
Rockmate: an Efficient, Fast, Automatic and Generic Tool
for Re-materialization in PyTorch

Xunyi Zhao * 1 Théotime Le Hellard * 2 Lionel Eyraud-Dubois 1 Julia Gusak 1 Olivier Beaumont 1

Abstract
We propose Rockmate to control the memory re-
quirements when training PyTorch DNN models.
Rockmate is an automatic tool that starts from the
model code and generates an equivalent model,
using a predefined amount of memory for activa-
tions, at the cost of a few re-computations. Rock-
mate automatically detects the structure of com-
putational and data dependencies and rewrites the
initial model as a sequence of complex blocks.
We show that such a structure is widespread and
can be found in many models in the literature
(Transformer based models, ResNet, RegNets,...).
This structure allows us to solve the problem in
a fast and efficient way, using an adaptation of
Checkmate (too slow on the whole model but
general) at the level of individual blocks and an
adaptation of Rotor (fast but limited to sequential
models) at the level of the sequence itself. We
show through experiments on many models that
Rockmate is as fast as Rotor and as efficient as
Checkmate, and that it allows in many cases to
obtain a significantly lower memory consumption
for activations (by a factor of 2 to 5) for a rather
negligible overhead (of the order of 10% to 20%).
Rockmate is open source and available at https:
//github.com/topal-team/rockmate.

1. Introduction
In recent years, very large networks have emerged. These
networks induce huge memory requirements both because
of the number of parameters and the size of the activations
that must be kept in memory to perform back-propagation.
Memory issues for training have been identified for a long

*Equal contribution 1Inria Center at the University of Bordeaux
2École Normale Supérieure, PSL University, Paris. Correspon-
dence to: Xunyi Zhao <xunyi.zhao@inria.fr>, Lionel Eyraud-
Dubois <lionel.eyraud-dubois@inria.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

time. Indeed, training is usually performed on computing re-
sources such as GPUs or TPUs, on which memory is limited.
Therefore, different approaches have been proposed.

The first category of solutions consists in relying on par-
allelism. Data parallelism allows to distribute the memory
related to the activations, at the cost of exchanging the net-
work weights between the different resources using collec-
tive communications such as MPI AllReduce which can
be expensive for networks such as those of the GPT2 class.
On the contrary, model parallelism allows to distribute the
weights of the network, at the cost of the communication
of activations and memory overheads in case it is used in a
pipelined way, and its scalability is limited by nature.

The second category of solutions is purely sequential. Of-
floading makes it possible to move some activations com-
puted during the forward phase from the memory of the
accelerator (GPU or TPU) to the memory of the CPU,
and then to prefetch them back at the appropriate moment
into the memory of the GPU during the backward phase.
This solution therefore consumes bandwidth on the PCI-e
bus between the CPU and the accelerator, which is also
used to load training data. Another solution, called re-
materialization, consists in deleting from accelerator mem-
ory some activations computed during the forward phase
and then recomputing them during the backward phase. This
approach does not consume communication resources, but
it does induce a computational overhead.

In the present paper, we focus on the latter re-materialization
approach on a single GPU or TPU, which is sufficient in
practice for the size of the networks we consider in the ex-
periments and which can be trivially combined with data
parallelism to accelerate training. In this framework, for a
given memory constraint, the optimization problem con-
sists in finding a sequence of computing, forgetting and
recomputing actions which allows to perform the train-
ing for given inputs and batch sizes, while fulfilling the
memory constraint and minimizing the computational
overhead.

To find the optimal sequence, different approaches have
been proposed. In the first approach, like in Rotor (Beau-
mont et al., 2019b), it is assumed that the dependencies

1

https://github.com/topal-team/rockmate
https://github.com/topal-team/rockmate

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Embedding

Layer Norm

Attn
Add

Layer Norm

MLP
Add

Layer Norm

Attn
Add

· · ·

rk
-b

lo
ck

1
rk

-b
lo

ck
2

rk
-b

lo
ck

3
tr

an
sf

or
m

er
bl

oc
k

time

Fw
d

bl
oc

k1

Fw
d

bl
oc

k2

Fw
d

bl
oc

k3

B
w

d
bl

oc
k1

B
w

d
bl

oc
k2

B
w

d
bl

oc
k3

Layer Norm

Attn
Add

Layer Norm

Attn
Add

Layer Norm

Attn
Add

Figure 1. Simplified example of running Rockmate on a GPT
model. Left: Dependency graph of the first part of the model,
where transformer blocks are shown in gray, and Rockmate blocks
are identified in red. Right: (top) a schedule corresponding to
the first three blocks; (bottom) indication of which activations are
saved (green) or not (white) for each block, and the intervals during
which they are present in memory. Saving fewer activations leads
to more recomputation and thus longer backward time.

within the model have a particular structure, typically a
sequence of operations. In this case, using dynamic pro-
gramming, it is possible to find the optimal order of compu-
tations in reasonable time. On the other hand, in the case
where the computations performed by the model do not
naturally consist in a sequence of operations, this approach
requires to aggregate elementary operations into complex
blocks to make the chain structure emerge. In this case,
re-materialization decisions have to be made at the level of
blocks, which reduces optimization opportunities. The left
of Figure 1 shows the graph of a GPT-like model, where
each block corresponds to one half of a transformer block.
On such a graph, this approach has to decide during the
forward phase whether to keep all internal activations or
to delete all of them (and to recompute them during the
backward phase).

In the case of general graphs that are not structured as a
sequence of elementary operations, another approach has
been proposed in Checkmate (Jain et al., 2020). It consists
in describing the operations corresponding to both forward
and backward phases as a Directed Acyclic Graph (DAG)
and to find the optimal solution through solving an Integer
Linear Program (ILP). The number of integer variables is
proportional to V ×E, where V is the number of operations
and E is the number of arcs of the DAG. Hence, a major
shortcoming of this approach is the computational time in-

2 4 6 8 10
nlayers

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut

Checkmate
Rockmate
Rotor

2 4 6 8 10
nlayers

6

11

16

21

26

S
ol

ve
 ti

m
e

(h
ou

r)

Checkmate
Rockmate
Rotor

Figure 2. Efficiency comparison between Rockmate, Rotor and
Checkmate for GPT2 networks with nlayers transformer blocks.
Rockmate finds an optimized re-materialization solution as quickly
as Rotor while keeping a similar performance as Checkmate in
terms of resulting throughput. Throughput is defined as the number
of samples processed per time unit (ms).

duced by solving the ILP. Typically, even using commercial
solvers such as CPLEX or Gurobi, it is not possible (in one
day of computation) to consider GPT2 models with more
than 10 transformer blocks (see Figure 2), while classical
instances include several dozens.

In the present paper we propose Rockmate, a new re-
materialization strategy, in which models are seen as a
sequence of blocks (in the sense of Rotor), but where several
optimal strategies are pre-computed for each block (using a
Checkmate-like approach). A simple example of the result-
ing execution is shown on the right of Figure 1, where in
each block, a different set of activations is saved, resulting
in different backward execution times. In reality, for a GPT
model, Rockmate divides each block into 9 or 6 operations
for the first or second half of the transformer block respec-
tively, and the execution can also contain re-executions of
some blocks.

As our experimental results demonstrate, for a large variety
of networks Rockmate can compute near-optimal solu-
tions (close to Checkmate quality in terms of through-
put) in a reasonable time (close to Rotor runtime, faster
than Checkmate), by combining the advantages of both
approaches. A preview shown on Figure 2 presents the
throughput and solving time of all three solutions for GPT
neural networks with varying number of transformer blocks.

Another contribution is that we have built a framework,
which can be easily applied on any PyTorch nn.Module.
It contains complete implementation of our algorithm (Al-
gorithm 1), including main phases with newly proposed
computation-data graph builder, integer linear program-
ming, and dynamic programming techniques described
in section 3. Rockmate takes the model as input and au-
tomatically builds the data-flow graph with measurements

2

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

(computation time, output size and peak memory of each
operation, etc.). The optimal schedule is then determined
based on the graph and used to build a new nn.Module
which runs forward and backward phases within a given
memory constraint. In Section 4, we demonstrate that the
resulting new GPT2 models can achieve the same result as
the original ones with 25% computational overhead, while
using only 25% of the original memory needs to store the
activations.

Note that all the benefits of Rockmate do not induce any
accuracy loss for the model: given the same batch of train-
ing data, the Rockmate model will compute exactly the same
gradient values for every trainable parameter compared to
the original model. Hence, both models achieve the same
accuracy after the same number of training epochs.

2. Related works
During training, memory requirements are very demanding.
On the one hand, they come from the storage of the net-
work weights, and the associated intermediate data, such as
gradients and optimizer states. On the other hand, memory
requirements also come from the storage of the activations
associated with gradient descent, since (almost) all the re-
sults computed during the forward phase must be kept in
memory until they are used by the gradient computation
during the backward phase.

There are different strategies for saving memory when train-
ing Deep Neural Networks (DNNs), adapted to these dif-
ferent memory requirements. We can differentiate between
strategies that rely on the use of parallelism (data paral-
lelism, model parallelism), those that use the possibility
of transferring data to another device than the memory of
the accelerator (denoted as offloading or paging in the lit-
erature), and those that rely on the redundant computation
of activations deleted from the memory (denoted as check-
pointing or re-materialization in the literature). Of course,
these strategies can naturally be combined since they rely on
different resource consumption (use of several computing
resources for parallelism, external storage for offloading or
re-computations for re-materialization). This combination is
more or less difficult because some resources are consumed
by several approaches (computations on the GPU or the
TPU of course, but also communications on the PCI-e bus
or on the NVLink). In the rest of this section, we will focus
mainly on re-materialization strategies after having briefly
discussed the other approaches.

Among the most popular parallel strategies for DNN training
are data parallelism and model parallelism. Data parallelism
is based on the idea of performing forward and backward
phases in parallel on different data and on several GPUs.
The gradients computed on the different GPUs must then be

reduced, which requires collective communication of all the
weights. This approach used in isolation was very popular
in more or less synchronous (Zinkevich et al., 2010; Das
et al., 2016) or asynchronous (Zhang et al., 2013) variants
for convolutional networks in which the network weights
were small compared to the activations, but is nowadays
mainly used in combination with model parallelism. Model
parallelism consists in distributing layers and weights over
different resources and communicating forward activations
and their gradients between GPUs. This approach has been
popularized in frameworks like GPipe (Huang et al., 2019),
Pipedream (Narayanan et al., 2019) or Varuna (Athlur et al.,
2022) and its complexity has been studied in (Beaumont
et al., 2021b). It is often combined with systematic re-
materialization such as in GPipe (Huang et al., 2019).

Offloading (sometimes denoted as paging) can be applied
to both network weights and activations. The idea is simply
to remove the memory load from the GPU and store data in
CPU memory, that is typically much larger than GPU mem-
ory. This idea is relevant both for activations, computed dur-
ing the forward phase but which will not be used for a long
time by the backward phase (Rhu et al., 2016; Le et al., 2018;
Beaumont et al., 2020a) and for network weights (Beaumont
et al., 2022), which are also used only once during the for-
ward phase and once during the backward. Offloading can
also be combined with re-materialization (Beaumont et al.,
2021a), which is particularly relevant for decentralized train-
ing on tiny devices (Patil et al., 2022).

Historically, re-materialization strategies have their origins
in the checkpointing techniques developed in the context of
automatic differentiation (AD). Because of this application
context, these works have focused mainly on the case of
homogeneous chains, i.e. models consisting of a sequence
of identical blocks. In this context, it is possible to rely
on dynamic programming to find optimal solutions and
even closed form formulas can be derived to automatically
find the activations to keep and the ones to delete. From
the complexity point of view, it has been shown that the
problem is NP-complete as soon as one considers graphs
more general than chains in (Naumann, 2008). In the re-
materialization literature dedicated to DNN training, we can
distinguish approaches that focus on the case of sequential
models and those that consider more general graphs.

In the case of sequences, in (Chen et al., 2016), the sequence
on length N is divided into

√
N equal-length segments of

length
√
N , and only the input of each segment is material-

ized during the forward phase. This strategy is implemented
in PyTorch in torch.utils.checkpoint.

Rotor (Beaumont et al., 2019b;a) provides optimal solu-
tions in the case of fully heterogeneous sequential mod-
els. Rotor is based on the evaluation of the parameters of
each block the sequence (computational and memory costs),

3

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

on the resolution of the re-materialization problem using
dynamic programming and on the implementation of the
resulting computation sequence. Rotor is fast, but it is lim-
ited to sequential models. It is one of the two ingredients
(with Checkmate (Jain et al., 2020) described below) of the
present contribution.

Other contributions target more general graphs. For ex-
ample, the approach described in (Kumar et al., 2019) is
based on the computation of a tree-width decomposition
of the graph to determine the minimum computational cost
associated with the minimum possible memory footprint.
In (Kusumoto et al., 2019), an enumeration of subgraphs
is required to design efficient re-materialization strategies.
In general, finding the evaluation order of the graph that
minimizes the memory consumption is a hard problem, in-
dependently of any re-materialization strategy, as demon-
strated in (Steiner et al., 2022). The case of (non-optimal)
dynamic re-materialization, especially in the case where
the input size in unknown in advance, has been addressed
in (Kirisame et al., 2020; Liao et al., 2022). An important
contribution in the case of general graphs has been provided
in Checkmate (Jain et al., 2020), which proposes an Integer
Linear Program (ILP) to find the optimal re-materialization
sequence for general graphs, which is consistent with the
NP-Completeness results of (Naumann, 2008). An impor-
tant limitation of Checkmate (see Section 3) is the long
solving time of the ILP solver, which limits its use to rela-
tively small graphs. This paper addresses this limitation of
Checkmate by proposing to combine it with Rotor.

3. Rockmate
3.1. Sketch of the Algorithm

As explained in Section 1, the main idea of this paper is
to combine the ideas of (i) Checkmate, which finds good
solutions in the case of general graphs but is slow, and (ii)
Rotor, which finds the optimal solution only in the case of
sequential networks, but is fast.

The GPT neural networks used as motivational example
above is not completely sequential, but it can be decomposed
in a sequence of blocks, where each block contains several
operations. It is a typical example where, in order to use
Rotor, it is necessary to aggregate all the operations of the
same block together. Rotor therefore decides at the scale
of the whole block whether to keep all the data or to delete
them all during the forward phase. Checkmate, on the other
hand, sees the whole graph describing the model and can
therefore decide, independently and at the level of each
operation, whether to keep its data or not.

The solution we propose is called Rockmate; a pseudo-
code is provided in Algorithm 1 and explained below. The
main idea is to apply Checkmate inside each block and

Algorithm 1 Rockmate
1: Input: module, input, MGPU

2: [blocks] = rk-GB(module, input)
3: budgets = [(Mpeak,Msave)] (quantized)
4: sols = []
5: for all b ∈ [blocks] do
6: for all (Mpeak,Msave) ∈ budgets do
7: sols[b].add(rk-Checkmate(b, Mpeak, Msave))
8: end for
9: end for

10: Sequence = rk-Rotor(sols, MGPU)
11: rkMod.forward = rk-Exec(Sequence.fwd)
12: rkMod.backward = rk-Exec(Sequence.bwd)
13: Output: rkMod

to apply Rotor on the complete sequence of blocks. For
this purpose, it is necessary to obtain the complete graph
of all operations of the neural network, and to adapt both
Checkmate and Rotor to this new setting.

The first phase is called rk-GB (for GraphBuilder). It occurs
on line 2 of Algorithm 1 and is described in more details in
Section 3.2. rk-GB takes as input a model expressed as a
PyTorch nn.Module and automatically (i) extracts the Di-
rected Acyclic Graph (DAG) of all the operations performed
in the model, (ii) divides it into a sequence of blocks and (iii)
detects all the blocks which have identical structures. For
each unique block, the processing times of all operations
and the sizes of all intermediate data that are produced by
these operations are measured. These measurement (graphs
of each block, labeled with the execution times and memory
footprints of the produced data) contain all the necessary
information to find the re-materialization sequence.

In the second phase of Rockmate (line 3-8 of Algorithm 1),
we consider each single block independently. As we saw
in the example in Figure 2, Rotor fails to compute very
good re-materialization strategies because it can only choose
between two options: keep all or delete all activations in the
block. In Rockmate, we use a refined version of Checkmate
to generate a larger set of re-materialization strategies. This
refined version is denoted as rk-Checkmate and described
in Section 3.3.

