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Abstract

Image inpainting refers to the task of generat-

ing a complete, natural image based on a par-

tially revealed reference image. Recently, many

research interests have been focused on address-

ing this problem using fixed diffusion models.

These approaches typically directly replace the

revealed region of the intermediate or final gen-

erated images with that of the reference image

or its variants. However, since the unrevealed re-

gions are not directly modified to match the con-

text, it results in incoherence between revealed

and unrevealed regions. To address the incoher-

ence problem, a small number of methods intro-

duce a rigorous Bayesian framework, but they

tend to introduce mismatches between the gen-

erated and the reference images due to the ap-

proximation errors in computing the posterior dis-

tributions. In this paper, we propose COPAINT,

which can coherently inpaint the whole image

without introducing mismatches. COPAINT also

uses the Bayesian framework to jointly modify

both revealed and unrevealed regions, but ap-

proximates the posterior distribution in a way

that allows the errors to gradually drop to zero

throughout the denoising steps, thus strongly pe-

nalizing any mismatches with the reference im-

age. Our experiments verify that COPAINT can

outperform the existing diffusion-based meth-

ods under both objective and subjective metrics.

The codes are available at https://github.

com/UCSB-NLP-Chang/CoPaint/.

1. Introduction

Image inpainting refers to the problem of generating a natu-

ral, complete image based on a partially revealed reference
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(a) Input (b) BLENDED (c) DDRM (d) COPAINT

Figure 1. Inpainted images by BLENDED (b), DDRM (c) and our

proposed method COPAINT-TT (d). Image are generated condi-

tioned on the given masked input (a) with a fixed diffusion model.

image. In recent years, researchers have increasingly fo-

cused on using diffusion models, a class of generative mod-

els that convert noise images into natural images through a

series of denoising steps, to solve this problem. One popular

approach is to use a fixed, generic diffusion model that has

been pre-trained for image generation. This eliminates the

need for retraining the diffusion model, making the process

more efficient and versatile.

However, despite their promising performance, such meth-

ods are susceptible to the incoherence problem. Specifically,

these methods often impose the inpainting constraints based

on some form of replacement operations, e.g., directly re-

placing the revealed portion of the predicted image with that

of the reference image (Wang et al., 2022), or replacing the

revealed portion of the intermediate denoising results with a

corrupted version of the reference images (Avrahami et al.,

2021; Lugmayr et al., 2022). Yet the pixels of the unrevealed

region, which should also be modified to match the context

of the revealed region, are not directly modified (Trippe

et al., 2022). As a result, these methods can easily lead

to discontinuity or incoherence between the revealed and

unrevealed regions in the generated images. For example,

Figure 1 shows some incoherent inpainting results of a half-

masked portrait image. The result in (b) has unmatched hair

colors and styles between the left and right halves, and the

result in (c) has a clear discontinuity in the middle resulting

from different skin tones.

To address the incoherence problem, a small number of

methods like DPS (Chung et al., 2022a) and RESAM-

PLING (Trippe et al., 2022) use a more rigorous Bayesian

framework, which casts the inpainting problem as sampling

the images from the posterior distributions, conditional on

the inpainting constraint. Since the posterior distribution
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differs from the prior distribution in both the revealed and

unrevealed pixels, these methods can ensure that the entire

image is coherently modified. However, since the posterior

distribution is often very hard to compute, these methods

would resort to approximations or Monte Carlo methods,

which would introduce errors in satisfying the inpainting

constraints. In short, it remains an unresolved problem

how to ensure coherence during generation while strictly

enforcing inpainting constraints.

In this paper, we propose COPAINT, a simple inpainting

algorithm that addresses the incoherence problem without

violating the inpainting constraints. COPAINT also adopts

the Bayesian framework to coherently modify the entire im-

ages but introduces a new solution to address the challenges

in computing and sampling from the posterior distribution.

Specifically, COPAINT derives an approximated posterior

distribution for the intermediate images, whose maximum

a posteriori (MAP) samples become equivalent to directly

minimizing the errors in the inpainting constraint, referred

to as the inpainting errors. To make the computation of the

inpainting errors tractable at each intermediate denoising

step, we use the one-step estimation of the final generated

image instead of directly computing the final generation.

Although this would introduce further approximation errors,

we can show that the errors would gradually decrease as the

denoising process proceeds. Notably, at the final step, all

the approximation errors can be made zero.

Our experimental evaluations on CelebA-HQ and

ImageNet with various shapes of the revealed region ver-

ify that COPAINT has better inpainting quality and coher-

ence than existing diffusion-model-based approaches under

both objective and subjective metrics. For example, CO-

PAINT achieves an average of 19% relative reduction in

LPIPS compared to REPAINT (Lugmayr et al., 2022), our

most competitive baseline, while consuming 31% less com-

putation budget on ImageNet dataset.

2. Related Work

Image inpainting is a long-lasting research question in com-

puter vision, aiming at completing a degraded image natu-

rally and coherently (Xiang et al., 2022; Shah et al., 2022).

In recent years, various deep learning techniques have been

suggested for the task of inpainting (Reddy et al., 2022),

with a majority of them built upon auto-encoder (Pathak

et al., 2016; Vo et al., 2018; Liu et al., 2018; Iizuka et al.,

2017; Song et al., 2018; Guo et al., 2019; Xiao et al., 2018;

Hong et al., 2019; Nazeri et al., 2019; Liu et al., 2020),

VAE (Zheng et al., 2019; Zhao et al., 2020; 2021; Peng

et al., 2021), GAN (Pathak et al., 2016; Vo et al., 2018; Liu

et al., 2018; Iizuka et al., 2017; Song et al., 2018; Guo et al.,

2019; Xiao et al., 2018; Hong et al., 2019; Weng et al., 2022)

or auto-regressive transformer (Yu et al., 2021; Wan et al.,

2021) structures. Despite achieving notable successes in

inpainting, these methods are primarily based on supervised

learning, i.e., the networks require to be trained on specific

degradation types. As a result, these approaches require

large computational resources and may not be well-suited

for scenarios that were not encountered during training, lead-

ing to poor generalization performance (Xiang et al., 2022).

More recently, diffusion model-based approaches are gain-

ing increasing popularity due to their exceptional results

in image generation (Sohl-Dickstein et al., 2015; Ho et al.,

2020; Yang et al., 2022; Bond-Taylor et al., 2021; Chung

et al., 2022b; Batzolis et al., 2022; Bansal et al., 2022; Liu

et al., 2022; Ku et al., 2022; Benton et al., 2022; Horwitz

& Hoshen, 2022; Horita et al., 2022; Li et al., 2022). Be-

sides, these methods enjoy the advantage of being able to

perform inpainting without the need for degradation-specific

training (Song & Ermon, 2019a). In this section, we will

review the current literature on diffusion-based inpainting.

