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Abstract
Structured variational autoencoders (SVAEs)
(Johnson et al., 2016) combine probabilistic
graphical model priors on latent variables, deep
neural networks to link latent variables to ob-
served data, and structure-exploiting algorithms
for approximate posterior inference. These mod-
els are particularly appealing for sequential data,
where the prior can capture temporal dependen-
cies. However, despite their conceptual elegance,
SVAEs have proven difficult to implement, and
more general approaches have been favored in
practice. Here, we revisit SVAEs using modern
machine learning tools and demonstrate their ad-
vantages over more general alternatives in terms
of both accuracy and efficiency. First, we develop
a modern implementation for hardware accelera-
tion, parallelization, and automatic differentiation
of the message passing algorithms at the core of
the SVAE. Second, we show that by exploiting
structure in the prior, the SVAE learns more ac-
curate models and posterior distributions, which
translate into improved performance on prediction
tasks. Third, we show how the SVAE can natu-
rally handle missing data, and we leverage this
ability to develop a novel, self-supervised train-
ing approach. Altogether, these results show that
the time is ripe to revisit structured variational
autoencoders.

1. Introduction
Variational autoencoders (VAEs, Kingma and Welling, 2013;
Rezende et al., 2014) are deep generative models that use
neural networks to link latent variables to high dimen-
sional observations. Structured variational autoencoders
(SVAEs) (Johnson et al., 2016) use probabilistic graphical
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models to capture dependencies in the prior distribution over
latent variables. For example, when working with sequen-
tial data, graphical models can capture latent dynamics (Kr-
ishnan et al., 2015; Archer et al., 2015). When domain
knowledge is available, graphical models offer an expressive
means of incorporating it (Pandarinath et al., 2018; Lopez
et al., 2018). When inferring the posterior distribution over
latent variables, graphical models offer an ancillary benefit:
SVAEs can leverage the rich toolkit of message passing
algorithms for graphical models (Wainwright et al., 2008)
to aid in approximate inference.

Specifically, the SVAE leverages a structure-exploiting
amortized variational inference algorithm. Rather than pro-
ducing a full posterior distribution over latent variables, the
recognition network (also referred to as an encoder) outputs
conjugate potentials. When the prior is composed of expo-
nential family distributions, the conjugate potentials can be
combined with the prior using message passing algorithms
to obtain an approximate posterior. Essentially, the SVAE
learns to approximate complex deep generative models with
simpler exponential family models where fast and efficient
algorithms can be applied.

Despite their conceptual elegance, two issues have lim-
ited the adoption of SVAEs. The first is that the structure-
exploiting inference algorithm is difficult to implement in
practice, requiring gradients through message passing algo-
rithms and fixed-point iterations. The second is a more basic
question: what is the value of structure-exploiting amortized
inference when we can construct arbitrarily flexible recogni-
tion networks? In practice, some methods retain a structured
prior but use more general recognition networks (Krishnan
et al., 2015; Dilokthanakul et al., 2016; Casale et al., 2018).
Other methods use more flexible priors as well; e.g., sequen-
tial latent variable models often leverage recurrent neural
network priors (e.g. Chung et al., 2015; Karl et al., 2016;
Buesing et al., 2018; Pandarinath et al., 2018; Kosiorek
et al., 2018; Hafner et al., 2019; Saxena et al., 2021)