A re-materialization strategy is characterized by (i) the mem-
ory peak during the execution of the block (either during
forward or backward) and (ii) the total size of the internal
activations of the block that are kept between the forward
phase and the backward phase. The first one ensures that
this strategy can be executed within a given memory limit.
The second one allows the dynamic program to know how
much memory will be left for the next blocks. The number
of different options to consider is a parameter of Rockmate.
We analyze its effect on performance in Section 4 and show

4

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

that quantizing each parameter into 20 different thresholds
is enough to get good solutions in practice. This leads to at
most 400 different strategies in total for each block. Since
rk-Checkmate is applied at the level of a block (and not
on the whole network), the corresponding graph is small
enough that the runtime remains small, even for generating
the whole family of strategies. Moreover, as rk-GB automat-
ically detects identical blocks, rk-Checkmate is performed
only on unique types of blocks (for instance, GPT2 models
only involve five unique types of blocks). In practice, it
takes less than 2 minutes to solve rk-Checkmate 400 times
for a rk-block in GPT2, while it’s impossible to solve the en-
tire network with the ILP method because of its exponential
complexity.

The third phase of Rockmate (line 9 of Algorithm 1, de-
scribed in Section 3.4) is called rk-Rotor and computes
the global re-materialization strategy. rk-Rotor features an
adapted dynamic program of Rotor that, instead of hav-
ing two solutions per block, can exploit the different re-
materialization strategies computed during the second phase.
The output of rk-Rotor therefore consists in a schedule
which describes which block should be computed, in which
order, and with which re-materialization strategy. If nec-
essary, some blocks can be computed without keeping any
data at all, and thus be recomputed later (possibly several
times).

Finally, the fourth phase (line 10 of Algorithm 1, described
in Section 3.5) is called rk-Exec. It transforms this schedule
into a new PyTorch nn.Module, which performs all the
corresponding elementary operations in the correct order.
The resulting module computes exactly the same gradients
as the original version while respecting a global constraint
on the memory usage of activations, at the cost of duplicat-
ing some computations.

3.2. Phase 1: rk-GB, Graph Builder

A typical training iteration of neural networks can be sepa-
rated as forward and backward phases. Both phases can be
represented by a data-flow graph. The computational graph
is explicit in TensorFlow, for which Checkmate was origi-
nally implemented. In PyTorch, however, graphs need to be
obtained by certain tools. We developed a tool named rk-
GraphBuilder (rk-GB) which takes as input a nn.Module
and an example input for it, and builds the data-flow graph
of the module. Having an example input is necessary to
inspect the time and memory cost of all the operations used
during forward and backward phases.

Obtaining the graph rk-GB does not require any mod-
ification or annotation of the module source code, instead
it uses torch.jit to trace the forward execution of the
module on the example input. This function executes the

forward code and provides the list of all primitive opera-
tions used. Based on this list, we build a forward graph
where each node represents one assignment. However, mul-
tiple variables may share the same memory space due to
view and in-place operations in PyTorch. Such vari-
ables would thus be kept or removed together when per-
forming re-materialization. Therefore, rk-GB merges all the
nodes sharing the same memory space to obtain a simplified
forward graph. For a 12-layer GPT model, the number of
nodes decreases from 934 to 185 after simplification. The
simplified forward graph is further cut around 1-separators:
a node is a 1-separator if by removing it, we obtain a discon-
nected graph (1 node to separate the graph). This produces a
sequence of blocks, as required by rk-Rotor. For a 12-layer
GPT model, this results in 26 blocks, where each Trans-
former layer is separated to an Multi-Head Attention block
and an MLP block.

Identical blocks Afterwards, rk-GB goes through all the
blocks to recognize identical blocks, i.e. blocks whose com-
putational graphs are the same. Since rk-GB is deterministic,
two blocks representing the same function share the same
graph structure, including the same topological ordering of
nodes. Following this ordering, rk-GB checks equivalency
node by node. A group of identical blocks can be measured
and solved together to improve the solving time. Identi-
fying identical blocks is an optimization of the Rockmate
solving time but does not change its solution quality. So
even if some blocks are wrongly declared as different by
Rockmate, this would not change the memory gains or the
computational overhead. For a 12-layer GPT model, this
procedure identifies only 5 identical blocks from the 26
rk-blocks produced after separation.

CD graphs One underlying assumption in the original
Checkmate graph model is that each operation has exactly
one output data. However, when several forward operations
share the same input, the corresponding backward opera-
tions contribute to the same data (by summing all the contri-
butions). This means that removing the result of one of these
backward operations has an impact on the other operations,
which can not be taken into account in the graph model of
Checkmate. Additionally, some elementary operations in
PyTorch actually create intermediate data (they are called
saved tensors), which can be deleted independently of
the output of the operation.

For these reasons, we introduce a new graph called
CD graphs, which contain two categories of nodes: Com-
putation and Data. A C node represents an operation, la-
beled with the time it takes and the temporary memory
overhead during execution. A D node represents a data
tensor stored in the memory. A D node can be forgotten to
free memory, and restored by recomputing the correspond-

5

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

ing C nodes. An edge between a C node and a D node
represents the execution dependency between the operation
and its output data tensors. The benefits of considering such
a CD graph is to enable finer rematerializations, such as
releasing memory from a subset of outputs of one operation.
The final product of rk-GB is a sequence of CD graphs.
More details about rk-GB can be found in Section A of the
Appendix.

3.3. Phase 2: rk-Checkmate, Options at Block Level

Given a CD graph, it is a non-trivial problem to find the
optimal execution schedule of all the operations within a
given memory limitation. To solve this problem, we use rk-
Checkmate, an Integer Linear Programming (ILP) adapted
from Checkmate (Jain et al., 2020). Just like Checkmate,
rk-Checkmate requires a topological order of all the opera-
tions, which is provided by rk-GraphBuilder. rk-Checkmate
provides several improvements over the original Checkmate
formulation.

First, additional variables are introduced to represent the
execution of each C node separately from the memory al-
location of each D node. Constraints are also adapted to
ensure that the execution order follows the dependencies
between computational nodes and data nodes. In the case
where one operation generates multiple outputs, there are
multiple D nodes depending on the same C node. Delet-
ing these outputs is considered separately in rk-Checkmate,
whereas they are grouped together in the Checkmate for-
mulation. For example, this improvement is useful for an
operation which produces two large outputs, each required
by a different operation: with rk-Checkmate, it is possible
to delete the second output before performing the operation
that requires the first output, which reduces the memory
usage.

Second, rk-Checkmate takes into account the temporary
memory usage of all operations: because of temporary data
allocated and deleted during the operation, the peak memory
might be higher than the size of input and output. Check-
mate ignores this possibility, and thus may produce solutions
whose actual peak memory is higher than the budget.

Finally, since rk-Checkmate is aware of the separation be-
tween forward and backward phases, it is possible to include
a constraint on the memory usage when going from the for-
ward to the backward phase. This constraint expresses the
limit Msave on the size of the activations which are kept in
memory between both phases of a block (and thus, during
the execution of the following blocks). This memory occu-
pancy is necessary to control the overall memory cost of all
the blocks. More details about rk-Checkmate can be found
in Section B of the Appendix.

For each block, rk-Checkmate will be applied with dif-

ferent values for the memory budgets Mpeak and Msave,
as explained in Section 3.1. We first compute the mini-
mum and maximum possible values for Mpeak, by analyz-
ing the memory usage of the schedule which deletes ac-
tivations as soon as possible, and of the schedule which
performs no recomputation, respectively. The number
of budgets is a hyperparameter of Rockmate whose ef-
fect is analyzed in Section 4.2. The values of Mpeak are
evenly spaced within [min peak;max peak]. Given one
value for Mpeak, the values of Msave are evenly spaced
within [output size;Mpeak]. This ensures that all pairs
(Mpeak,Msave) given to rk-Checkmate are relevant. Note
that different budgets may lead to the same optimal solution.
In practice, when we apply the number of Mpeak and Msave

as (20, 20) for GPT2, there are less than 30 unique solutions
per rk-block.

Note that identical blocks are solved only once with the
same budgets, so that all identical blocks have the same
set of block-level execution options provided to rk-Rotor.
However, rk-Rotor sees all of these blocks as different parts
of the sequence, which just happen to have the same set of
options In the resulting sequence, each of these identical
blocks may be executed with a different option in the output
of rk-Rotor.

3.4. Phase 3: rk-Rotor, Global Sequence Generation.

Principle of Rotor The main idea of the dynamic pro-
gramming algorithm of Rotor is as follows. An optimal
solution for the forward-backward computation from block
s to t with memory m can be of two different types: ei-
ther the first block s is computed only once, or more than
once. In the first case, the computation starts with comput-
ing block s and keeping all intermediate data, and continues
with an optimal solution for blocks s + 1 to t (with less
memory available). In the second case, the computation
starts with computing blocks s to s + i for some i, stores
the result of s + i, continues with an optimal solution for
blocks s+ i to t, and finally recomputes from s to s+ i with
an optimal solution for this part. Note that no intermediate
data is saved for blocks s to s + i. An illustration of each
case is represented on Figure 3.

In each case, the subproblems that need to be solved have a
smaller value of t− s. Assuming that the solutions to these
smaller problems are known, the algorithm can make the
choice which leads to the smallest overhead among all valid
choices, ie those for which the memory usage is not higher
than the budget m. We can thus iteratively compute optimal
solutions until we find the solution for the complete model.

rk-Rotor In the Rockmate context, we have several differ-
ent options for the first case: we can choose to keep more
or less intermediate data for the first block s. Each of these

6

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Rotor case 1:

Fs Fs+1 Fs+2 · · · Ft−1 Ft

Bs Bs+1 Bs+2 · · · Bt−1 Bt

subproblem from s+ 1 to t

Rotor case 2:

Fs F··· Fi−1 Fi F··· Ft

Bi B··· Bt

subproblem from i to t
Fs F··· Fi−1

Bs B··· Bi−1

subproblem from s to i− 1

rk-Rotor improved case 1:

FsFs Fs+1 Fs+2 · · · Ft−1 Ft

BsBs Bs+1 Bs+2 · · · Bt−1 Bt

subproblem from s+ 1 to t

Figure 3. Diagram representing the different cases for the dynamic
program. Green arrows represent materialized activations. Green,
yellow and red blocks represent internal activations to the blocks,
which are respectively completely, partially, or not saved. Colored
backgrounds on the subproblems represent how much memory is
occupied by these activations.

options leads to a different memory usage for storing the
intermediate data and for computing the backward opera-
tion. There is thus a larger set of choices to choose from,
but the main idea is still there: assuming that solutions to all
smaller problems are known, we can select the option that
yields the lowest overhead among all options which respect
the memory budget. This improved case is represented at
the bottom of Figure 3.

Complexity analysis With a model that contains L blocks,
and a memory of size M , the Rotor algorithm has a com-
plexity in O(L3M): for each value of s, t and m, there are
O(L) choices to consider. In the Rockmate case, with B
budget options, the dynamic programming algorithm consid-
ers O(L+B) choices at each step, and thus has a complexity
in O(L2M(L + B)). More details about the rk-Rotor algo-
rithm can be found in Section C of the Appendix.

Sub-optimality of the solution Although both rk-
Checkmate and rk-Rotor obtain optimal solutions for the
given sub-tasks, the final Rockmate solution is not always
optimal on the overall network. Two reasons can lead to
sub-optimality in Rockmate: (i) since the number of mem-
ory budgets is finite, only a limited number of execution
schedules are produced by rk-Checkmate. (ii) in rk-Rotor,

intermediate data is only used to improve the execution time
of the backward phase. However, if the forward phase of
a block is executed several times, it might be beneficial to
save some intermediate tensor on the first pass, and use it
to compute the output faster on subsequent passes. This
possibility is not considered in rk-Rotor: forward passes in
case 2 do not save intermediate data.

3.5. Phase 4: rk-Exec

Rockmate creates a PyTorch nn.Module that performs a
forward-backward computation based on the optimal sched-
ule solved by the algorithm described above. The execution
of the forward phase is based on the Python code obtained
via jit.trace. For backward, the PyTorch autograd en-
gine stores the “computational graph” during the forward
phase, which allows backward computation from the output
back to the input. For the sake of clarity, we call this an
autograd graph. In Rockmate, we detach the operations
during the forward phase, so that the full network is rep-
resented as many small autograd graphs. This allows the
backward operations to be performed separately, thus dele-
tions of tensors can be easily inserted between two backward
operations. Specifically, rk-Exec creates one autograd graph
for each C node defined in Section 3.2. Every autograd
graph contains all the operation which create tensors sharing
the same memory space, such as torch.Tensor.view
operations. During the backward phase, the gradient of each
tensor is automatically supplied to the previous backward
function. Furthermore, the recomputation of the operations
have to be performed in different ways, so that the existing
autograd graph will not be rebuilt. Also, when one operation
will be recomputed before the backward, the execution will
be with torch.no grad mode so that saved tensors will
not be created. More details about the rk-Rotor algorithm
can be found in Section D of the Appendix.

4. Experiments
4.1. Experimental Settings

All experiments presented in this paper are performed us-
ing Python 3.9.12 and PyTorch 1.13.0. Rockmate, Rotor,
and Checkmate compute their solutions on a 40-core In-
tel Xeon Gold 6148, while training is performed on an
Nvidia Tesla V100 GPU with 15.75 GB of memory. For
comparison with Rotor on ResNet and GPT2, both net-
works are implemented as a nn.Sequential module of
PyTorch. For RegNet, we do not provide a comparison
with Rotor due to the lack of a Rotor-compatible imple-
mentation. All experiments use the version of Rockmate
available at: https://github.com/topal-team/
rockmate/releases/tag/v1.0.

Rockmate is used to reduce peak memory usage due to stor-

7

https://github.com/topal-team/rockmate/releases/tag/v1.0
https://github.com/topal-team/rockmate/releases/tag/v1.0

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

1 2 3
Budget (GiB)

400

450

500

550

M
ak

es
pa

n
(m

s)

GPT2-medium

(3, 3)
(5, 5)
(10, 10)
(20, 20)
(30, 30)

2 4 6
Budget (GiB)

550

575

600

625

650

675
ResNet-101

(3, 3)
(5, 5)
(10, 10)
(20, 20)
(30, 30)

Figure 4. Experiments on GPT2-medium and ResNet-101. Num-
ber of (Mpeak,Msave) budgets are chosen from (3,3) to (30,30).
Makespan is the time of one training iteration (including forward
and backward).

age of activations. We measure and control the memory
footprint of activations during the experiments. The mem-
ory used by the model parameters is excluded from our peak
memory budget, as it remains constant during training. In
practice, we adjust the maximum peak memory for activa-
tions by subtracting the size of the model from the total
memory.

4.2. Precision

As discussed in Section 3.3, the same number of budget
options are used to solve each block in rk-Checkmate. In-
creasing the number of options increases the time to run
Rockmate, since it is directly related to the number of times
rk-Checkmate is called for each block. However, it pro-
vides finer re-materialization strategies for rk-Rotor. Fig-
ure 4 shows how the number of budget options affects the
quality of the Rockmate solution. Budget options range
from (3,3) to (30,30) for GPT2-medium and ResNet-101.
Overall, increasing the number of budget options improves
Rockmate performance up to a point. Specifically, the im-
provement in the Rockmate solution is stronger on GPT2-
medium than on ResNet when more budget options are
allowed. This is because a GPT2 block contains more com-
plicated structures (more nodes in block), while a ResNet
block is too small to apply sophisticated re-materialization
strategies. In the following experiments, we use the number
of (Mpeak,Msave) = (20, 20) for rk-Checkmate.