These methods can broadly be divided into two categories:

supervised and unsupervised methods (Kawar et al., 2022).

Supervised diffusion inpainting Supervised diffusion in-

painting approaches involve training a diffusion model for

the specific task of inpainting, taking into account the par-

ticular degradation types. PALETTE (Saharia et al., 2021a;b)

feeds the degraded image to the diffusion model at each time

step of the diffusion process for training a diffusion inpaint-

ing model. Similar methods are also used by GLIDE (Nichol

et al., 2021), where a text-conditional diffusion model is fine-

tuned for the inpainting task. LATENT DIFFUSION (Rom-

bach et al., 2021) incorporates an autoencoding model for

compressing the image space, and then the spatially aligned

conditioning information is concatenated with the input of

the model. By contrast, CCDF (Chung et al., 2021) adopts

a non-expansive mapping for aggregating the degradation

operation during training. A “predict-and-refine” condi-

tional diffusion model is proposed by Whang et al. (2021),

where a diffusion model is trained to refine the output of

a deterministic predictor. However, all these methods re-

quire degradation-specific training, which could be compu-

tationally expensive and may not generalize well to unseen

degradation operators.

Unsupervised diffusion inpainting Different from super-

vised methods, unsupervised diffusion inpainting aims at

utilizing pre-trained diffusion models for the inpainting task

without any model modification. Our proposed method also

falls into this category. As an early work, Song & Ermon

(2019a) proposes to modify the DDPM sampling process by

spatially blending the noisy version of the degraded image

in each time step of the denoising process. A similar idea

is adopted by BLENDEDDIFFUSION for text-driven inpaint-

ing (Avrahami et al., 2021). DDRM (Kawar et al., 2022)

defines a new posterior diffusion process whose marginal

probability is proved to be consistent with DDPM (Ho et al.,

2020). Roughly speaking, the proposed denoising process
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is equivalent to blending the degraded image in a weighted-

sum manner in each time step. Despite the high efficiency of

these methods, the images generated by the simple blending-

based methods are often not harmonizing in the recovered

part (Lugmayr et al., 2022).

To address the issue, the authors of REPAINT (Lugmayr

et al., 2022) proposed a resampling strategy. Specifically, a

“time travel” operation is introduced, where images from the

current t time step are first blended with the noisy version of

the degraded image, and then used to generate images in the

t+ 1 time step using a one-step forward process, thereby re-

ducing the visual inconsistency caused by blending. Trippe

et al. (2022) further proves that a simple blending-based

method would introduce irreducible approximation error in

the generation process. A particle filtering-based method,

named RESAMPLING, is then proposed, where for time step

t, each generated image is resampled based on its probabil-

ity of generating the revealed part of the degraded image in

the t−1 time step. Pokle et al. (2022) look at diffusion mod-

els in a deep equilibrium (DEQ) perspective and propose a

DEQ method for inverting DDIM to save memory consump-

tion. DDNM (Wang et al., 2022) introduces a new blending

mechanism, where the degraded image is directly incorpo-

rated in each time step without noise. Another recent work

DPS (Chung et al., 2022a) addresses the inpainting problem

via approximation of the posterior sampling in a similar

manner with classifier-free guided diffusion (Dhariwal &

Nichol, 2021a). Specifically, they use the approximated gra-

dient of the posterior likelihood as a mean shift for images

generated at each time step of the denoising process. Differ-

ent from these methods, we introduce a Bayesian framework

to jointly modify both revealed and unrevealed parts of im-

ages by maximizing the posterior in each time step along

the denoising process and thus enjoying better coherence

for the inpainted part.

3. Background and Notations

In this section, we will provide a brief overview of the

diffusion model frameworks and notations that will be used

in this paper. Note that we will only cover just enough

details for the purpose of explaining our proposed approach.

We would recommend readers refer to the original papers

cited for complete details and derivations.

Denote X0 as a random vector of the natural images (vec-

torized). DDIMs (Song et al., 2020) try to recover the

distribution of X0 through a set of intermediate variables,

e.g., X1:T , which are progressively corrupted versions of

X0. There are two processes in a DDIM framework, a for-

ward diffusion process, which defines how X0 is corrupted

into XT , and a reverse denoising process, which governs

how to recover X0 from XT based on the forward process.

The forward diffusion process of DDIMs follows that of

the denoising diffusion probabilistic models (DDPMs) (Ho

et al., 2020; Sohl-Dickstein et al., 2015), which is a Markov

process that progressively adds Gaussian noises to the inter-

mediate variables, i.e.,

q(X1:T |X0) =
T
∏

t=1

q(Xt|Xt−1),

q(Xt|Xt−1) = N (Xt;
√
αtXt−1, βtI),

(1)

where α1:T and β1:T define the scaling and variance schedule

with αt = 1 − βt. It can be easily shown that, with an

appropriate scaling and variance schedule and a sufficiently

large T , XT approaches the standard Gaussian distribution.

For the reverse diffusion process, DDIMs introduce another

distribution qσ, called the inference distribution, that has a

matching conditional distribution of each individual inter-

mediate variable to q. Specifically

qσ(X1:T |X0) = qσ(XT |X0)
2
∏

t=T

qσ(Xt−1|Xt,X0),

qσ(XT |X0) = N (XT ;
√
ᾱTX0, (1− ᾱT )I),

qσ(Xt−1|Xt,X0) = N (Xt−1;µt, σ
2
t I),

(2)

where ᾱ =
∏t

i=1 αi and σ2
t is a free hyperparameter, and

µt =
√
ᾱt−1X0 +

√

1− ᾱt−1 − σ2
t

Xt −
√
ᾱtX0√

1− ᾱt

. (3)

It can be shown that as long as σ2
t ∈ [0, 1− ᾱt], ∀t. qσ and q

have matching distributions: qσ(Xt|X0) = q(Xt|X0), ∀t.

The denoising process is derived from qσ by replacing X0

with an estimated value of X0, i.e.,

pθ(XT ) = N (XT ;0, I)

pθ(Xt−1|Xt) = qσ(Xt−1|Xt, X̂
(t)
0 ),

(4)

where
X̂

(t)
0 = f

(t)
θ (Xt) (5)

is produced by a (reparameterized) neural network that pre-

dicts X0 from Xt by minimizing the mean squared error.

Equation 5 provides a way of estimating the final generation

as a deterministic function of X̃t. In particular, f
(t)
θ (X̃t) is

generated by feeding to the inference network once, and thus

can be regarded as a compute-efficient approximation of the

final generation. We will refer to it as one-step generation.

As shown in Figure 2 , the gap between f
(t)
θ (X̃t) and X̃0

typically gets smaller as t gets smaller. As we will show,

one-step generation is central to our algorithm because it

permits direct control over the final generation through the

intermediate variables.

