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Abstract

In many real-world tasks, the presence of dynamic
and uncontrollable environmental factors, com-
monly referred to as context, plays a crucial role
in the decision-making process. Examples of such
factors include customer demand in inventory con-
trol and the speed of the lead car in autonomous
driving. One of the challenges of reinforcement
learning in these applications is that the true con-
text transitions can be easily exposed to some un-
known source of contamination, leading to a shift
of context transitions between source domains
and target domains, which could cause perfor-
mance degradation for RL algorithms. To tackle
this problem, we propose the robust situational
Markov decision process (RS-MDP) framework
which captures the possible deviations of context
transitions explicitly. To scale to large context
space, we introduce the softmin smoothed robust
Bellman operator to learn the robust Q-value ap-
proximately, and extend existing RL algorithm
SAC to learn the desired robust policies under our
RS-MDP framework. We conduct experiments
on several locomotion tasks with dynamic con-
texts and inventory control tasks to demonstrate
that our algorithm can generalize better and be
more robust against context disturbances, and out-
perform existing basic RL algorithms that do not
consider robustness and robust RL algorithms that
consider robustness over the whole state transi-
tions.
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1. Introduction
In many real-world applications, there are dynamic envi-
ronmental factors, which cannot be influenced by agents’
actions, but is vital for agents’ decision-making, e.g., the
speed of lead cars in autonomous driving, customer de-
mand in inventory control, stock price in optimized trade
execution, etc. We refer to such environmental factors as
contexts for simplicity (also called exogenous states (Diet-
terich et al., 2018; Efroni et al., 2021), inputs (Mao et al.,
2018), noncontrollable states (Pan et al., 2022)). The works
in reinforcement learning that deal with the presence of such
dynamic contexts are referred to as situational RL (Chen
et al., 2022) in this paper.

Existing works in situational RL have focused on the chal-
lenges of efficient learning and planning with the factor-
ized dynamics induced by context transitions, e.g., variance
reduction (Mao et al., 2018), separating contexts and en-
dogenous states from observations (Dietterich et al., 2018;
Chitnis & Lozano-Perez, 2019; Efroni et al., 2021; Pan et al.,
2022) to learn more efficiently, detecting the abrupt changes
of latent contexts (Chen et al., 2022). However, robust-
ness against context disturbances is overlooked by existing
works.

Robustness is critical for real-world tasks since RL policies
are often brittle when faced with even slight variations in
their environments (Meng & Khushi, 2019; Lu et al., 2020).
We emphasize that we are considering robustness against
deviations of context transitions, which is of particular inter-
est in many real-world scenarios. For example, in Adaptive
Cruise Control (ACC), an autonomous driving scenario, the
speed of lead car can be viewed as context whose transition
can be influenced by numerous factors but out of the control
of the ego car. However, after making a decision, the state of
the ego car is clear. Here a factorized structure is revealed,
where deviations of context transitions are dominant while
state transitions of the ego car contain almost no uncertainty.
A robust and relatively conservative decision of the ego car
is important to avoid crashing.

This is in contrast with existing works in robust RL, which
tackle the discrepancy of the entire transitions between
source and target domain, via various different approaches,
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e.g., robust MDP (Roy et al., 2017; Wang & Zou, 2021),
robust adversarial training (Pinto et al., 2017; Kamalaruban
et al., 2020; Tessler et al., 2019), domain randomization
(Andrychowicz et al., 2018; Peng et al., 2017), etc. See
Section 5 for more detailed discussion. The robust RL ap-
proach might not give a policy that generalizes well enough
across various context transitions since they do not take
disturbances in context part into account in a precise way,
and considering the deviations of the whole transition is too
coarse to provide enough information about how to tackle
the changes of context transitions.

We propose the framework of robust situational Markov
decision process (RS-MDP) using Huber’s contamination
model (Huber, 1965) as the uncertainty set modeling the
possible deviations of context transitions. This means that,
with small probability, the context transition will change to
an arbitrary distribution over the context space. We have to
consider the worst-case future context at each step during
the Bellman backup and thus minimization over all possi-
ble contexts is required to learn a robust Q-function. The
challenge here is that the continuous and high-dimensional
contexts make it hard to calculate the minimization operator
over context space. To tackle this problem, we introduce the
softmin smoothed robust Bellman operator, which leverages
the factorized structure in system dynamics and does not
disturb the endogenous transition, to approximate the robust
Q-function. We prove an upper bound on the approxima-
tion error to validate our approach theoretically. Further
we extend Soft Actor-Critic (SAC, Haarnoja et al., 2018) to
robust situational SAC (RS-SAC), by modifying the policy
evaluation step with a robust situational update, to learn ro-
bust situational policies. Our method enjoys one additional
benefit that it is simple to implement and does not require
task-specific prior knowledge on environment parameters or
specially designed simulators to model the disturbance as
done in adversarial training (Pinto et al., 2017) or domain
randomization (Tobin et al., 2017). Finally we evaluate
our algorithm on MuJoCo tasks (Todorov et al., 2012) with
dynamic contexts and inventory control tasks.

The contributions of this paper are summarized as follows:

• (Section 2) We introduce robust situational MDP which
captures the disturbances in context transitions explic-
itly and is suitable for many real-world applications.

• (Section 3) To learn robust policies for situational RL
with large context space, we introduce the softmin
smoothed robust Bellman operator to approximate the
robust Q-value, and extend SAC to RS-SAC with a
robust situational update in the policy evaluation step.

• (Section 4) Experiments on MuJoCo tasks with dy-
namic contexts and inventory control tasks show that
our algorithm can generalize better to various context

transitions and outperform existing robust RL algo-
rithms.

