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Abstract
Dense contrastive learning (DCL) has been re-
cently explored for learning localized information
for dense prediction tasks (e.g., detection and seg-
mentation). It still suffers the difficulty of min-
ing pixels/patches correspondence between two
views. A simple way is inputting the same view
twice and aligning the pixel/patch representation.
However, it would reduce the variance of inputs,
and hurts the performance. We propose a plug-in
method PQCL (Positional Query for patch-level
Contrastive Learning), which allows performing
patch-level contrasts between two views with ex-
act patch correspondence. Besides, by using posi-
tional queries, PQCL increases the variance of in-
puts, to enhance training. We apply PQCL to pop-
ular transformer-based CL frameworks (DINO
and iBOT, and evaluate them on classification, de-
tection and segmentation tasks, where our method
obtains stable improvements, especially for dense
tasks. It achieves new state-of-the-art in most set-
tings. Code is available at https://github.
com/Sherrylone/Query_Contrastive.

1. Introduction
Self-supervised learning (SSL) has achieved promising re-
sults across variant tasks due to it’s strong transferability.
Besides, unlike supervised learning, SSL does not rely on
heavily labeled data in pre-training stage, which reduces the
cost of data annotations. Existing SSL methods mainly fall
into three categories: 1) Generative approaches (Goodfel-
low et al., 2014) learn to estimate the distribution of input
data. However, generation can be computationally expen-
sive and pixel-wise information may not be necessary for
representation learning. 2) Contextual methods (Zhang
et al., 2016; Gidaris et al., 2018) design pretext tasks (de-
noising auto-encoders (Vincent et al., 2008), context auto
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encoders (Zhang et al., 2016), etc). 3) Contrastive meth-
ods (Chen et al., 2020a;b) take augmented views of the
same image as positive pairs and others as negative pairs.
Contrastive-based methods have shown great promise e.g.,
in image classification/detection, video classification (Caron
et al., 2021), multi-modal learning (Jin et al., 2022; 2023a)
and others (Jin et al., 2023b).

Existing contrastive learning in general (Chen et al., 2020a;
Caron et al., 2021) aims to learn global-discriminative fea-
tures, which may lack spatial sensitivity (Yun et al., 2022),
limiting their ability on dense vision tasks like detection and
segmentation. Consequently, pixel-wise (Xie et al., 2021c;
Wang et al., 2021) and patch-wise (Yun et al., 2022) con-
trastive objectives and frameworks are proposed. However,
one main shortcoming of these DCL methods is establishing
the correspondence among pixels/patches usually requires
bilinear interpolation, which is complex and heavily sensi-
tive to random crop augmentation (in an extreme case, if
two views have no intersection parts, there are no correspon-
dence relation). To overcome this issue, patch-level masked
augmentation is proposed within the same view is proposed
in iBOT (Zhou et al., 2022). However, the variance of the
inputs (masked and unmasked views) is much lower than in-
putting two different views, where variance has been proven
to be the key to success in contrastive learning (Wang et al.,
2022a). To address this issue, inspired by query crop and
cross attention mechanism proposed in (Zhang et al., 2023),
we propose positional-query-based patch-level contrasting,
which only inputs relative positional embedding (without
pixel information) to student branch, and feeds the query
crop (with pixel information) to teacher branch to guide the
student. Such that, PQCL allows to perform patch-level con-
trasts with larger variance, and learns more spatial-sensitive
information. The main contributions are:

1) We propose PQCL, a positional-query-based patch-level
contrastive learning method, which inputs relative positional
embedding (without pixel information) to the student branch,
and feeds the query crop (with pixel information) to the
teacher branch to guide the student. PQCL could further
increase variance between inputs, resulting in better perfor-
mance in downstream tasks. Besides, PQCL can serve as
a plug-in tool, and can be easily integrated into recent ad-
vanced transformer-based contrastive learning architecture
(e.g., DINO (Caron et al., 2021), iBOT (Zhou et al., 2022)).
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Figure 1. Framework of PQCL. Images are first augmented twice
to generate two views. Then, we randomly crop several query
views and calculate the relative position between query crops
and the two augmented views. Then, for student branch (top), we
randomly masked some patches of the augmented views and jointly
input the masked views and relative positional embedding of query
views (without pixel information). For teacher branch (bottom),
we individually input the augmented views (without masking) and
query views (with pixel information) to guide the student branch.
Then, objectives are added on the [CLS] token and query patches.

2) Instead of directly using the self attention (Vaswani et al.,
2017) (would hurt the downstream performance) or regres-
sor module (extra parameters) recently proposed in the pre-
vious method (CAE (Chen et al., 2022), SIM (Tao et al.,
2022)), we propose cross attention in each block between
positional and patches embeddings to learn semantic infor-
mation of positional queries, and the cross attention mecha-
nism does not incur extra parameters on the basis of iBOT.

3) We conduct comprehensive experiments on standard vi-
sual benchmarks, including linear probing, finetuning on
classification, detection and segmentation, where the pro-
posed PQCL can stably improve the baseline DINO and
iBOT a lot. Specifically, For ViT/B, PQCL outperforms
iBOT 0.9% top-1 accuracy by linear probing on ImageNet.
For ViT/S, PQCL outperforms baseline iBOT by 2.4%
mAPbb and 1.5% mAPmk on detection and segmentation
on MS-COCO dataset, respectively. For semantic segmenta-
tion, PQCL outperforms iBOT 0.8% mIoU on ADE20K.