4.3. Efficiency

In Figure 5, we compare the solving time and perfor-
mance of Rockmate, Checkmate (Jain et al., 2020), and
Rotor (Beaumont et al., 2020b) on GPT networks with 2 to
10 Transformer blocks. For each network, we choose the
smallest memory budget for which we obtain feasible solu-
tions. Checkmate is solved until convergence. Rockmate

2 4 6 8 10
nlayers

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut

Checkmate
Rockmate
Rotor

2 4 6 8 10
nlayers

0.01

0.1

1

10

100

1000

S
ol

ve
 ti

m
e

(m
in

)

Checkmate
Rockmate
Rotor

Figure 5. Experiments on solving GPT2 with 2-10 Transformer
blocks with given budgets. Simulation solving time is in log scale.
Throughput is defined as the number of samples processed per
time unit (ms).

achieves very similar throughput to Checkmate, while Rotor
can be significantly worse if the network is not deep enough.
Since Rotor has only the option to recompute a whole block,
it is more effective when the network is deep.

The time to solution of Rockmate remains nearly the same
as the network gets deeper. The processing time of Rock-
mate consists of three parts: 1. inspection time during graph
building; 2. rk-Checkmate processing time; 3. rk-Rotor
processing time. As described in Section 3.2, rk-GB au-
tomatically detects identical blocks. Only one inspection
is performed for a class of identical blocks, and they are
solved by the same rk-Checkmate models. Therefore, the
inspection time and the rk-Checkmate time remain the same
when the number of identical transformer blocks increases.
The rk-Rotor solving time is similar to Rotor’s, which is
much faster than the total Rockmate solving time.

The complexity of Checkmate’s ILP model grows expo-
nentially with the size of the network, making it infeasible
on modern neural networks with thousands of nodes. In
Figure 5 we compare the solving time and performance of
Checkmate and Rockmate on GPT2 with 2 to 10 Trans-
former blocks. The memory budgets are chosen as the
minimum achievable budgets for both models. The solving
time of Checkmate is exponential in the number of blocks,
exceeding 30 hours on the 10-blocks GPT2. On the other
hand, the solution time of Rockmate remains almost con-
stant because the same rk-Checkmate models are applied
to all identical Transformer blocks. Despite the significant
difference in solution time, Rockmate achieves similar or
better overhead than Checkmate within the same budget.

4.4. Performance

We compare Rockmate with Rotor on ResNet and GPT2
models over a range of memory budgets. Figure 6 shows
the computational overhead in terms of peak memory usage

8

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

1 2 3 4 5
Peak mem (GiB)

1.00

1.05

1.10

1.15

1.20

1.25

O
ve

rh
ea

d

ResNet-50

PyTorch
Rotor
Rockmate

1 2 3 4 5 6 7
Peak mem (GiB)

1.0

1.1

1.2

ResNet-101

PyTorch
Rotor
Rockmate

0 1 2 3 4 5 6 7 8 9 10
Peak mem (GiB)

1.0

1.2

1.4

O
ve

rh
ea

d

GPT2-medium

PyTorch
Rotor
Rockmate

0 1 2 3 4 5 6
Peak mem (GiB)

1.0

1.2

1.4

1.6
GPT2-large

PyTorch
Rotor
Rockmate

Figure 6. Computational overhead versus peak memory usage on
different networks. Within the same memory usage, Rockmate is
faster than Rotor in most cases. On GPT-like models, Rockmate
significantly outperforms Rotor.

during the forward-backward computations. For the same
memory peak, Rockmate has a lower overhead than Rotor
in most cases. For ResNet models, Rockmate does not show
a significant improvement over Rotor, especially when the
neural networks are deep enough, in which cases Rotor has
more re-materialization options. On the other hand, Rock-
mate shows much better performance than Rotor on GPT2
networks. For GPT2-large it is noteworthy that Rockmate
saves 50% memory by introducing only 5% overhead, while
Rotor has more than 10% overhead for the same budget. In
addition, Rockmate allows training with a smaller memory
budget. To train GPT2-large, Rotor requires at least 720 MB
memory budget, while Rockmate only requires 440 MB.

The reason why Rockmate significantly outperforms Rotor
is that there are ”cheap” operations inside a Transformer
block, such as dropout and gelu. The tensors gener-
ated by these operations consume a lot of memory, but
there is almost no cost to recompute these operations. Be-
cause Rotor rematerializes one block at a time, it cannot
take advantage of the ”cheap” operations to optimize per-
formance. Rockmate works particularly well on models
with a sequential-like structure, where each part contains a
complicated structure.

While Rotor can only handle nn.Sequential-type mod-
els as input, Rockmate can be applied to more general types
of neural networks. In Figure 7 we show the results of

1 2 3 4 5 6
Peak mem (GiB)

460

470

480

490

500

510

M
ak

es
pa

n
(m

s)

Regnet_y_1_6gf

PyTorch
rockmate

2 3 4 5 6 7 8
Peak mem (GiB)

825

850

875

900

925

Regnet_x_3_2gf

PyTorch
rockmate

Figure 7. RegNet imported from torchvision is tested by
Rockmate. Makespan is the time of one training iteration (in-
cluding forward and backward).

using Rockmate directly on the RegNet model imported
directly from torchvision, whereas using it in Rotor
would require to rewrite the code to highlight the sequential
part. Although performance may vary depending on the
structure of the neural networks, Rockmate can be used to
save memory on general PyTorch models.

5. Conclusion and Perspectives
In this paper, we propose Rockmate, a fully automatic
tool that takes as input a PyTorch model in the form of
a nn.Module and a memory limit for activations and auto-
matically generates another nn.Module, perfectly equiv-
alent from the numerical point of view, but that fulfills the
memory limit for activations at the cost of a small compu-
tational overhead. Through experiments on various mod-
els, we show that the computation time of the resulting
nn.Module is negligible in practice and that the compu-
tational overhead is acceptable, even for drastic reductions
in memory footprint. Rockmate is therefore a tool that can
transparently allow increasing model size, data resolution
and batch size without having to upgrade GPUs. This work
opens several new scientific questions. First, Rockmate is
very efficient for graphs that can be written as a sequence
of blocks, which corresponds to numerous models in prac-
tice but not to all of them, which raises the question of its
extension to any type of graph. Then, the combination of
Rockmate with data parallelism is trivial, but the question of
finding a partition of the model adapted to model parallelism
that balances well the computational load and the memory
footprint on the different nodes is also an open problem.

Acknowledgements This work has been partially funded
by the Inria DFKI ENGAGE Project: nExt geNeration com-
putinG environments for Artificial intelliGEnce.

9

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

References
Athlur, S., Saran, N., Sivathanu, M., Ramjee, R., and Kwa-

tra, N. Varuna: Scalable, low-cost training of massive
deep learning models. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys
’22, pp. 472–487, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450391627.
doi: 10.1145/3492321.3519584. URL https://doi.
org/10.1145/3492321.3519584.

Beaumont, O., Eyraud-Dubois, L., Hermann, J., Joly, A.,
and Shilova, A. Rotor, 2019a. URL https://gitlab.
inria.fr/hiepacs/rotor.

Beaumont, O., Eyraud-Dubois, L., Hermann, J., Joly, A.,
and Shilova, A. Optimal checkpointing for heterogeneous
chains: how to train deep neural networks with limited
memory, 2019b. URL https://arxiv.org/abs/
1911.13214.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Optimal
gpu-cpu offloading strategies for deep neural network
training. In European Conference on Parallel Processing,
pp. 151–166. Springer, 2020a.

Beaumont, O., Herrmann, J., Pallez, G., and Shilova, A.
Optimal memory-aware backpropagation of deep join
networks. Philosophical Transactions of the Royal Soci-
ety A, 378(2166):20190049, 2020b.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Efficient
combination of rematerialization and offloading for train-
ing dnns. Advances in Neural Information Processing
Systems, 34:23844–23857, 2021a.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A.
Pipelined model parallelism: Complexity results and
memory considerations. In European Conference on
Parallel Processing, pp. 183–198. Springer, 2021b.

Beaumont, O., Eyraud-Dubois, L., Shilova, A., and Zhao,
X. Weight Offloading Strategies for Training Large DNN
Models. working paper or preprint, February 2022. URL
https://hal.inria.fr/hal-03580767.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Das, D., Avancha, S., Mudigere, D., Vaidynathan, K., Srid-
haran, S., Kalamkar, D., Kaul, B., and Dubey, P. Dis-
tributed deep learning using synchronous stochastic gra-
dient descent. arXiv preprint arXiv:1602.06709, 2016.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline

parallelism. In Advances in Neural Information Process-
ing Systems, pp. 103–112, 2019.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Gonzalez, J., Keutzer, K., and Stoica, I. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. Proceedings of Machine Learning and Systems,
2:497–511, 2020.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J., He,
M., Roesch, J., Chen, T., and Tatlock, Z. Dynamic ten-
sor rematerialization. arXiv preprint arXiv:2006.09616,
2020.

Kumar, R., Purohit, M., Svitkina, Z., Vee, E., and Wang, J.
Efficient rematerialization for deep networks. Advances
in Neural Information Processing Systems, 32, 2019.

Kusumoto, M., Inoue, T., Watanabe, G., Akiba, T., and
Koyama, M. A graph theoretic framework of recompu-
tation algorithms for memory-efficient backpropagation.
Advances in Neural Information Processing Systems, 32,
2019.

Le, T. D., Imai, H., Negishi, Y., and Kawachiya, K. Tflms:
Large model support in tensorflow by graph rewriting.
arXiv preprint arXiv:1807.02037, 2018.

Liao, J., Li, M., Sun, Q., Hao, J., Yu, F., Chen, S., Tao,
Y., Zhang, Z., Yang, H., Luan, Z., et al. Mimose: An
input-aware checkpointing planner for efficient training
on gpu. arXiv preprint arXiv:2209.02478, 2022.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. PipeDream: generalized pipeline parallelism
for DNN training. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, pp. 1–15, 2019.

Naumann, U. Call tree reversal is np-complete. In Advances
in automatic differentiation, pp. 13–22. Springer, 2008.

Patil, S. G., Jain, P., Dutta, P., Stoica, I., and Gonzalez, J.
Poet: Training neural networks on tiny devices with inte-
grated rematerialization and paging. In International Con-
ference on Machine Learning, pp. 17573–17583. PMLR,
2022.

Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and
Keckler, S. W. vdnn: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In
The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 18. IEEE Press, 2016.

Steiner, B., Elhoushi, M., Kahn, J., and Hegarty, J. Olla:
Optimizing the lifetime and location of arrays to reduce
the memory usage of neural networks. arXiv preprint
arXiv:2210.12924, 2022.

10

https://doi.org/10.1145/3492321.3519584
https://doi.org/10.1145/3492321.3519584
https://gitlab.inria.fr/hiepacs/rotor
https://gitlab.inria.fr/hiepacs/rotor
https://arxiv.org/abs/1911.13214
https://arxiv.org/abs/1911.13214
https://hal.inria.fr/hal-03580767

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Zhang, S., Zhang, C., You, Z., Zheng, R., and Xu, B. Asyn-
chronous stochastic gradient descent for dnn training.
In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 6660–6663. IEEE,
2013.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Paral-
lelized stochastic gradient descent. In Advances in neural
information processing systems, pp. 2595–2603, 2010.

11

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

A. rk-GraphBuilder
A.1. Outline

We have developed the Rockmate Graph Builder (rk-GB) as a tool for producing the graphs required for Rockmate. Although
it was developed for this specific purpose, it can also be used independently. Given a torch.nn.Module and a given input for
that module, our goal is to generate a graph showing all the operations that occur during the forward and backward of the
module on that given input. Having a specific input is important for both the resolution of if statements in the forward code
and the inspection of each operation. Indeed, since our goal is to identify recomputations, we have to know the time spent
and the memory footprint for each operation, that both depend on the input.

rk-GB relies on torch.jit.trace to trace the execution of the forward module on the input. This function runs the forward
code and returns the list of all performed operations. Based on this list, we build the forward graph and transform it through
several steps to generate what is needed by Rockmate. Note that currently rk-GB may fail due to limitations of torch.jit.trace,
for instance it does not work properly on the GPT model from HuggingFace. However, PyTorch 2.0 was recently announced
with a new way to capture graphs: TorchDynamo. According to its authors, TorchDynamo is expected to work with almost
all modules. We plan to try changing from jit.trace to TorchDynamo.

rk-GB consists of five steps. First, we build the forward graph based on jit.trace, also collecting some information about
each node. Then we simplify the graph. This part significantly reduces the number of nodes, which is a nice feature for the
ILP used in rk-Checkmate. This is more than just an optimization, it’s a requirement for correct re-materialization. Next, we
split the simplified forward graph into blocks using the 1-separator1 list. This produces a sequence of forward graphs, which
we refer to as blocks. Rockmate will process each block with rk-Checkmate, and then process the whole chain with rk-Rotor.
At this point, similar blocks are detected to avoid solving the same problem multiple times. Finally, for each unique forward
block, we build the forward + backward graph and monitor the time and memory usage of each node during this step.

A.2. The forward graph

First, we call torch.jit.trace module to get the forward code of any given torch.nn.Module. Specifically, we use the
code with constants attribute of the output object, which is a code string of the assignments made during the forward phase.
In Rockmate, a list of assignments is required, where each line consists of exactly one target and one operation.

Therefore,
a,b = torch.chunk(torch.relu(M),2)
becomes
fv 1 = torch.relu(M) ;
fv 2 = torch.chunk(fv 1,2) ;
a = fv 2[0] ; b = fv 2[1]

We also need to inline submodules code, so that
b = self.layer1(input) ;
output = self.layer2(b)
becomes
layer1 part :
fv1 = torch.linear(input, ...) ;
fv2 = torch.relu(fv1) ;
fv3 = torch.linear(fv2, ...) ;
layer2 part :
fv4 = torch.dropout(fv3,0.1)
output = torch.layer norm(fv4,...)

We can access the code of the submodules through the object returned by jit.trace module with :
<jit output>.<submodule name>.code
We assign a unique number to each target to avoid name collisions when building the submodule code.

1a node is a 1-separator if by removing it, we obtain a disconnected graph (1 node to separate the graph)

12

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Figure 8. Forward graph of a GPT2 with 2 transformer blocks.
All the figures are generated using rk-GB print graph function, which relies on Graphviz.

src = 'INPUT'

__12__2 = torch.Tensor.size(src, (- 1))

__17_fv = torch.embedding(self.wte.weight, src)__13__3 = torch.arange(0, __12__2, device=device, pin_memory=False)

__14_input = torch.unsqueeze(__13__3, 0)

__19_fv = torch.embedding(self.wpe.weight, __14_input)

__15_input0 = torch.add(__17_fv, __19_fv)

__21_input0 = torch.dropout(__15_input0, 0.1, True)

__30_x = torch.layer_norm(__21_input0, [768], self.h[0][0].layer1.weight, self.h[0][0].layer1.bias)

__113_fv = torch.add(__21_input0, __112_fv)

__39__0 = torch.Tensor.size(__30_x, 0) __41__2 = torch.Tensor.size(__30_x, 1) __43__4 = torch.Tensor.size(__30_x, (- 1))

__46_fv = torch.Tensor.view(__30_x, __45_fv)

__47_fv = [__39__0, __41__2, 2304] __45_fv = [(- 1), __43__4]

__44_x = torch.addmm(self.h[0][0].layer2.c_attn.bias, __46_fv, self.h[0][0].layer2.c_attn.weight)

__48_fv = torch.Tensor.view(__44_x, __47_fv)

__36__0 = torch.split(__48_fv, 768, 2)

__50_x = __36__0[0] __51_x0 = __36__0[1] __52_x1 = __36__0[2]

__53__1 = torch.Tensor.size(__50_x, 0)

__55__3 = torch.Tensor.size(__50_x, 1) __57__5 = torch.Tensor.size(__50_x, (- 1))

__59_x2 = torch.Tensor.view(__50_x, __60_fv)

__63__7 = torch.Tensor.size(__51_x0, 0) __65__9 = torch.Tensor.size(__51_x0, 1) __67__11 = torch.Tensor.size(__51_x0, (- 1))