2. Problem Formulations
In this section, we define robust situational MDP (RS-MDP)
as a tuple (S,Z,A,M,U , r, γ, ρ) where S is the (endoge-
nous) state space, Z is the context space, A is the action
space, M : S ×Z ×A → ∆(S ×Z) 1 is the transition ker-
nel, U is the uncertainty set containing possible deviations
of context transition, r : S × Z × A → R is the reward
function and γ ∈ (0, 1) is the discount factor. Following
the setting of situational RL (Dietterich et al., 2018; Mao
et al., 2018; Pan et al., 2022), the transition kernel can be
factorized as

M(s′, z′|s, z, a) = P̄ (z′|z)P (s′|s, z, a), (1)

for any s ∈ S, z ∈ Z, a ∈ A, where P̄ : Z → ∆(Z)
is the context transition, P : S × Z × A → ∆(S) is the
endogenous transition.

To capture the possible contamination to context transitions
under real-world scenarios, we impose the Huber’s contami-
nation model (Huber, 1965) on the context transition P̄ in
(1) and define the uncertainty set to be

Us,z,a =
{(

(1− β)P̄ (z′|z) + βq(z′)
)
P (s′|s, z, a)

|q(·) ∈ ∆(Z)
}
,

(2)
for any s, z, a and β ∈ [0, 1). The definition of the un-
certainty set Us,z,a indicates that, with probability β, the
context transition will change to an arbitrary distribution
over the context space Z . Intuitively, there is a context
player selecting arbitrary context transitions from the un-
certainty set Us,z,a to disturb the agent. Note that the q
chosen by the context player can depend on s, z and a. This
kind of uncertainty set model is widely used in the litera-
ture of robust statistics and optimization (Huber, 1965; Du
et al., 2018; Prasad et al., 2020). The goal of RS-MDP is
to learn a single policy that maximizes the worst-case ex-
pected return with respect to possible context transitions in
the uncertainty set defined in Equation (2). Therefore, given
a policy π, we define the robust Bellman operator following
(Iyengar, 2005) as

BπrobQ(s, z, a) :=r(s, z, a)+

γ min
M̃∈Us,z,a

Es′,z′,a′ [Q(s′, z′, a′)], (3)

where s′, z′ ∼ M̃(·|s, z, a) and a′ ∼ π(·|s′, z′) under the
expectation. It is a γ-contraction whose fixed point Qπ

rob

1∆(B) denotes the set of probability distributions over set B.
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Figure 1. Performance comparison of robust situational Q-learning and non-robust Q-learning in the tabular ACC environment.

is the robust Q-function (see e.g., Iyengar, 2005; Nilim &
Ghaoui, 2003). Specifically, Equation (3) can be written as

BπrobQ(s, z, a) = r(s, z, a) + γ(1− β)Es′,z′,a′ [Q(s′, z′, a′)]

+γβ min
q∈∆(Z)

∫
Z
Es′,a′ [Q(s′, z′′, a′)]q(z′′)dz′′

= r(s, z, a) + γ(1− β)Es′,z′,a′ [Q(s′, z′, a′)]

+γβmin
z′′

Es′,a′ [Q(s′, z′′, a′)]

(4)
where s′, z′ ∼M(·|s, z, a) now. The minimization in Equa-
tion (4) implies that selecting the worst-case context transi-
tion from the uncertainty set defined in Equation (2) by the
context player is equivalent to giving rise to a worst-case fu-
ture context and the magnitude of this disturbance is limited
by the constant β. Note that when β = 0, we recover the
usual Bellman operator.

Our proposed uncertainty set in Equation (2) precisely cap-
tures the setting where only deviations of the context tran-
sitions matter, which is well motivated by real-world appli-
cations. For example, in inventory control, the customer
demand is the context that suffers high randomness. It is
possible to merge states and contexts together to reduce to a
standard robust MDP problem handled by common robust
RL algorithms. However considering the worst-case on the
state transitions (or transitions in a composite state space)
will result in an overly conservative value estimation and
thus hurt the performance. For example, in ACC, the worst-
case state transition should be crashing in the next time
step, which makes the value significantly underestimated
and does not give information about possible changes of
context transition. Based on this intuition, we show that how
our approach improves the worst-case bound theoretically.
See Appendix A.2 for detailed discussion.

2.1. A Motivating Example

In this section, we design a simple tabular ACC environ-
ment to show that our proposed framework RS-MDP can
indeed handle the changes of context transitions. The goal
of ACC is to follow a lead car as closely as possible without
crashing into it. The context space Z is the speed of lead car
z ∈ [0, 5]. The state s = (ve, d) ∈ S consists of the speed
of ego car ve ∈ [0, 5] and the relative distance d ∈ [−10, 0].
All variables are integers. There are three actions: -1 (de-
celeration), 0 (doing nothing), 1 (acceleration). The reward
function r(s, z, a) = 10 + d. When d = −10 (staying too
far) or d = 0 (crashing), the episode is terminated. The
maximum length of each episode is 20. At each time step
the lead car samples an acceleration rate ∆z ∈ {−1, 0, 1}
from a distribution p = (p−1, p0, p1) with Pr[∆z = i] = pi
for i = −1, 0, 1.

Considering the worst-case one-step future context taken in
the Bellman backup in our RS-MDP framework, we propose
the robust situational Q-learning algorithm to solve the ACC
task

Qt+1(st, zt, at)← (1− αt)Qt(st, zt, at)

+ αt(rt + γ(1− β)Vt(st+1, zt+1) + γβ ·min
z

Vt(st+1, z))

(5)
where Vt(s, z) = maxa Qt(s, z, a) and each action at ∼
πb(·|st, zt) is sampled from a behavior policy πb. Again
when β = 0, Equation (5) reduces to the non-robust Q-
learning.