In this work we address both of these concerns. First, we de-
velop a modern implementation of the SVAE that is fast and
scalable with CPU, GPU, or TPU hardware. We show how
the SVAE can leverage parallel message passing algorithms
to obtain orders of magnitude speedup over less structured
alternatives. Second, we study SVAEs for sequential data
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Figure 1: Different recognition network architectures for sequential VAEs. (a) In the structured variational autoen-
coder (SVAE), a neural network outputs recognition potentials ψt for each time step, which are combined with the prior
parameters θ via a message passing algorithm (e.g. Kalman smoothing) to form the variational posterior q(x1:T ). Note that
although ψt only depends on yt, the posterior has correlations across time due to message passing. (b) In the mean field
RNN recognition (RNN-MF) posterior family, a bi-directional RNN carries information forwards and backwards in time,
generating a mean field variational posterior. (c-e) Temporal dependencies in the posterior can be captured with linear (c)
or nonlinear (d) autoregressive dependencies that, again, depend on the outputs of a bi-directional RNN. This temporal
dependency can also be approximated with a temporal CNN network with a finite kernel size (e).

and demonstrate many advantages over more commonly
used alternatives. We show that structure-exploiting infer-
ence yields more accurate posterior approximations. These
improvements lead to better model learning and more ac-
curate prediction, especially with higher dimensional latent
states and in lower signal-to-noise regimes. Finally, we
highlight how SVAEs can naturally handle missing data,
which motivates a novel, self-supervised training regimen to
further improve model learning and predictive performance.
With a modern implementation and multiple improvements,
it is time to revisit structured variational autoencoders.1

2. Background
We begin with an introduction to structured variational au-
toencoders (SVAEs) (Johnson et al., 2016), with a particular
emphasis on modeling sequential data. We then contrast
the SVAE with more commonly used VAEs for sequential
data, which use more general approaches to approximate
posterior inference.

2.1. Structured Variational Autoencoders

The SVAE (Johnson et al., 2016) is both a modeling idea
and an inference idea. The modeling idea has been indepen-
dently proposed many times: to combine structured prior
distributions on latent variables with complex dependen-
cies implemented using deep neural networks (Khan and
Lin, 2017; Archer et al., 2015; Klushyn et al., 2019; Ko-
siorek et al., 2018; Burgess et al., 2019; Greff et al., 2017;
Van Steenkiste et al., 2018; Greff et al., 2019, e.g.). The
inference idea is more unique. Like standard variational
autoencoders (Kingma and Welling, 2013), the SVAE uses

1Our implementation of the SVAE is available at https://
github.com/lindermanlab/SVAE-Revisited.

a recognition network to aid in inferring the latent variables.
But rather than producing the full posterior, the SVAE recog-
nition network only produces conjugate potentials. The
conjugate potentials are combined with the prior, and the
posterior is computed using classical message passing algo-
rithms (Wainwright et al., 2008).

For example, consider an SVAE with a linear Gaussian
dynamical system prior (LDS-SVAE) for sequential data.
The generative model specifies a joint distribution over a
sequence of latent variables x1:T and emissions y1:T ,

pθ,γ(x1:T , y1:T ) = pθ(x1)

T∏
t=2

pθ(xt | xt−1)

T∏
t=1

pγ(yt | xt),

where θ are the prior parameters and γ are the parameters
of the decoder. The prior is a linear dynamical system,

pθ(x1) = N (x1;µ1, Q1),

pθ(xt | xt−1) = N (xt;Axt−1, Q),

where θ = (µ1, Q1, A,Q). However, the emission distri-
bution, pγ(yt | xt) = N (yt; fγ(xt), R), may be nonlinear,
since fγ(·) can be parameterized with a neural network with
weights γ.

The SVAE parameters are learned by maximizing an evi-
dence lower bound (ELBO),

L(θ, γ, ϕ) = Eqθ,ϕ(x1:T ;y1:T )

[
log pθ,γ(x1:T , y1:T )

− log qθ,ϕ(x1:T ; y1:T )
]
≤ log pθ,γ(y1:T ),

where qθ,ϕ(x1:T ; y1:T ) is a variational posterior distribution
that is determined by both the variational parameters ϕ and
the prior parameters θ.
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The SVAE defines the variational posterior in a clever way.
It defines the posterior as the implicit solution to a surrogate
variational inference problem,

qθ,ϕ(x1:T ; y1:T ) = argmin
q̃∈Q

KL (q̃(x1:T ) || p̃θ,ϕ(x1:T ; y1:T )) .