__69_x3 = torch.Tensor.view(__51_x0, __70_fv)

__73__13 = torch.Tensor.size(__52_x1, 0) __75__15 = torch.Tensor.size(__52_x1, 1)

__77__17 = torch.Tensor.size(__52_x1, (- 1))

__79_x4 = torch.Tensor.view(__52_x1, __80_fv)

__60_fv = [__53__1, __55__3, 12, __58__6]

__58__6 = torch.floor_divide(__57__5, 12)

__61_q = torch.permute(__59_x2, [0, 2, 1, 3])

__83_scores = torch.matmul(__61_q, __84_fv)

__70_fv = [__63__7, __65__9, 12, __68__12]

__68__12 = torch.floor_divide(__67__11, 12)

__71_k = torch.permute(__69_x3, [0, 2, 1, 3])

__84_fv = torch.transpose(__71_k, (- 2), (- 1))

__80_fv = [__73__13, __75__15, 12, __78__18]

__78__18 = torch.floor_divide(__77__17, 12)

__81_v = torch.permute(__79_x4, [0, 2, 1, 3])

__88_x5 = torch.matmul(__87_scores, __81_v)

__86_fv = torch.softmax(__83_scores, (- 1))

__87_scores = torch.dropout(__86_fv, 0.1, True)

__91_fv = torch.permute(__88_x5, [0, 2, 1, 3])

__89_x6 = torch.Tensor.contiguous(__91_fv)

__92__20 = torch.Tensor.size(__89_x6, 0) __94__22 = torch.Tensor.size(__89_x6, 1)

__96__24 = torch.Tensor.size(__89_x6, (- 2)) __97__25 = torch.Tensor.size(__89_x6, (- 1))

__98_x7 = torch.Tensor.view(__89_x6, __99_fv)

__99_fv = [__92__20, __94__22, __100_fv]

__100_fv = torch.mul(__96__24, __97__25)

__103__0 = torch.Tensor.size(__98_x7, 0) __105__2 = torch.Tensor.size(__98_x7, 1) __107__4 = torch.Tensor.size(__98_x7, (- 1))

__110_fv = torch.Tensor.view(__98_x7, __109_fv)

__111_fv = [__103__0, __105__2, 768] __109_fv = [(- 1), __107__4]

__108_x0 = torch.addmm(self.h[0][0].layer2.c_proj.bias, __110_fv, self.h[0][0].layer2.c_proj.weight)

__112_fv = torch.Tensor.view(__108_x0, __111_fv)

__119_x = torch.layer_norm(__113_fv, [768], self.h[0][1].layer1.weight, self.h[0][1].layer1.bias)

__151_fv = torch.add(__113_fv, __150__0)

__127__0 = torch.Tensor.size(__119_x, 0) __129__2 = torch.Tensor.size(__119_x, 1) __131__4 = torch.Tensor.size(__119_x, (- 1))

__134_fv = torch.Tensor.view(__119_x, __133_fv)

__135_fv = [__127__0, __129__2, 3072] __133_fv = [(- 1), __131__4]

__132_x = torch.addmm(self.h[0][1].layer2.c_fc.bias, __134_fv, self.h[0][1].layer2.c_fc.weight)

__136_fv = torch.Tensor.view(__132_x, __135_fv)

__124_x = torch.nn.functional.gelu(__136_fv)

__140__0 = torch.Tensor.size(__124_x, 0) __142__2 = torch.Tensor.size(__124_x, 1) __144__4 = torch.Tensor.size(__124_x, (- 1))

__147_fv = torch.Tensor.view(__124_x, __146_fv)

__148_fv = [__140__0, __142__2, 768] __146_fv = [(- 1), __144__4]

__145_x0 = torch.addmm(self.h[0][1].layer2.c_proj.bias, __147_fv, self.h[0][1].layer2.c_proj.weight)

__149_fv = torch.Tensor.view(__145_x0, __148_fv)

__150__0 = torch.dropout(__149_fv, 0.1, True)

__161_x = torch.layer_norm(__151_fv, [768], self.h[1][0].layer1.weight, self.h[1][0].layer1.bias)

__244_fv = torch.add(__151_fv, __243_fv)

__170__0 = torch.Tensor.size(__161_x, 0) __172__2 = torch.Tensor.size(__161_x, 1) __174__4 = torch.Tensor.size(__161_x, (- 1))

__177_fv = torch.Tensor.view(__161_x, __176_fv)

__178_fv = [__170__0, __172__2, 2304] __176_fv = [(- 1), __174__4]

__175_x = torch.addmm(self.h[1][0].layer2.c_attn.bias, __177_fv, self.h[1][0].layer2.c_attn.weight)

__179_fv = torch.Tensor.view(__175_x, __178_fv)

__167__0 = torch.split(__179_fv, 768, 2)

__181_x = __167__0[0] __182_x0 = __167__0[1] __183_x1 = __167__0[2]

__184__1 = torch.Tensor.size(__181_x, 0)

__186__3 = torch.Tensor.size(__181_x, 1) __188__5 = torch.Tensor.size(__181_x, (- 1))

__190_x2 = torch.Tensor.view(__181_x, __191_fv)

__194__7 = torch.Tensor.size(__182_x0, 0) __196__9 = torch.Tensor.size(__182_x0, 1) __198__11 = torch.Tensor.size(__182_x0, (- 1))

__200_x3 = torch.Tensor.view(__182_x0, __201_fv)

__204__13 = torch.Tensor.size(__183_x1, 0) __206__15 = torch.Tensor.size(__183_x1, 1)

__208__17 = torch.Tensor.size(__183_x1, (- 1))

__210_x4 = torch.Tensor.view(__183_x1, __211_fv)

__191_fv = [__184__1, __186__3, 12, __189__6]

__189__6 = torch.floor_divide(__188__5, 12)

__192_q = torch.permute(__190_x2, [0, 2, 1, 3])

__214_scores = torch.matmul(__192_q, __215_fv)

__201_fv = [__194__7, __196__9, 12, __199__12]

__199__12 = torch.floor_divide(__198__11, 12)

__202_k = torch.permute(__200_x3, [0, 2, 1, 3])

__215_fv = torch.transpose(__202_k, (- 2), (- 1))

__211_fv = [__204__13, __206__15, 12, __209__18]

__209__18 = torch.floor_divide(__208__17, 12)

__212_v = torch.permute(__210_x4, [0, 2, 1, 3])

__219_x5 = torch.matmul(__218_scores, __212_v)

__217_fv = torch.softmax(__214_scores, (- 1))

__218_scores = torch.dropout(__217_fv, 0.1, True)

__222_fv = torch.permute(__219_x5, [0, 2, 1, 3])

__220_x6 = torch.Tensor.contiguous(__222_fv)

__223__20 = torch.Tensor.size(__220_x6, 0) __225__22 = torch.Tensor.size(__220_x6, 1)

__227__24 = torch.Tensor.size(__220_x6, (- 2)) __228__25 = torch.Tensor.size(__220_x6, (- 1))

__229_x7 = torch.Tensor.view(__220_x6, __230_fv)

__230_fv = [__223__20, __225__22, __231_fv]

__231_fv = torch.mul(__227__24, __228__25)

__234__0 = torch.Tensor.size(__229_x7, 0) __236__2 = torch.Tensor.size(__229_x7, 1) __238__4 = torch.Tensor.size(__229_x7, (- 1))

__241_fv = torch.Tensor.view(__229_x7, __240_fv)

__242_fv = [__234__0, __236__2, 768] __240_fv = [(- 1), __238__4]

__239_x0 = torch.addmm(self.h[1][0].layer2.c_proj.bias, __241_fv, self.h[1][0].layer2.c_proj.weight)

__243_fv = torch.Tensor.view(__239_x0, __242_fv)

__250_x = torch.layer_norm(__244_fv, [768], self.h[1][1].layer1.weight, self.h[1][1].layer1.bias)

__282_fv = torch.add(__244_fv, __281__0)

__258__0 = torch.Tensor.size(__250_x, 0) __260__2 = torch.Tensor.size(__250_x, 1) __262__4 = torch.Tensor.size(__250_x, (- 1))

__265_fv = torch.Tensor.view(__250_x, __264_fv)

__266_fv = [__258__0, __260__2, 3072] __264_fv = [(- 1), __262__4]

__263_x = torch.addmm(self.h[1][1].layer2.c_fc.bias, __265_fv, self.h[1][1].layer2.c_fc.weight)

__267_fv = torch.Tensor.view(__263_x, __266_fv)

__255_x = torch.nn.functional.gelu(__267_fv)

__271__0 = torch.Tensor.size(__255_x, 0) __273__2 = torch.Tensor.size(__255_x, 1) __275__4 = torch.Tensor.size(__255_x, (- 1))

__278_fv = torch.Tensor.view(__255_x, __277_fv)

__279_fv = [__271__0, __273__2, 768] __277_fv = [(- 1), __275__4]

__276_x0 = torch.addmm(self.h[1][1].layer2.c_proj.bias, __278_fv, self.h[1][1].layer2.c_proj.weight)

__280_fv = torch.Tensor.view(__276_x0, __279_fv)

__281__0 = torch.dropout(__280_fv, 0.1, True)

__285_input = torch.layer_norm(__282_fv, [768], self.ln_f.weight, self.ln_f.bias)

__287_fv = torch.nn.functional.linear(__285_input, self.wte.weight)

13

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

A.3. Simplification

In Rockmate, we want to perform both forward and backward operations on nodes, with the ability to delete and recompute
tensors. Both view and in-place operations share their data with their input, so that deleting a node without also deleting its
views is not allowed. All nodes related to the same data must be merged. After the simplification part, each node consists of
exactly one primary allocation, which creates a data item, and some secondary allocations associated with that data, that do
not allocate new memory.

First, we need to run each node to analyze it, since the name of the function might not be enough to determine whether the
operation creates a new data item or not. For example, the function torch.contiguous may create a new data item depending
on whether the input data is contiguously stored in memory or not. Another common example is torch.reshape, which is a
visualization function if and only if the input and the requested shape have compatible strides. A robust way to check if two
tensors refer to the same data is to compare their attribute data ptr. To do this, we must create each variable, determine its
type, and, if it is a tensor, check whether its data ptr is new or not.

Analysis of each node Note that we cannot analyze all of the code at once, as this would result in all intermediate
activations being stored in memory, which is inconsistent with Rockmate’s goal of using as little memory as possible. We
will analyze each node separately, without storing any tensor. We proceed as follows

• First, we randomly generate its inputs. Since we traverse the nodes in a topological order, the inputs have already
been analyzed. For the reasons mentioned earlier, the tensors have not been stored, but their data type and shape
have been recorded. Therefore, we can randomly generate the inputs based on this information. . For example, as
mentioned earlier, the behavior of torch.reshape depends on whether the input and the required shape have compatible
strides. Therefore, to generate the inputs correctly, we regenerate the data and perform all view operations on it before
analyzing the node.

• Then we run the code to analyze, which consists of an assignment, so that we get a value. If it is a torch.Size (or
something similar), we store it and mark it as a node of type size. Otherwise it consists of either a tensor or a list of
tensors. In both cases it has a data ptr. First we check if the value already exists in the local directory, in which case it
is an in-place operation. Consider the following example:
A = torch.linear(M,...) ;
A += M
It appears in the forward graph as
A = torch.linear(M,...) ;
fv1 = torch.Tensor.add (A,M)
When analyzing the node of fv1, we must recognize that it is the result of an in-place operation on A. In this case, fv1
refers to the same Python object as A. So to detect an in-place operation, we compare the address of the object fv1
with its inputs (using the Python keyword is). If we find a match, we mark the node as in-place and record the name of
its data owner (in the example above, the data owner of fv1 is A). Otherwise, we check if the value shares its data ptr
with one of its inputs, in which case it is a node of type view, and we record the name of its data owner. Finally, by
default, the tensor is an original data and its data owner is itself. We call this case by default the operation real.

• Finally, we store information such as the type and shape of the data so that we can randomly regenerate data when
analyzing upcoming nodes. Note that we also need to store the requires grad information. It is essential for building
the backward graph, and we need to use it when regenerating tensors.

Simplification process Once the analysis has been performed, the simplification of the graph can be started. The
simplification is done in three steps:

• First, we process so-called cheap operations, such as list and tuple constructors. In contrast to the following simplifica-
tion steps, here we insert the code to be simplified directly into the user code, for example
fv1 = [s1,s2] ;
B = torch.reshape(A,fv1)
becomes
B = torch.reshape(A, [s1,s2])

14

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Simplifying the list and tuple constructors is mandatory to ensure each node represents only one tensor, it also makes
the code easier to read. cheap operations also include torch.add, sub, mul, and div. This is due to the way autograd
handles intermediate results. Normally, nested operations (neither primary nor inline) create intermediate variables
that are stored in grad fn. Therefore, we repeat the submodules until we reach primary operations. But these specific
operations do not create intermediate data in grad fn (because we do not need them during backward). Therefore, it
is preferable not to inline them, as otherwise they would explicitly create intermediate variables and thus use more
memory. Note that we could duplicate the code:
A = torch.add(B, C) ;
D = torch.linear(A,...) ;
E = torch.relu(A)
becomes
D = torch.linear(

torch.add(B, C),...) ;
E = torch.relu(torch.add(B, C))
Since these operations are fast enough (e.g. compared to torch.matmul), it will not take too much time. However, these
simplifications represent a trade-off between the number of intermediate variables and the number of dependencies. In
the example above, D now depends on both B and C. Therefore, it is optional to consider Add, Sub, Mul and Div as
cheap operations.

• The second step in the simplification process concerns nodes of type size. Since these operations do not create data, we
move them as secondary assignments of the node they refer to, which we call the body code. To avoid creating new
dependencies, for example in the case where a node depends only on the shape of a tensor and not on the tensor itself:
s = torch.Tensor.size(A,0) ;
...
C = torch.reshape(B, [s])

In this example, we are not yet sure whether C depends directly on A, but merging s into A would actually enforce the
dependency. That would be wrong because it would cause Rockmate to conclude that A cannot be forgotten before
computing C. To avoid this, even though the assignment of s is inserted into the body code of A, we do not delete
the node of s, but simply mark it as artifact. Artifacts are nodes concerning size-type operations that are needed to
avoid creating dependencies between real nodes. After each simplification, we perform a test to determine if any of the
artifact nodes can be removed. In the example above, if it turns out that B is a view of A, in the third simplification step,
the assignment of B is moved to the body code of A, after which C depends directly on the node of A, so we can remove
the artifact node of s.

• Finally, the view and insert operations are simplified. View nodes are merged with the node of their data owner by
inserting their assignment into the body code of the data owner. The same idea applies to in-place operations, i.e. we
insert them into the node of their data owner. However, since Rockmate wants to control the backward execution, after
each main operation we detach the tensor to split the backward graph. This detach operation must be performed before
creating different independent views, otherwise we would have to detach each view independently, which is impossible
in PyTorch. On the other hand, the detach operation must be performed after in-place operations because they impact
the data, even though these in-place operations can be applied to views and not directly to the original tensor. PyTorch
is aware of that, so it ensures it’s impossible to have in-place operations over different independent views, therefore
we always have a valid way to run the code and detach at the right position. An attribute in-place code is provided to
handle the detach operation.

Artifact nodes which survived until the end of simplification will be considered as soft-dependencies when at the moment
we generate a topological order for the final forward-backward graph, only to ensure the owner of an artifact always comes
before any of its users. Apart from that they are removed. Thus, we do not create explicit dependencies, but since ILP
follows the topological order for the first computation of each node, the size information is computed before it is used and is
not forgotten.

At the end of the simplification, we end up with a forward graph, where each node consists of exactly one real operation
that creates a data, and some secondary operations on it. As for the topological order, we follow the original order by using

15

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

the unique number we assigned to each variable. Thus, we keep the order in which jit performed the forward code of the
original module. Finally, although we will not discuss it in detail, we also handle random operations.

Figure 9. Number of nodes in the basic forward graph compared to the simplified one.
Basic graph Simplified graph

GPT2(nlayers=2) 164 35
Resnet101 346 211

Regnet x 32gf 245 173
MLP Mixer 203 124

nn.Transformer 161 51

A.4. Cut the forward graph

The subsequent steps of Rockmate rely on a list of blocks in order to apply rk-Checkmate to each block independently. We
cut the simplified forward graph into a sequence of blocks. The cuts are made along the 1-separators of the graph: these
are nodes whose removal result in a disconnected graph. We obtain the list of separators by using a variant of Breadth
First Search (BFS). Note that although we cut the simplified graph, a first draft of the separators list is computed before we
perform the simplifications. We mark potential separators as protected to avoid oversimplifying the graph, which could
break its overall structure. Since torch.add operations are simplified by default, without this protection, all residual edges
would traverse the entire graph from input directly to output. As a result, the simplified graph would consist of a single
large block with many undesirable dependencies. The protected nodes, which are potential separators, bypass the cheap
simplification step. At the end of the simplification step, the list of separators is recomputed, as it may have changed due to
other simplifications.