2. Related Work
Dense contrastive SSL. A prominent line of SSL, often
referred to as “contrastive” or “siamese” approaches, trains
networks by matching the representation of different views
obtained from the same image by means of data augmen-
tation (Chen et al., 2020a; He et al., 2020; Caron et al.,
2021; Wang et al., 2021). These approaches have primar-
ily been developed with global (image-level) objectives but
several recent works have adapted them to learn local fea-

tures (Wang et al., 2021; Yang et al., 2021; Ziegler & Asano,
2022; Ge et al., 2021) by different pixel-/patch- wise corre-
spondence mining techniques. DenseCL (Wang et al., 2021)
exploits the correspondence by sorting the similarities of
pixels in the deep feature map, while PixPro (Xie et al.,
2021c) utilizes the augmentation wrapper to get the spatial
correspondence of the pixel intersection between two views.
Furthermore, Detco (Xie et al., 2021a) tries to improve the
performance of general contrastive learning approaches by
augmenting multiple global and local views simultaneously.
Inspired by PixPro, Resim (Xiao et al., 2021) uses RoI Pool-
ing (Jiang et al., 2018) to extract a feature vector from the
associated feature map region for both views. On the ba-
sis of DenseCL, SetSim (Wang et al., 2022b) employs a
threshold selection to filter out noisy backgrounds. With
the development of ViT in SSL (Dosovitskiy et al., 2020),
SelfPatch (Yun et al., 2022) treats the spatial neighbors of
the patch as positive examples for learning semantically
meaningful relations among patches. On the basis of Self-
Patch, ADCLR (Zhang et al., 2023) proposes patch-level
contrasting via query crop and cross attention mechanism.

Masked Image Modeling (MIM). These methods learn
vision representation by reconstructing the masked patches
from the partial observations. Based on the reconstruction
objective, they can be divided into: pixel-wise reconstruc-
tion (He et al., 2021) and auxiliary feature/tokens predic-
tion (Dong et al., 2021; Zhou et al., 2022). SimMIM (Xie
et al., 2021d) and MAE (He et al., 2021) are the first two
methods applying mask modeling in the visual domain.
They propose to reconstruct the raw pixel values from ei-
ther the full set of image patches (mask tokens and visible
patches for SimMIM) or partially observed patches (vis-
ible patches for MAE). Compared with SimMIM, MAE
is more efficient by dropping out a large portion of input
patches. To learn richer semantic features, MaskFeat (Wei
et al., 2021) introduces the HOG features (Dalal & Triggs,
2005) as supervision and l2 loss is added to each pixel on
HOG feature and predicted features. Inspired by adversarial
training (Goodfellow et al., 2014), CIM (Fang et al., 2022)
adds perturbations to raw images to enhance robustness for
reconstruction. Another line of MIM is predicting token
prediction in teacher-student architecture. iBOT (Zhou et al.,
2022) is the first to perform MIM objective by inputting the
same view to the teacher (original) and student (masked)
branches. On the basis of iBOT, SIM (Tao et al., 2022) adds
a transformer decoder module to predict masked patches
information of the other view.

3. Methodology
3.1. Preliminaries

Vision Transformers. Denote an image by x ∈ RC×H×W ,
where H × W is the resolution of the image and C is
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the number of channels. Plain ViT (Dosovitskiy et al.,
2020) treats the image x as a sequence composed of non-
overlapping patches {x(i) ∈ RCP 2}Ni=1, where each patch
has a fixed P × P resolution. Then, the patches are
linearly transformed to D-dimensional patch embeddings
z(i) = Ex(i) + Wi

pos ∈ RD, where E ∈ RD×CP 2

is the
linear projection and Wpos ∈ RD is the positional embed-
ding for the i-th patch. A [CLS] token z[CLS] ∈ RD is
subsequently prepended to the patch sequence to extract
global information, so the resulting input sequence is rep-
resented as z = [z[CLS], z(1), z(2), · · · , z(N)]. Then, ViT
uses a Transformer encoder (Vaswani et al., 2017) to gener-
ate both image-level ([CLS] token) and patch-level (other
tokens). In line with SelfPatch (Yun et al., 2022), we use fθ
to denote the whole process of a ViT parameterized by θ:

fθ(x) = fθ

([
z[CLS], z(1), z(2), · · · , z(N)

])
=
[
f
[CLS]
θ (x), f

(1)
θ (x), f

(2)
θ (x), · · · , f (N)

θ (x)
]
,

(1)
where f

[CLS]
θ (x) and f

(i)
θ (x) are the representations of the

whole image and i-th patch, respectively.

