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Abstract
Super-resolution (SR) techniques designed for
real-world applications commonly encounter two
primary challenges: generalization performance
and restoration accuracy. We demonstrate that
when methods are trained using complex, large-
range degradations to enhance generalization, a
decline in accuracy is inevitable. However, since
the degradation in a certain real-world applica-
tions typically exhibits a limited variation range,
it becomes feasible to strike a trade-off between
generalization performance and testing accuracy
within this scope. In this work, we introduce a
novel approach to craft training degradation dis-
tributions using a small set of reference images.
Our strategy is founded upon the binned represen-
tation of the degradation space and the Fréchet
distance between degradation distributions. Our
results indicate that the proposed technique sig-
nificantly improves the performance of test im-
ages while preserving generalization capabilities
in real-world applications.

1. Introduction
Image Super-Resolution (SR) is focused on reconstruct-
ing high-resolution (HR) images from their corresponding
low-resolution (LR) or degraded observations. SR has a
rich history of utilizing deep learning techniques, dating
back to the groundbreaking work of SRCNN (Dong et al.,
2015). With the advanced modeling capacity of deep net-
works, the performance of SR networks has experienced
rapid progress. Nevertheless, it is widely recognized that

1Tsinghua Shenzhen International Graduate School, Ts-
inghua University 2Shanghai AI Laboratory 3The University of
Sydney 4The Hong Kong University of Science and Technol-
ogy (Guangzhou) 5Shenzhen Institutes of Advanced Technol-
ogy, Chinese Academy of Sciences 6ETH Zürich. Correspon-
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Figure 1. The figure shows the different effects of different training
degradation distributions (shown in blue lines) on the target test
distribution (shown in red lines). (a) The generalization perfor-
mance of SR models limits their application when the training
distributions are insufficient or mismatched. (b) When the training
distribution is too large, the generalization of the SR model is
better, but the overall accuracy will drop dramatically. (c) The
proposed method improves the accuracy of test images as much as
possible while ensuring the model’s generalization performance.

the efficacy of SR models in practical applications is heav-
ily influenced by their generalization performance and the
training degradations (Liu et al., 2022a). The complex and
diverse degradation scenarios encountered in real-world ap-
plications present considerable challenges to the successful
implementation of SR techniques.

A potential solution to tackle real-world SR challenges is the
adoption of blind SR methods. These approaches generally
rely on a predefined degradation model, while assuming
that certain parameters remain unknown, such as the extent
of downsampling blur or noise level. Consequently, blind
SR methods are capable of addressing SR problems within
a specific degradation range. However, the utilization of
predefined degradation models limits their applicability to a
narrow range of degradations, rendering them incapable of
generalizing to mixed, intricate degradation cases encoun-
tered in real-world applications. As a result, these methods
continue to exhibit sub-optimal generalization performance.

Recently, a new SR paradigm that employs a vast array
of complex or mixed degradation data for training has in-
creasingly gained interest within the research community.
Notable methods include BSRGAN (Zhang et al., 2021)
and Real-ESRGAN (Wang et al., 2021c). By leveraging
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large and diverse synthetic training datasets in an end-to-end
manner, these techniques achieve substantial generalization
performance. In practice, the degradation distribution used
for training is determined by a manually configured stochas-
tic process. Generally, the distribution range is set to be
extensive in order to enhance generalization performance
across degradations. However, there are inevitable trade-
offs. In exchange for improved generalization performance,
the accuracy of these models experiences a significant de-
cline. Common issues include the removal of texture details,
the generation of blurred or inaccurate edges, and the un-
warranted sharpening of blurred backgrounds.

In this paper, we investigate the trade-off between accu-
racy and generalization from a more pragmatic standpoint.
We contend that in the majority of application scenarios,
degradation range tends to be limited, for instance, images
captured by a specific type of image sensor, different frames
from the same old movie, or old photos originating from
the same era. Although these degradations are complex,
which renders blind methods based on predefined degra-
dation models ineffective, the range of degradation varia-
tion is relatively small compared to existing data synthesis
strategies. The excessive portion of training degradation in
conventional practices adversely impacts SR performance
within the target range. Given the availability of images
requiring super-resolution in practical applications (despite
the unknown degradation process responsible for these im-
ages), we can customize the degradation distribution used
for training to better suit the target test images. We illustrate
this process in Figure 1. In summary, we explore a novel
SR problem wherein, given access to some test images, the
training degradation distribution is modified to enhance
performance within the target test degradation range while
preserving generalization performance.