The target, p̃θ,ϕ(x1:T ; y1:T ), combines the prior with conju-
gate potentials, ψϕ(xt; yt), from the recognition network,

p̃θ,ϕ(x1:T ; y1:T ) ∝ pθ(x1)

T∏
t=2

pθ(xt | xt−1)

T∏
t=1

ψϕ(xt; yt),

ψϕ(xt; yt) = N (xt;mϕ(yt), Vϕ(yt)).

Here, mϕ(yt) and Vϕ(yt) are the mean and covariance
of a Gaussian potential output by a neural network with
weights ϕ.

The key is that the surrogate inference problem is easy by
design. Since the target is the product of a linear Gaussian
prior and conjugate Gaussian potentials, the surrogate prob-
lem admits an exact solution via the Kalman smoother, a
classic message passing algorithm. Figure 1a illustrates this
structured-exploiting amortized inference approach.

The SVAE exploits structure in the prior distribution by
incorporating it into the target and only learning to produce
conjugate potentials. If the conjugate potentials are good
approximations to the likelihoods, pγ(yt | xt), the solution
to the surrogate problem will approximate the true posterior.

The principal challenge in implementing an SVAE — and
we suspect the main reason why it has not been more widely
adopted — is that maximizing the ELBO requires comput-
ing gradients of the implicitly defined variational posterior
with respect to the prior and variational parameters. In
the case of the linear Gaussian prior above, this amounts
to back-propagating gradients through a Kalman smoother.
More generally, it may require back-propagating gradients
through inference algorithms like coordinate-ascent varia-
tional inference (Blei et al., 2017).

2.2. Alternative Inference Approaches for Sequential
VAEs

A simpler and more commonly used approach is to have
the recognition network output the full posterior directly. A
canonical example of this approach is the deep Kalman filter
(DKF) (Krishnan et al., 2015). DKFs are deep generative
models for sequential data, allowing for nonlinear latent
variable dynamics and emissions. For posterior inference,
the key difference is that in a DKF, the encoder is a bidirec-
tional recurrent neural network (RNN) that directly maps
the data y1:T to a variational posterior,

qϕ(x1:T ; y1:T ) =

T∏
t=1

N (xt;mϕ,t, Vϕ,t),

where {mϕ,t, Vϕ,t}Tt=1 are the means and covariances out-
put by a bidirectional RNN with weights ϕ running over
the data y1:T . We call this the RNN-MF posterior family
(fig. 1b), since the RNN outputs a mean-field (i.e., indepen-
dent) posterior.

It is straightforward to extend this family to include temporal
dependencies,

qϕ(x1:T ; y1:T ) =

N (x1;mϕ,1, Vϕ,1)

T∏
t=2

N (xt;Aϕ,txt−1 +mϕ,t, Vϕ,t),

where {mϕ,t, Aϕ,t, Vϕ,t}Tt=1 are outputs of a bidirectional
RNN with weights ϕ, and their dependence on the input
data y1:T is omitted. We call this the RNN-AR-L poste-
rior family (fig. 1c), since it extends the RNN-MF family
with linear autoregressive dependencies. Though we do not
know of examples where this family has been used, it is of
theoretical interest for our experiments since it contains the
true posterior for linear Gaussian state space models.

A more commonly used posterior approximation is,

qϕ(x1:T ; y1:T ) = N (x1;mϕ,1, Vϕ,1)

×
T∏

t=2

N (xt; gϕ(x1:t−1, uϕ,t), Qϕ(x1:t−1, uϕ,t)),

where g and Q are neural networks, and {uϕ,t}Tt=1 are the
outputs of a bidirectional RNN. This RNN-AR-NL poste-
rior family (fig. 1d) extends the one above by allowing non-
linear autoregressive dependencies. For example, this style
of posterior is used in LFADS (Pandarinath et al., 2018), a
sequential VAE for modeling neural spike train data. A sim-
ilar posterior family is employed by PlaNet (Hafner et al.,
2019), a deep architecture for model-based planning from
image data.