4. The COPAINT Algorithm

4.1. Problem Formulation

The image inpainting problem aims to generate a natural,

complete image given a partially revealed image, such that
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Figure 2. The trajectory of the gap between f
(t)
θ (X̃t) and X̃0

along the unconditional diffusion denoising process. We report the

pixel-wise averaged Euclidean distance between the two.

the generated image is identical to the given image in the

revealed regions. Formally, denote r(·) as an operator that

outputs a revealed subset of the input dimensions, and s0

as the revealed portion of the given reference image. Then

the goal of image inpainting is to generate a natural image

under the following inpainting constraint

C : r(X̃0) = s0, (6)

which we denote as event C for notation brevity. In this

paper, we focus on the scenario where the diffusion model

is pretrained and fixed, i.e., f
(t)
θ is fixed for all t.

As discussed, many existing diffusion-model-based ap-

proaches only replace the revealed region of the generated

intermediate or final images i.e., r(Xt) or r(X0), to directly

impose the inpainting constraint, whereas the generation

of the remaining unrevealed region is not directly modified

to match the context. Thus the resulting generated images

could easily suffer from incoherence between the revealed

and unrevealed regions. In the following, we will explain

how we propose to jointly optimize both regions.

4.2. A Prototype Approach

We will start with a prototype approach. Consider the sim-

plest form of DDIM, where σt = 0, ∀t. In other words, the

denoising process becomes a deterministic process with re-

spect to X̃T . As a result, the inpainting constraint on X̃0

in Equation 6 can translate to that on X̃T , so the image in-

painting problem boils down to determining an appropriate

X̃T based on the following posterior distribution:

pθ
(

X̃T

∣

∣C
)

∝pθ(X̃T ) · pθ
(

r(X̃0) = s0

∣

∣X̃T

)

=pθ(X̃T ) · δ
(

r(X̃0) = s0

)

.
(7)

According to Equations 2 and 4, pθ(X̃T ) is a standard Gaus-

sian distribution. To clarify, pθ
(

r(X̃0) = s0

∣

∣X̃T

)

denotes

the probability density function of r(X̃0) evaluated at s0,

conditional on the value of X̃T . Since X̃T is given and

X̃0 is a deterministic function of X̃T , pθ
(

r(X̃0) = s0

∣

∣X̃T

)

becomes a dirac delta function δ(·), with infinity probability

density at where the event holds, and zero density elsewhere.

The dirac delta function can be approximated by a Gaussian

density function with zero variance. Therefore, Equation 7,

after taking the logarithm, can be approximated as

log pθ(X̃T |C)

≈− 1

2
∥X̃T ∥22 −

1

2ξ2T

∥

∥s0 − r(X̃0)
∥

∥

2

2
+ C

≈− 1

2
∥X̃T ∥22 −

1

2ξ2T

∥

∥s0 − r(gθ(X̃T ))
∥

∥

2

2
+ C,

(8)

where we denote X̃0 = gθ(X̃T ) to emphasize X̃0 is a func-

tion of X̃T ; C is the normalizing constant; ξT is the standard

deviation of the second Gaussian distribution. When ξT ap-

proaches zero, the approximation in Equation 8 becomes

exact. In practice, ξT can be set to a very small value.

Equation 8 provides a justification for solving X̃T using op-

timization method, because the first term can be regarded as

a prior regularization and the second term as a penalty term

enforcing the inpainting constraint. One can either perform

gradient ascent over X̃T to find the maximum a posteriori

(MAP) estimate of X̃T , or apply gradient-based sampling

techniques such as Hamiltonian Markov Chain Monte Carlo

(MCMC) (Neal, 2011). to draw random samples. Note that

the optimization is over the entire X̃T , not just the revealed

regions, so this would ideally resolve the incoherence prob-

lem in the existing replacement methods. Since the weight

on the second term is very large, we can expect to solve for

an X̃T that can satisfy the inpainting constraint very well.

4.3. One-Step Approximation

The key limitation of the aforementioned prototype ap-

proach is that it is computationally impractical, because

evaluating the final generation gθ(X̃T ) and computing its

gradient involve performing forward and reverse propaga-

tion through the entire DDIM denoising process, which

typically consists of tens or even hundreds of denoising

steps. We thus need to derive a computationally-feasible

algorithm from the prototype approach.

As discussed in Section 3, the one-step generation f
(T )
θ (X̃T )

offers a fast approximation of the final generation, so a

straightforward modification is to replace the gθ(X̃T ) in

Equation 8 with f
(T )
θ (X̃T ).

Formally, we introduce a approximated conditional dis-

tribution of r(X̃0) given X̃T , denoted as p′θ(r(X̃0)|X̃T ),

which is centered around the one-step generated value,

r(f
(T )
θ (X̃T )), plus a Gaussian error, i.e.,

p′θ(r(X̃0)|X̃T ) = N
(

r(X̃0); r(f
(T )
θ (X̃T )), ξ

′2
T I

)

, (9)
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Algorithm 1 COPAINT-TT

1: Input: s0, {f (t)
θ (·)}Tt=1, time travel interval τ and frequency

K, gradient descent number G and learning rate {ηt}Tt=1

2: Initialize X̃T ∼ N (0, I)
3: t← T , k ← K
4: while t ̸= 0 do

5: Optimize X̃t to maximize Equations 10 14 by G-step gra-
dient descent with learning rate ηt

6: Generate X̃t−1 with Equation 4
7: t← t− 1
8: if t mod τ = 0 and t ≤ T − τ then
9: if k > 0 then

10: // time trave l
11: Generate X̃t+τ ∼ q(X̃t+τ |X̃t)
12: t← t+ τ − 1, k ← k − 1
13: else
14: k ← K
15: end if
16: end if
17: end while
18: Return: X̃0

where ξ′T is the standard deviation parameter. Plugged in

this approximated distribution, the approximate posterior is

log p′θ(X̃T |C)
= log(pθ(X̃T )) + log

(

p′θ
(

r(X̃0) = s0

∣

∣X̃T

))

+ C′

=− 1

2
∥X̃T ∥22 −

1

2ξ
′2
T

∥

∥s0 − r(f
(T )
θ (X̃T ))

∥

∥

2

2
+ C′,

(10)

where C′ refers to any normalizing constant, and the last

line is derived from Equation 9.

It can be easily shown that in order to minimize the approxi-

mation gap, i.e., the KL divergence between pθ(r(X̃0)|X̃T )

and p′θ(r(X̃0)|X̃T ), ξ
′2
T should be set to

ξ
′2
T =

1

N
Epθ

[∥

∥r(f
(T )
θ (X̃T ))− r(X̃0)

∥

∥

2

2

]

, (11)

where N is the dimension of s0. Similar to Equation 8, max-

imizing Equation 10 over X̃T is essentially trying to satisfy

the (approximated) inpainting constraint (second term) reg-

ularized by its prior (first term). However, in contrast to the

exact case in Equation 8, where ξT should be as small as

possible, ξ′T should be large enough (Equation 11) to capture

the approximation error, which leads to a smaller weight on

the approximate inpainting constraint term in Equation 10.