To address this novel problem, we introduce two primary
technical designs. Firstly, to determine a distribution within
the space of potential degradations and sample training
degradations from it, we require a suitable representation of
the degradation distribution. We employ the binning method
to partition the feasible degradation space into multiple dis-
tinct intervals. Uniform sampling is conducted within an
interval, while weighted sampling is performed between
different intervals (bins). This approach allows us to obtain
a simple, parameterized sampling method for the degrada-
tion space. Secondly, we propose measuring the distance
between two degradation distributions by calculating the
Fréchet distance of deep features, even when the content of
the two image sets differs. Based on the obtained degrada-
tion distribution distance, we calculate the weight for the
degradation distribution bins, thereby parameterizing the
training degradation distribution. We conduct extensive ex-
periments for the proposed SR problem and method using
both synthetic data and real-world low-resolution images.

Our method demonstrates robust quantitative performance
while maintaining strong generalization capabilities.

2. Related Work
Super-Resolution. Single image super-resolution (SR),
which aims at reconstructing a high-resolution (HR) image
from its low-resolution (LR) observations, is a long-standing
problem in the low-level vision field. Since SRCNN (Dong
et al., 2015), which is the pioneering work of employing
deep learning in SR, deep SR networks have brought pros-
perous development in this field. Plenty of deep learning
based SR methods have been proposed, including deeper
networks (Kim et al., 2016b; Shi et al., 2016), light-weight
networks (Dong et al., 2016; Gu et al., 2022; Zhou et al.,
2023), recurrent architectures (Kim et al., 2016a; Tai et al.,
2017), residual architectures (Ledig et al., 2017; Wang et al.,
2018; Li et al., 2022), attention networks (Zhang et al.,
2018; Dai et al., 2019), and Transformer networks (Chen
et al., 2021; 2022; Liang et al., 2021; Chen et al., 2023b).
However, most of these methods are aimed at the laboratory
environment with pre-defined degradations, and the effect
is limited in real applications.

Blind SR methods are proposed to solve the problem of
SR model failure in real-world applications. The commu-
nity has already reached a relatively clear conclusion for
the reasons of the failure, that is, the mismatch between
training and testing degradations (Liu et al., 2022a). Early
blind SR methods usually assume a pre-defined degradation
model with some unknown parameters, e.g., the parame-
ters of the blur kernel and the noise level (Gu et al., 2019;
Huang et al., 2020; Cornillere et al., 2019). These meth-
ods still fail in a wide range of complex situations because
real-world degradations are very complex. Simple degra-
dation models cannot represent these situations. And the
generalization ability of these methods is also not enough
to make them applicable in the wild. Then, methods with
implicit modeling are proposed and do not depend on any
explicit parameterization. Utilizing data distribution within
the external datasets, they often learn the underlying SR
model implicitly, e.g., CinCGAN (Yuan et al., 2018), DASR
(Wang et al., 2021a), FS-SRGAN (Zhou et al., 2020), and
FSSR (Fritsche et al., 2019). More recently, these methods
have evolved further, with successful training on complex,
large-range degradation data. Wang et al. (2021c) propose
a novel data synthesizing method called high-order degra-
dation model and train Real-ESRGAN. Zhang et al. (2021)
propose BSRGAN that randomly applies different degrada-
tion operations during data synthesizing. Despite progress
in visual effects, these methods rely on handset training
degradation distributions. Both Real-ESRGAN and BSR-
GAN suffer from significant accuracy degradation when the
training distribution is too wide.

More related to this work, there are also methods that con-
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sider the case where a part of the test input image can be
obtained as a reference. Wang et al. (2021b) propose an
unpaired SR training framework based on feature domain
adaptation. Luo et al. (2022) use adversarial training meth-
ods to generate specific training degradations.

Generalization Performance of SR models. The gener-
alization performance of an SR network is crucial for its
effectiveness on unseen data (Chen et al., 2023a; Gu et al.,
2023). To date, limited research has focused on explaining,
evaluating, and improving the generalization performance of
SR networks. One study Liu et al. (2021) discovered that SR
networks tend to overfit to degradations and exhibit charac-
teristic degradation “semantics” (DDR) within the network,
which often leads to a decrease in generalization ability.
Building on this finding, another study developed a general-
ization assessment index for SR networks called SRGA Liu
et al. (2022b). This non-parametric, non-learning metric
measures generalization ability by examining the statistical
characteristics of deep features within SR networks, rather
than output images. As the generalization performance of
SR gains increasing attention, specialized methods for en-
hancing SR generalization performance have emerged. For
instance, one study demonstrated that the appropriate use of
dropout benefits SR networks and improves generalization
ability Kong et al. (2022). The goal of this paper is to ex-
plore ways to achieve higher accuracy while ensuring robust
generalization performance.