A.5. Recognition of Similar Blocks

To reduce solving time, we would like to avoid solving the same ILP multiple times on identical blocks. For example, GPT2
consists of n attention blocks interleaved with n feedforward blocks, and the resolution of this ILP n times on identical
instances should be avoided. We developed a tool to generate classes of identical blocks.

• First, we provide a function to anonymize simplified graphs. Given a simplified graph, we build a parser that maps all
target names to numbers starting with 1 and also anonymizes the parameter names.

• To test if two blocks are identical, we compare their anonymized versions. This is done by visiting each node in turn,
following some topological order (which should be the same if the blocks are identical). For each pair of nodes, we
compare their attributes: the code, but also the information about each variable, including its type and shape. The lists
of parameters should also have the same anonymized names (i.e. they are used in the same nodes), but also the same
data types and shapes.

• After building the equivalence classes, we directly build the forward+backward graph for each unique anonymous
graph, and translate it back to un-anonymize and get the forward+backward of each block. In Rockmate, we solve the
ILP once for each equivalence class, and the resulting R and S matrices can be shared across identical blocks.

A.6. Inspection and backward nodes

Since we now have exactly one data defined per node, we can associate one backward operation with each forward node,
whose code is given by <target>.backward(<target>.grad)3

In rk-Checkmate two categories of nodes are introduced: Computation nodes (C nodes) and Data nodes (D nodes). A
C node represents an operation that takes a certain amount of time to execute with a certain amount of memory overhead. It
is either a Forward or a Backward node. A D node represents an item stored in memory. D nodes can be deleted to free

3The target (with an underscore) refers to the variable before detaching, while target (without) is the detached one.

16

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Figure 10. Simplified forward graph of a GPT2 with 2 transformer blocks, generated by PGB.

__12__2 = torch.Tensor.size(src, (- 1))

__13__3 = torch.arange(0, __12__2, device=device, pin_memory=False)
__14_input = torch.unsqueeze(__13__3, 0)

__12__2

__17_fv = torch.embedding(self.wte.weight, src)

src

__19_fv = torch.embedding(self.wpe.weight, __14_input)

__14_input

__21_input0 = torch.dropout(torch.add(__17_fv, __19_fv), 0.1, True)

__17_fv

__19_fv

__30_x = torch.layer_norm(__21_input0, [768], self.h[0][0].layer1.weight, self.h[0][0].layer1.bias)
__39__0 = torch.Tensor.size(__30_x, 0)
__41__2 = torch.Tensor.size(__30_x, 1)

__43__4 = torch.Tensor.size(__30_x, (- 1))
__46_fv = torch.Tensor.view(__30_x, [(- 1), __43__4])

__21_input0

__113_fv = torch.add(__21_input0, __112_fv)

__21_input0

__44_x = torch.addmm(self.h[0][0].layer2.c_attn.bias, __46_fv, self.h[0][0].layer2.c_attn.weight)
__48_fv = torch.Tensor.view(__44_x, [__39__0, __41__2, 2304])

__36__0 = torch.split(__48_fv, 768, 2)
__50_x = __36__0[0]

__53__1 = torch.Tensor.size(__50_x, 0)
__55__3 = torch.Tensor.size(__50_x, 1)

__57__5 = torch.Tensor.size(__50_x, (- 1))
__51_x0 = __36__0[1]

__63__7 = torch.Tensor.size(__51_x0, 0)
__65__9 = torch.Tensor.size(__51_x0, 1)

__67__11 = torch.Tensor.size(__51_x0, (- 1))
__52_x1 = __36__0[2]

__73__13 = torch.Tensor.size(__52_x1, 0)
__75__15 = torch.Tensor.size(__52_x1, 1)

__77__17 = torch.Tensor.size(__52_x1, (- 1))
__59_x2 = torch.Tensor.view(__50_x, [__53__1, __55__3, 12, torch.floor_divide(__57__5, 12)])

__61_q = torch.permute(__59_x2, [0, 2, 1, 3])
__69_x3 = torch.Tensor.view(__51_x0, [__63__7, __65__9, 12, torch.floor_divide(__67__11, 12)])

__71_k = torch.permute(__69_x3, [0, 2, 1, 3])
__79_x4 = torch.Tensor.view(__52_x1, [__73__13, __75__15, 12, torch.floor_divide(__77__17, 12)])

__81_v = torch.permute(__79_x4, [0, 2, 1, 3])
__84_fv = torch.transpose(__71_k, (- 2), (- 1))

__46_fv
__41__2
__39__0

__83_scores = torch.matmul(__61_q, __84_fv)

__84_fv
__61_q

__88_x5 = torch.matmul(__87_scores, __81_v)
__91_fv = torch.permute(__88_x5, [0, 2, 1, 3])

__81_v__86_fv = torch.softmax(__83_scores, (- 1))

__83_scores

__87_scores = torch.dropout(__86_fv, 0.1, True)

__86_fv

__87_scores

__89_x6 = torch.Tensor.contiguous(__91_fv)
__92__20 = torch.Tensor.size(__89_x6, 0)
__94__22 = torch.Tensor.size(__89_x6, 1)

__96__24 = torch.Tensor.size(__89_x6, (- 2))
__97__25 = torch.Tensor.size(__89_x6, (- 1))

__98_x7 = torch.Tensor.view(__89_x6, [__92__20, __94__22, torch.mul(__96__24, __97__25)])
__103__0 = torch.Tensor.size(__98_x7, 0)
__105__2 = torch.Tensor.size(__98_x7, 1)

__107__4 = torch.Tensor.size(__98_x7, (- 1))
__110_fv = torch.Tensor.view(__98_x7, [(- 1), __107__4])

__91_fv

__108_x0 = torch.addmm(self.h[0][0].layer2.c_proj.bias, __110_fv, self.h[0][0].layer2.c_proj.weight)
__112_fv = torch.Tensor.view(__108_x0, [__103__0, __105__2, 768])

__103__0
__105__2
__110_fv

__112_fv

__119_x = torch.layer_norm(__113_fv, [768], self.h[0][1].layer1.weight, self.h[0][1].layer1.bias)
__127__0 = torch.Tensor.size(__119_x, 0)
__129__2 = torch.Tensor.size(__119_x, 1)

__131__4 = torch.Tensor.size(__119_x, (- 1))
__134_fv = torch.Tensor.view(__119_x, [(- 1), __131__4])

__113_fv

__151_fv = torch.add(__113_fv, __150__0)

__113_fv

__132_x = torch.addmm(self.h[0][1].layer2.c_fc.bias, __134_fv, self.h[0][1].layer2.c_fc.weight)
__136_fv = torch.Tensor.view(__132_x, [__127__0, __129__2, 3072])

__129__2
__127__0
__134_fv

__124_x = torch.nn.functional.gelu(__136_fv)
__140__0 = torch.Tensor.size(__124_x, 0)
__142__2 = torch.Tensor.size(__124_x, 1)

__144__4 = torch.Tensor.size(__124_x, (- 1))
__147_fv = torch.Tensor.view(__124_x, [(- 1), __144__4])

__136_fv

__145_x0 = torch.addmm(self.h[0][1].layer2.c_proj.bias, __147_fv, self.h[0][1].layer2.c_proj.weight)
__149_fv = torch.Tensor.view(__145_x0, [__140__0, __142__2, 768])

__140__0
__147_fv
__142__2

__150__0 = torch.dropout(__149_fv, 0.1, True)

__149_fv

__150__0

__161_x = torch.layer_norm(__151_fv, [768], self.h[1][0].layer1.weight, self.h[1][0].layer1.bias)
__170__0 = torch.Tensor.size(__161_x, 0)
__172__2 = torch.Tensor.size(__161_x, 1)

__174__4 = torch.Tensor.size(__161_x, (- 1))
__177_fv = torch.Tensor.view(__161_x, [(- 1), __174__4])

__151_fv

__244_fv = torch.add(__151_fv, __243_fv)

__151_fv

__175_x = torch.addmm(self.h[1][0].layer2.c_attn.bias, __177_fv, self.h[1][0].layer2.c_attn.weight)
__179_fv = torch.Tensor.view(__175_x, [__170__0, __172__2, 2304])

__167__0 = torch.split(__179_fv, 768, 2)
__181_x = __167__0[0]

__184__1 = torch.Tensor.size(__181_x, 0)
__186__3 = torch.Tensor.size(__181_x, 1)

__188__5 = torch.Tensor.size(__181_x, (- 1))
__182_x0 = __167__0[1]

__194__7 = torch.Tensor.size(__182_x0, 0)
__196__9 = torch.Tensor.size(__182_x0, 1)

__198__11 = torch.Tensor.size(__182_x0, (- 1))
__183_x1 = __167__0[2]

__204__13 = torch.Tensor.size(__183_x1, 0)
__206__15 = torch.Tensor.size(__183_x1, 1)

__208__17 = torch.Tensor.size(__183_x1, (- 1))
__190_x2 = torch.Tensor.view(__181_x, [__184__1, __186__3, 12, torch.floor_divide(__188__5, 12)])

__192_q = torch.permute(__190_x2, [0, 2, 1, 3])
__200_x3 = torch.Tensor.view(__182_x0, [__194__7, __196__9, 12, torch.floor_divide(__198__11, 12)])

__202_k = torch.permute(__200_x3, [0, 2, 1, 3])
__210_x4 = torch.Tensor.view(__183_x1, [__204__13, __206__15, 12, torch.floor_divide(__208__17, 12)])

__212_v = torch.permute(__210_x4, [0, 2, 1, 3])
__215_fv = torch.transpose(__202_k, (- 2), (- 1))

__170__0
__172__2
__177_fv

__214_scores = torch.matmul(__192_q, __215_fv)

__192_q
__215_fv

__219_x5 = torch.matmul(__218_scores, __212_v)
__222_fv = torch.permute(__219_x5, [0, 2, 1, 3])

__212_v__217_fv = torch.softmax(__214_scores, (- 1))

__214_scores

__218_scores = torch.dropout(__217_fv, 0.1, True)

__217_fv

__218_scores

__220_x6 = torch.Tensor.contiguous(__222_fv)
__223__20 = torch.Tensor.size(__220_x6, 0)
__225__22 = torch.Tensor.size(__220_x6, 1)

__227__24 = torch.Tensor.size(__220_x6, (- 2))
__228__25 = torch.Tensor.size(__220_x6, (- 1))

__229_x7 = torch.Tensor.view(__220_x6, [__223__20, __225__22, torch.mul(__227__24, __228__25)])
__234__0 = torch.Tensor.size(__229_x7, 0)
__236__2 = torch.Tensor.size(__229_x7, 1)

__238__4 = torch.Tensor.size(__229_x7, (- 1))
__241_fv = torch.Tensor.view(__229_x7, [(- 1), __238__4])

__222_fv

__239_x0 = torch.addmm(self.h[1][0].layer2.c_proj.bias, __241_fv, self.h[1][0].layer2.c_proj.weight)
__243_fv = torch.Tensor.view(__239_x0, [__234__0, __236__2, 768])

__236__2
__234__0
__241_fv

__243_fv

__250_x = torch.layer_norm(__244_fv, [768], self.h[1][1].layer1.weight, self.h[1][1].layer1.bias)
__258__0 = torch.Tensor.size(__250_x, 0)
__260__2 = torch.Tensor.size(__250_x, 1)

__262__4 = torch.Tensor.size(__250_x, (- 1))
__265_fv = torch.Tensor.view(__250_x, [(- 1), __262__4])

__244_fv

__285_input = torch.layer_norm(torch.add(__244_fv, __281__0), [768], self.ln_f.weight, self.ln_f.bias)

__244_fv

__263_x = torch.addmm(self.h[1][1].layer2.c_fc.bias, __265_fv, self.h[1][1].layer2.c_fc.weight)
__267_fv = torch.Tensor.view(__263_x, [__258__0, __260__2, 3072])

__260__2
__258__0
__265_fv

__255_x = torch.nn.functional.gelu(__267_fv)
__271__0 = torch.Tensor.size(__255_x, 0)
__273__2 = torch.Tensor.size(__255_x, 1)

__275__4 = torch.Tensor.size(__255_x, (- 1))
__278_fv = torch.Tensor.view(__255_x, [(- 1), __275__4])

__267_fv

__276_x0 = torch.addmm(self.h[1][1].layer2.c_proj.bias, __278_fv, self.h[1][1].layer2.c_proj.weight)
__280_fv = torch.Tensor.view(__276_x0, [__271__0, __273__2, 768])

__273__2
__271__0
__278_fv

__281__0 = torch.dropout(__280_fv, 0.1, True)

__280_fv

__281__0

__287_fv = torch.nn.functional.linear(__285_input, self.wte.weight)

__285_input

OUTPUT

__287_fv

INPUT

src

17

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Figure 11. Cut simplified forward graph of a GPT2 with 2 transformer blocks, generated by PGB.
__12__2 = torch.Tensor.size(src, (- 1))

__13__3 = torch.arange(0, __12__2, device=device, pin_memory=False)
__14_input = torch.unsqueeze(__13__3, 0)

__12__2

__17_fv = torch.embedding(self.wte.weight, src)

src

__19_fv = torch.embedding(self.wpe.weight, __14_input)

__14_input

__21_input0 = torch.dropout(torch.add(__17_fv, __19_fv), 0.1, True)

__17_fv

__19_fv

OUTPUT

__21_input0

INPUT

src

__30_x = torch.layer_norm(__21_input0, [768], self.h[0][0].layer1.weight, self.h[0][0].layer1.bias)
__39__0 = torch.Tensor.size(__30_x, 0)
__41__2 = torch.Tensor.size(__30_x, 1)

__43__4 = torch.Tensor.size(__30_x, (- 1))
__46_fv = torch.Tensor.view(__30_x, [(- 1), __43__4])

__21_input0

__113_fv = torch.add(__21_input0, __112_fv)

__21_input0

__44_x = torch.addmm(self.h[0][0].layer2.c_attn.bias, __46_fv, self.h[0][0].layer2.c_attn.weight)
__48_fv = torch.Tensor.view(__44_x, [__39__0, __41__2, 2304])

__36__0 = torch.split(__48_fv, 768, 2)
__50_x = __36__0[0]

__53__1 = torch.Tensor.size(__50_x, 0)
__55__3 = torch.Tensor.size(__50_x, 1)

__57__5 = torch.Tensor.size(__50_x, (- 1))
__51_x0 = __36__0[1]

__63__7 = torch.Tensor.size(__51_x0, 0)
__65__9 = torch.Tensor.size(__51_x0, 1)

__67__11 = torch.Tensor.size(__51_x0, (- 1))
__52_x1 = __36__0[2]

__73__13 = torch.Tensor.size(__52_x1, 0)
__75__15 = torch.Tensor.size(__52_x1, 1)

__77__17 = torch.Tensor.size(__52_x1, (- 1))
__59_x2 = torch.Tensor.view(__50_x, [__53__1, __55__3, 12, torch.floor_divide(__57__5, 12)])

__61_q = torch.permute(__59_x2, [0, 2, 1, 3])
__69_x3 = torch.Tensor.view(__51_x0, [__63__7, __65__9, 12, torch.floor_divide(__67__11, 12)])

__71_k = torch.permute(__69_x3, [0, 2, 1, 3])
__79_x4 = torch.Tensor.view(__52_x1, [__73__13, __75__15, 12, torch.floor_divide(__77__17, 12)])

__81_v = torch.permute(__79_x4, [0, 2, 1, 3])
__84_fv = torch.transpose(__71_k, (- 2), (- 1))

__46_fv
__41__2
__39__0

__83_scores = torch.matmul(__61_q, __84_fv)

__84_fv
__61_q

__88_x5 = torch.matmul(__87_scores, __81_v)
__91_fv = torch.permute(__88_x5, [0, 2, 1, 3])

__81_v__86_fv = torch.softmax(__83_scores, (- 1))

__83_scores

__87_scores = torch.dropout(__86_fv, 0.1, True)

__86_fv

__87_scores

__89_x6 = torch.Tensor.contiguous(__91_fv)
__92__20 = torch.Tensor.size(__89_x6, 0)
__94__22 = torch.Tensor.size(__89_x6, 1)