Self-supervised learning with ViTs. Since our PQCL is
mainly built on top of iBOT (Zhou et al., 2022), we shortly
review the framework and objective of iBOT. Given the
image x, iBOT constructs a positive pair (XA,XB) through
random augmentation. Then, iBOT randomly masks some
patches to generate the masked versions XAm and XBm.
The overall objectives are added on [CLS] tokens across
two views and masked tokens within the same view (masked
and original versions), which is formulated as:

LiBOT = H
(
gγ

(
f
[CLS]
θ (xA)

)
, sg

(
gγ′(f

[CLS]
θ′ (xB))

))
+H

(
gγ

(
f
[CLS]
θ (xB)

)
, sg

(
gγ′(f

[CLS]
θ′ (xA))

))
+ λ · H

(
gγ

(
f
[mk]
θ (xAm)

)
, sg

(
gγ′(f

[mk]
θ′ (xA))

))
+ λ · H

(
gγ

(
f
[mk]
θ (xBm)

)
, sg

(
gγ′(f

[mk]
θ′ (xB))

))
(2)

where H(a, b) = −a log b is the cross entropy loss. sg(·)
means stop-gradient operation. gγ is the MLP projector,
which is commonly used in previous SSL methods (Chen
et al., 2020a; Grill et al., 2020). γ′ and θ′ denote the expo-
nential moving averages updated parameters in the teacher
branch. f [mk]

θ means masked patches. The first two terms
in Eq. 2 are the global loss added on [CLS] token across
the two different views, and the last two terms are the
patch-level loss on the masked patches. We can glance
the patch-level loss is added on the same view (i.e., XA/B

and XAm/Bm), which limits the variance of two branches
inputs, and could influence the downstream performance.
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Figure 2. Illustration of relative positional encoding: absolute
global positional encoding and relative positional encoding. We
first randomly crop global views and query views, where query
view is usually much smaller than global views (for better illus-
tration, we increase the region of query crop). Then, we use the
positional encoding of the global view to represent the relative
positional encoding of the query view.

3.2. Contrastive Learning via Positional Query

Query crops. To increase the variance of patch-level inputs,
we randomly crop each image to generate Q query crops,
where Q is a pre-defined hyper-parameter. Then, we resize
each query crop to the low resolutions (e.g., 32 × 32, 96
× 96) and divide them into several query patches with the
exact resolution of raw patches (e.g., 16×16). Denote the i-
th query patches as xqi . Then, we add the relative positional
embedding wq on each query patch and feed the additions
into a linear projector to get its embedding z(qi). Then, the
embedding sequence can be formulated as:

z =

z[CLS], z(1), z(2), · · · , z(N)︸ ︷︷ ︸
raw patches

, z(q1), z(q2), · · · , z(qQ)︸ ︷︷ ︸
query patches

 .

(3)
Note that both raw patches and query patches will add the
positional embedding.

Relative positional encoding. Instead of simply using
learnable positional encoding in baseline iBOT (Zhou et al.,
2022), which is difficult to represent the relation between
global views and query view, we use fixed positional encod-
ing of global views to represent the position of query views,
which is illustrated in Fig. 2. Specifically, for each position,
we use the following popular form in transformers (Vaswani
et al., 2017) to generate positional embedding:

Wh,w =
[
sin
( w

e2∗1/d

)
, cos

( w

e2∗2/d

)
, · · · , sin

(w
e

)
,

sin

(
h

e2∗1/d

)
, cos

(
h

e2∗2/d

)
, · · · , sin

(
h

e

)]
(4)

where e = 10000 is the pre-defined parameter, which is also
commonly used in MAE (He et al., 2021). (w, h) means the
position of top left patch position (illustrated in Fig. 2).
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Extracting semantic information from query views. For
the student branch, we input raw patches and positional
embeddings of query views. In other words, query views are
completely masked. To extract the semantic information of
query views, we design cross attention between positional
embedding and raw views. Specifically, the input of the
student self-attention block can be written as:

Z =

z[CLS], z(1),m(2), · · · , z(N)︸ ︷︷ ︸
raw patches

,m(q1),m(q2), · · · ,m(qQ)︸ ︷︷ ︸
query positions

 .

(5)
where m(·) = m+w(·) means the placeholder of masked
patches in position (·), and m, w are the learnable vector
to represent the general masked information and positional
embedding, respectively. Q is the number of patches in
the query view. For each attention block, we formulate the
cross-attention mechanism as:

Attn(Qz(qi) ,Kz′ ,Vz′) = Softmax

(
Qz(qi)Kz′

⊤
√
dk

)
Vz′ ,

(6)
where 1 ≤ i ≤ Q. Eq. 6 formulates how to extract semantic
information of completely masked query views. For the
two global views in each attention block, we perform self
attention, which is the same with vallina ViTs (Dosovitskiy
et al., 2020). For teacher backbone, we feed the two global
views and query view (with pixel information) one by one:

Zraw =
[
z[CLS], z(1), z(2), · · · , z(N)

]
Zquery =

[
z[query], z(q1), z(q2), · · · , z(qQ)

]
.