4.4. Denoising Successive Correction

Equation 10 will push revealed part of the one-step approxi-

mated generation, r(f
(T )
θ (X̃T )), towards the reference im-

age s0. However, the actual inpainting constraint requires us

to push the actual final generation, r(X̃0), to s0. As a result,

optimizing Equation 10 cannot exactly satisfy the inpaint-

ing constraint. To further enforce the inpainting constraint,

we return to the non-deterministic DDIM procedure, where

σt ̸= 0, and apply the optimization technique discussed

in Sections 4.2 and 4.3 to all the intermediate variables to

successively correct the approximation error.

The proposed DDIM procedure samples X̃0:T from the ap-

proximate posterior p′θ(X̃0:T |C), which is decomposed as

p′θ(X̃0:T |C) = p′θ(X̃T |C)
T
∏

t=1

p′θ(X̃t−1|X̃t, C). (12)

p′θ(X̃T |CT ) is defined in Equation 10. To compute

p′θ(X̃t−1|X̃t, C), we introduce a set of Gaussian approxi-

mated distributions similar to Equation 9 as

p′θ(r(X̃0)|X̃t) = N
(

r(X̃0); r(f
(t)
θ (X̃t)), ξ

′2
t I

)

, (13)

where ξ2t is defined similar to Equation 11 (replacing T
with t) to minimize the one-step approximation error. Then

p′θ(X̃t−1|X̃t, C) can be computed as

log p′θ(X̃t−1|X̃t, C)
= log pθ(X̃t−1|X̃t) + log p′θ

(

r(X̃0) = s0|X̃t−1, X̃t

)

+ C′

= log pθ(X̃t−1|X̃t) + log p′θ
(

r(X̃0) = s0|X̃t−1

)

+ C′

=− 1

2σ2
t

∥X̃t−1 − µ̃t∥22 −
1

2ξ
′2
t−1

∥

∥s0 − r
(

f
(t−1)
θ (X̃t−1)

)∥

∥

2

2

+ C′, (14)

where the third line follows from the reverse Markov prop-
erty of the DDIM denoising process. The first term in the
last line follows from Equations 2 to 4, with

µ̃t =
√
αt−1f

(t)
θ (X̃t) +

√

1− αt−1 − σ2
t

X̃t−
√
αtf

(t)
θ

(X̃t)√
1−αt

. (15)

To generate the final inpainting result, we follow the follow-

ing greedy optimization procedure to find samples of X̃0:T

that maximizes the p′θ(X̃0:T |C) in Equation 12. First, we

sample an X̃T by optimizing Equation 10. Second, given

the generated value of X̃t, we sample an X̃t−1 by optimiz-

ing Equation 14. Both steps are essentially enforcing the

approximate inpainting constraints under the DDIM prior

regularization. According to Figure 2, the one-step approx-

imation error will gradually reduce as t decreases, so the

algorithm would approach the inpainting constraint with

increasing levels of exactness, successively correcting the

approximation errors made in the previous steps. In particu-

lar, when t = 1, if we set σ1 = 0 and let ξ1 approach zero,

we will have zero approximation error, i.e. f
(1)
θ (X̃1) = X̃0,

so the generated image can be made to satisfy the inpainting

constraint with very small errors.

4.5. Additional Algorithmic Designs

Although our algorithm can eventually eliminate the one-

step approximation error in the final denoising step, the error

in the early denoising steps can still affect the generation

quality because it affects the quality of the prior distribu-

tion for subsequent generations. We introduce additional

optional designs to reduce the approximation error.
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Multi-Step Approximation In the early denoising steps

where the approximation error is more significant, we can

replace the one-step approximation with multi-step approxi-

mation, where X̃0 is approximated by going through multi-

ple deterministic denoising steps at a subset of time steps.

Time Travel To improve the self-consistency of the inter-

mediate examples, we can apply the time travel technique

(Lugmayr et al., 2022; Wang et al., 2022), which periodi-

cally returns to the previous denoising steps by corrupting

the intermediate images. Specifically, for a set of selected

time steps φ at denoising time step T−τ , instead of progress-

ing to T − τ − 1, we rewind to time T − 1 by sampling a new

X̃T−1 based on q(X̃T−1|X̃t−τ ), and repeat the denoising

steps from there. After K rounds of rewinding and denois-

ing through steps T − 1 to T − τ , we then enter K rounds

of rewinding and denoising loop through steps T − τ − 1 to

T − 2τ . This process progresses until time zero is reached.

The algorithm of COPAINT with time travel, abbreviated as

COPAINT-TT, is shown in Algorithm 1.

5. Experiments

5.1. Experiment Setup

Datasets and models Following Lugmayr et al. (2022),

we validate our method on two commonly used im-

age datasets: CelebA-HQ (Liu et al., 2014) and

ImageNet-1K (Russakovsky et al., 2015). CelebA-HQ

contains more than 200K celebrity images, and we use the

data split provided by Suvorov et al. (2022) following Lug-

mayr et al. (2022). ImageNet-1K is a large-scale image

dataset containing 1000 categories, and the original data

split is used (Russakovsky et al., 2015). Since not all im-

ages in the datasets are square-shaped images that diffusion

models accept, we crop all images into 256× 256 size to ac-

commodate pretrained diffusion models. For CelebA-HQ

dataset, we use the diffusion model pretrained by Lugmayr

et al. (2022). For ImageNet, we use the model pretrained

by Dhariwal & Nichol (2021b). We use the first five images

in the validation set for hyperparameter selection. The first

100 images in test sets are used for evaluation following

Lugmayr et al. (2022). Following Lugmayr et al. (2022);

Wang et al. (2022); Suvorov et al. (2022), we consider seven

different degradation masks on the original images for re-

covering: Expand, Half, Altern, S.R., Narrow, Wide, and

Texts. Examples of the degraded images are in Figure 4.

Metrics We evaluate the quality of the inpainting results

using both objective and subjective metrics. For the objec-

tive metric, we adopt the LPIPS used in Lugmayr et al.

(2022), which computes the similarity of two images in the

feature space of AlexNet (Krizhevsky, 2014). For each ref-

erence image, we generate two inpainted images and the

overall average LPIPS is reported. For the subjective met-

rics, we conduct a human evaluation on Amazon MTurk,

where each subject is presented with a masked reference

image and a pair of inpainted images, one by COPAINT-TT

and the other by one of the baselines. The subject is then

asked to select which one is of better quality according to a

set of prespecified criteria. We also introduce a third option,

‘cannot tell the difference’, if the subject cannot find any

noticeable differences between the pair.

We perform two tests where different criteria are specified.