3. Methodology
3.1. Problem Formulation
The proposed SR problem can be formulated as follows.
Suppose we are designing an SR model for a new appli-
cation, and we have obtained a set of reference degraded
images Xref = {xr

i }ni=1 relevant to the application, and
a set of test degraded images Xtest = {xt

i}Ni=1 for evalua-
tion. We can assume that these images are generated from
the corresponding high-quality images Yref and Ytest with
different degradations sampled from the same degradation
distribution Pr(d), where d denotes a random degradation
and Pr represents the testing degradation distribution. This
process can be formulated as X = D(Y, Pr), indicating that
xi = d(yi) for xi ∈ X , yi ∈ Y , and d ∼ Pr(d).

We now introduce a new degradation distribution Pt for
training. Given a set of high-quality training images
Ytrn, we synthesize the training degraded images Xtrn =
D(Ytrn, Pt) and then obtained the SR model Fθ. Here,
θ is determined by Pt via a conditional distribution θ ∼
P (θ|Pt), as different training data will produce different SR
models. Our goal is to maximize the performance of the
obtained SR model Fθ on the target test degradation Pr by
changing Pt. This can be formulated as:

max
Pt

Eθ∼P (θ|Pt)S(Fθ(D(Y, Pr)), Y ), (1)

where S represents an image similarity metric used to eval-
uate the image reconstruction, e.g., PSNR, SSIM.

3.2. Motivation
We then review the importance of the training with appro-
priate degradation distribution Pt using experiments on
synthetic data. We assume a simple degradation model
x = d(y) = (y ⊗ k) ↓, where k is the blur kernel and ↓
denotes downsampling. We set Pr as the degradation distri-
bution formed by sampling blur kernel widths σr from 1.5
to 2.5 uniformly, denoted as σr ∼ U[1.5,2.5]. We train three
SR models with different training distributions P1, P2 and
P3 and observe their behavior, where σ1 = 2, σ2 ∼ U[0,4]

and σ3 ∼ U[1.5,2.5]. The testing average PSNR is shown in
Figure 2 (a). We also test the performance of these models
under different blur conditions separately, shown in Fig-
ure 2 (b). It can be seen that the model trained with a
single degradation cannot handle other degradations within
Pr except the training degradation. The SR model trained
with P2 degradation distribution can handle a large range of
blurs, and is similar to the existing practices such as Real-
ESRGAN and BSRGAN. This approach does bring about
excellent generalization ability even beyond the target blur
range, but in order to take into account a larger range of in-
puts, the restoration accuracy of all degradations in the range
is reduced when the network capacity remains unchanged.
The final model uses a matched training distribution and
achieves the best PSNR performance while maintaining its
generalization performance in the target range.

This experiment justifies our problem from three aspects:
First, training within a certain degradation range is nec-
essary because it can provide generalization performance
to avoid performance drop when the degradation model is
slightly mismatched. Second, this range is not the bigger,
the better. An SR model training with a larger range may
generalize to more images but suffer a performance drop on
all images. And third, the closer the training degradation
distribution Pt is to the test degradation distribution Pr, the
better the final result. We next describe the technical designs
to achieve our goal.

3.3. Degradation Distribution Binning and Sampling
The representation and quantification of the degradation dis-
tribution are essential to determine the training distribution
Pt. Existing methods represent the degradation process as a
pipeline, e.g., the high-order degradation in Real-ESRGAN.
In the pipeline, operations such as random blurring, noise,
and compression are sequentially performed on the image.
The parameter for each operation is given by a pre-set distri-
bution. This practice makes it extremely difficult to quantify
and control its distribution. First, its different operations
are performed in sequence, and the previous operations will
affect the subsequent operations and get very different re-
sults. If we want to update the parameter distribution, it is
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Figure 2. (a) shows the average PSNR performance. (b) shows
the performance under different blur conditions. These figures
show the importance of the training with appropriate degradation
distribution Pt.

difficult for us to attribute the contribution of each step in
the degradation. Second, its degradation parameters follow
the continuous distributions, which poses challenges for us
in conducting statistical estimation or inference.