Of course, the RNNs could be replaced with other ar-
chitectures as well, like convolutional neural networks
(CNNs) (Bai et al., 2018), Transformers (Vaswani et al.,
2017), or state space layers (Gu et al., 2021; Smith et al.,
2022) for sequence-to-sequence mapping. As another base-
line, we consider a CNN recognition network with fixed-
sized convolution kernels over the time dimension, paired
with the linear Gaussian posterior. We call this the CNN-
AR-L posterior family (fig. 1e). While temporal CNNs are
limited by the finite kernel size, they can still offer effec-
tive means of capturing temporal dependencies (Bai et al.,
2018).

3. Modernizing the SVAE
We revisit the SVAE with three contributions that address
the challenges that limited the original work:
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• We provide a JAX implementation that’s modular and
easy to use.

• We leverage parallel Kalman filtering and smoothing
for significant speed-ups on parallel hardware.

• We propose a simple self-supervised scheme for learn-
ing latent dynamics that plays into the strengths of the
SVAE in handling missing data.

3.1. Efficient JAX Implementation

When the SVAE was first proposed, it did not see much prac-
tical usage because of its inherent complexity of implemen-
tation and the lack of hardware acceleration in the original
implementation. With the advent of JAX (Bradbury et al.,
2018), a Python library allowing automated compilation for
efficient gradient computation through arbitrary composi-
tions of functions, the barriers to implementing sophisticated
algorithms like those in the SVAE are lowered significantly.
Furthermore, the GPU and TPU support provided by JAX
makes training more efficient. The JAX ecosystem provides
libraries like JaxOpt (Blondel et al., 2022) for automatic
implicit differentiation, and Dynamax (Chang et al., 2022)
for message passing in probabilistic state space models. In
this work we provide a JAX implementation of SVAEs for
sequential data, enabling fast and flexible model building
and training.

3.2. Parallel Message Passing

In this section we introduce a strategy for efficiently paral-
lelizing SVAE inference with a linear Gaussian dynamical
system prior that can also be applied more generally. In the
LDS-SVAE described above, the variational posterior is ob-
tained by a Kalman smoother. Standard implementations of
the algorithm use a forward-backward recursion, with com-
plexity that is linear in the length of the time series (Särkkä,
2013). However, this seemingly sequential algorithm can
be efficiently parallelized by casting the process of forward
filtering and backward smoothing/sampling as an associa-
tive operation on Gaussian distributions. We can leverage
the prefix sum algorithm for parallel computational span
that is only logarithmic in sequence length (Särkkä and
García-Fernández, 2020).

To illustrate the idea behind this, consider the following
linear Gaussian chain as a simple case:

x1 ∼ N (b1, Q1), xt | xt−1 ∼ N (Atxt−1 + bt, Qt).

To compute p(xT ), note that the linear Gaussian model
implies Gaussian marginals, p(xt) = N (xt;µt,Σt) for
some mean µt and covariance Σt. The naive idea would
be to start from µ1 = b1, Σ1 = Q1 and iterate over t,
marginalizing the xt’s one at a time:

µt = Atµt−1 + bt, Σt = AtΣt−1A
⊤
t +Qt,

which seems like an inherently sequential process. Writing
out another iteration, we see more structure to the problem:

µt+1 = At+1µt + bt+1

= A[t,t+1]µt−1 + b[t,t+1]

Σt+1 = At+1ΣtA
⊤
t+1 +Qt+1

= A[t,t+1]Σt−1A
⊤
[t,t+1] +Q[t,t+1],

where A[t,t+1] = At+1At, b[t,t+1] = At+1bt + bt+1, and
Q[t,t+1] = At+1QtA

⊤
t+1 +Qt+1.