In the first test, referred to as overall, three criteria are

introduced: 1) the inpainted image should be natural and

without artifact; 2) the revealed portion should resemble the

reference image; and 3) the image should be coherent. In the

second test, referred to as coherence, only the coherence

criterion is introduced. For both tests, we randomly sample

50 images for every mask in CelebA-HQ and ImageNet

and thus result in 2 × 2 × 7 × 50 = 1400 image pairs for

comparison. In each comparison with one baseline, we use

the vote difference (%), which is the percentage

of the votes for COPAINT-TT subtracted by that for the

baseline, as the metric for the relative inpainting quality

compared to the baseline. More details about the human

evaluation design could be seen in Appendix A.1.

Baselines and implementation details We focus on com-

parison with diffusion-model-based methods, which have

been shown to achieve state-of-the-art performance over

methods that do not use diffusion models (Lugmayr et al.,

2022). Specifically, the following baselines are introduced:

BLENDED (Song & Ermon, 2019a; Avrahami et al., 2021),

DDRM (Kawar et al., 2022), RESAMPLING (Trippe et al.,

2022), REPAINT (Lugmayr et al., 2022), DPS (Chung et al.,

2022a), and DDNM (Wang et al., 2022). A brief introduction

about these baselines could be found in Section 2.

For all methods, we set the number of reverse sampling

steps as 250 if not specified otherwise. For REPAINT, we

use their released codes1 out-of-the-shelf with exactly the

same setting as reported in their paper (Lugmayr et al.,

2022). We then implement all other methods based on

the REPAINT code base and keep all hyper-parameters the

same as the corresponding papers, details could be seen

in Appendix A.2. Specifically, we set gradient descent

step number G = 2 for both COPAINT and COPAINT-TT.

A time-efficient version of our method, COPAINT-FAST

is further introduced with G = 1 and reverse sampling

1With the released code of REPAINT in shorturl.at/

AHILU and the matching configurations, we noticed there is a
slight gap between our implemented results and the reported ones
in Lugmayr et al. (2022). Nevertheless, we believe our compari-
son with REPAINT is fair because our methods were implemented
based on the same code base, so any configuration nuances that
can account for the gap are likely to affect the performance of our
methods in the same direction.
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Table 1. Quantitative results on CelebA-HQ(top) and ImageNet (bottom). We report the objective metric LPIPS and subjective

human vote difference score of each baseline compared with our method COPAINT-TT. Lower is better for both metrics. The vote

difference scores are calculated as the vote percentage of COPAINT-TT minus vote percentage of certain baseline. We report the results of

two human tests, i.e., overall and coherence, in the Vote(%) column separated by /, where overall is based on naturalness,

restoration quality and coherence, while coherence is only based coherence of the generated image. vote difference score

being lower than zero indicates certain baseline is better than our method COPAINT-TT. Numbers marked in blue are additional results.

CelebA-HQ

Method
Expand Half Altern S.R. Narrow Wide Text Average

LPIPS↓ Vote(%)↓ LPIPS↓ Vote(%) ↓ LPIPS↓ Vote(%) ↓ LPIPS↓ Vote(%) ↓ LPIPS↓ Vote(%) ↓ LPIPS↓ Vote(%) ↓ LPIPS↓ Vote(%) ↓ LPIPS↓ Vote(%) ↓

BLENDED 0.557 82/80 0.228 64/72 0.047 12/30 0.269 78/86 0.078 54/64 0.102 46/58 0.011 18/12 0.185 51/57

DDRM 0.704 94/98 0.273 86/96 0.151 78/84 0.596 100/100 0.140 76/84 0.125 84/62 0.028 38/42 0.288 79/81

RESAMPLING 0.536 60/66 0.231 68/88 0.050 24/46 0.261 64/72 0.077 50/64 0.102 40/50 0.013 -12/8 0.181 42/56

REPAINT 0.496 24/18 0.199 2/12 0.014 -32/38 0.041 10/10 0.039 4/10 0.072 -16/-32 0.006 4/-14 0.124 0/6

DPS 0.449 -16/-12 0.261 28/32 0.166 58/72 0.182 60/82 0.160 72/52 0.181 30/28 0.152 58/60 0.222 41/45

DDNM 0.598 76/94 0.257 84/72 0.015 -2/-2 0.046 6/0 0.071 14/38 0.111 28/60 0.014 -12/10 0.158 27/39

COPAINT-FAST 0.483 10/34 0.203 44/20 0.057 10/2 0.084 20/6 0.068 16/10 0.096 20/4 0.036 l4/-4 0.147 13/11

COPAINT 0.472 12/20 0.188 40/24 0.016 -6/-4 0.033 22/-4 0.040 20/14 0.071 24/-2 0.007 -12/-4 0.118 15/6

COPAINT-TT 0.464 0/0 0.180 0/0 0.014 0/0 0.028 0/0 0.037 0/0 0.069 0/0 0.006 0/0 0.114 0/0

ImageNet

BLENDED 0.717 39/36 0.366 72/80 0.277 96/92 0.686 94/96 0.161 76/64 0.194 62/60 0.028 8/26 0.347 64/65

DDRM 0.730 58/44 0.385 78/64 0.439 92/100 0.822 92/100 0.211 84/84 0.231 86/72 0.060 32/44 0.411 75/71

RESAMPLING 0.704 38/40 0.353 58/86 0.259 72/88 0.624 94/98 0.151 66/64 0.183 76/66 0.028 22/26 0.329 61/67

REPAINT 0.706 36/36 0.323 4/24 0.103 50/22 0.209 70/66 0.072 32/2 0.156 24/36 0.014 22/18 0.226 34/29

DPS 0.673 38/44 0.512 82/72 0.474 100/100 0.511 96/95 0.447 94/98 0.468 96/92 0.438 92/96 0.503 87/86

DDNM 0.805 34/76 0.408 68/64 0.051 12/12 0.107 18/36 0.101 50/70 0.185 48/60 0.012 -2/-20 0.238 33/44

COPAINT-FAST 0.678 14/26 0.335 22/24 0.075 10/6 0.128 36/28 0.103 26/22 0.167 24/32 0.043 6/-2 0.218 15/19

COPAINT 0.640 -2/8 0.307 6/0 0.041 22/4 0.069 20/18 0.078 24/30 0.138 14/16 0.017 2/-10 0.184 12/9

COPAINT-TT 0.636 0/0 0.294 0/0 0.039 0/0 0.069 0/0 0.074 0/0 0.133 0/0 0.015 0/0 0.180 0/0

step number as 100. We adopt an adaptive learning rate

as ηt = 0.02
√
ᾱt for all our methods. The rationale for such

a learning rate setting can be seen in Appendix A.3. For

better efficiency, we simply set ξ
′2
t = (1/1.012)T−t instead

of calculating it, inspired by the empirical observation that

{ξt} is increasing along t in Figure 2. For COPAINT-TT, we

use time travel interval τ = 10 and travel frequency K = 1.