We propose a binning methodology for discretizing the joint
distribution of multiple degradation parameters. This sim-
plifies the representation and sampling process of the degra-
dation distribution. We describe our binning method based
on a widely used image degradation model:

x = D(y, d) = Cq ◦ El ◦ Bσ(y) = [(y ⊗ k) ↓ +ϵ]JPEG, (2)

where σ, l, and q are parameters, i.e., kernel width for
blurring B, noise level for noising E and quality level for
compression C. The distribution of degradation is described
by a joint distribution of these parameters P (d) = p(q, l, σ).
Typically, these parameters are sampled from uniform dis-
tributions. In our work, σ ∼ U[0,5], l ∼ U[0,50] and
q ∼ U[30,90]. We divide these continuous distributions
evenly into discrete intervals. For example, the compression
parameter q is partitioned into three bins as q1 ∼ U[30,50],
q2 ∼ U[50,70] and q3 ∼ U[70,90]. We use the same binning
method for noise and blur and divide it into five equal bins,
respectively. Binning these three components of degrada-
tion yields 3× 5× 5 = 75 possible degradation bins. Then
sampling from the entire degradation space can be viewed
as first sampling a bin from the set of bins, and then sam-
pling a degradation from this bin. It can be formulated as
P (d) = P (q, l, σ) =

∑
b p(q, l, σ|b)p(b), where b is the

random variable of the bin and p(b) is its distribution.

We next change the distribution of the degradations P (d)
by changing p(b). Mathematically, we assign a sampling
weight (importance) to each bin and formulate p(b) as
p(bi) = wi for i ∈ {1, 2, . . . , Nbin}, where Nbin is the
number of bins. In the initial stage, we give each bin the
same uniform sampling weight, and the result of sampling
at this time is equivalent to uniform sampling over the entire
interval. By updating the weight vector w ∈ RNbin , we can
shape the degradation distribution P (d). Figure 3 (a) and (b)
show a schematic illustration of this process. It is worth not-
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Figure 3. (a) Perform binning operations on multiple degradation
parameters and assign uniform sampling weights at the beginning.
(b) Updating the sampling weights of the bins in order to sample in
the joint distribution of multiple degradation parameters. (c) The
estimated degradation distance using different amounts of images.

ing that when the number of steps in the degradation process
increases, such as using the high-order degradation model,
the number of binning increases exponentially. However,
we found that lower-order degradation models can already
provide good generalization performance and cover most
situations, as long as their distributions are well-matched.

3.4. Obtaining Weight Using Feature Fréchet Distance
We next describe the method to obtain this binning sampling
weight given a set of real degraded images Xref . Recall
that in the studied problem, we have access to a small num-
ber of real degraded images as references to help estimate
the test degradation distribution Pr. Since we only need
to adjust w, the probability of sampling from each bin, we
need to calculate a kind of distance between the degradation
p(d|b) in each bin b and the degradation of Pr. The main
difficulty is that we don’t have high-quality images with
the same content as the Xref . Thus, we introduce another
set Yw = {ywi }ni=1 of high-quality images to synthesize
degraded images Xb

w = D(Yw, p(d|b)) according to the
degradation in each bin b. Then the distance of p(d|b) to Pr

is given by the Fréchet distance (Fréchet, 1957) between the
deep features ϕ(Xb

w) and ϕ(Xref ) of Xb
w and Xref , where

ϕ(·) is a deep feature extractor, and the features are of size
Rn×c with feature dimension c. Following the common
practice of using the Fréchet distance to measure the dis-
tance between two deep features (Heusel et al., 2017), we
assume that these c dimensional deep features follow their
respective c dimensional Gaussian distributions. We give
the solution of the Fréchet distance between them as

DF (ϕ(X
b
w), ϕ(Xref ))

2 = (3)

∥µb − µref∥22 + tr
(
Σb +Σref − 2(Σ

1
2

b ΣrefΣ
1
2

b )
1
2

)
,

where N (µb,Σb) is the fitted Gaussian distribution using
ϕ(Xb

w) and N (µref ,Σref ) is fitted using ϕ(Xref ).

We calculate this distance for all the bins and obtain D ∈
RNbin , where Di = DF (ϕ(X

bi
w ), ϕ(Xref ))

2. We first nor-
malize the vector Dnorm linearly into interval [0, 1]. We
assign sampling weights to these bins based on Dnorm us-
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Table 1. The settings of the testing degradation distribution in-
volved in our study.