The crucial observation is that this process of marginaliza-
tion is closed and associative: the composition of two linear
Gaussian conditional distributions gives another linear Gaus-
sian conditional distribution, and the order of compositions
does not affect the result. Instead of iterating on the means
and covariances, we keep track of the parameters of the
conditional distribution at ≡ (At, bt, Qt), and define the
following associative operator ⊗ on them:

(Ai, bi, Qi)⊗ (Aj , bj , Qj) ≡ (A[ij], b[ij], Q[ij])

where


A[ij] = AjAi

b[ij] = Ajbi + bj

Q[ij] = AjQiA
⊤
j +Qj

Notice that here the subscripts represent subsequences of
(1, 2, . . . , T ), and we used [ij] to represent a concatenation
of subsequences i and j. It is easy to see that µt = b1:t and
Σt = Q1:t. More importantly, the associative nature of the
operation allows us to compute a1:t for all t ∈ [1, T ] in par-
allel, via the well-known prefix-sum algorithm (Ladner and
Fischer, 1980). Dynamax offers convenient JAX implemen-
tations of parallel Kalman filtering and smoothing (Chang
et al., 2022), enabling SVAE inference and training to have
logarithmic parallel span. That is, the computation can be
performed in O(log T ) time on a parallel machine.

3.3. Self-supervised Learning and Missing Data

As observed in previous works, learning accurate dynamics
from high-dimensional observations is a non-trivial task for
latent variable generative models (Karl et al., 2016; Klushyn
et al., 2021). Practitioners often explicitly define losses
based on current model extrapolations and true future ob-
servations. While this is an effective strategy, it is also a
departure from the standard generative modeling approach.

To train a sequential generative model to learn accurate dy-
namics, we use a simple self-supervised training method
inspired by (Kenton and Toutanova, 2019). During each
training iteration, we apply a random mask to the input data
that zeros out a continuous subsequence of observations.
Since the model is required to reconstruct the original un-
masked data, it must rely on its learned dynamics to fill in
the missing observations.
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Figure 2: Top results on the LDS dataset. Performance
between different methods is on par for most regimes, with
the SVAE consistently achieving the best performance. La-
tent dimension size and SNR are 5 and 0.1 for the top and
bottom plots respectively.

The SVAE has a unique advantage with this self-supervised
scheme due to its structured approach to inference. Since
each observation produces a separate conjugate potential,
we can apply the mask by simply dropping the correspond-
ing potentials (or equivalently, taking the potential covari-
ance to infinity). This is a principled way to accommodate
missing data in the SVAE and force it to rely on prior dy-
namics.

In practice, we found that masking out as much as 40% of
the input sequence encourages learning of the dynamics.
We train all SVAE instances with masks applied throughout
training, and we will show it yields substantial increase in
predictive performance. For RNN and CNN-based models,
however, removing such a large chunk of data at the be-
ginning of training can be disastrous, resulting in posterior
collapse (Lucas et al., 2019a).

4. Results
4.1. Linear Dynamical System Dataset

We first test all of the inference architectures from Section
2 on toy datasets sampled from randomly generated linear
dynamical systems. We test accuracy of the learned models
under different state and observation dimensions, as well as
different signal-to-noise (SNR) ratios.
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Figure 3: Wallclock time per iteration of the different meth-
ods on a Tesla T4 GPU. The SVAE with parallel scan
achieves nearly ten-fold speedup to the faster RNN meth-
ods.

Dataset We consider the following linear dynamical sys-
tem with stationary dynamics:

x1 ∼ N (0, Q1),

xt | xt−1 ∼ N (Axt−1 + b,Q),

yt | xt ∼ N (Cxt, R),

for t ∈ [1, T ], where xt ∈ RD and yt ∈ RN . Furthermore,
we sample A as a rotation around a random axis in the D-
dimensional latent space and set Q = qI , R = rI to be
diagonal covariance matrices.