The ablation studies for the hyper-parameters could be seen

in Section 5.4. Note that all methods use the same pretrained

diffusion models without any modification.

5.2. Experiment Results

Quantitative results Table 1 shows the quantitative re-

sults of the proposed COPAINT-FAST, COPAINT and

COPAINT-TT together with all other baselines on both

CelebA-HQ (top) and ImageNet (bottom) datasets with

seven mask types. The results in the Votes (%) column

show the two vote difference scores, the first for overall

test and the second for the coherence test. Here are our

key observations. First, in terms of the objective metric,

COPAINT consistently outperforms the other baselines, and

reduces the average LPIPS score by 5% and 19% beyond

the best-performing baseline REPAINT in CelebA-HQ and

ImageNet dataset, respectively. Second, when combined

with time travel, COPAINT-TT can further bring down the

average LPIPS score by another 3% and 1% in the two

datasets, respectively. Besides, COPAINT-TT achieves the

best performance among eleven out of the fourteen inpaint-

ing tasks while achieving comparable performances with

the best baseline in the rest. Third, in terms of subjec-

tive evaluations, COPAINT-TT consistently produces pos-

itive vote difference scores in both the overall

and coherence tests in most of the comparisons, indicat-

Figure 3. Time-performance trade-off on CelebA-HQ (left) and

ImageNet (right). The x-axis indicates the average time (↓) to

process one image, and the y-axis is the average LPIPS (↓).

ing that the images generated by our method are not only

more coherent, but also considered superior in terms of

other aspects as well, including naturalness and meeting

the inpainting constraint. Also, notice that the performance

advantage of COPAINT-TT is generally more significant on

ImageNet, which may be because images in ImageNet

are more complex and thus any imperfections in the images,

including incoherence, would be more conspicuous.

We further conduct an additional experiment on inpainting

high-resolution images in Appendix C, where our meth-

ods still achieve the best performance compared with other

baselines with competitive time efficiency. Besides, the pro-

posed method could also be used in other image restoration

tasks. An additional experiment on the super-resolution

task could be seen in Appendix D, where our methods show

consistent superiority over other baselines.

Time-performance trade-off Figure 3 shows the running

time of the proposed methods with other baselines on both

CelebA-HQ (left) and ImageNet (right). In each subfig-

ure, the x-axis denotes the average running time of each

7
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Figure 4. Qualitative results of baselines and ours (COPAINT,

COPAINT-TT) on CelebA-HQ with seven degradation masks.

method for processing one image, while the y-axis repre-

sents the average LPIPS score over seven mask types. The

position closer to the left-bottom corner of the figure indi-

cates better performance and time efficiency. COPAINT-TT

achieves the best performance, although it has a larger com-

putational cost than most baselines. On the other hand,

with almost comparable performance, COPAINT reduces

the time cost by nearly 60% in both datasets. Compared

with the best-performing baseline REPAINT, COPAINT lies

to the left-bottom of REPAINT in both datasets, demonstrat-

ing its advantage in the time-efficiency tradeoff. Moreover,

we show that COPAINT-FAST is four times faster than CO-

PAINT and is comparable to other baseline methods in terms

of running time. COPAINT-FAST also achieves competitive

performances in both two datasets. Specifically, COPAINT-

FAST outperforms other baselines except for REPAINT in

CelebA-HQ and beats all baselines in ImageNet.

Qualitative results We show some example generated

images CelebA-HQ and ImageNet in Figures 4 and 5,

respectively. More qualitative results with large size could

Expand Half Altern S.R. Narrow Wide Text
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Figure 5. Qualitative results of baselines and ours (COPAINT,

COPAINT-TT) on ImageNet with seven degradation masks.
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Figure 6. Coherence study of baseline BLENDED and our methods

COPAINT on CelebA-HQ dataset with Half mask.

be seen in Appendix B. There are two key observations.

First, our method achieves better coherence compared with

other baselines, which is particularly significant with larger

masks, such as Expand and Half. For example, in the sec-

ond column in Figure 5 with the Half mask, the revealed

part of the input is half of a television, as shown in the

first row. In contrast to the failed completions generated

by most baselines, both COPAINT and COPAINT-TT suc-

cessfully generate a television with matching size and style.

COPAINT-FAST shows slight performance degradation due

to the limited number of reverse sampling and gradient de-

8
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Table 2. Ablation study of the gradient descent number G, the time

travel frequency K, the time travel interval τ , and the step number

for approximating X̃0 in each time step H . The results are based

on the testing set of CelebA-HQ dataset with Half mask.

Method G LPIPS↓ Time (s)↓

COPAINT-TT
1 0.187 326
2 0.180 562
5 0.192 1365

Method K LPIPS↓ Time (s)↓

COPAINT-TT
1 0.180 562
2 0.179 721
5 0.181 1428

Method τ LPIPS↓ Time (s)↓

COPAINT-TT
2 0.186 567
5 0.178 569

10 0.180 562
20 0.181 564

Method H LPIPS↓ Time (s)↓

COPAINT-TT
1 0.180 562
2 0.176 1491
5 0.177 3346

scent. Second, although some baselines, such as DPS, also

generate relatively coherent images, our methods produce

more realistic images. For example, the televisions gen-

erated by our methods have more decorations and grains,

while the television generated by DPS appears smooth and

lacks details.

5.3. Coherence Study

To show how COPAINT ensures coherence along the de-

noising process, we present a coherence study, where we

plot one-step generations over time steps t = {T, 0.8T,
0.6T, 0.4T, 0.2T, 1} for the baseline BLENDED and our

method COPAINT in Figure 6. As can be observed, although

the revealed part is a woman with black hair, BLENDED

keeps generating blond hair for the woman. This is con-

sistent with the known bias in CelebA-HQ dataset, that

women are more correlated with blond hair (Liu et al., 2021).

The problem is that directly replacing the revealed portion of

the image along the denoising process does not require the

unrevealed portion to be consistent with the context of the

revealed region. By contrast, our method could effectively

generate a coherent image with black hair.

5.4. Ablation Study

We investigate the design choices of three hyperparameters,

gradient descent step number G, time travel frequency K,

time travel interval τ , and the effects of multi-step approxi-

mation as mentioned in Section 4. Specifically, we conduct

our experiments on the CelebA-HQ with Half mask. The

results could be seen in Table 2.

As shown in Algorithm 1, a G-step gradient descent method

is adopted for optimizing X̃t at each time step. In Table 2

(first), we see that a larger G would not always introduce

better performances COPAINT-TT. As we optimize X̃t to

minimize the mean square error (corresponding to the sec-

ond term in Equation 14) only in the revealed region, a

larger gradient descent number may introduce an overfitting

problem and thus lead the poor performances.