We run robust situational Q-learning and non-robust Q-
learning on the ACC environment for 200k steps separately.
We set γ = 0.99, αt = 0.1, β = 0.2 and πb a uniformly ran-
dom policy in the experiments. The context dynamics of the
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Figure 2. The behaviors for robust situational Q-learning and non-robust Q-learning in the tabular ACC environment. The left y-axis is the
chosen actions and the right y-axis is the corresponding Q-values.

nominal training environment is set to be p = (0.4, 0.2, 0.4).
We show the training curve in Figure 1(a), which implies
that, though robust situational Q-learning aims at optimizing
the performance on worst-case contexts, it has only slight
impact on the performance in the nominal environment com-
pared with the non-robust one. For robustness analysis, we
further perturb the context transition to result in the De-
celerate scenario with p = (0.7, 0, 0.3) and the Accelerate
scenario with p = (0.3, 0, 0.7), implying that the lead car is
more likely to decelerate and accelerate, respectively. As
shown in Figure 1(b), robust situational Q-learning outper-
forms the non-robust one in these new scenarios, since our
algorithm aims at optimizing the worst-case situations.

To gain more insights on the results, we fix the state s =
(d, ve), relative distance and speed of ego car, and then
check the actions and corresponding Q-values given by two
algorithms for different contexts, shown in Figure 2, to
study the behaviors of policies. Observe that the Q-values
given by the robust situational Q-learning are significantly
lower than the non-robust one, which is due to the robust
Bellman backup by considering worst-case future contexts
in Equation 5. This indeed induces the desired conservative
behavior: If relative distance is -2 (cf. Figure 2(a)), the
robust action do not take action 1 to accelerate ego car like
the non-robust one even when the speed of lead car is high.
Two cars now are so close that it would be better to not
accelerate, in order to avoid crashing incurred by possibly
sudden deceleration of the lead car. But if relative distance
is -3 (cf. Figure 2(b)), two cars are in a safer distance and
now the robust action does not show conservativeness as in
previous case.

3. Deep Robust Situational RL
It is common in practice that the context space Z is large or
even continuous, and so the min operator over Z in Equa-
tion (4) is in general intractable. To overcome this difficulty,
we modify the original robust Bellman operator defined in
Equation (4) and introduce softmin smoothed robust Bell-
man operators in Section 3.1 to approximately solve the
minimization. Then, we apply our RS-MDP framework
to existing deep RL algorithm to learn robust situational
policies in Section 3.2.

3.1. Smoothed by Softmin Operators

For convenient, we define the softmin operator, for any
function f : Z → R,

SoftMinz(f(z))

:=

∫
Z
f(z) exp(−1

τ
f(z))dz/

∫
Z
exp(−1

τ
f(z′))dz′

(6)

where τ > 0 and as τ → 0, the softmin operator is approach-
ing the min operator. We introduce the softmin smoothed
robust Bellman operator

BπτQ(s, z, a) = r(s, z, a) + γ(1− β)Es′,z′,a′ [Q(s′, z′, a′)]

+ γβ · SoftMinz′

(
Es′,a′ [Q(s′, z′, a′)]

)
(7)

Note that Bπτ is not necessarily a γ-contraction since the soft-
min operator is not guaranteed to be non-expansive (Littman,
1996). Instead, we obtain an error bound between the true
robust value Qπ

rob and the t-th iteration Qt := BπτQt−1

starting from Q0:

Theorem 3.1. For any function f : Z → R, let C(f, ϵ) :=
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{z ∈ Z | f(z) ≤ minz f(z) + ϵ}, where ϵ > 0. Let
Qt = BπτQt−1 to be the t-th iteration and fix ϵ > 0. Then
the difference between Qt and the optimal robust Q-function
Qπ

rob satisfies

||Qt−Qπ
rob||∞ ≤ γt||Q0−Qπ

rob||∞+
β

1− γ
(Cmax(ϵ)·τ+ϵ)

(8)
where Cmax(ϵ) is given by

Cmax(ϵ) := max
s,z,a,k

(

∫
Z
1dz− 1− log

∫
C(Fk

s,z,a,ϵ)

1dz) (9)

and F k
s,z,a(z

′) := Es′∼P (·|s,z,a),a′∼π(·|s′,z′)[Qk(s
′, z′, a′)].

The proof can be found in Appendix A.1. By fixing ϵ > 0,
the error between the value function induced by the softmin
operator and the true robust value will converge to βϵ/(1−γ)
as τ → 0 and then can be arbitrarily close to 0 by taking
ϵ small enough. Thus, in the policy evaluation step, the
softmin operator gives a reasonable approximation and will
benefit the robust training. However, the softmin operator
involves integral which is intractable over continuous con-
text space Z . We use importance sampling (Haarnoja et al.,
2017) in expectation to rewrite the integral and obtain an
unbiased estimation. Specifically,

SoftMinz′(f(z′))

= Ez′∼q[
f(z′) exp(− 1

τ f(z
′))

q(z′)
]/Ez′∼q[

exp(− 1
τ f(z

′))

q(z′)
]

(10)
where q ∈ ∆(Z) is a sampling distribution over the context
space Z and f(z′) = Es′,a′ [Q(s′, z′, a′)]. In practice, we
sample contexts z′ by adding noises, which are sampled
from the uniform distribution ϵ ∼ Unif(−c, c) in the range
[−c, c], to the true context z′env obtained from the environ-
ment, i.e., z′ = z′env + ϵ. We will call c the noise clip
parameter, which represents the possible maximal deviation
of the context and is meaningful in real world, e.g., the
outside air temperature will not change too dramatically in
short time and will fall in some reasonable range.

3.2. Robust Situational SAC: An Instance

To verify the utility of the RS-MDP framework, we apply
it to the existing RL algorithm, Soft Actor-Critic (SAC,
Haarnoja et al., 2018), and obtain an RS-MDP based algo-
rithm called Robust Situational Soft Actor-Critic (RS-SAC)
to learn robust policies against context disturbances. The
general idea is to modify the policy evaluation step to be the
robust situational one, i.e., letting the critic network approx-
imate the robust Q-value following the softmin smoothed
Bellman operator defined in Equation (7) and keeping the
policy improvement step unchanged. Note that in a simi-
lar way our RS-MDP framework can be combined with a

wide range of base RL algorithms which involve learning a
Q-function.