Degradation Setting ① Setting ② Setting ③ Setting ④

Blur σ U[0,1] U[0.5,1.5] U[1.5,2.5] U[2.5,3.5]

Noise level l U[0,10] U[15,25] U[5,15] U[25,35]

JPEG quality q U[80,90] U[75,85] U[75,85] U[65,75]

ing the following function:

wi =
exp((1−Dnorm[i])α)− 1∑Nbin

j=1 [exp((1−Dnorm[j])α)− 1]
, (4)

where α is a hyper-parameter that controls the kurtosis of
the distribution. When α is set to be a large value, the
resulting distribution will be concentrated in a small range.
On the contrary, the formed distribution will be wider, and it
degenerates to a uniform distribution when α = 0. Equation
(4) also ensures that

∑Nbin

i p(bi) = 1.

3.5. Discussion
We have gotten the full picture of our solution, but some
issues are still worth discussing.

The choice of the deep feature extractor ϕ. We use a
deep network to extract features to assist in computing the
Fréchet distance between degradation distributions. But is
this distance computation robust to the choice of feature
extractor? Do we need to train a deep feature extractor
specifically for this distance? In this subsection, we ver-
ify the effectiveness of the proposed degradation Fréchet
distance and the difference between feature extractors. We
selected the following representative deep feature extrac-
tors: VGG2,2

1 is a commonly used extractor for extracting
low-level features; VGG5,4, which is often used for extract-
ing deeper features; the DASR degradation representation
(Wang et al., 2021a), which is specially used to learn the
latent representation for degradation; AlexNet trained using
ImageNet dataset (Deng et al., 2009), MINC texture classifi-
cation dataset (Bell et al., 2015); and a randomly initialized
AlexNet. The results are visualized in Figure 4. We arrange
these 75 bins regularly and visualize their calculated sam-
pling weights. Weights closer to ground truth are better. It
can be seen that these methods can identify the four bins
that appear in the ground truth and give them higher weights.
However, these feature extractors perform differently on the
weight calculation of the remaining bins. Both AlexNet
and VGG trained on ImageNet can predict weights with
better results. AlexNet trained with MINC can also achieve
good results. These methods only assign minor weight to
non-target degradation bins. Although DASR is a method
specially designed for degradation, its prediction assigns

1VGGi,j is defined as the feature map obtained by the jth
convolution (after activation) and before the ith max-pooling layer
within the VGG19 (Simonyan & Zisserman, 2014) network

too much weight to irrelevant bins, which may affect its
performance. Randomly initialized AlexNet can only show
limited effectiveness in matching degradation distributions.
In the following research, we mainly use AlexNet because
of its good prediction effect and easy availability.

The Use of the Fréchet distance. In this work, the Fréchet
distance is used to overcome the influence of different image
content on degenerate distance estimation. In the case of
image content changes, the traditional element-wise com-
parison is not applicable anymore. However, the Fréchet
distance can produce reasonable results. The Fréchet dis-
tance is based on statistics on features, so the number of
samples used to estimate this distance is important. We
made estimations using different numbers of images and
studied the variance of different measurements. We tested
each image quantity 25 times with different images and
recorded their values. The size of the image is 72× 72. The
results are shown in Figure 3 (c). It can be seen that when
100 images are used, the randomness of the results obtained
by the algorithm is greatly reduced. Although more images
can bring better stability, 100 – 150 images can already give
good estimation results. In contrast, the previous works
that allow reference testing images are based on adversarial
learning (Luo et al., 2022), or domain adaptation matching
(Wang et al., 2021b). They usually require a large number
of reference images and produce unsatisfactory results when
the number of reference images is insufficient.

The choice of the distribution range α. Another impor-
tant parameter in our method is α, which scales the Fréchet
distance by a power function to adjust the range of the fi-
nal degenerate distribution. α is the only parameter in our
method that needs to be adjusted manually. A smaller α
means a larger degradation range and better generalization
performance. But smaller α also leads to lower SR perfor-
mance. A larger α means a narrower degradation range,
which will improve the resulting final performance when
the target degradation range is also small. However, the
performance degradation faced when exceeding this range
is also more severe. α controls the accuracy-generalization
trade-off. We show the visualized weights using different
αs in Figure 4. In order to verify the impact of different αs
on performance, we set a synthetic test degradation inter-
val. And use different αs to obtain the training degradation
weights. The baseline is the result of uniform sampling
among the bins. The upper bound is the result of direct train-
ing on target degradation. As can be seen, as α increases,
the range of training degradation becomes smaller, and the
test accuracy within the target range is improved. We also
include Real-ESRNet and BSRNet for comparison. Their
training degradation range is larger than the baseline, so
even though they use a better network, their only achieve
lower performance than the proposed method.
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Table 2. The quantitative comparison of different methods with respect to different settings. The upper bound results are marked as grey
color to show that a direct comparison of it is unfair to other methods.