Table 2 (second and third) shows the effects of time travel

frequency K and interval τ . Different from REPAINT (Lug-

mayr et al., 2022) where K = 9 is used, we see that K = 1 is

sufficient for our method, demonstrating that our proposed

method is better at imposing the inpainting constraints than

the simple replacement operations adopted by REPAINT.

Besides, we show that the value of time travel interval τ

does not have a significant impact on the performance with

τ ≥ 5.

As we have mentioned in Section 4.5, the one-step approx-

imation for X̃0 could be replaced with multi-step approxi-

mation by going through multiple deterministic denoising

steps at a subset of time steps. We denote the approximation

step number as H, and its effects could be seen in Table 2

(fourth). We see that with a minor decrease in LPIPS, the

time cost dramatically increases. With H = 5, it takes

about six times longer than H = 1 for processing one image.

We leave it for our future work to explore how to improve

computational efficiency for multi-step approximation.

6. Conclusion

In this paper, we proposed a diffusion-based image inpaint-

ing method, COPAINT, which introduces a Bayesian frame-

work to jointly modify both revealed and unrevealed parts of

intermediate variables in each time step along the denoising

process, leading to better coherence in the inpainted image.

COPAINT’s approximation error of the posterior distribu-

tion is designed to gradually drop to zero, thus strongly

enforcing the inpainting constraint. Results from extensive

experiments showed that COPAINT outperforms existing

diffusion-based methods in both objective and subjective

metrics in terms of coherence and overall quality. However,

there are still some imperfections in COPAINT, due to the

suboptimal greedy optimization and one-step approxima-

tion error. See the failure case study in Appendix E and the

discussion about potential societal impacts in Appendix F.

In the next step, we plan to replace our greedy optimization

with more plausible sampling methods and investigate ways

to further reduce approximation error.
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A. Experiment Setup

A.1. Human Evaluation

As described in Section 5.1, we conduct two human evaluations on Amazon Mturk2 to evaluate the quality of inpainted

images. Figures 7 and 8 show the user interface for the human evaluations, where evaluators are asked to select an image of

better quality from two candidate images inpainted by different algorithms according to the criteria listed in instructions. To

avoid bias, we put the candidate images in random order. As mentioned in Section 5.1, we perform two user studies, with

one of them focusing on overall quality and the other focusing on coherence.

Detailed criteria of overall test are:

• It is important that the edited image should look like a natural image. It should not contain a lot of artifacts, distortion

or non-commonsensical scenes.

• The completed image should resemble the source image except in the missing part.

• The completed missing parts should be visually coherent with the given parts in the source image.

Detailed criteria of coherence test are:

• The completed missing parts should be visually coherent with the given parts in the source image. More specifically,

the completed parts should follow the same style as the given parts in source image, for example, the haircut style of a

human should be same and the filled parts should not contain irrelevant objects in the source image.

2https://www.mturk.com
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Figure 7. Human evaluation interface for overall test. Evaluators are asked to choose an image of better quality from two Candidate

images following the criteria listed in the instructions.
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Figure 8. Human evaluation interface for coherence test. Evaluators are asked to choose an image of better quality from two Candidate

images following the criteria listed in the instructions.
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A.2. Implementation Details of Baselines

We implement all methods based on the code3 released by Lugmayr et al. (2022) and generate images with the same pretrained

diffusion model. For CelebA-HQ dataset, we use the model pretrained by Lugmayr et al. (2022). For ImageNet, we use

the model pretrained by Dhariwal & Nichol (2021b). For all experiments, we set the number of reverse sampling steps as

250 if not specified otherwise. All experiments are done on an Nvidia-V100-SXM2-32GB GPU. The key hyper-parameters

for each baseline method are listed below:

BLENDED, we use DDPM (Song & Ermon, 2019b) sampler with 250 sampling steps.

DDRM, we perform all experiments with the default setting ηB = 1.0, η = 0.85.

RESAMPLING, we generate and resample twenty images4 in each time step, and select the two with the highest posterior

probability when t = 1.

REPAINT, we perform all experiments with the default setting, where jump length j = 10 and resampling number n = 10.

DPS, we perform all experiments following the setting of Gaussian noise measurement in the original paper, where the

measurement noise is set to 0 and the step size ξi = 1/ ∥y −A(x̂0(xi))∥.

DDNM, we perform all experiments with the default setting, where linear degradation operator A = r and its pseudo-inverse

A† = r.

A.3. Adaptive Learning Rate for Our Method

In our algorithm 1, X̃t is optimized to maximize the posterior in each time step. It is equivalent to optimize X̃t by minimizing

the following loss,

Lt = − log p′θ(X̃t|X̃t+1, C) =
1

2σ2
t

∥X̃t − µ̃t∥22 +
1

2ξ
′2
t

∥

∥s0 − r
(

f
(t)
θ (X̃t)

)
∥

∥

2

2
, (16)

and its gradient on X̃t could be calculated as follows,
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+
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where we note that
∂r

(

f
(t)
θ

(X̃t)
)

∂f
(t)
θ

(X̃t)
is a diagonal matrix with either one or zero. Following the one-step approximation function

f
(t)
θ (X̃t) in DDIM (Song et al., 2020), we have

∂f
(t)
θ (X̃t)

∂X̃t

=

∂

(

(X̃t −
√
1− ᾱtϵ

(t)
θ (X̃t))/

√
ᾱt

)

∂X̃t

=
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√
1− ᾱt∇X̃t

ϵ
(t)
θ (X̃t)√

ᾱt

(18)

Given the fact that {ᾱt} is strictly decreasing, 1/
√
ᾱt could be very large when t is large and thus lead to large gradient

magnitudes for updating X̃t. In practice, we find that it would easily result in NaN if optimizing X̃t directly with the

gradient. To alleviate the problem, we multiply the learning rate with an offset term
√
ᾱt. With a base learning rate 0.02, we

finally use 0.02
√
ᾱt as our learning rate.

3shorturl.at/AHILU
4It is the maximum affordable number for a 32G GPU.
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B. Qualitative Results

We provide the larger size version of Figures 4 and 5 in Figures 9 and 12. More qualitative results are further provided on

CelebA-HQ in Figure 10, Figure 11 and more qualitative results on ImageNet in Figure 13, Figure 14 in this section.