(7)

Objective functions. The objective function of PQCL in-
cludes three parts: i) global objective function across two
global views to learn global-discriminative information, ii)
patch-level contrastive objective within the same view to
learn local information and iii) patch-level contrastive ob-
jective of completely masked query views. The fist two
objectives are written in Eq. 2, and the proposed objective
(last one) can be formulated as:

Lquery = H (gγ (fθ(ZA,M
query)) , sg (gγ′(fθ′(Zquery))))

+H (gγ (fθ(ZB ,M
query)) , sg (gγ′(fθ′(Zquery))))

(8)
where Mquery = [m(q1),m(q2), · · · ,m(qQ)] is the se-
quence of tokenized query view. The backbone f receives
two types of inputs, f(·, ·) means using cross attention to
represent the completely masked query views in student
branch and f(·) means only using self attention to extract
the semantic information of query views. The overall objec-
tive function of PQCL is:

LPQCL =

{
LiBOT + λ · Lquery, for iBOT baseline
LDINO + λ · Lquery, for DINO baseline

(9)

where λ is the hyper-parameter to balance the query loss and
loss of baselines. We use iBOT as the baseline by default.

4. Experiments
4.1. Experiment Setup

Platform. The experiments are performed on a work station
with 16 V100 GPUs by default (if not otherwise specified).

Datasets. We conduct self-supervised pre-training on the
ImageNet-1K (Deng et al., 2009) training set with 1,000
classes, as used in SSL for both MIM (He et al., 2021) and
contrastive learning (Chen et al., 2020a). We also transfer
the encoder pre-trained by PQCL on MS-COCO (Lin et al.,
2014), ADE20K (Zhou et al., 2017), and video segmentation
dataset DAVIS 2017 (Pont-Tuset et al., 2017).

Baselines. We consider recent advanced self-supervised
methods based on the ResNets (He et al., 2016) and
ViTs (Dosovitskiy et al., 2020) architectures: (a) self-
supervised ResNets: SimCLR (Chen et al., 2020a), MoCo-
v2 (Chen et al., 2020b), SwAV (Caron et al., 2020), Barlow
Twins (Zbontar et al., 2021), ZeroCL (Zhang et al., 2021),
ARB (Zhang et al., 2022), DenseCL (Wang et al., 2021),
ReSim (Xiao et al., 2021), and DetCo (Xie et al., 2021a);
and (b) self-supervised ViTs: DINO (Caron et al., 2021),
MoCo-v3 (Chen et al., 2021), MoBY (Xie et al., 2021b),
iBOT (Zhou et al., 2022) and SelfPatch (Yun et al., 2022).

Pre-training hyper-parameters. In line with iBOT, we
train with Adamw (Loshchilov & Hutter, 2018) and a batch
size of 1024, distributed over 16 GPUs using ViT-S/16
(batch size per GPU is 64). The learning rate is linearly
ramped up during the first 30 epochs to its base value de-
termined with the following linear scaling rule (Chen et al.,
2020a): lr = 0.0005, batchsize=256. After warmup, we
decay the learning rate with a cosine schedule (Loshchilov
& Hutter, 2016). The weight decay also follows a cosine
scheduled from 0.04 to 0.4. The temperature τ is set to
0.04 while we use a linear warm-up for τt from 0.04 to 0.07
during the first 30 epochs (Although the larger temperature
could result in better performance, it will be also unsafe
for small architectures, e.g., ViT-S.). We follow the data
augmentations of BYOL (Grill et al., 2020) (color jitter-
ing, Gaussian blur, and solarization) and multi-crop (Caron
et al., 2020) with a bicubic interpolation to adapt the posi-
tion embeddings to the scales. For both two baselines DINO
and iBOT, the query crop ratio is randomly sampled from
0.05∼0.25 and we only use two global views without local
views due to the limitation of GPU storage. For baseline
iBOT, we set the masked ratio of global views as 0.3.

Evaluation protocols. We use standard self-supervised
learning protocols, including learning a linear classifier on
frozen features (Chen et al., 2020a; He et al., 2020) and
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Table 1. Linear probing on ImageNet-1K. All the methods only
use two global views without the multi-crop strategy. * means our
reproduction (with main difference as the positional embedding).

Method Arch Epochs Top-1 Top-5
SimCLR (Chen et al., 2020a) ResNet-50 1000 70.0 89.0
Moco V2 (Chen et al., 2020b) ResNet-50 100 60.6 ∼
Moco V2 (Chen et al., 2020b) ResNet-50 800 71.1 ∼
SwAV (Caron et al., 2020) ResNet-50 400 70.1 ∼
Zero-CL (Zhang et al., 2021) ResNet-50 400 72.6 90.5
Barlow Twins (Zbontar et al., 2021) ResNet-50 1000 73.2 91.0
ARB (Zhang et al., 2022) ResNet-50 1000 73.0 91.5
BYOL (Grill et al., 2020) ResNet-50 1000 74.3 ∼
Moco V3 (Chen et al., 2021) ViT/S 100 68.9 ∼
Moco V3 (Chen et al., 2021) ViT/S 300 72.8 ∼
DINO (Caron et al., 2021) ViT/S 100 67.8 ∼
DINO (Caron et al., 2021) ViT/S 300 72.5 ∼
iBOT (Zhou et al., 2022) ViT/S 100 68.8 88.7
iBOT (Zhou et al., 2022) ViT/S 400 73.5 91.3
iBOT (Zhou et al., 2022) ViT/S 800 74.0 91.6
PQCL (Ours) ViT/S 100 69.7 89.1
PQCL (Ours) ViT/S 400 73.8 91.4
PQCL (Ours) ViT/S 800 74.4 91.9
iBOT (Zhou et al., 2022) ViT/B 400 76.0 92.6
iBOT* (Zhou et al., 2022) ViT/B 400 75.8 92.5
PQCL (Ours) ViT/B 400 76.9 93.0