We test the different recognition network architec-
tures under three different noise scale combinations
(q, r) ∈ {(0.1, 0.1), (0.1, 1.0), (0.01, 10.0)} and three di-
mensionality settings (D,N) ∈ {(3, 5), (5, 10), (10, 20)}.
We define the SNR as q/r.

For all of the parameter settings, the sequence length is 200
frames and we sample 100 sequences as the training data.

Model architecture For the SVAE, we use one linear
layer with two linear readouts for the mean and covariance
of the potential, since we know that the optimal recognition
potential for LDS data is linearly related to the inputs. For
the RNN models, we use various different recurrent state
sizes H ∈ {10, 20, 30}, and we also add one to two hidden
layers with ReLU nonlinearity to the output headsAϕ,t, bϕ,t
and Vϕ,t. For RNN-AR-NL we implement the nonlinear
conditional distribution as a gated recurrent unit (GRU)
cell. For CNN-AR-L, we use a 3-layer architecture with 32
features in each layer, and convolution kernels in the time
dimension of sizes up to 50 timesteps. We use the same
decoder network for all of the models, which is a one layer
linear network with linear readouts for the output mean and
covariance.
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Null model To have a basis for comparison for the SVAE
and RNN-based methods, we establish a static baseline
model:

pst(x1:T , y1:T ) =
∏
t

pθ̂t(xt)pγ̂t
(yt | xt),

where pθ̂t(xt) = N (xt; 0, Q̂t) is the marginal distribution
of xt and pγ̂t(yt|xt) = N (yt;Cxt, R) is the emissions
distribution under the true model. Since both terms are linear
and Gaussian, the marginal distribution of the static model
is pst(y1:T ) =

∏T
t=1 N (yt; 0, Q̂+ CRC⊤). This baseline

is the best ELBO achievable by a “static” model, e.g. a VAE
that treats each of the latent variables as independent across
time. Intuitively, the noisier the observations, the harder it is
for the models to learn the dynamics. Therefore, we expect
the learned models to outperform the static baseline by a
smaller margin in these regimes.

Results We perform hyperparameter search for all of the
methods and show the best ELBO achieved in figure 2. We
normalize the ELBO by looking at the percentage of the
gap covered between the marginal data log likelihood under
the null model pst(y1:T ) and the true model ptrue(y1:T ).
Overall, the SVAE is the most consistent and achieves the
highest ELBO. Unsurprisingly, we notice that low SNR and
high dimensionality negatively impact model performance,
resulting in decreased performance for all methods, with the
SVAE being the least impacted. Note that these trends also
scale higher dimensions, which we explore in Appendix A.

4.2. Computational Efficiency of SVAE with Parallel
Kalman Filtering

Here we examine the practical benefits of the parallel
Kalman filter in the SVAE. We run all of the methods on
synthetic LDS data with three-dimensional latent states and
five-dimensional observations. We scale up the sequence
length and measure the wallclock time it takes for each
method to complete an iteration over a batch of ten se-
quences on a Tesla T4 GPU. For the RNN and CNN-based
methods, we use the same architecture as Section 4.1 with
ten-dimensional latent states for the RNNs and a kernel size
of 10 for the CNN.

The results are shown in figure 3. While we do not achieve
the theoretical efficiency of O(log T ) in sequence length T
due to practical limits on the amount of parallel resources
units available, the SVAE still obtained almost ten-fold
speedup over the mean-field and autoregressive RNN meth-
ods. Unsurprisingly, the nonlinear autoregressive RNN is
the slowest, with an additional RNN for sequential sampling
from the posterior alongside the sequential BiRNN infer-
ence network. The CNN-AR-L is slightly faster than the
SVAE but follows the same trend, however with finite kernel
size it cannot capture the same temporal dependencies.