Methods Type Setting ① Setting ② Setting ③ Setting ④
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

RCAN non-blind 23.65 0.5612 0.4674 18.86 0.2700 0.6509 24.22 0.5186 0.5812 16.54 0.1450 0.7152
KernelGAN blind 16.04 0.3303 0.7420 12.56 0.1268 0.7675 17.79 0.3048 0.8097 11.34 0.0670 0.7828
IKC blind 24.76 0.6174 0.4554 20.75 0.3606 0.6235 24.89 0.5607 0.5867 18.87 0.2323 0.6807
DASR blind 24.81 0.6195 0.4505 20.11 0.3312 0.6432 24.75 0.5557 0.5938 17.64 0.1855 0.7103
FSSR blind 20.83 0.4166 0.4194 16.14 0.1521 0.6989 20.75 0.3338 0.5189 14.75 0.0872 0.7686
USR-DA reference 24.98 0.6712 0.3563 22.41 0.4816 0.5154 23.50 0.6076 0.4922 20.73 0.3428 0.6120
PDM-SR reference 26.96 0.7071 0.3249 24.93 0.6208 0.4251 25.78 0.6433 0.4033 23.47 0.5576 0.4808
BSRNet blind 27.88 0.7252 0.3431 26.80 0.6908 0.3964 27.48 0.6968 0.3987 25.01 0.6269 0.4916
Real-ESRNet blind 27.75 0.7316 0.3410 26.75 0.6955 0.3896 27.44 0.6986 0.3994 25.36 0.6309 0.4916
Real-ESRNet-Dropout blind 26.94 0.7123 0.3783 26.40 0.6777 0.4125 26.88 0.6879 0.4207 24.84 0.6109 0.5040

SRResNet (baseline) blind 28.14 0.7368 0.3370 27.01 0.6950 0.3873 27.53 0.6980 0.4067 25.34 0.6276 0.4992
Ours (ϕ =VGG2,2) reference 28.85 0.7508 0.3173 27.32 0.7021 0.3861 27.77 0.7039 0.4011 25.50 0.6315 0.4952
Ours (ϕ =VGG5,4) reference 28.82 0.7492 0.3192 27.36 0.7034 0.3824 27.73 0.7037 0.4005 25.43 0.6310 0.4950
Ours (ϕ =DASR) reference 28.88 0.7518 0.3147 27.27 0.7007 0.3866 27.79 0.7041 0.4005 25.48 0.6307 0.4962
Ours (ϕ =AlexNet-ImageNet) reference 28.83 0.7511 0.3166 27.42 0.7040 0.3836 27.89 0.7054 0.4002 25.21 0.6158 0.4871
Ours (ϕ =AlexNet-MINC) reference 28.85 0.7502 0.3193 27.44 0.7042 0.3815 27.99 0.7051 0.4048 25.53 0.6314 0.4959
Ours (ϕ =AlexNet-random) reference 28.77 0.7467 0.3256 27.44 0.7042 0.3815 27.85 0.7044 0.4020 25.54 0.6316 0.4957
Upper bound supervised 28.86 0.7529 0.3099 27.44 0.7054 0.3792 27.97 0.7067 0.4002 25.59 0.6321 0.4975

RRDB (baseline) blind 28.70 0.7532 0.3035 27.45 0.7090 0.3648 27.91 0.7096 0.3875 25.63 0.6358 0.4881
Ours (ϕ =VGG2,2) reference 29.18 0.7615 0.2970 27.66 0.7128 0.3658 28.07 0.7123 0.3863 25.74 0.6381 0.4826
Ours (ϕ =VGG5,4) reference 29.16 0.7610 0.2973 27.73 0.7141 0.3640 28.07 0.7126 0.3856 25.68 0.6375 0.4824
Ours (ϕ =DASR) reference 29.18 0.7621 0.2957 27.65 0.7125 0.3663 28.08 0.7123 0.3861 25.73 0.6377 0.4832
Ours (ϕ =AlexNet-ImageNet) reference 29.16 0.7614 0.2963 27.77 0.7142 0.3649 28.17 0.7132 0.3862 25.76 0.6378 0.4834
Ours (ϕ =AlexNet-MINC) reference 29.18 0.7613 0.2978 27.77 0.7142 0.3645 28.24 0.7133 0.3891 25.79 0.6381 0.4838
Upper bound supervised 29.15 0.7607 0.2979 27.75 0.7135 0.3680 28.23 0.7135 0.3888 25.84 0.6384 0.4892
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Figure 5. Average PSNR and SSIM performance at different αs.
This experiment uses Setting ③ of Table 1 as the target degrada-
tion distribution. The network structure is SRResNet. Its feature
extractor is DASR.