finetune on downstream tasks (He et al., 2021; Chen et al.,
2022). For linear evaluations, we apply random resize crops
and horizontal flips augmentation for training, and report
accuracy on a central crop. For finetuning evaluations (de-
tection and segmentation on MS-COCO (Lin et al., 2014),
segmentation on ADE20K (Zhou et al., 2017)), we initialize
networks with the pre-trained weights to adapt with further
training. In line with (Zbontar et al., 2021), we also evaluate
our method’s transfer ability on small-scale and fine-grained
classification dataset (Van Horn et al., 2018).

4.2. Main Results

We choose ViT/S and ViT/B as backbones, and report the
linear probing results with different pretraining epochs in
Table 1. For 100 and 800 epochs pretraining with ViT/S,
PQCL outperforms iBOT by 0.6% and 0.4%, respectively.
For ViT/B, PQCL outperforms iBOT by 1.1% top-1 accu-
racy with 400 epochs pretraining.

4.3. Transfer Learning Tests

COCO object detection and segmentation. Setups. We
evaluate pre-trained models on the COCO object detection
and instance segmentation tasks (Lin et al., 2014). We test
our model under two popular frameworks Mask R-CNN (He
et al., 2017) and Cascade R-CNN (Cai & Vasconcelos, 2018)
with the standard 1x schedule. Results. Table 2 shows
the proposed PQCL can consistently outperform iBOT in
both detection and segmentation tasks. We evaluate PQCL
with both 200 and 300 epochs pretraining. For 300 epochs
pretraining without local views, PQCL surpasses DINO
with 800 epochs and 10 local views pretraining 0.9% point

mAPbb and 0.5% point mAPmk, respectively. For 200
epochs pretraining, PQCL outperforms DINO and iBOT
with 300 epochs pretraining without local views. With 300
epochs pretraining, PQCL outperforms iBOT by 2.3% point
mAPbb and 1.5% mAPmk, respectively.

ADE20K semantic segmentation. Setup. We evaluate
semantic segmentation performances of pre-trained mod-
els on ADE20k (Zhou et al., 2017), which contains 150
fine-grained semantic categories and 25k training data. We
finetune the pretrained models on Semantic FPN (Lin et al.,
2017) and UperNet (Xiao et al., 2018) with 40k and 160k it-
eration, respectively. Following SelfPatch (Yun et al., 2022),
we report three metrics: (a) mean intersection of union
(mIoU) averaged over all semantic categories, (b) all pixel
accuracy (aAcc), and (c) mean class accuracy (mAcc). Re-
sults. As shown in Table 3, PQCL can outperform previous
all methods under the same setting. Besides, we further
evaluate DINO with 10 local views and 800 epochs pretrain-
ing (checkpoint is downloaded in their official repository 1),
where PQCL gets 0.8 point improvements with only 200
epochs pretraining and only two global views. We guess
the big improvements are because PQCL is a patch-level
contrastive learning method, which is more sensitive to spa-
tial information, resulting the higher performance in dense
prediction tasks. Besides, compared with the baseline iBOT,
our PQCL also gets 1.1 higher points, since PQCL increases
the difficulty of patch-level objectives on the basis of iBOT.

DAVIS 2017 (Pont-Tuset et al., 2017) video segmentation.
Setup. We perform video object segmentation using pre-
trained models on DAVIS 2017. We follow the evaluation
protocol in DINO (Caron et al., 2021) and SelfPatch (Yun
et al., 2022), which does not require extra training costs.
It evaluates the quality of frozen representations of image
patches by segmenting scenes with the nearest neighbor
between consecutive frames. Followed by SelfPatch, we
report three evaluation metrics: (a) mean region similarity
Jm, (b) mean contour-based accuracy Fm, and (c) their
average score J&Fm. Results. In Table 5, PQCL can sta-
bly improve the two baselines (iBOT and DINO), which
is explained in Eq. 9. Specifically, for DINO, PQCL im-
proves the J&Fm score from 60.7 to 63.7, and for iBOT,
PQCL improves the J&Fm from 61.3 to 63.8. We see that
the gain of PQCL on DINO is larger than PQCL on iBOT,
which is probably because DINO only has the global objec-
tive on [CLS] token, while iBOT has a masked patch-wise
objective to learn spatial-sensitive information.

4.4. Ablation Study

Ablation on patch size. Since PQCL mainly benefits from
the query positional embedding, we explore the influence
of the number of query patches. Specifically, we fix the

1https://github.com/facebookresearch/dino
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Table 2. Accuracy on MS-COCO. Mask R-CNN and Cascade R-CNN are adopted and trained with the 1x schedule. All the results are
obtained by using our same finetune protocol for fair comparison, for the two tasks respectively. Epoch refers to the number of pretraining.