__96__24 = torch.Tensor.size(__89_x6, (- 2))
__97__25 = torch.Tensor.size(__89_x6, (- 1))

__98_x7 = torch.Tensor.view(__89_x6, [__92__20, __94__22, torch.mul(__96__24, __97__25)])
__103__0 = torch.Tensor.size(__98_x7, 0)
__105__2 = torch.Tensor.size(__98_x7, 1)

__107__4 = torch.Tensor.size(__98_x7, (- 1))
__110_fv = torch.Tensor.view(__98_x7, [(- 1), __107__4])

__91_fv

__108_x0 = torch.addmm(self.h[0][0].layer2.c_proj.bias, __110_fv, self.h[0][0].layer2.c_proj.weight)
__112_fv = torch.Tensor.view(__108_x0, [__103__0, __105__2, 768])

__103__0
__105__2
__110_fv

__112_fv

OUTPUT

__113_fv

INPUT

__21_input0

__119_x = torch.layer_norm(__113_fv, [768], self.h[0][1].layer1.weight, self.h[0][1].layer1.bias)
__127__0 = torch.Tensor.size(__119_x, 0)
__129__2 = torch.Tensor.size(__119_x, 1)

__131__4 = torch.Tensor.size(__119_x, (- 1))
__134_fv = torch.Tensor.view(__119_x, [(- 1), __131__4])

__113_fv

__151_fv = torch.add(__113_fv, __150__0)

__113_fv

__132_x = torch.addmm(self.h[0][1].layer2.c_fc.bias, __134_fv, self.h[0][1].layer2.c_fc.weight)
__136_fv = torch.Tensor.view(__132_x, [__127__0, __129__2, 3072])

__129__2
__127__0
__134_fv

__124_x = torch.nn.functional.gelu(__136_fv)
__140__0 = torch.Tensor.size(__124_x, 0)
__142__2 = torch.Tensor.size(__124_x, 1)

__144__4 = torch.Tensor.size(__124_x, (- 1))
__147_fv = torch.Tensor.view(__124_x, [(- 1), __144__4])

__136_fv

__145_x0 = torch.addmm(self.h[0][1].layer2.c_proj.bias, __147_fv, self.h[0][1].layer2.c_proj.weight)
__149_fv = torch.Tensor.view(__145_x0, [__140__0, __142__2, 768])

__140__0
__147_fv
__142__2

__150__0 = torch.dropout(__149_fv, 0.1, True)

__149_fv

__150__0

OUTPUT

__151_fv

INPUT

__113_fv

__161_x = torch.layer_norm(__151_fv, [768], self.h[1][0].layer1.weight, self.h[1][0].layer1.bias)
__170__0 = torch.Tensor.size(__161_x, 0)
__172__2 = torch.Tensor.size(__161_x, 1)

__174__4 = torch.Tensor.size(__161_x, (- 1))
__177_fv = torch.Tensor.view(__161_x, [(- 1), __174__4])

__151_fv

__244_fv = torch.add(__151_fv, __243_fv)

__151_fv

__175_x = torch.addmm(self.h[1][0].layer2.c_attn.bias, __177_fv, self.h[1][0].layer2.c_attn.weight)
__179_fv = torch.Tensor.view(__175_x, [__170__0, __172__2, 2304])

__167__0 = torch.split(__179_fv, 768, 2)
__181_x = __167__0[0]

__184__1 = torch.Tensor.size(__181_x, 0)
__186__3 = torch.Tensor.size(__181_x, 1)

__188__5 = torch.Tensor.size(__181_x, (- 1))
__182_x0 = __167__0[1]

__194__7 = torch.Tensor.size(__182_x0, 0)
__196__9 = torch.Tensor.size(__182_x0, 1)

__198__11 = torch.Tensor.size(__182_x0, (- 1))
__183_x1 = __167__0[2]

__204__13 = torch.Tensor.size(__183_x1, 0)
__206__15 = torch.Tensor.size(__183_x1, 1)

__208__17 = torch.Tensor.size(__183_x1, (- 1))
__190_x2 = torch.Tensor.view(__181_x, [__184__1, __186__3, 12, torch.floor_divide(__188__5, 12)])

__192_q = torch.permute(__190_x2, [0, 2, 1, 3])
__200_x3 = torch.Tensor.view(__182_x0, [__194__7, __196__9, 12, torch.floor_divide(__198__11, 12)])

__202_k = torch.permute(__200_x3, [0, 2, 1, 3])
__210_x4 = torch.Tensor.view(__183_x1, [__204__13, __206__15, 12, torch.floor_divide(__208__17, 12)])

__212_v = torch.permute(__210_x4, [0, 2, 1, 3])
__215_fv = torch.transpose(__202_k, (- 2), (- 1))

__170__0
__172__2
__177_fv

__214_scores = torch.matmul(__192_q, __215_fv)

__192_q
__215_fv

__219_x5 = torch.matmul(__218_scores, __212_v)
__222_fv = torch.permute(__219_x5, [0, 2, 1, 3])

__212_v__217_fv = torch.softmax(__214_scores, (- 1))

__214_scores

__218_scores = torch.dropout(__217_fv, 0.1, True)

__217_fv

__218_scores

__220_x6 = torch.Tensor.contiguous(__222_fv)
__223__20 = torch.Tensor.size(__220_x6, 0)
__225__22 = torch.Tensor.size(__220_x6, 1)

__227__24 = torch.Tensor.size(__220_x6, (- 2))
__228__25 = torch.Tensor.size(__220_x6, (- 1))

__229_x7 = torch.Tensor.view(__220_x6, [__223__20, __225__22, torch.mul(__227__24, __228__25)])
__234__0 = torch.Tensor.size(__229_x7, 0)
__236__2 = torch.Tensor.size(__229_x7, 1)

__238__4 = torch.Tensor.size(__229_x7, (- 1))
__241_fv = torch.Tensor.view(__229_x7, [(- 1), __238__4])

__222_fv

__239_x0 = torch.addmm(self.h[1][0].layer2.c_proj.bias, __241_fv, self.h[1][0].layer2.c_proj.weight)
__243_fv = torch.Tensor.view(__239_x0, [__234__0, __236__2, 768])

__236__2
__234__0
__241_fv

__243_fv

OUTPUT

__244_fv

INPUT

__151_fv

__250_x = torch.layer_norm(__244_fv, [768], self.h[1][1].layer1.weight, self.h[1][1].layer1.bias)
__258__0 = torch.Tensor.size(__250_x, 0)
__260__2 = torch.Tensor.size(__250_x, 1)

__262__4 = torch.Tensor.size(__250_x, (- 1))
__265_fv = torch.Tensor.view(__250_x, [(- 1), __262__4])

__244_fv

__285_input = torch.layer_norm(torch.add(__244_fv, __281__0), [768], self.ln_f.weight, self.ln_f.bias)

__244_fv

__263_x = torch.addmm(self.h[1][1].layer2.c_fc.bias, __265_fv, self.h[1][1].layer2.c_fc.weight)
__267_fv = torch.Tensor.view(__263_x, [__258__0, __260__2, 3072])

__260__2
__258__0
__265_fv

__255_x = torch.nn.functional.gelu(__267_fv)
__271__0 = torch.Tensor.size(__255_x, 0)
__273__2 = torch.Tensor.size(__255_x, 1)

__275__4 = torch.Tensor.size(__255_x, (- 1))
__278_fv = torch.Tensor.view(__255_x, [(- 1), __275__4])

__267_fv

__276_x0 = torch.addmm(self.h[1][1].layer2.c_proj.bias, __278_fv, self.h[1][1].layer2.c_proj.weight)
__280_fv = torch.Tensor.view(__276_x0, [__271__0, __273__2, 768])

__273__2
__271__0
__278_fv

__281__0 = torch.dropout(__280_fv, 0.1, True)

__280_fv

__281__0

OUTPUT

__285_input

INPUT

__244_fv

__287_fv = torch.nn.functional.linear(__285_input, self.wte.weight)

__285_input

OUTPUT

__287_fv

INPUT

__285_input

Figure 12. Total number of blocks in the cut simplified graph compared to the number of unique blocks.
Chain length Unique blocks

GPT2 nlayers> 1 5
Resnet101 38 13

Regnet x 32gf 27 11
MLP Mixer 27 6

nn.Transformer 3 3

In the GPT2 implementation used in the experiments, there are only five unique blocks. Each transformer layer is
automatically divided into two blocks, corresponding to a attention part and a MLP part. The five unique blocks are: the
input pre-processing, a typical attention block, a typical MLP block, the last MLP block which is slightly different due to
simplification, and the final output post-processing. Therefore, regardless of the number of transformer blocks, the overall
solving time for rk-Checkmate is constant.

18

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Figure 13. An anonymized version of an attention block from GPT2

__2_ano = torch.layer_norm(__1_ano, [768], self.param_1, self.param_2)
__4_ano = torch.Tensor.size(__2_ano, 0)
__5_ano = torch.Tensor.size(__2_ano, 1)

__6_ano = torch.Tensor.size(__2_ano, (- 1))
__8_ano = torch.Tensor.view(__2_ano, [(- 1), __6_ano])

__1_ano

__46_ano = torch.add(__1_ano, __45_ano)

__1_ano

__7_ano = torch.addmm(self.param_3, __8_ano, self.param_4)
__9_ano = torch.Tensor.view(__7_ano, [__4_ano, __5_ano, 2304])

__3_ano = torch.split(__9_ano, 768, 2)
__10_ano = __3_ano[0]

__13_ano = torch.Tensor.size(__10_ano, 0)
__14_ano = torch.Tensor.size(__10_ano, 1)

__15_ano = torch.Tensor.size(__10_ano, (- 1))
__11_ano = __3_ano[1]

__18_ano = torch.Tensor.size(__11_ano, 0)
__19_ano = torch.Tensor.size(__11_ano, 1)

__20_ano = torch.Tensor.size(__11_ano, (- 1))
__12_ano = __3_ano[2]

__23_ano = torch.Tensor.size(__12_ano, 0)
__24_ano = torch.Tensor.size(__12_ano, 1)

__25_ano = torch.Tensor.size(__12_ano, (- 1))
__16_ano = torch.Tensor.view(__10_ano, [__13_ano, __14_ano, 12, torch.floor_divide(__15_ano, 12)])

__17_ano = torch.permute(__16_ano, [0, 2, 1, 3])
__21_ano = torch.Tensor.view(__11_ano, [__18_ano, __19_ano, 12, torch.floor_divide(__20_ano, 12)])

__22_ano = torch.permute(__21_ano, [0, 2, 1, 3])
__26_ano = torch.Tensor.view(__12_ano, [__23_ano, __24_ano, 12, torch.floor_divide(__25_ano, 12)])

__27_ano = torch.permute(__26_ano, [0, 2, 1, 3])
__29_ano = torch.transpose(__22_ano, (- 2), (- 1))

__5_ano
__4_ano
__8_ano

__28_ano = torch.matmul(__17_ano, __29_ano)

__29_ano
__17_ano

__32_ano = torch.matmul(__31_ano, __27_ano)
__34_ano = torch.permute(__32_ano, [0, 2, 1, 3])

__27_ano__30_ano = torch.softmax(__28_ano, (- 1))

__28_ano

__31_ano = torch.dropout(__30_ano, 0.1, True)

__30_ano

__31_ano

__33_ano = torch.Tensor.contiguous(__34_ano)
__35_ano = torch.Tensor.size(__33_ano, 0)
__36_ano = torch.Tensor.size(__33_ano, 1)

__37_ano = torch.Tensor.size(__33_ano, (- 2))
__38_ano = torch.Tensor.size(__33_ano, (- 1))

__39_ano = torch.Tensor.view(__33_ano, [__35_ano, __36_ano, torch.mul(__37_ano, __38_ano)])
__40_ano = torch.Tensor.size(__39_ano, 0)
__41_ano = torch.Tensor.size(__39_ano, 1)

__42_ano = torch.Tensor.size(__39_ano, (- 1))
__44_ano = torch.Tensor.view(__39_ano, [(- 1), __42_ano])

__34_ano

__43_ano = torch.addmm(self.param_5, __44_ano, self.param_6)
__45_ano = torch.Tensor.view(__43_ano, [__40_ano, __41_ano, 768])

__40_ano
__44_ano
__41_ano

__45_ano

OUTPUT

__46_ano

INPUT

__21_input0

19

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

memory, and C nodes can be recomputed to restore D nodes, although it takes some time. . There are three types of D nodes:
tensor.data attribute, tensor.grad attribute, and what we call phantoms, which are intermediate results (saved tensors) stored
in the grad fn attribute.

We consider each node of the simplified forward graph one at a time in topological order. To create the C and D nodes
we need to do an inspection, i.e. to run the code several times to measure time and memory usage4. First we run the
forward code (including the body part) and measure how much memory has been allocated, then we set the .data attribute to
torch.empty(0) to free the memory5.

The memory successfully freed is the memory used by the tensor.data’s D node. If some memory was not freed, it means
that the node has phantoms. Phantoms are intermediate values stored in tensor.grad fn in preparation for backward.

To handle phantoms properly, we handle any . saved tensors or .variable attributes. We use the grad fn.next functions
attribute to recursively open the grad fn graph. The .variable attribute is an explicit reference to a variable (e.g. the input of
the forward operation), while saved tensors are either views of known tensors or original tensors. The opening of grad fn
is crucial for three reasons:

• First, we need to open grad fn to properly build backward C nodes dependencies. Indeed, an input of the forward
operation is needed to perform the backward operation if and only if there is a reference to it in the grad fn. Consider a
first example: B = torch.addmm(bias,A,weight)
In such a case, A.data is indeed necessary to run B.backward and a reference to it can be found in B.grad fn. Therefore,
B’s backward C node depends on A’s data D node. Now consider a second example:
C = torch.add(A,B)

Here, given C.grad, both A.grad and B.grad can be computed without A.data or B.data, so that we do not want
backward C node of C to depend on A and B’s data D nodes. Note that autograd always checks the shape of the .data
attribute of inputs, even if they are not used. To solve this problem, we introduce two types of dependencies (i.e. edges
of the graph): actual and fake. fake edges do not appear in the ILP, we do not want to force the data to be alive if it is
not used. fake edges are only used in Rockmate’s final code generator: in the example above, C’s backward fakely
depends on A and B’s data, so by the time we want to run C’s backward, A.data may already be forgotten. To pass the
autograd shape equality check, we need to assign an empty tensor with the correct shape to A.data. To avoid wasting
memory for this, we use A.data = torch.ones(1)

.expand(<numel(A)>)

.view(<shape(a)>)

Using this trick we allocate only 512 octets, whereas: A.data = torch.empty(<shape(a)>)
would allocate as much memory as the original A.data and cancel our efforts to let the solver free A’s data to reduce
memory footprint.

• In the previous paragraph we explained the user’s viewpoint: given a tensor, we want to find its dependencies.
Let us now take the input perspective. If a saved tensor is a view of the input, it means that input.data =
torch.empty(0) will not free anything. To free a data we must put the data attribute of all the tensors having the
same data ptr to torch.empty(0), including the saved tensors which refer to it. The correct way to forget a data is
therefore input.data = torch.empty(0) ;
input view.data = torch.empty(0) ;
user.grad fn.next functions[0][0]. saved mat1.data= torch.empty(0)

Similarly, after recomputing input’s data, all saved tensors that refer to it are rebuilt. Even if it is not directly the same
data, but a view of it, we take care to rebuild it properly, including operations that affect the strides. autograd can store
any view of the data, but there is no way to guess if the stride will be affected. However, we use all known views of the
data that are not phantoms, and we find one that is compatible with the saved tensor. Therefore, for a node, we need
the names of the phantoms that are views of it.

4For the memory usage, since we are assuming Rockmate is being used on GPUs, we can trust torch.cuda.memory allocated, which is
not the case on CPUs. rk-GB raises a warning when used on a CPU and skips the inspection part.

5If it exists, we also enforce the . base.data attribute to torch.empty(0), because it is a view of the .data (otherwise we would not be
able to free memory)

20

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Figure 14. Final product of rk-GB for a GPT2 with 2 transformer blocks.
Forward C nodes are in blue, backward ones in violet, D nodes in gold, special nodes in green.