The original SAC is an off-policy actor-critic algorithm
based on maximum entropy principle. Let ϕj , j = 1, 2,
and θ be the parameters of the Q-networks and the pol-
icy network, respectively. Following the implementation
in (Haarnoja et al., 2018), the policy is reparametrized as
at = fθ(st, zt; ξ), where ξ ∼ N is standard Gaussian
noise, and the target Q-network Qϕ− is applied with soft
update. We define Qmin

ϕ := minj=1,2 Qϕj
and similarly

Qmin
ϕ− := minj=1,2 Qϕ−

j
.

In the policy evaluation step, the goal is to learn the worst-
case robust value function Qπ

rob (Mankowitz et al., 2020)
under the RS-MDP framework. We perform the critic update
by minimizing

min
ϕj

Est,zt,at,rt,st+1,zt+1∼D
ξ∼N

[(
Qϕj (st, zt, at)−Qtarg

)2]
,

(11)
for j = 1, 2, where the target value is defined as

Qtarg = rt + γ
[
(1− β)Qmin

ϕ−

(
st+1, zt+1, f(st+1, zt+1; ξ)

)
+ β · SoftMinz

(
Qmin

ϕ−

(
st+1, z, f(st+1, z; ξ)

))
− α log πθ

(
fθ(st+1, zt+1; ξ) | st+1, zt+1

)]
(12)

where the SoftMin over the context space Z is performed
by using importance sampling as in Equation (10). Note
that we recover the original critic update of SAC by letting
β = 0.

For the policy improvement step, we train the actor by max-
imizing

max
θ

Ext∼D,ξ∼N

[
Qmin

ϕ

(
xt, f(xt; ξ)

)
− α log πθ(fθ(xt; ξ) | xt)

]
,

(13)

where xt = (st, zt) is the total state. At last, we update the
temperature α by minimizing

min
α
−αExt∼D,ξ∼N [log πθ(f(xt; ξ) | xt) +H], (14)

where H is the target value of entropy.

4. Experiments
In this section, we first conduct experiments on MuJoCo
(Todorov et al., 2012) tasks with dynamic contexts in Sec-
tion 4.1. Then, we apply our algorithm RS-SAC to the
real-world inventory control task to show the wide applica-
bility of our RS-MDP framework in Section 4.2.
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Figure 3. Compare RS-SAC, SAC, DR-SAC, PR-SAC and SC-SAC in the target context transitions with perturbed parameters µ and σ.
Each point is the average return obtained by running 8 episodes for each policy obtained from the last 10 epochs in training for each
random seed. We also fix several values for µ and plot the average return curve for each algorithm as a function of σ, see Appendix B.4.
The results show that RS-SAC gives more robust policies across various context transitions than other baselines.

4.1. Locomotion Control Tasks with Dynamic Contexts

This section provides empirical study on several challenging
locomotion control tasks with dynamic contexts to show
that RS-SAC is able to handle complex environments. We
modify standard MuJoCo (Todorov et al., 2012) tasks, which
are commonly used in previous papers (Tessler et al., 2019;
Kuang et al., 2022), by adding appropriate context spaces
to make the assumption of situational RL (cf. Equation 1)
holds.

Motivated by the ACC example, we design two environ-
ments, HalfCheetah-acc and Hopper-acc. We assume there
is a lead car whose speed vt is the context and require
the agent to stay close to the lead car and avoid crashing.
The context transition is of the form vt+1 = P̄∆v(vt) =
max{vt +∆v, 0}, where ∆v ∼ N (µ, σ) is the change of
speed and we do not allow the lead car to go backward.
Another environment, Ant-cross, assume there is a moving
obstacle of radius r, whose x-position is fixed and y-position
yt is the context, between the agent and the goal position.
The context transition here is i.i.d. yt ∼ N (µ, σ). The
policy needs to move across the obstacle without hitting to
it and reach the goal position as soon as possible. In these
environments, once the agent gets contact with the lead car
or the obstacle, the environment will terminate the episode
and return a penalty. See Appendix B.1 for more details
about the environments.

For baselines, we use SC-SAC (Kuang et al., 2022), which
optimizes over the worst-case disturbance in state-context
space, as a representative robust RL algorithm. We also
choose PR-SAC (Tessler et al., 2019), which uses an adver-
sarial policy to disturb actions during training, to represent
robust RL algorithm with adversarial training. The reason
for selecting PR-SAC is that, for example, the unexpected
deceleration of lead car can be regarded as that the action of
the agent is perturbed by the adversary to give an accelera-
tion. We adapt domain randomization (DR) to SAC, called
DR-SAC, which randomizes parameters µ and σ in source
environments during training to learn policies that are robust
to perturbations on these parameters. We train policies for
1000k steps in all tasks with fixed hyperparameters. The
parameters of nominal training environments are set to be
(µ, σ) = (0, 0.2) for HalfCheetah-acc and Hopper-acc, and
(µ, σ) = (0, 0.3) for Ant-cross. For testing, we perturb the
parameters µ and σ in target environments to generate dis-
turbances in context transitions. See Appendix B.2 for more
details on implementation and evaluation settings, and see
Appendix B.3 for the training curves about the algorithms.

We analyze robustness against deviations of context transi-
tions for all algorithms. In Figure 3 we compare the per-
formances of well-trained policies obtained from different
algorithms on the target context transitions with perturbed
parameters µ and σ, and in Figure 4, we summarize the
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Figure 4. Average returns in target context transitions for all algo-
rithms in our MuJoCo tasks. The error bars are over random seeds.

obtained heatmaps by plotting the averages over them. The
results show that RS-SAC outperforms other algorithms in
the target context transitions. For SAC, it is non-robust
compared with RS-SAC except in Ant-cross. While DR-
SAC shows more robustness than SAC since it has seen
diverse context transitions during training, its generalization
performance is not as good as our RS-SAC which is more
principled. For PR-SAC, the results imply that generating
disturbances in action space is not guaranteed to learn ro-
bust policies against context disturbances, though PR-SAC
is more robust than SAC in HalfCheetah-acc. Compared
with SC-SAC, our algorithm RS-SAC shows competitive
robustness in Hopper-acc and outperforms SC-SAC in other
two tasks, since SC-SAC does not utilize the fact that there
is no need to optimize over worst-case disturbances in state
space.