Method Backbone Framwork #Epochs #Param. #Views. Object Detection Instance Segmentation
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Moco-V2 (Chen et al., 2020b) ResNet-50

Mask RCNN

200 23M 2 × 2242 38.9 59.2 42.4 35.5 56.2 37.8
SwAV (Caron et al., 2020) ResNet-50 200 23M 2 × 2242 38.5 60.4 41.4 35.4 57.0 37.7
DenseCL (Wang et al., 2021) ResNet-50 200 23M 2 × 2242 40.3 59.9 44.3 36.4 57.0 39.2
ReSim (Xiao et al., 2021) ResNet-50 200 23M 2 × 2242 40.3 60.6 44.2 36.4 57.5 38.9
DetCo (Xie et al., 2021a) ResNet-50 200 23M 2 × 2242 40.1 61.0 43.9 36.4 58.0 38.9
Moco V3 (Chen et al., 2021) ViT-S/16 300 23M 2 × 2242 39.8 62.6 43.1 37.1 59.6 39.2
MoBY (Xie et al., 2021b) ViT-S/16 300 22M 2 × 2242 41.1 63.7 44.8 37.3 60.3 39.8
DINO (Caron et al., 2021) ViT-S/16 300 22M 2 × 2242 40.8 63.4 44.2 37.3 59.9 39.5
SelfPatch (Yun et al., 2022) ViT-S/16 200 22M 2 × 2242 42.1 64.9 46.1 38.5 61.3 40.8
iBOT (Zhou et al., 2022) ViT-S/16 200 22M 2 × 2242 42.6 65.7 47.0 39.0 61.7 41.3
PQCL (Ours) ViT-S/16 200 22M 2 × 2242 43.1 66.0 47.4 39.3 62.2 41.6

DINO (Caron et al., 2021) ViT-S/16

Cascade RCNN

300 22M 2 × 2242 45.2 64.9 47.8 38.9 61.2 41.7
DINO (Caron et al., 2021) ViT-S/16 800 22M 2 × 2242 + 10 × 962 46.8 66.7 50.3 40.6 63.7 43.2
iBOT (Zhou et al., 2022) ViT-S/16 300 22M 2 × 2242 45.4 65.1 49.0 39.6 62.1 41.7
PQCL (Ours) ViT-S/16 200 22M 2 × 2242 46.2 65.5 49.8 39.9 62.3 42.6
PQCL (Ours) ViT-S/16 300 22M 2 × 2242 47.7 67.0 51.3 41.1 64.0 44.2

Table 3. ADE20K semantic segmentation performances of the recent self-supervised approaches pre-trained on ImageNet. The metrics
mIoU, aAcc, and mAcc denote the mean intersection of union, all pixel accuracy, and mean class accuracy, respectively.

Method Arch Backbone #Iter #Epochs #Params #Views mIoU aAcc mAcc
MoCo-v2 (Chen et al., 2020b) FPN ResNet50 40k 200 23M 2 × 2242 35.8 77.6 45.1
SwAV (Caron et al., 2020) FPN ResNet50 40k 200 23M 2 × 2242 35.4 77.5 44.9
DenseCL (Wang et al., 2021) FPN ResNet50 40k 200 23M 2 × 2242 37.2 78.5 47.1
MocoV3 (Chen et al., 2021) FPN ViT-S/16 40k 300 23M 2 × 2242 35.3 78.9 45.9
MoBY (Xie et al., 2021b) FPN ViT-S/16 40k 300 23M 2 × 2242 39.5 79.9 50.5
DINO (Caron et al., 2021) FPN ViT-S/16 40k 300 23M 2 × 2242 38.3 79.0 49.4
DINO (Caron et al., 2021) UperNet ViT-S/16 160k 300 23M 2 × 2242 42.3 80.4 52.7
SelfPatch (Yun et al., 2022) FPN ViT-S/16 40k 200 23M 2 × 2242 41.2 80.7 52.1
SelfPatch (Yun et al., 2022) UperNet ViT-S/16 160k 200 23M 2 × 2242 43.2 81.5 53.9
DINO (Caron et al., 2021) UperNet ViT-S/16 160k 800 23M 2 × 2242 + 10 × 962 44.4 55.5 81.7
iBOT (Zhou et al., 2022) UperNet ViT-S/16 160k 200 23M 2 × 2242 44.1 55.3 81.4
PQCL (Ours) UperNet ViT-S/16 160k 200 23M 2 × 2242 45.2 56.0 81.9
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Figure 3. Comparison on ImageNet-1K across different query
patch sizes with 100 epochs pretraining.

crop ratio as 0.25, and set the batch size 512, distributed
training on ImageNet with 100 epochs in 8 V100 GPUs.
We fix the query crop ratio as 0.25 and change the number
of patches (16×16) from 1, 4, 9, 16, and 36, where the
query image sizes are 16×16, 32×32, 48×48, 64×64, and
96×96, respectively. For fair comparisons, for iBOT (Zhou
et al., 2022) and DINO (Caron et al., 2021), we use the
query images as local crops proposed in SwAV (Caron et al.,

2020). Then we add the local and global objectives in iBOT:

Llocal−global = H(sg(gγ′(f
[CLS]
θ′ (xA)), gγ(f

[CLS]
θ (xQ))))