__13__3 = torch.arange(0, __12__2, device=device, pin_memory=False)
__14_input = torch.unsqueeze(__13__3, 0)

__13__3 data

__17_fv = torch.embedding(self.wte.weight, src)

__17_fv data

__19_fv = torch.embedding(self.wpe.weight, __14_input)

__19_fv data

__21_input0 = torch.dropout(torch.add(__17_fv, __19_fv), 0.1, True)

__21_input0 data

__21_input0 phantoms LOSS KCN

__21_input0 grad

backward of __21_input0

__17_fv grad__19_fv grad

backward of __17_fv

src grad

backward of __19_fv

src data

__30_x = torch.layer_norm(__21_input0, [768], self.h[0][0].layer1.weight, self.h[0][0].layer1.bias)
__39__0 = torch.Tensor.size(__30_x, 0)
__41__2 = torch.Tensor.size(__30_x, 1)

__43__4 = torch.Tensor.size(__30_x, (- 1))
__46_fv = torch.Tensor.view(__30_x, [(- 1), __43__4])

__30_x data

__30_x phantoms

__44_x = torch.addmm(self.h[0][0].layer2.c_attn.bias, __46_fv, self.h[0][0].layer2.c_attn.weight)
__48_fv = torch.Tensor.view(__44_x, [__39__0, __41__2, 2304])

__36__0 = torch.split(__48_fv, 768, 2)
__50_x = __36__0[0]

__53__1 = torch.Tensor.size(__50_x, 0)
__55__3 = torch.Tensor.size(__50_x, 1)

__57__5 = torch.Tensor.size(__50_x, (- 1))
__51_x0 = __36__0[1]

__63__7 = torch.Tensor.size(__51_x0, 0)
__65__9 = torch.Tensor.size(__51_x0, 1)

__67__11 = torch.Tensor.size(__51_x0, (- 1))
__52_x1 = __36__0[2]

__73__13 = torch.Tensor.size(__52_x1, 0)
__75__15 = torch.Tensor.size(__52_x1, 1)

__77__17 = torch.Tensor.size(__52_x1, (- 1))
__59_x2 = torch.Tensor.view(__50_x, [__53__1, __55__3, 12, torch.floor_divide(__57__5, 12)])

__61_q = torch.permute(__59_x2, [0, 2, 1, 3])
__69_x3 = torch.Tensor.view(__51_x0, [__63__7, __65__9, 12, torch.floor_divide(__67__11, 12)])

__71_k = torch.permute(__69_x3, [0, 2, 1, 3])
__79_x4 = torch.Tensor.view(__52_x1, [__73__13, __75__15, 12, torch.floor_divide(__77__17, 12)])

__81_v = torch.permute(__79_x4, [0, 2, 1, 3])
__84_fv = torch.transpose(__71_k, (- 2), (- 1))

__44_x data

__83_scores = torch.matmul(__61_q, __84_fv)

__83_scores data

__83_scores phantoms__86_fv = torch.softmax(__83_scores, (- 1))

__86_fv data

__87_scores = torch.dropout(__86_fv, 0.1, True)

__87_scores data

__87_scores phantoms__88_x5 = torch.matmul(__87_scores, __81_v)
__91_fv = torch.permute(__88_x5, [0, 2, 1, 3])

__88_x5 data

__88_x5 phantoms

__89_x6 = torch.Tensor.contiguous(__91_fv)
__92__20 = torch.Tensor.size(__89_x6, 0)
__94__22 = torch.Tensor.size(__89_x6, 1)

__96__24 = torch.Tensor.size(__89_x6, (- 2))
__97__25 = torch.Tensor.size(__89_x6, (- 1))

__98_x7 = torch.Tensor.view(__89_x6, [__92__20, __94__22, torch.mul(__96__24, __97__25)])
__103__0 = torch.Tensor.size(__98_x7, 0)
__105__2 = torch.Tensor.size(__98_x7, 1)

__107__4 = torch.Tensor.size(__98_x7, (- 1))
__110_fv = torch.Tensor.view(__98_x7, [(- 1), __107__4])

__89_x6 data

__108_x0 = torch.addmm(self.h[0][0].layer2.c_proj.bias, __110_fv, self.h[0][0].layer2.c_proj.weight)
__112_fv = torch.Tensor.view(__108_x0, [__103__0, __105__2, 768])

__108_x0 data

__113_fv = torch.add(__21_input0, __112_fv)

__113_fv data

LOSS KCN

__113_fv grad

backward of __113_fv

__108_x0 grad

__21_input0 grad

backward of __108_x0

__89_x6 grad

backward of __89_x6

__88_x5 grad

backward of __88_x5

__44_x grad

__87_scores grad

backward of __87_scores

__86_fv grad

backward of __86_fv

__83_scores grad

backward of __83_scores

backward of __44_x

__30_x grad

backward of __30_x

__21_input0 data

__119_x = torch.layer_norm(__113_fv, [768], self.h[0][1].layer1.weight, self.h[0][1].layer1.bias)
__127__0 = torch.Tensor.size(__119_x, 0)
__129__2 = torch.Tensor.size(__119_x, 1)

__131__4 = torch.Tensor.size(__119_x, (- 1))
__134_fv = torch.Tensor.view(__119_x, [(- 1), __131__4])

__119_x data

__119_x phantoms __132_x = torch.addmm(self.h[0][1].layer2.c_fc.bias, __134_fv, self.h[0][1].layer2.c_fc.weight)
__136_fv = torch.Tensor.view(__132_x, [__127__0, __129__2, 3072])

__132_x data

__124_x = torch.nn.functional.gelu(__136_fv)
__140__0 = torch.Tensor.size(__124_x, 0)
__142__2 = torch.Tensor.size(__124_x, 1)

__144__4 = torch.Tensor.size(__124_x, (- 1))
__147_fv = torch.Tensor.view(__124_x, [(- 1), __144__4])

__124_x data

__145_x0 = torch.addmm(self.h[0][1].layer2.c_proj.bias, __147_fv, self.h[0][1].layer2.c_proj.weight)
__149_fv = torch.Tensor.view(__145_x0, [__140__0, __142__2, 768])

__145_x0 data

__150__0 = torch.dropout(__149_fv, 0.1, True)

__150__0 data

__150__0 phantoms __151_fv = torch.add(__113_fv, __150__0)

__151_fv data

LOSS KCN

__151_fv grad

backward of __151_fv

__150__0 grad

__113_fv grad

backward of __150__0

__145_x0 grad

backward of __145_x0

__124_x grad

backward of __124_x

__132_x grad

backward of __132_x

__119_x grad

backward of __119_x

__113_fv data

__161_x = torch.layer_norm(__151_fv, [768], self.h[1][0].layer1.weight, self.h[1][0].layer1.bias)
__170__0 = torch.Tensor.size(__161_x, 0)
__172__2 = torch.Tensor.size(__161_x, 1)

__174__4 = torch.Tensor.size(__161_x, (- 1))
__177_fv = torch.Tensor.view(__161_x, [(- 1), __174__4])

__161_x data

__161_x phantoms

__175_x = torch.addmm(self.h[1][0].layer2.c_attn.bias, __177_fv, self.h[1][0].layer2.c_attn.weight)
__179_fv = torch.Tensor.view(__175_x, [__170__0, __172__2, 2304])

__167__0 = torch.split(__179_fv, 768, 2)
__181_x = __167__0[0]

__184__1 = torch.Tensor.size(__181_x, 0)
__186__3 = torch.Tensor.size(__181_x, 1)

__188__5 = torch.Tensor.size(__181_x, (- 1))
__182_x0 = __167__0[1]

__194__7 = torch.Tensor.size(__182_x0, 0)
__196__9 = torch.Tensor.size(__182_x0, 1)

__198__11 = torch.Tensor.size(__182_x0, (- 1))
__183_x1 = __167__0[2]

__204__13 = torch.Tensor.size(__183_x1, 0)
__206__15 = torch.Tensor.size(__183_x1, 1)

__208__17 = torch.Tensor.size(__183_x1, (- 1))
__190_x2 = torch.Tensor.view(__181_x, [__184__1, __186__3, 12, torch.floor_divide(__188__5, 12)])

__192_q = torch.permute(__190_x2, [0, 2, 1, 3])
__200_x3 = torch.Tensor.view(__182_x0, [__194__7, __196__9, 12, torch.floor_divide(__198__11, 12)])

__202_k = torch.permute(__200_x3, [0, 2, 1, 3])
__210_x4 = torch.Tensor.view(__183_x1, [__204__13, __206__15, 12, torch.floor_divide(__208__17, 12)])

__212_v = torch.permute(__210_x4, [0, 2, 1, 3])
__215_fv = torch.transpose(__202_k, (- 2), (- 1))

__175_x data

__214_scores = torch.matmul(__192_q, __215_fv)

__214_scores data

__214_scores phantoms__217_fv = torch.softmax(__214_scores, (- 1))

__217_fv data

__218_scores = torch.dropout(__217_fv, 0.1, True)

__218_scores data

__218_scores phantoms__219_x5 = torch.matmul(__218_scores, __212_v)
__222_fv = torch.permute(__219_x5, [0, 2, 1, 3])

__219_x5 data

__219_x5 phantoms

__220_x6 = torch.Tensor.contiguous(__222_fv)
__223__20 = torch.Tensor.size(__220_x6, 0)
__225__22 = torch.Tensor.size(__220_x6, 1)

__227__24 = torch.Tensor.size(__220_x6, (- 2))
__228__25 = torch.Tensor.size(__220_x6, (- 1))

__229_x7 = torch.Tensor.view(__220_x6, [__223__20, __225__22, torch.mul(__227__24, __228__25)])
__234__0 = torch.Tensor.size(__229_x7, 0)
__236__2 = torch.Tensor.size(__229_x7, 1)

__238__4 = torch.Tensor.size(__229_x7, (- 1))
__241_fv = torch.Tensor.view(__229_x7, [(- 1), __238__4])

__220_x6 data

__239_x0 = torch.addmm(self.h[1][0].layer2.c_proj.bias, __241_fv, self.h[1][0].layer2.c_proj.weight)
__243_fv = torch.Tensor.view(__239_x0, [__234__0, __236__2, 768])

__239_x0 data

__244_fv = torch.add(__151_fv, __243_fv)

__244_fv data

LOSS KCN

__244_fv grad

backward of __244_fv

__239_x0 grad

__151_fv grad

backward of __239_x0

__220_x6 grad

backward of __220_x6

__219_x5 grad

backward of __219_x5

__175_x grad

__218_scores grad

backward of __218_scores

__217_fv grad

backward of __217_fv

__214_scores grad

backward of __214_scores

backward of __175_x

__161_x grad

backward of __161_x

__151_fv data

__250_x = torch.layer_norm(__244_fv, [768], self.h[1][1].layer1.weight, self.h[1][1].layer1.bias)
__258__0 = torch.Tensor.size(__250_x, 0)
__260__2 = torch.Tensor.size(__250_x, 1)

__262__4 = torch.Tensor.size(__250_x, (- 1))
__265_fv = torch.Tensor.view(__250_x, [(- 1), __262__4])

__250_x data

__250_x phantoms __263_x = torch.addmm(self.h[1][1].layer2.c_fc.bias, __265_fv, self.h[1][1].layer2.c_fc.weight)
__267_fv = torch.Tensor.view(__263_x, [__258__0, __260__2, 3072])

__263_x data

__255_x = torch.nn.functional.gelu(__267_fv)
__271__0 = torch.Tensor.size(__255_x, 0)
__273__2 = torch.Tensor.size(__255_x, 1)

__275__4 = torch.Tensor.size(__255_x, (- 1))
__278_fv = torch.Tensor.view(__255_x, [(- 1), __275__4])

__255_x data

__276_x0 = torch.addmm(self.h[1][1].layer2.c_proj.bias, __278_fv, self.h[1][1].layer2.c_proj.weight)
__280_fv = torch.Tensor.view(__276_x0, [__271__0, __273__2, 768])

__276_x0 data

__281__0 = torch.dropout(__280_fv, 0.1, True)

__281__0 data

__281__0 phantoms __285_input = torch.layer_norm(torch.add(__244_fv, __281__0), [768], self.ln_f.weight, self.ln_f.bias)

__285_input data

__285_input phantoms LOSS KCN

__285_input grad

backward of __285_input

__281__0 grad

__244_fv grad

backward of __281__0

__276_x0 grad

backward of __276_x0

__255_x grad

backward of __255_x

__263_x grad

backward of __263_x

__250_x grad

backward of __250_x

__244_fv data

__287_fv = torch.nn.functional.linear(__285_input, self.wte.weight)

__287_fv data

__287_fv phantomsLOSS KCN

__287_fv grad

backward of __287_fv

__285_input grad

__285_input data

• As mentioned before, phantoms can be either references to existing tensors or original tensors. If original tensors are
found in grad fn, there will be a difference between the memory generated during forward and the memory freed when
forgetting .data. In this case we create a phantom D node. This node has exactly one dependency (to the forward
C node) and one user (the backward C node).

By inspecting forward execution and backward when requires grad is set, we obtain the memory and time attributes of
all the mentioned nodes. Finally, there is another special C node . It applies to everything related to loss. The special loss
C node depends on the model’s output data D node and is required by the model’s output grad D node. This node has
no code attribute, it is a placeholder to split the final schedule into forward and backward phases. In the rk-Checkmate
generated schedule, the backward part starts as soon as this C node is computed. Furthermore, in rk-Checkmate’s ILP, in
addition to the generation constraint: memory allocated < Mpeak, we can control that at the moment when the special
loss node is computed, memory allocated < Msave.

Let us conclude with two final remarks

• In addition to actual and fake edges, we introduce global edges. For example, the first C nodes of a block global
depend on the data D node of the previous block. These edges assist the final code generator. Using these edges, we
have the entire forward +backward graph.

• Measuring GPU memory usage with cuda is accurate, but running the same operation twice in different contexts can
result in different amounts of memory being allocated. Therefore, the final execution may allocate more or less memory
than we predicted. This is due to the way cuda allocates memory, trying to minimize memory fragmentation. But it’s
usually very small.

B. rk-Checkmate: ILP details
B.1. Graph and objective

As it was discussed in section 3.3, at block level we find an optimal re-materialization strategy given memory budget via
proposed rk-Checkmate algorithm.

Note that in Checkmate paper, they assume only one output is generated from each operation across the forward and
backward graph. In PyTorch, such an assumption is not feasible in general cases: tensor.grad fn tends to generate the
gradients of all relevant input tensors. Therefore, our rk-Checkmate is based on a graph where each computation node can
produce multiple data nodes. Moreover, if tensor is used in computation of different target’s, tensor.grad may be
generated in any backward node of target.

Input to the rk-Checkmate is a CD graph built by rk-GB. CD graph is a directed acyclic graph, which containts:

21

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

• D data nodes {v1, . . . , vD} and T computational nodes {w1, . . . , wT },

• edges of type vd → wt and wt → vd that show dependencies between computational operations and data. For example,
vd is used to perform computation wt, and computation wt outputs data vd as a result. One computational node can
have several incoming data nodes and vice versa.

To find an optimal re-materialization strategy for one block given memory budget and computation-data dependencies
described with CD graph, we solve an integer linear programming (ILP) problem, which minimizes computational costs
required for propagation through the block given feasibility and memory constraints.

Denote by staget−1→t a period, which starts after the result of computation wt−1 is obtained for the first time and ends
when the computation wt is firstly performed. During one stage several computations from {wt′}t′≤t and deletions might
happen.

The solution of ILP provides a schedule R (low-triangular binary matrix T × T) that determines which computations
should be performed during each stage.

Rt,t′ =

{
1, if we compute wt′ during the staget−1→t

0, otherwise
.

Each stage can be seen as a sequence of steps, such that during one stept′−1→t′ one computation wt′ is done (or not if the
schedule doesn’t require that, i.e. if Rt,t′ = 0) and some tensors are deleted.

Also, the solution of ILP provides an information S about data nodes saved during each stage.

St,(t′,d) =

{
1, if during staget−1→t an output data tensor vd of computation wt′ is saved
0, otherwise

.