We provide ablation study on the noise clip parameter c
used in Equation (10), since c is an important parameter,
which determines our searching range for the worst-case
context, centered around the true context obtained from
the environment. Though we theoretically establish the
RS-MDP framework by considering the worst-case context
from the whole context space in Equation (2), we find that
in our experiments such a search over the whole context
space might be harmful even if the context space is bounded.
More detailed results can be found in Appendix B.5.

4.2. Application to Inventory Control Tasks

In this section, we apply RS-SAC to the inventory control
task, where customer demand is the context variable, to
show the wide applicability of our RS-MDP framework.

One common practice to apply deep RL to inventory con-
trol is to build simulator with historical data of customer
demands to train an RL policy (Gijsbrechts et al., 2022).
However, during deployment, the context transitions could

be influenced by numerous factors, e.g., seasons, trends,
etc., and thus deviate from the seen context sequences in
training. Therefore robustness against deviations of con-
text transitions should improve the performance for RL in
inventory control.

To establish experiments, historical data of customer de-
mands from 50 Stock Keeping Units (SKUs) are used to
build the training simulators, and fixed sequences of cus-
tomer demands from other 5 SKUs serve as target domains
to test RL policies. The action is the number of placing
orders, which will suffer a time lag, called lead time, be-
tween the actual placement of the order and the arrival of
the items in the warehouse. We will fix the lead time in ex-
periments. The state-context space consists of the incoming
orders of dimension equal to lead time, the in-stock levels
and historical demands of length 3. The goal is to maximize
the profit and minimize the cost originated from restocking,
backlogs, etc. We compare RS-SAC with original SAC and
SC-SAC (Kuang et al., 2022). All algorithms are trained
for 400k steps. For more details on the environment and
implementation, see Appendix C.

Figure 5 shows that RS-SAC outperforms other algorithms,
which indicates the benefits of robust situational training.
We show the behaviors of different algorithms in one tar-
get context sequence of length 100 in Figure 6. There are
spikes in the context sequence and the demands are occa-
sionally near 500, which are uncommon. RS-SAC gradually
increases its placing orders to satisfy the suddenly increased
demand, since it considers the worst-case future context
which will be high demands. However, SAC simply places
rather less orders to reduce restocking cost, which is sub-
optimal, and SC-SAC fails to adapt to this unseen sequence
of customer demands and could not respond to the occasion-
ally high demands in time.

5. Related Works
Situational RL: Existing works on situational RL focus on
utilizing the factorized dynamics induced by context tran-
sitions to achieve efficient learning and planning (Chitnis
& Lozano-Perez, 2019; Efroni et al., 2021). Specifically,
Mao et al. (2018) proposes to use input-dependent base-
lines, which is a function of both the state and the entire
future input sequence, to reduce variance in policy gradient
methods. Dietterich et al. (2018) argues that separating con-
texts and endogenous states from observations can benefit
the learning process in certain cases. Chen et al. (2022)
proposes SeCBAD, a Bayes adaptive RL approach, to de-
tect the abrupt changes of latent contexts. Pan et al. (2022)
improves the learning of world model by decoupling the
controllable and uncontrollable state transitions and then
benefits the decision-making of RL. However, none of these
works consider the problem of robustness against context

7
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Figure 5. Performance comparison on the inventory control task. The returns are normalized.
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Figure 6. Behavior study of different algorithms on the inventory control task.

disturbances like ours.

Robust RL: The theoretical framework of robust RL is
based on robust MDPs which was introduced in (Jay K. Sa-
tia, 1973; Chelsea C. White, 1994; Nilim & Ghaoui, 2003;
Iyengar, 2005). In practice, uncertainty sets can be rep-
resented by multiple simulators. Specifically, Peng et al.
(2017); Tobin et al. (2017); Andrychowicz et al. (2018) pro-
pose domain randomization (DR) which randomly gener-
ates different transition dynamics to facilitate robust policy
training. Mankowitz et al. (2020) proposes robust MPO
(R-MPO) to learn robust policies with pre-given multiple
environment parameters as uncertainty sets. Abdullah et al.
(2019) proposes the Wasserstein robust RL (WR2L) to
train the policy with environment parameters jointly. Jiang
et al. (2021) propose monotonic robust policy optimization
(MRPO) which optimizes a theoretical performance lower
bound to learn robust policies with increasing performance.
Different from the above approaches which require multiple
simulators to model the disturbance in transition dynam-
ics, Kuang et al. (2022) proposes state-conservative policy
optimization (SCPO) which optimizes over the worst-case
disturbance in state space and is free from specific priors
and control of simulators.

Another branch of robust RL is robust adversarial training

where an adversary is explicitly modeled to generate dis-
turbances to the environments to learn robust policies. The
first line of works relies on the access to the simulator where
the transition dynamics can be modified by an adversary
(Pinto et al., 2017; Zhang et al., 2020; Kamalaruban et al.,
2020; Tessler et al., 2019; Zhai et al., 2022; Tanabe et al.,
2022). Instead of modifying the simulator directly, another
work (Tessler et al., 2019) proposes action robust MDP
(AR-MDP) which models the disturbances in environments
through perturbations on the action space.

6. Conclusions and Future Works
This paper introduces robust situational MDP which cap-
tures the deviations of context transitions explicitly and is
suitable for many real-world applications. To scale to large
context space, we introduce the softmin smoothed robust
Bellman operator to learn the robust Q-value approximately,
and experiments show that our algorithm can generalize
better to a wide range of deviations in context transitions
and outperform existing robust RL algorithms. For future
work, we would like to apply our method to more real-world
tasks, and delve into the specific structures revealed by ap-
plications to design effective robust algorithms.
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A. Proofs
A.1. Proof of Theorem 3.1

For ease of notations, we will use SMτ to represent the softmin operator here. Let LSEτ (f(·)) := −τ log
∫
Z exp

(
−

1
τ f(z)

)
dz be the logsumexp operator.