(10)
where xQ is the query crop. We illustrate the top-1 and
top-5 classification accuracy in Fig. 3. When w/o query
crop, PQCL degenerates to iBOT (fixed positional embed-
ding). We find with the increasing query crop size, both
three methods (DINO, iBOT and PQCL) stably increase
the downstream classification accuracy. We also find when
we set query crop size as 32 (top-1 accuracy is 69.58%),
PQCL can get comparable results with crop size as 96 (top-1
accuracy is 69.65%). An intriguing thing is when we set
query crop size as 16 (only one patch as the local crop), both
iBOT and DINO will drop a little accuracy, while PQCL
can improve a lot. The reason may be that the proposed
cross-attention scheme between positional embedding and
raw patches helps learn the semantic information of the sin-
gle patch (in each attention block, the query patch and raw
patches will perform cross attention to learn the query patch
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Figure 4. Top-1 and top-5 classification on ImageNet-1K of cross
attention and directly inputs with different query crop sizes.
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Figure 5. Comparison of mask ratios on ImageNet-1K with 100
epochs pretraining.

information), while for iBOT and DINO, all elements of self
attention matrix are equal 1, since there’s only one patch.

Effect of cross attention. In our initial experiments, we
directly concatenate the global patches (patches divided
from global views) and query patches (patches divided from
query views), and feed them into transformer and compute
the loss. However, as shown in Fig. 4 we find it’s heavily
sensitive to the patch size, and we conjecture the reason is
that the input of pretraining and downstream finetune have
different distribution. For example, 96*96 query view will
be divided into 36 patches. Then, the inputs in pretrain-
ing stage will contain 232 (196 global views and 36 query
masked tokens) patches, while for downstream finetune, the
inputs will only have 196 patches. As shown in Fig. 4, for
direct input, when the number of query patches is larger
than 4, PQCL gets lower accuracy than baseline iBOT. And
we when we set the size of query view equal to the global
view (224*224), the accuracy of self attention (direct in-
put) will drop with a large range. However, when using the
cross attention mechanism, the gain becomes larger with
the increasing query crop size, since for attention block, the
appended query patches will not contribute to raw patches,
and do not change the distribution shift of pretraining and
downstream inputs. We also find the performance of query
patch size 224 has no significant gain against query patch
size 96, but only brings more complexity. Therefore, in our
main experiments, we set query patch size as 96.

Ablation on query crop ratios. Followed by iBOT (Zhou
et al., 2022) and DINO (Caron et al., 2021), for main results,
we set the query crop ratio as 0.25 as default. We also
conduct a set of experiments to find the best crop ratio.

Table 4. Top-1 and top-5 linear probing classification accuracy of
the proposed PQCL under 100 epoch pretraining on ImageNet-1K.

query crop ratio 0.05 0.10 0.15 0.20 0.25 0.40
top-1 accuracy 69.15 69.27 69.36 69.45 69.65 69.51
top-5 accuracy 88.77 88.81 88.85 88.92 89.02 88.94

Table 5. Video segmentation on DAVIS 2017 of the SOTA self-
supervised approaches pre-trained on ImageNet. PQCL-DINO and
PQCL-iBOT mean use DINO (Caron et al., 2021) and iBOT (Zhou
et al., 2022) as baselines, respectively. All the results are obtained
by following the training recipe of SelfPatch (Yun et al., 2022).
The metrics Jm, Fm, and J&Fm denote mean region similarity,
contour-based accuracy, and their average, respectively.

Method Backbone J&Fm Jm Fm

MoCo-v2 (Chen et al., 2020b) ResNet50 55.5 56.0 55.0
SwAV (Caron et al., 2020) ResNet50 57.4 57.6 57.3
DenseCL (Wang et al., 2021) ResNet50 50.7 52.6 48.9
ReSim (Xiao et al., 2021) ResNet50 49.3 51.2 47.3
DetCo (Xie et al., 2021a) ResNet50 56.7 57.0 56.4
MoCo-v3 (Chen et al., 2021) ViT-S/16 53.5 51.2 55.9
MoBY (Xie et al., 2021b) ViT-S/16 54.7 52.0 57.3
DINO (Caron et al., 2021) ViT-S/16 60.7 59.1 62.4
SelfPatch (Yun et al., 2022) ViT-S/16 62.7 60.7 64.7
PQCL-DINO (Ours) ViT-S/16 63.4 61.4 65.3
iBOT (Zhou et al., 2022) ViT-S/16 61.3 60.1 64.0
PQCL-iBOT (Ours) ViT-S/16 63.8 61.7 65.5

Specifically, we fix the query crop size as 96 (36 query
patches), and train the model in 100 epochs with batch size
512 on 8 V100 GPUs. Table 4 shows the results under
different query crop ratios. We change the query crop ratio
from [0.05, 0.10, 0.15, 0.20, 0.25, 0.40], and we find PQCL
is not sensitive to query crop ratio.

Range of mask ratios. The main idea of PQCL is using the
relative positional encoding of query views and the global
views to predict the patch-wise information of the query
views. At high level, we completely mask the query views
(100%), and increase the difficulty of masked image mod-
eling task. To demonstrate PQCL can actually enhance the
difficulty of pretraining, we conduct a group of experiments
to learn with different mask ratios. Fig. 5 illustrates the
top-1 and top-5 linear probing classification accuracy under
different mask ratios. With the decrease of mask ratios, both
top-1 and top-5 classification accuracy drop. We think that
is because with less masked areas, the pretraining is simpler,
and hurt the downstream performance. When mask ratio
is set 0.25, the accuracy is dropping below baseline iBOT,
which may due to that the default mask ratio of iBOT is 0.3,
and the 0.25 mask ratio would reduce the difficulty of iBOT
pretraining, leading the accuracy decreasing.