4. Experiments
4.1. Experiments on the Synthesized Images

Set up. We first evaluate the performance of the proposed
method on the synthetic test images. We set four differ-

ent cases with four different degradation distributions. The
detail of these settings is shown in Table 1. We carefully
designed these settings to include relatively clean test im-
ages (setting ① contains small blur and noise); two cases
of moderate degeneration (setting ② contains smaller blur
and larger noise and ③ contains larger blur with smaller
noise; and severely degeneration (setting ④). We use the
PIPAL dataset (Gu et al., 2020) as the reference set Yref and
Yw. Following the previous study on the number of images
used to calculate the Fréchet distance, we set the number of
reference images as n = 100, and the size of the degraded
images is 72 × 72. Although the degradation is randomly
sampled from a distribution, we fix the degraded images
during the experiment to eliminate the effect of randomness.
In our experiments, we included a total of 75 degradation

6



Crafting Training Degradation Distribution for the Accuracy-Generalization Trade-off

DIV2K 0820, degradation ①

Bicubic RCAN KernelGAN IKC DASR FSSR

USR-DA PDM-SR BSRNet Real-ESRNet Ours GT

Figure 6. SR results of images from the DIV2K dataset with scale factor ×4.

HUAWEI P40

Bicubic IKC DASR FSSR

USR-DA BSRNet Real-ESRNet Ours

Nikon

Bicubic IKC DASR FSSR

USR-DA BSRNet Real-ESRNet Ours

Figure 7. SR results of real cases with scale factor ×4. The first case is from a smartphone camera. The rest two cases are from old films.

distribution bins. For the image blurring, we divide the
kernel width into five equal parts between 0 and 5. For the
noise, we divide the noise level into five equal parts between
0 and 50. For image compression, divide the quality level
into three equal parts between 30 and 90. We set α = 25.

Results. We compare the proposed method with several
existing methods, including a non-blind method RCAN
(Zhang et al., 2018), two blind SR method IKC (Gu et al.,
2019) and KernelGAN (Bell-Kligler et al., 2019), DASR
with a pre-defined degradation model, the FSSR model
trained to maximize the performance on the blurry and noisy
dataset, the BSRNet and Real-ESRNet trained with a large
range of complex degradations and the Dropout method that
proposed to improve generalization performance. We also
include two methods with reference images as input, USR-
DA (Wang et al., 2021b), and PDM-SR (Luo et al., 2022).
Additionally, we also compared the following methods: (1)
the baseline model with a uniform sampling from all bins,
(2) models with different feature extractors, and (3) the
model trained with corresponding test degradation for each
setting, which is used to show the upper bound performance
in each setting. We test two different backbone architectures:
SRResNet and RRDB (Wang et al., 2018). The results are

shown in Table 2. It can be seen that, despite the careful
design, existing blind problems do not perform well under
these stochastic degradations. The reasons include the two
aspects mentioned earlier: insufficient generalization for
cases beyond the pre-defined degradation models degrada-
tion, and the use of a too-large training degradation distribu-
tion which leads to a drop in overall accuracy. As for our
method, we first provide a comparison of the performance
of the baseline model with that of our method. We can see
that our method has a substantial performance improvement
over the baseline without the degradation range crafting.
This is more evident for the clean image test dataset (the
setting ①), as training with large degradation is unnecessary
for these situations. Methods using different feature extrac-
tion all provide good performance improvement compared
to the baseline model and other competitive methods, which
shows that our method is easy to use. AlexNet trained on
ImageNet and MINC outperform others, which is in line
with the conclusion in Figure 4.