Lemma A.1. For any function f : Z → R, let C(f, ϵ) := {z ∈ Z | f(z) ≤ minz f(z) + ϵ}, where ϵ > 0. Then

min
z

f(z)− τ log

∫
Z
1dz ≤ LSEτ (f(·)) ≤ min

z
f(z) + ϵ− τ log

∫
C(f,ϵ)

1dz (15)

Proof.

LSEτ (f(·)) = −τ log
∫
Z
exp

(
− 1

τ
f(z)

)
dz

≤ −τ log
∫
C(f,ϵ)

exp
(
− 1

τ
f(z)

)
dz

≤ −τ log
∫
C(f,ϵ)

exp
(
− 1

τ
(min

z′
f(z′) + ϵ)

)
dz

≤ min
z

f(z) + ϵ− τ log

∫
C(f,ϵ)

1dz

(16)

On the other hand,

LSEτ (f(·)) = −τ log
∫
Z
exp

(
− 1

τ
f(z)

)
dz

≥ −τ log
∫
Z
exp

(
− 1

τ
min
z′

f(z′)
)
dz

= min
z

f(z)− τ log

∫
Z
1dz

(17)

Lemma A.2. For any function f : Z → R, let C(f, ϵ) := {z ∈ Z | f(z) ≤ minz f(z) + ϵ}, where ϵ > 0. Then

0 ≤ SMτ (f(·))−min
z

f(z) ≤ τ(

∫
Z
1dz − 1− log

∫
C(f,ϵ)

1dz) + ϵ (18)

Proof. The left-hand-side is straightforward. For the right-hand-side, let pτ (z) be the distribution pτ (z) :=
exp(− 1

τ f(z))∫
Z exp(− 1

τ f(z))dz
.

Then
SMτ (f(·))− LSEτ (f(·))

=

∫
Z
pτ (z)f(z)dz + τ log

∫
Z
exp

(
− 1

τ
f(z)

)
dz

=τ
(
log

∫
Z
exp

(
− 1

τ
f(z)

)
dz −

∫
Z
pτ (z)(−

1

τ
f(z))dz

)
=τ

∫
Z
−pτ (z) log pτ (z)dz

≤τ
∫
Z
(1− pτ (z))dz

=τ(

∫
Z
1dz − 1)

(19)
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where the inequality follows from the fact that −x log x ≤ 1− x for 0 < x ≤ 1. Finally we obtain that

SMτ (f(·))−min
z

f(z)

=SMτ (f(·))− LSEτ (f(·)) + LSEτ (f(·))−min
z

f(z)

≤τ(
∫
Z
1dz − 1− log

∫
C(f,ϵ)

1dz) + ϵ

(20)

where the last inequality follows from equation (19) and Lemma A.1.

Proof of Theorem 3.1. For any s ∈ S, z ∈ Z , a ∈ A,∣∣∣Qt+1(s, z, a)−Qπ
rob(s, z, a)

∣∣∣
=
∣∣∣γ(1− β)Es′,z′,a′ [Qt(s

′, z′, a′)] + γβ · SMτ (Es′,a′ [Qt(s
′, ·, a′)])

− γ(1− β)Es′,z′,a′ [Qπ
rob(s

′, z′, a′)]− γβ ·min
z′

Es′,a′ [Qπ
rob(s

′, z′, a′)]
∣∣∣

≤γ(1− β)
∣∣∣Es′,z′,a′ [Qt(s

′, z′, a′)]− Es′,z′,a′ [Qπ
rob(s

′, z′, a′)]
∣∣∣

+ γβ ·
∣∣∣SMτ (Es′,a′ [Qt(s

′, ·, a′)])−min
z′

Es′,a′ [Q∗
rob(s

′, z′, a′)]
∣∣∣

(21)

Further, for the second term in the last inequality,

∣∣∣SMτ (Es′,a′ [Qt(s
′, ·, a′)])−min

z′
Es′,a′ [Qπ

rob(s
′, z′, a′)]

∣∣∣
≤
∣∣∣SMτ (Es′,a′ [Qt(s

′, ·, a′)])−min
z′

Es′,a′ [Qt(s
′, z′, a′)]

∣∣∣
+
∣∣∣min

z′
Es′,a′ [Qt(s

′, z′, a′)]−min
z′

Es′,a′ [Qπ
rob(s

′, z′, a′)]
∣∣∣

(22)

Define the norm ||Q||∞ := maxs,z,a |Q(s, z, a)| for function Q : S × Z ×A → R. Combining (21) with (22), we obtain

||Qt+1 −Qπ
rob||∞

≤γ||Qt −Qπ
rob||∞ + γβmax

s,z,a

∣∣∣SMτ (Es′,a′ [Qt(s
′, ·, a′)])−min

z′
Es′,a′ [Qπ

rob(s
′, z′, a′)]

∣∣∣
≤γ||Qt −Qπ

rob||∞ + γβ(τ · C(Qt+1, ϵ) + ϵ)

(23)

where the last inequality follows from Lemma A.2 and C(Qt+1, ϵ) is given by

C(Qt+1, ϵ) := max
s,z,a

(

∫
Z
1dz − 1− log

∫
C(Fs,z,a,ϵ)

1dz) (24)

where Fs,z,a(z
′) := Es′∼Ps,z,a,a′∼π(·|s′,z′)[Qt+1(s

′, z′, a′)]

Therefore

||Qt −Q∗
rob||∞ ≤ γt||Q0 −Q∗

rob||∞ + β

t∑
k=1

γt−k+1(τ · C(Qk, ϵ) + ϵ) (25)
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A.2. Why not merging states and contexts

We present a new theorem here to show that, under certain condition, our framework achieves tighter worst-case bound
compared with the robust MDP merging context into state. Consider the uncertainty set which merges context into state and
thus also takes the deviations of states transition into account:

Ũs,z,a = {(1− β)Ms,z,a + βq̃(s′, z′) | q̃ ∈ ∆(S × Z)}, (26)

where M(s′, z′|s, z, a) = P̄ (z′|z)P (s′|s, z, a) as in Eq. 1.

