cannot be correctly judged from the PD. DTM and Λ-filter are robust to noise. But DTM obtains two
rings incorrectly, and the two rings have different sizes.

When γ reaches 0.5, only Λ-filter produces a PD which has one distinct persistent ring.

B.2. Experiment that demonstrates dΛ has Property 5.8

This section provides an example to show that dΛ has the ability of preserve the distance after stretching or shrinking
(Property 5.8 in Section 5).

Figure 10. (a) Original data with sparse and dense clusters. (b) Similarity matrices and MDS visualizations of Λ-kernel and GK.

The root cause of a wrong PD is that when using Euclidean distance, points are closer to each other in the dense region
than in the sparse region. A direct way to address this issue is to design a data-dependent distance metric that enables the
distance between two points to remain almost the same after stretching or shrinking. We will show that dΛ is such a distance

18



Towards a Persistence Diagram that is Robust to Noise and Varied Densities

metric in Figure 10, where the dense cluster T is obtained by a tenfold shrinking of sparse cluster S.

In Figure 10, Λ-kernel is compared with Gaussian Kernel (GK), which completely depends on Euclidean distance. In the
case of GK, the points in the dense cluster are much more similar to each other than those in the sparse cluster. While in the
case of Λ-kernel, the similarity matrices of the sparse cluster and dense cluster are quite similar to each other.

The MDS (Multidimensional Scaling) (Mead, 1992) visualization, which preserves the distance in the mapped space, maps
the given dataset via distance matrix, is shown in Figure 10(b).

Clusters S and T have the same density in the MDS-mapped space when Λ-kernel is employed; but they still have different
densities when GK is employed.

This illustrates that dΛ can preserve the distance after stretching or shrinking. That is to say, dΛ has Property 5.8.

In addition, Section 6 states that using fΛ as a filter function for PH is equivalent to using dΛ(x, y) to replace Euclidean
distance in the Rips filter function. This subsection demonstrates that Λ-filter has Property 4.3 experimentally.

In summary, the PD built from Λ-filter is robust to varied densities.

B.3. Details of Table 3 : Growth of sublevel sets

This section gives the corresponding growth of sublevel sets of the Persistence Diagrams in Table 3 from Section 7.3. For
each filter function, 3 snippets of the growth of sublevel sets are provided in Table 5.

Table 5 shows some details of the PH by three sublevel sets of different filter functions. First, when DTM and Rips are
employed, the right ring died before the left ring was born. Second, when CkNN is employed, in addition to the persistent
rings, many other rings are formed due to the influence of noise. Finally, when Λ-filter is employed, two prominent rings are
born at about the same time and then die at about the same time, and the persistence of other noise rings is extremely small.

B.4. Parameter setting

This section provides the parameter setting of the experiments in Section 8.

Parameter setting used in the experiments: For Λ-kernel, t = 200, η = ∞, ψ is searched over {2, 4, 8, 16, 32}. For DTM
and CkNN, the k is searched in {m ∗ n|m = 0.02, 0.04, 0.06, 0.08, 0.1}, where n is the dataset size. The experiments are
performed on a machine with 1500MHz CPUs and 2TB RAM.

B.5. Details of classification of the bone scripts dataset

This section describes the experiment setting of the bone scripts classification from Section 8.2.

We use a dataset which contains ten classes of bone scripts, which are referred to as ten ‘heavenly stems’ in Chinese culture,
as shown in Figure 7(a). The dataset has 20 images of the bone scripts in each class. We compress each image from the
original 400*400 pixels to 120*120 pixels for efficient PD computation. The pixels of each script image are extracted as
points in a 2-dimensional point cloud, and 20 noise points sampled from a uniform distribution are added.

In Figure 9(a), we run SVM for 10 random train/test splits of the dataset and report the mean accuracy and standard deviation.
In each split, we take 70% of the whole dataset for training and 30% for testing. 3-fold cross-validation on the training set is
used to select the best hyperparameters for each approach: smoothing factor of rbf kernel, regularization weight in SVM,
filtration factor (k for DTM and CkNN, ψ for Λ-filter).

The result of one such split of the dataset (with random seed set to 2022) is shown in Figure 11 in the form of confusion
matrices. These results demonstrate the superiority of PDs produced by Λ-filter, where Λ-filter has the highest accuracy.

In Figure 9(b), for each (η, ψ) pair, we select the best PI bandwidth to explore the effect of η, ψ in Λ-filter.

B.6. Multi-parameter Persistent Homology

This section shows the flaw of Multiparameter Persistent Homology, mentioned in Section 1.

Multi-parameter Persistent Homology (MPH) (Blumberg & Lesnick, 2022; Vipond, 2020) claims that it is robust to varied
densities. When a data cloud has varied densities, MPH is claimed to be able to detect the features in sparse and dense
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Table 5. Growth of sublevel sets for each of the four filter functions.

Rips ϵ = 0.5 ϵ = 1.0 ϵ = 1.5

DTM ϵ = 0.6 ϵ = 0.7 ϵ = 0.8

CkNN ϵ = 0.3 ϵ = 0.5 ϵ = 0.7

Λ-filter ϵ = 0.125 ϵ = 0.150 ϵ = 0.175
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(a) Rips (b) DTM (c) CkNN (d) Λ-filter

Figure 11. Confusion matrices

regions. We examine this claim in the following experiment with Multiparameter Persistence Landscape (MPL)(Vipond
et al., 2021), a stable representation of PD that generalizes from Persistence Landscape (PL) (Bubenik, 2015). MPL is
presented in the form of a matrix, where each column represents a PL.

We employ a commonly-used MPL (Rips and 1NN Codensity) on the point cloud shown in right subfigure in Figure 4,
where there is one dense ring, one sparse ring, and some noise. The result is shown in Figure 12. MPH can detect the two
rings in the first landscape, and the dense ring can be detected earlier with respect to 1NN Codensity. The second landscape
contains the noise features, which are well separated from the true topological features in the first landscape.

Note that although the two rings can be detected in the first MPL, the persistence of the dense ring is still significantly
smaller than that of the sparse ring, which is the same issue we met in the Rips filtration.

In summary, MPH can tackle the problem of noise and it does not deal with the problem of varied densities satisfactorily.

Figure 12. First MPL and second MPL, and PD from the Rips filtration.
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