The qualitative results agree with the conclusions of the
numerical results. We show a set of comparisons in the
Figure 6. It can be seen that some blind methods are almost
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Input Low-Quality Frame

OursReal-ESRNet

BSRNet

Figure 8. Due to the large range of training blur, Real-ESRNet and
BSRNet may unreasonably sharpen the background blur. However,
our method does not have this problem.

completely ineffective in this case, such as IKC, Kernel-
GAN and FSSR. Because the degradation models assumed
by these methods’ design do not match the test degrada-
tion. BSRNet and Real-ESRNet have good generalization
ability due to training on large-scale and complex degraded
datasets, thus obtaining smooth and clear results. However,
the training degradation range used by these methods is too
large. Degraded training data outside the target range will
affect the training, making them unable to generate accurate
texture details. Based on the proposed method, our method
correctly recovers the pattern and produces a pleasing result.
Please refer to the appendix for more results.

4.2. Experiments for Real-World Applications
Our method is designed for real-world scenarios. We demon-
strate the value of our research using two valuable scenarios:
SR processing of images taken by DSLR (digital single-lens
reflex) cameras or mobile phones and old films. The pro-
cessing of these images is an admittedly difficult task due to
the complexities of noise and blur. But we argue that, even
though complex, these degradations are not as wide-ranging
as we thought. Especially when we limit our processing
to only a certain class of sensors or lenses. The range of
this test degradation will be further narrowed. This is very
suitable for the method proposed in this paper. We test our
method on the RealSR dataset (Cai et al., 2019) and our
collected mobile phone camera dataset. RealSR contains
images taken by Canon 5D3 DSLR cameras. The mobile
data is captured by Huawei P40 mobile phone. Furthermore,
we also extracted the image frames of two old films as the
testing sets. These two films are “Groundhog Day” and “My
Fair Lady”. We show some visual results in Figure 7.

As one can see, our results show excellent sharpness and
detail restoration. Some methods, such as IKC and DASR,
lead to ambiguous results due to the mismatch of their degra-
dation models. An example is the image from “Groundhog
Day” in Figure 7. The results obtained by these two methods

Rank 5th Rank 4th Rank 3rd Rank 2nd Rank 1st

DASR

USR-DA

BSRNet

Real-ESRNet

Ours

0.2

0.4

0.6

Figure 9. This figure shows the normalized histogram of votes in
the user study. The average score is also shown in red dots.

are still blurry, while our method is able to recover the sharp
edges. BSRNet and Real-ESRNet can handle a wide range
of degradations at the cost of reduced accuracy. However,
due to the larger range of noise and blur used for training,
the network tends to reduce all noise-like textures. This
makes it unable to recover some subtle textures and gen-
erate over-smooth results. This drawback is evident in the
case of the image captured by Huawei P40 in Figure 7. A
large area of the dense texture is removed by BSRNet and
Real-ESRNet, resulting in over-smooth results, while our
method can restore sufficient texture. For the testing image
from “My Fair Lady”, since with closer training degradation
distribution, only our method recovers the correct pattern
of the image, other methods all result in incorrect patterns,
especially USR-DA and BSRNet, which directly recover the
circular pattern into lines. Another problem with the existing
methods is the processing of background blur. As an artistic
technique, background blur often appears on film screens.
Due to the large range of training blur, Real-ESRNet and
BSRNet may unreasonably sharpen the background blur,
as shown in Figure 8. However, our method does not have
this problem. These results demonstrate that our method
achieves pleasing edges and effects while preserving detail,
and also matches the correct pattern of the image.

Due to the lack of reasonable quantitative measures for
comparing real images. We conducted a user study for some
representative methods. We show the results of the five
methods and ask the user to rank them. In total, our research
contains more than 20 images from different scenes and
sources. More than 30 users participated in our user study
shown in Figure 9. Our method was ranked first most times,
and its average score also outperformed other methods.

5. Conclusion and Limitation
This paper describes a method to craft the training degrada-
tion distribution for real-world SR applications. Our method
can improve its performance while maintaining the gener-
alization ability of SR. One of the limitations of our work
is that the number of bins increases exponentially as the
degradation model becomes more complex.
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A. More Results
We provide more qualitative results to show the effectiveness of our method.

DIV2K 0807, degradation ①
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DIV2K 0879, degradation ①
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Figure 10. SR Results of synthesized testing images with scale factor ×4.

11



Crafting Training Degradation Distribution for the Accuracy-Generalization Trade-off

DIV2K 0828, degradation ②
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Figure 11. SR Results of synthesized testing images with scale factor ×4.
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Figure 12. SR results of real-world images with scale factor ×4.
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Figure 13. SR results of real-world images with scale factor ×4.
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