Let π∗
r be the optimal robust policy under uncertainty set Ũ and π∗

rs be the optimal robust policy under our uncertainty set U
(Equation 2). Clearly, given β, we have Us,z,a ⊂ Ũs,z,a for all s, z, a.

For any policy π, let V π
r be the robust value function of π under uncertainty set Ũ and V π

rs be the robust value function of π
under our uncertainty set U .

Theorem A.3. Assume the reward is normalized to the range [−1, 1]. For any transition kernel M̂ ∈ U , let π̂ be the
corresponding optimal policy in M̂ . Then we have

(a)

V π̂
M̂
(ρ)− β

1− γ
≤ V

π∗
r

M̂
(ρ) ≤ V π̂

M̂
(ρ) and V π̂

M̂
(ρ)− β

1− γ
≤ V

π∗
rs

M̂
(ρ) ≤ V π̂

M̂
(ρ) (27)

where V π
M̂
(ρ) is the expected discounted return under the transition kernel M̂ and the initial distribution ρ, for policy

π.

(b) In general, V π∗
rs

rs (ρ) ≥ V
π∗
r

r (ρ). Suppose V
π∗
rs

rs (ρ) ≥ V
π∗
r

r (ρ) + C for some constant C ≥ 0, then

V
π∗
rs

M̂
(ρ) ≥ V

π∗
r

M̂
(ρ) + C − β

1− γ
(28)

Proof. We omit ρ here for convenience. (a) can be easily obtained from the usual robust MDP formulation. For (b),

V
π∗
rs

M̂
− V

π∗
r

M̂
= V

π∗
rs

M̂
− V

π∗
rs

rs + V
π∗
rs

rs − V
π∗
r

M̂
≥ V

π∗
rs

rs − V
π∗
r

M̂
= V

π∗
rs

rs − V
π∗
r

r + V
π∗
r

r − V
π∗
r

M̂
≥ C − β

1− γ

where the first inequality follows from the fact that V π∗
rs

M̂
≥ V

π∗
rs

rs by definition and the second inequality is due to

V
π∗
r

r − V
π∗
r

M̂
≥ − β

1−γ from the worst-case bound of π∗
r (since we also have M̂ ∈ Ũ) and the assumption V

π∗
rs

rs (ρ) ≥
V

π∗
r

r (ρ) + C.

The constant C represents the value estimation gap when one additionally considers the deviation of state transition. To
achieve strict inequality V

π∗
rs

M̂
(ρ) > V

π∗
r

M̂
(ρ), the theorem indicates that it is sufficient to have C − β

1−γ > 0. As an example
the toy ACC (where β = 0.2, γ = 0.99 ), after normalizing the reward (r = 0.1 · (10 − d) and otherwise −1 when the
episode is early terminated), we can directly calculate that V π∗

rs
rs ≈ 7.72, V π∗

r
r ≈ −16.86. Then we can take C = 24.58 and

thus C − β
1−γ ≈ 4.58 > 0. This implies that our formulation achieves better performance compared with the robust MDP

merging context into state, and thus the worst-case bound is tighter in this case.

B. Details of MuJoCo Experiments
B.1. Environment Details

HalfCheetah-acc and Hopper-acc. In these two environments, we augment the original MuJoCo state sMuJoCo with two
features, relative distance d and speed of lead car v, where the lead car is the reference frame to calculate d. The new state
s = (sMuJoCo, d) and context z = v. At time step t, after doing an action, agent’s velocity ut changes to ut+1 by calling
MuJoCo simulator and the transition of relative distance is

dt+1 = dt + ut+1 ·∆t− vt ·∆t. (29)

13



Robust Situational Reinforcement Learning in Face of Context Disturbances

Table 1. Specific hyperparameters for RS-SAC

Parameter Value

β 0.3
τ 0.01
noise clip (c) 0.5
noise samples (K) 16

The context transition is vt+1 = P̄∆v(vt) = max{vt +∆v, 0}, where ∆v ∼ N (µ, σ) is the change of speed.

Let R be the original MuJoCo reward. Since the agent has to learn to walk first, we set the reward to be R when the agent is
far from the lead car. Then we add a term related to the relative distance to encourage the agent to stay close to the lead car.
Finally, when crashing (d ≥ 0), reward becomes −10 to penalize the agent and the episode will be terminated. Specifically,

r(s, z, a) =

 R(sMuJoCo, a) if d < −10
R(sMuJoCo, a) + 0.3 · (10 + d) if − 10 ≤ d < 0
−10 if 0 ≤ d.

(30)

The maximum episode length is 500. The initial context is 0 and the initial relative distance is uniformly sampled from the
interval [−6,−5]. The parameters µ and σ of training environment is set to be µ = 0 and σ = 0.2.

Ant-cross. In this environment, the state is the same as the original MuJoCo state which includes the current position of the
agent. The moving obstacle is of radius 0.5. Its x-position is fixed to be 2 and its y-position yt is the context. The context
transition here is i.i.d. yt ∼ N (µ, σ) and we clip yt to be the range [−0.4, 0.4]. The goal position is set to be located at
(4, 0).

Let do be the distance between the agent and the obstacle, and let dg be the distance between the agent and the goal position.
The reward function is defined as

r(s, z, a) =

{
(4− dg) + (0.2 · vx + 0.4 · |vy|)− 0.01 · control cost if 0 < do
−10 if do ≤ 0.

(31)

where vx and vy are the x and y velocity of the agent, respectively. The first term 4− dg is dominant, in order to let the
agent stay close to the goal position. The second term 0.2 · vx + 0.4 · |vy| is to encourage the agent to go right and move up
or down to avoid the moving obstacle. We balance the control cost by multiplying a small constant in the third term.