Consider all edges in CD graph that connect computation nodes with their children data nodes,

ChildrenOfComp := {(t′, d)| vd ∈ children(wt′), t
′ = 1, . . . , T},

and let their number equals |ChildrenOfComp| = Et→d. Then S can be seen as binary matrix of size T × Et→d.

Thus, given memory budget, ILP finds schedule R,S such that computational costs∑
1≤t′<t≤T

Ct′Rt,t′

are minimized given feasibility and memory constraints (where Ct′ is a cost of computation wt′). Now let us take a
closer look to the constraints.

B.2. Feasibility constraints

Consider all edges in CD graph that connect data nodes with their parent computation nodes

ParentsOfData := {(t′, d)| wt′ ∈ parents(vd), d = 1, . . . , D}

ChildrenOfData := {(t′, d)| wt′ ∈ children(vd), d = 1, . . . , D}

then a set of edges, which connects each data node with its children and parent computation nodes, can be expressed as

ChildrenParentsOfData := ChildrenOfData ∪ ParentsOfData

and let their number equals |ChildrenParentsOfData| = Et→d→t.

Let also introduce a binary matrix P of size T ×D, where

22

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Pt,d =

{
1, if we have data tensor vd in memory after the end of staget−1→t

0, otherwise
.

Note that Pt,d ≥ St,(t′,d)/|parents(vd)|.

The following constraints for ILP should be hold

•
T∑

t=1

T∑
t′=t+1

Rt,t′ = 0: ensures that we can recompute only operations that have been executed during previous stages.

•
∑
e

t′′−1∑
t=1

St,e = 0, where e = (t′′, d), e ∈ ChildrenOfComp: ensures that before the first computation, data cannot

be saved.

•
D∑

d=1

t′∑
t=1

Pt,d = 0, where t′ = min{t′′|wt′′ ∈ parents(vd)}: ensures data tensor vd isn’t stored before the execution of

first coputation that contributes to its value.

•
T∑

t=1
Rt,t = T : ensures that wt is executed at the end of staget−1−>t.

•
T∑

t=1
Rt,tloss = 1, where tloss is an index of node that computes the loss: ensures that the loss is computed only once

during the forward-backward phase.

• St,e ≤ Pt,d, where e = (t′, d) ∈ ChildrenOfComp and t, t′ = 1, . . . , T

• St+1,e ≤ St,e + Rt,t′ , where e = (t′, d) ∈ ChildrenOfComp and t = 1, . . . , T − 1

• Rt,t′ ≤ Rt,t′′ + St,e, where t′ ∈ children(d), e = (t′′, d), e ∈ ChildrenOfComp, and t = 1, . . . T : ensures that all
computations wt′ which are required for generation of data vd are present, where vd is an input data for computation
wt.

B.3. Memory constraints

Let ChildrenOfData[d] denotes a set of indices of computation nodes wt, which requires tensor d.

And let ParentsOfData[d] returns a set of indices of computation nodes wt, which generates tensor d.

We remind that each stage can be seen as a sequence of steps, such that during one step one computation (or not if the
schedule doesn’t require that) and some tensors are deleted.

To represent the presence of certain tensors at different steps stept′−1→t′ of each stage staget−1→t, we introduce the
following variables:

createt,d,t′ ∈ {0, 1},∀t′ ∈ ParentsOfData[d]: whether tensor vd is created during stept′−1→t′ at stage staget−1→t.

deletet,d,t′ ∈ {0, 1},∀t′ ∈ (ParentsOfData[d]+ChildrenOfData[d]): whether tensor d is deleted during stept′−1→t′

at stage staget−1→t.

Let us define expression for t = 1, . . . , T and (t′, d) ∈ ChildrenParentsOfData:

alive[t, d, t′] = Pt,d +
∑
t′′≤t′

createt,d,t′′ −
∑
t′′≤t′

deletet,d,t′′ ∈ {0, 1}.

A tensor vd is either alive or deleted immediately after the computation of parent nodes:

alive[t, d, t′] + deletet,d,t′ ≥ Rt,t′ ,

23

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

A tensor vd is retained during staget−1→t if it is alive during the last posssible step of staget−2→t−1:

alive[t, d, t′] = Pt,d, t
′ = max(ParentsOfData[d], ChildrenOfData[d])

A tensor can only be created from the parent computation:

createt,d,t′ ≤ Rt,t′

A tensor should be deleted if it would not be needed or saved in the current stage:

deletet,d,t′ = Rt,t′ ∗
∏

d′∈att(d)

(1− Pt+1,d′) ∗
∏

t′′∈children(vd)|t′′>t′

(1−Rt,t′′)

No tensor should be alive after the final stage:

alive[T, d, t′] = 0, t′ = max(ParentsOfData[d] + ChildrenOfData[d])

‘’ Let Ut,t′ denotes the memory saved at the end of stept′−1→t′ during staget−1→t and Md is the memory required to store
tensor vd, then

Ut,1 =

D∑
d=1

MdPt,d +

D∑
d=1

Md createt,d,1 −
D∑

d=1

Md deletet,d,1

Ut,t′ = Ut,t′−1 +

D∑
d=1

Md createt,d,t′ −
D∑

d=1

Md deletet,d,t′

The peak memory at stept′−1→t′ during staget−1→t is within memory budget:

tmpMt′Rt,t′ + Ut,t′ +
∑
∀i

Mddeletet,d,t′ ≤Mbudget

where tmpMt′ is the temporary memory overhead needed in the computation node wt′ .

C. rk-Rotor
C.1. Notations

Assume our model is a sequence of L blocks, numbered from 0 to L− 1. For each block, we have 1 + B budget options,
where option 0 does not save any intermediate data, and each of the other B options saves a different amount of data. We
denote by F o

i the forward computation of block i with option o, and if o > 0, Bo
i is the corresponding backward computation.

Since F 0
i does not store any intermediate data, we consider that it does not have a corresponding backward computation.

The input activation of Fi is xi, and its output is xi+1. Similar to the Rotor paper (Beaumont et al., 2019b), for each option
o > 0, we denote by x̄o

i the union of xi and of all the intermediate data generated by F o
i . For ease of notation, we will also

use xi and x̄o
i to denote the size of the corresponding data.

For any computation, we use tmp(·) to denote the temporary memory usage of this computation: this is the amount of
memory that needs to be available for this computation to succeed, and that is released afterwards. We also use r(·) to
denote the running time of an computation. As an example, since the input and output data need to be in memory, the
memory usage for running F 0

i is xi + xi+1 + tmp(F 0
i), and this takes time r(F 0

i).

C.2. Formulation

We denote by Opt(s, t,m) the optimal execution time for computing the sequence from block s to block t, assuming that
the input xs will be kept in memory. There are two possible cases for the start of this computation:

24

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

• If block s is only computed once in this sequence, then it is computed with one of the F o
i options for o > 0 so that it

is possible to perform the backward computation. This requires to have at least tmp(F o
i) available memory for the

forward and at least tmp(Bo
i) available for the backward. The corresponding execution time is r(F o

i) + r(Bo
i), and

the memory available for the rest of the computation is m− x̄o
i . The best choice is given by:

Opt1(s, t,m) = min
valid option o

r(F o
i) + r(Bo

i) + Opt(s, t,m− x̄o
i) (1)

In this equation, an option is considered valid if the temporary memory requirements for the forward and backward
computations are satisfied.

• If block s is computed more than once, then its first computation does not need to keep any intermediate data. It is thus
computed with F 0

s , and the choice now is about which is the next activation to be kept in memory. Let us denote by i
the index activation kept in memory, so that activations xs+1, xs+2, . . . , xi−1 are discarded just after being used. It is
possible to compute xi by performing F 0

s , F
0
s+1, . . . , F

0
i−1. Once this activation is computed and stored in memory,

optimizing the rest of the computation becomes a subproblem: we need to compute the optimal execution time from
block i to t. Afterwards, since no activation was stored between blocks s and i, this corresponds to another subproblem,
from s to i. The best choice is given by:

Opt2(s, t,m) = min
valid choice i with s < i < t

r(F 0
s) + r(F 0

s+1) + · · ·+ r(F 0
i−1) + Opt(i, t,m− xi) + Opt(s, i,m) (2)

In this equation, a choice is considered valid if the temporary memory requirements for all computations
F 0
s , F

0
s+1, . . . , F

0
i−1 are satisfied.

In both cases, if there is no valid choice, the corresponding min value is considered to be +∞. Finally, the optimal decision
for our problem is computed with:

Opt(s, t,m) = min
(
Opt1(s, t,m),Opt2(s, t,m)

)
(3)

Additionally, if s = t + 1, only the first case can be considered, but this time the rest of the computation is empty. We can
thus compute Opt(s, s+ 1,m) for all s and all m. The resulting algorithm is close to the Rotor algorithm, using the updated
equation (1), and is provided in Algorithm 2.

Algorithm 2 rk-Rotor for L blocks with memory m.
1: for m = 1, . . . ,M do
2: for k = 1, . . . , L do
3: for s = 1, . . . , L + 1− d do
4: Compute Opt(s, s + k,m) with equation (3)
5: end for
6: end for
7: end for
8: return rk-Rotor-Build(Opt, 1, L + 1,m− x0) {Alg. 3}

25

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

Algorithm 3 rk-Rotor-Build(Opt, s, t,m) – Computation of the schedule
if Opt(s, t,m) =∞ then

return Infeasible
else if s = t + 1 and Opt(s, t,m) = Opt1(s, t,m) with option o then

return (F o
s , B

o
s)

else if Opt(s, t,m) = Opt2(s, t,m) with choice i (equation (2)) then
return (F 0

s , F
0
s+1, . . . , F

0
i−1, rk-Rotor-Build(Opt, i, t,m− xi), rk-Rotor-Build(Opt, s, i,m))

else
o← option such that Opt(s, t,m) = Opt1(s, t,m) (equation (1))
return (F o

s , rk-Rotor-Build(Opt, s + 1, t,m− x̄o
s), Bo

s)
end if

D. rk-Exec
Rockmate’s final re-materialization schedule is a list of operations, either compute or forget. rk-Exec takes care of executing
this schedule properly. It creates a new nn.Module that produces exactly the same results (both data and gradients) while
respecting the requested budget. The schedule given to rk-Exec refers to C nodes and D nodes.

D.1. Computation

Remember that a C node consists of a main assignment that creates the .data, and a body code that contains secondary
statements about shapes, views, and in-place operations. By default in PyTorch, during forward execution, autograd puts
in output’s grad fn all the information needed to go back directly from the loss to input’s gradients. The principle of
memory saving is to control the backward and how intermediate activations are saved. To prevent autograd from creating
the whole computational graph in output’s grad fn, rk-Exec detach each tensor after computing it, so that grad fn only
keeps track of the last operation. Consider the following example

a = torch.linear(input,...) ;
b = torch.relu(a) ;
c = b.view(...) ;
d = torch.linear(c,...) ;
d.relu(inplace=True) ;
e = d.view(...)
output = torch.add(c,e) ;
For the forward we have :

• For C node a
a = torch.linear(input,...) ;
a = a.detach().requires grad () ;

• For C node b, viewing operations are done after detach
b = torch.relu(a) ;
b = b.detach().requires grad () ;
c = torch.Tensor.view(b,...)

• For C node d, in-place operations are done before detach
d = torch.linear(c) ;
fv1 = torch.relu (d) ;
d = d.detach().requires grad () ;
fv1 = d ;
e = torch.Tensor.view(fv1,...)

• For C node output
output = torch.add(c,e)

26

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

We always name with an underscore the variable before detaching, we call it the proxy. Based on this the backward
computation is:
<var name>.backward(<var name>.grad)

D.2. Deletions

Remember that there are three types of D nodes:

• To free a tensor.data, we assign all views that refer to it to torch.empty(0). In the example above, to free
d’s data D node we set d.data, fv1.data and e.data to 0. But as mentioned in the rk-GB appendix, this also
includes views that are stored in users’ grad fn as saved tensors. For example, to free b’s data D node you must
perform
d.grad fn.next functions[0][0]. saved mat1 = torch.empty(0)

• To free a phantoms D node we just need to perform
del <var name>
It will delete the grad fn, but the variable defined by the detach operation (<var name>, without the underscore)
will keep the tensor.data alive. So we just forget about the phantoms.

• To release a grad D node, all we need is
<var name>.grad = None

D.3. Recomputation

To recompute a C node rk-Exec reassign the proxy, but we do not detach again. Since the variable post-detach could be
mentioned directly in its user grad fn. We simply reassign the data attribute. In the example above, to recompute C node
we do:
d = torch.linear(c) ;
fv1 = torch.relu (d) ;
d.data = d.data ;
fv1.data = d.data ;
e.data = torch.Tensor.view(fv1,...)
Furthermore, since re-materialization is the opposite of forgetting, we need to reassign the data attribute of all views,
including the saved tensors that refer to them. Recomputing the phantoms and grad is trivial.

Last issues

• In the graph produced by rk-GB we introduced the notion of real and fake dependencies, they imply several tricks in
rk-Exec. See the last part of the rk-GB appendix for explanations.

• To generate the code correctly, we compile the list of operations described in the schedule. That is, we generate the
code one by one, but we keep track of which tensors are alive to avoid any if statements if the final code. For example,
when we need to reassign all the views of a tensor in users grad fn, we know which users are alive.

• Rockmate manipulates code that are either string or Python AST object we can execute. Therefore, rk-Exec generate a
list of strings to execute. Then we can generate a big string code for the forward, and one for the backward, finally we
use Python compile function to execute these functions without wasting time on parsing the string.

• We take care of random operations, in particular to be able to recompute a random function deterministically, we store
random states on the first computation and restore them when needed.

• Note that sometimes, due to the float approximation precision, the results obtained from the original module and the
new one may be a little different. But they are as close as running the original module twice. With torch.float64
precision there are always strictly equal on the model we tested.

27

Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch

E. Detailed experiments on GPT2

Model Input size Algorithm Budget (GiB) Peak mem Makespan Makespan
(GiB) mean (ms) std (ms)

GPT2-large (2, 512) PyTorch MGPU 6.708 457.173 1.207
GPT2-large (2, 512) Rotor 0.850 0.846 593.507 1.789
GPT2-large (2, 512) Rockmate 0.850 0.816 564.041 1.378
GPT2-large (2, 512) Rotor 2.800 2.360 522.163 0.889
GPT2-large (2, 512) Rockmate 2.800 2.741 481.650 0.992
GPT2-large (2, 512) Rotor 7.600 6.515 456.971 1.255
GPT2-large (2, 512) Rockmate 7.600 6.516 465.376 0.985
GPT2-large (4, 256) PyTorch MGPU 5.158 432.646 1.207
GPT2-large (4, 256) Rotor 0.850 0.808 561.066 1.791
GPT2-large (4, 256) Rockmate 0.850 0.795 531.255 0.732
GPT2-large (4, 256) Rotor 1.800 1.473 526.807 1.402
GPT2-large (4, 256) Rockmate 1.800 1.745 486.976 1.305
GPT2-large (4, 256) Rotor 5.600 4.690 439.797 1.451
GPT2-large (4, 256) Rockmate 5.600 4.967 440.410 1.469
GPT2-medium (2, 1024) PyTorch MGPU 10.782 480.330 0.975
GPT2-medium (2, 1024) Rotor 1.000 1.188 751.478 1.070
GPT2-medium (2, 1024) Rockmate 1.000 0.994 619.055 1.012
GPT2-medium (2, 1024) Rotor 4.000 3.351 558.858 1.208
GPT2-medium (2, 1024) Rockmate 4.000 3.941 516.758 0.899
GPT2-medium (2, 1024) Rotor 11.600 10.326 494.043 1.097
GPT2-medium (2, 1024) Rockmate 11.600 10.582 490.490 0.924
GPT2-medium (4, 512) PyTorch MGPU 7.407 430.596 1.206
GPT2-medium (4, 512) Rotor 1.000 1.188 658.736 1.105
GPT2-medium (4, 512) Rockmate 1.000 0.986 547.343 0.873
GPT2-medium (4, 512) Rotor 2.000 1.824 532.637 1.686
GPT2-medium (4, 512) Rockmate 2.000 1.988 497.298 0.833
GPT2-medium (4, 512) Rotor 7.600 6.664 445.434 0.710
GPT2-medium (4, 512) Rockmate 7.600 7.207 440.769 1.410

28