17



Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models

Expand Half Altern S.R. Narrow Wide Text
In

p
u
t

B
L

E
N

D
E

D
R

E
S

A
M

P
L

IN
G

D
D

R
M

R
E

P
A

IN
T

D
D

N
M

D
P

S
C

O
P

A
I
N

T
-F

A
S

T
C

O
P

A
I
N

T
C

O
P

A
I
N

T
-T

T

Figure 9. Qualitative results of baseline BLENDED and our methods (COPAINT, COPAINT-TT) on CelebA-HQ with seven masks.
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Figure 10. Qualitative results of baseline methods and our methods (COPAINT, COPAINT-TT) on CelebA-HQ with seven masks.
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Figure 11. Qualitative results of baseline methods and our methods (COPAINT, COPAINT-TT) on CelebA-HQ with seven masks.
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Figure 12. Qualitative results of baseline BLENDED and our methods (COPAINT, COPAINT-TT) on ImageNet with seven masks.
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Figure 13. Qualitative results of baseline methods and our methods (COPAINT, COPAINT-TT) on ImageNet with seven masks.
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Figure 14. Qualitative results of baseline methods and our methods (COPAINT, COPAINT-TT) on ImageNet with seven masks.
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C. Additional High-resolution Inpainting Experiments

We conduct an additional experiment on inpainting images, where we use the released 512×512 diffusion model5 pre-trained

on ImageNet dataset as the backbone. The quantitative results could be found in Table 3. As can be observed, our methods

still achieve the best LPIPS compared with other baselines. For example, COPAINT-TT reduces LPIPS by 19.4% compared

with the most competing baseline REPAINT. In Figure 15 with the time-performance tradeoff, we show that our method is

able to outperform other baselines except for REPAINT with a comparable computational time budget (COPAINT-FAST),

and outperforms all baseline methods given more computational budget (COPAINT and COPAINT-TT).

Table 3. Quantitative results on ImageNet for 512× 512 resolution inpainting. Lower is better for LPIPS.

ImageNet-512

Method
Expand Half Altern S.R. Narrow Wide Text Average

LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓

BLENDED 0.739 0.377 0.210 0.495 0.157 0.179 0.038 0.313

DDRM 0.859 0.391 0.339 0.712 0.204 0.197 0.073 0.396

RESAMPLING 0.799 0.366 0.205 0.482 0.157 0.173 0.039 0.317

REPAINT 0.835 0.351 0.066 0.158 0.083 0.146 0.019 0.237

DPS 0.750 0.575 0.513 0.543 0.496 0.519 0.480 0.554

DDNM 0.850 0.406 0.033 0.079 0.173 0.193 0.044 0.254

COPAINT-FAST 0.678 0.335 0.075 0.128 0.103 0.167 0.043 0.218

COPAINT 0.732 0.310 0.033 0.067 0.100 0.146 0.026 0.202

COPAINT-TT 0.726 0.292 0.022 0.043 0.093 0.136 0.025 0.191

Figure 15. Time-performance trade-off on ImageNet for 512× 512 inpainting. The x-axis indicates the average time (↓) to process one

image, and the y-axis is the average LPIPS (↓).

5https://github.com/openai/guided-diffusion
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D. Additional Super-resolution Experiments

We conduct an additional experiment with our method on the super-resolution task. Specifically, we apply average pooling

to downsample a 256× 256 image to a lower resolution at different scales following DDNM (Wang et al., 2022) and then use

different methods to reconstruct the original 256× 256 image. We compare our method with DPS (Chung et al., 2022a),

DDRM (Kawar et al., 2022), and DDNM (Wang et al., 2022) as they are suitable for the super-resolution task.

The quantitative results in Table 4 demonstrate the consistent superiority of our method compared with other baselines. The

qualitative results are shown in Figures 16 and 17. Although the most competing baseline DDNM performs well in 2× and

4× super-resolution, their generated images in 8× super-resolution are more blurry and lack finer details such as hair, as

demonstrated in the first CelebA-HQ example, and fur, as demonstrated in the second ImageNet example. In contrast,

our method produces more natural-looking images with better details.

Table 4. Quantitative results of super-resolution task on CelebA-HQ(top) and ImageNet (bottom) datasets. Following (Wang et al.,

2022), we apply average-pooling to a 256× 256 image to obtain the low-resolution input and then reconstruct the original image using

different methods. We perform experiments for three different scales, i.e., 2×, 4× and 8×, with the image being downsampled at the

corresponding scale. We report the objective metric LPIPS of each baseline. Lower is better for LPIPS.

ImageNet

Scale Factor
DPS DDRM DDNM COPAINT COPAINT-TT

LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓

2× 0.156 0.054 0.031 0.037 0.025

4× 0.190 0.228 0.141 0.113 0.082

8× 0.235 0.360 0.250 0.293 0.170

CelebA-HQ

Scale Factor
DPS DDRM DDNM COPAINT COPAINT-TT

LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓ LPIPS↓

2× 0.417 0.121 0.113 0.063 0.042

4× 0.483 0.345 0.328 0.252 0.204

8× 0.531 0.480 0.528 0.511 0.423
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Figure 16. Qualitative results of applying different methods to super-resolution task on CelebA-HQ dataset.
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Figure 17. Qualitative results of applying different methods to super-resolution task on ImageNet dataset.
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E. Failure Case Study

We present a failure case study of our methods, COPAINT and COPAINT-TT, which can be found in Figure 18. Our findings

indicate that these methods are susceptible to failure when it comes to inpainting image details. For instance, in the first

column, while the inpainted area appears coherent and natural, the text on the hat does not blend well with the surrounding

region. Other baselines exhibit similar issues. We attribute this to the deficiency of diffusion models in generating image

details, particularly text, and plan to address this in future work. Additionally, we demonstrate that all methods, including

ours, are likely to fail for large masked regions where the revealed surrounding information is inadequate for inpainting,

resulting in unnatural images. An example of this is shown in the last column.
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Figure 18. Fail-cases of our method
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F. Potential Societal Impacts

Despite the recent success in image generation with diffusion models, these models are prone to the biases exhibited in

data (Rombach et al., 2021) and thus could generate biased images for downstream tasks. In line with other diffusion

inpainting works, our method heavily relies on the pre-trained diffusion models and thus could exhibit or even amplify

the biases existing in the models. For example, as shown in Figure 6, BLENDED (Song & Ermon, 2019a; Avrahami et al.,

2021) inpaint a blond-haired woman for the reference image with a black-haired woman, which aligns with a known bias in

CelebA-HQ dataset (Liu et al., 2021). The underlying reason lies in that, the replacement operation used by BLENDED

only enforces the inpainting constraint on the revealed part of the generated image, while the unrevealed part is not directly

modified and has to rely more on prior knowledge learned from data. By contrast, in this paper, we introduce a Bayesian

framework to jointly modify both the revealed and unrevealed parts of intermediate variables in each time step. This would

enforce better coherence between the revealed and unrevealed parts, making our method less susceptible to biases. As

shown in Figure 6, our method COPAINT successfully completes the image with a black-haired woman. On the other hand,

however, due to the suboptimal greedy optimization and one-step approximation error, we note that there are still some

imperfections in our method. Therefore, some bias may still persist, particularly when the revealed part contains too little

information. Besides, our method might be used in generating fake content and other malicious images to deceive humans

and spread misinformation. In practice, our method should be appropriately used with careful checks on potential risks.
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