The episode will be terminated if do ≤ 0. The maximum episode length is 500. The initial context is 0 and the initial state
distribution is the same as that of MuJoCo. The parameters µ and σ of training environment is set to be µ = 0 and σ = 0.3.

B.2. Implementation Details

Algorithm Implementations. SAC is implemented following the original SAC paper (Haarnoja et al., 2018). SC-SAC
is implemented with state noise ϵ = 0.005, same as that in original paper (Kuang et al., 2022). We implement PR-SAC
following (Tessler et al., 2019) and (Kuang et al., 2022) where the adversary policy is TD3-type (Fujimoto et al., 2018) and
we set the probability of the adversary to be 0.1 and the training frequency of the adversary to be 10 : 1. The hyperparameters
for the softmin operator in RS-SAC described in Section 3.2 are listed in Table 1.

For HalfCheetah-acc and Hopper-acc, DR-SAC is trained on environments with parameters sampled uniformly from
µ ∈ [−0.2, 0], σ ∈ [0.2, 0.6]. For Ant-cross, DR-SAC is trained on environments with parameters sampled uniformly from
µ ∈ [−0.2, 0.2], σ ∈ [0.3, 0.6].

Shared Hyperparameters. Since all algorithms are SAC-type, they share the same hyperparameters as those in original
SAC (Haarnoja et al., 2018), shown in Table 2.

Evaluation Settings. For HalfCheetah-acc and Hopper-acc, we change environment parameters µ and σ to be in the ranges
µ ∈ [−0.4, 0.1] and σ ∈ [0.1, 2.0]. Note that when µ is greater than 0, the speed of lead car can easily go beyond the
maximum velocity of the agent which is limited by the physics simulation of MuJoCo. Thus when µ > 0, all algorithms
cannot achieve high returns as shown in Figure 3. For Ant-cross, environment parameters µ and σ are changed to be in the
ranges µ ∈ [−0.3, 0.3] and σ ∈ [0.2, 0.7].
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Table 2. Shared hyperparameters for all algorithms

Parameter Value

number of hidden layers 2
number of units per layer 256
activation RELU
optimizer Adam
discount factor 0.99
learning rate 3 · 10−4

replay buffer size 106

batch size 256
target entropy −dim(A)
soft update coefficient 5 · 10−3

soft update interval 1
update every 1

B.3. Training Curves in MuJoCo Tasks
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Figure 7. Training curves in MuJoCo tasks with dynamic contexts

Figure 7 shows that all algorithms achieve similar training performances in HalfCheetah-acc and Hopper-acc, while in
Ant-cross, PR-SAC and SC-SAC even lead to performance degradation. This is mainly due to the difficulty of Ant-cross,
where the agent obtains reward signal about the obstacle only when hitting to it and so this signal is rather sparse. Thus
optimizing over worst-case disturbances in state-context space, like SC-SAC, or action space, like PR-SAC, might be very
hard. We do not plot the training curve of DR-SAC since it is trained on multiple environments with different parameters
while others use only one nominal training environment.

B.4. More Details about Figure 3

Here we fix several values for µ and plot the average return curve for each algorithm as a function of σ in our MuJoCo tasks
for a clearer visualization. For HalfCheetah-acc and Hopper-acc, we choose µ = −0.2,−0.1, 0, see Figure 8 and 9. For
Ant-cross, we choose µ = −0.12, 0, 0.12, see Figure 10.

B.5. Ablation Study

We conduct ablation experiments on HalfCheetah-acc to study the effects given by different noise clip parameters c =
0.01, 0.05, 0.1, 0.5 (original), 1.0, 1.2, see Figure 11. Notice that when c > 1, the performance degenerates quickly, since
searching worst-case contexts over large ranges leads to over-pessimism in value estimation. While when c is small (c = 0.01
or 0.05), the performance reduces to be non-robust as the robust critic update tends to the non-robust one due to the small
range.
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Figure 8. Performances in several target context transitions (µ, σ) for HalfCheetah-acc.
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Figure 9. Performances in several target context transitions (µ, σ) for Hopper-acc.

C. Details of Inventory Control Task
Environment Details. The state-context space consists of the incoming orders of dimension equal to lead time, the in-stock
levels and demands. The action space is of one dimension, deciding how many order to place which is normalized to the
range [0, 4]. Our goal is to maximize the profit and minimize the cost originated from restocking, backlogs, etc. Specifically,
profit is equal to the fixed price times number of item sold, denoted by n sold. The overall inventory cost, denoted by
inventory cost, is the product of current in-stock level and inventory cost per item per day. The restocking cost, denoted by
restock cost, is the cost for restock one item times the number of orders, with additional fixed cost for restocking added.
The backlog cost, denoted by backlog cost, is proportional to the number of demands that are not met by the inventory since
then customers tend to go to competitors. We list the related constants to the Table 3. Finally, we take reward r to be a linear
combination of these terms, which is defined as r = income− inventory cost− restock cost− backlog cost.

The initial in-stock level is set to be 20 and initial demand is uniformly sampled from the dataset. Each episode is of length
100.

Implementation Details. We keep hyperparameters of algorithms in inventory control same as those in MuJoCo tasks with
dynamic contexts, except that for RS-SAC, where the critical parameter β is set to be 0.01. The reason is that the context
transition in inventory control is highly stochastic, unlike the hand-crafted one in MuJoCo tasks, and so RS-SAC are hard to
optimize with large β and sensitive to β. We find that β = 0.01 achieves good performance for RS-SAC.
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Figure 10. Performances in several target context transitions (µ, σ) for Ant-cross.
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Figure 11. Ablation study in HalfCheetah-acc.

Table 3. Environment parameters for inventory control

Parameter Value

cost for restocking 60
cost for restock one item 1
inventory cost per item per day 0.1
price per item 3
backlog cost per item 1
lead time 7
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