Output dimension. We follow the structure of the projec-
tion head in DINO and iBOT with l2-normalized bottleneck
and without batch normalization. We study the impact of
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Table 6. Linear probing and 10-NN accuracy of PQCL on
ImageNet-1K with 100 epochs pretrain by output dimensions.

Method 4096 16384 8192
top-1 top-5 top-1 top-5 top-1 top-5

Linear 69.31 88.93 69.01 88.79 69.65 89.07
KNN (10-NN) 63.92 63.81 64.09

Table 7. Linear probing classification accuracy of PQCL on
ImageNet-1K with 100 epochs pretrain by different architecture.

Method vanilla semi-shared shared
top-1 top-5 top-1 top-5 top-1 top-5

iBOT 68.48 88.49 68.16 88.24 68.80 88.70
PQCL 69.06 88.75 69.21 88.81 69.65 89.07

output dimension K of the last layer. Similar to iBOT and
DINO, we do not observe substantial performance gain
brought by larger output dimensions. Therefore, we choose
K = 8192 in our main experiments by default.

Architecture of projection head. Similar to DINO and
iBOT, PQCL use projection head to avoid collapse. We find
using a shared projection head between query patches and
global images will slightly improve the performance. Note
that the head for patch tokens in the student network only
see the masked tokens throughout the training, the distri-
bution of which mismatches tokens with natural textures.
Therefore, following iBOT, we also conduct an experiment
using a non-shared head for the student network but a shared
head for the teacher network (since teacher network sepa-
rately input the query views and global views) denoted as
semi-shared head. Specifically, we pretrain PQCL in 100
epochs with 512 batch size. Table 7 shows the results under
different shared strategies. Vanilla of PQCL means masked
token in global images, [CLS] token of global images and
query token in query views of both teacher and student
network use separate projection head, while semi-shared
of PQCL means only student network use separate projec-
tion head, and teacher network use shared one. Different
from iBOT (semi-shared architecture would hurt the perfor-
mance), semi-shared architecture in PQCL can also improve
a little accuracy, as in our teacher branch, we separately
input global view and query views.

4.5. Connection to Peer Methods

Relation to iBOT (Zhou et al., 2022). Similarity. iBOT is
the baseline of PQCL, and both iBOT and PQCL learn to
predict masked patches in latent space. Difference. iBOT
learn to predict masked patches of the same view (e.g.,
XA → XAm, where XAm means the masked version of
view A with masked ratio 30%). In contrast, PQCL use the
global view to learn a completely masked query view (e.g.,
XQ → (XA,MQm), where MQm means the completely

masked query views and the relative positional embedding.),
which would increase the difficulty of pretraining.

Relation to SIM (Tao et al., 2022). Similarity. Both SIM
and PQCL learn to predict masked patches by relative po-
sitional embeddings. Differences. SIM directly uses the
plain ViT and introduces a decoder network to predict the
masked patches, which would bring more parameters and
computational costs. In contrast, directly using the ViT in
PQCL would make PQCL heavily sensitive to patch size
due to the distribution shift of inputs in pretraining and
finetuning stage. Hence, PQCL designs the cross attention
mechanism in each attention block of the transformer en-
coder between the completely masked query view and the
global view. Besides, the cross attention mechanism also
makes PQCL learn without extra learnable parameters.

Relation to ADCLR (Zhang et al., 2023). Similarity. Both
ADCLR and PQCL use cross attention mechanisms to learn
the query patches information. Differences. The main idea
of ADCLR is to use the query patches to replace the [CLS]
token to learn accurate and spatial-sensitive information.
Therefore, ADCLR uses query patches with pixel informa-
tion as query in both student and teacher networks. However,
this manner would reduce the difficulty of pretraining. In
contrast, in our PQCL, we input the completely masked
query view to the student network and the query view with
pixel information to the teacher network to increase the
variance and the difficulty of pretraining.

5. Conclusion
We have proposed PQCL, to perform patch-level contrasts
without patch correspondence via masked positional query
view. Besides, the well-designed cross attention between po-
sitional embedding and raw patches makes it applicable to
SOTA transformer-based contrastive methods (e.g., DINO,
iBOT) with further improvement, especially on dense pre-
diction tasks. Experiments on image classification, object
detection and segmentation on various public benchmarks
have shown its effectiveness. Specifically, For ViT/B, PQCL
outperforms iBOT 0.9% top-1 accuracy by linear probing
on ImageNet. For ViT/S, PQCL outperforms baseline iBOT
by 2.4mAPbb and 1.5% mAPmk on detection and segmen-
tation on MS-COCO dataset, respectively. For semantic
segmenta- tion, PQCL outperforms iBOT 0.8% mIoU on
ADE20K. Finally, we conduct comprehensive ablation stud-
ies to demonstrate the robustness of PQCL.
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