4.3. Synthetic Pendulum Dataset

It is perhaps no surprise that the SVAE performs well on
data generated from the same prior class with linear emis-
sions. In general, we are more interested in the value of
SVAEs in more complex settings, where the emissions are
high dimensional and nonlinear. Furthermore, it would be
interesting to see the SVAE perform in a regime where the
dynamics are nonlinear.

We apply the SVAE and the RNN methods to the synthetic
pendulum dataset adapted from Schirmer et al. (2022). A
24 × 24 pixel movie of a swinging pendulum is rendered
with noise, and the task is to learn the underlying low-
dimensional dynamics in an unsupervised fashion. We take
regularly spaced observations of the pendulum and apply
uniform Gaussian noise stationary across time to each pixel.
Since the true physical state (angle and angular momentum)
of the pendulum can be described in a two-dimensional
state space, we use models with small latent dimensionality
D ∈ (2, 3, 5). It is important to note that for most of this
dataset the small-angle approximation does not apply, and
therefore the underlying dynamics are nonlinear.

One challenge in learning dynamics is that angular velocity
information is missing from the individual frames. Since the
pendulum observations exist in a one-dimensional manifold,
the models do not need dynamics information to be able to
reconstruct the observations. To encourage the models to re-
cover the underlying dynamics, we apply the self-supervised
masking introduced in Section 3.3 to all of the models. We
found that RNN-based recognition networks failed to learn
accurate models when significant masking was used in early
stages of training; thus, we gave these architectures full
observations for the first 10-100 epochs before applying the
masks. For the SVAE, we found it trained reliably even
with masks applied from the start. This is likely due to the
inference algorithm of the SVAE, which allows it to handle
missing data in a principled way. We compare the results of
the SVAE, RNN-AR-L and RNN-AR-NL on 100 sequences
of pendulum renderings, each with 100 frames. We pick
the top five runs in ELBO on the test set and analyze the
learned models. The achieved ELBO values with and with-
out the self supervised masking is reported in appendix B.
The SVAE achieves comparable ELBO values to other meth-
ods, but its learned models yield better representations of
the data dynamics, as we show next.

SVAE learns linearly decodable representations We
find that the true physical states of the pendulum can be
linearly decoded from the latent states inferred by the SVAE.
Figure 4 shows R2 values of a linear regression from the
learned latents to true angles and angular velocities. Across
different latent sizes, the SVAE admits representations that
are more linearly related to the true physical states. Note
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Figure 4: SVAE learns representations of pendulum data that are informative about the dynamics. We run linear regression
from the latent representations to the true pendulum angles (left) and angular velocities (right) and report the R2 values.
Notably, the SVAE is the only method that learns a representation of angular velocity with 3 dimensional latents.

that none of the models are able to encode information about
angular velocity given two-dimensional latents, while the
SVAE is able to explain almost all of the variance in angular
velocity given an additional dimension.

Model performance on prediction Given the first 50
frames of a test sequence, We forecast latent states with
the learned dynamics model pθ(xt+1 | xt) and estimate the
log marginal likelihood of true data log p(y51:100 | y1:50)
by approximating the integral over future latent states with
Monte Carlo. Across different latent space sizes, the SVAE
yields higher likelihoods for future data (fig. 5). Given the
linear decodability of the SVAE latents, we also visualize an
example predicted trajectory of angles and angular velocities
in figure 5.

We show sample predictions in the image space in figure 6.
To show how the models represent uncertainty in their pre-
dictions, we sample 200 latent trajectories {x(i)1:T }200i=1 of
length T = 100. We train on the first 50 time steps and
forecast the last 50. Fig. 6 shows both the most accurate
predictions and the average predicted frames. While the best
prediction from the RNN-AR-L are sharp and reasonably ac-
curate, the average prediction quickly becomes diffuse. The
SVAE, on the other hand, is able to maintain its spread over
angular positions throughout the sequence, demonstrating
the accuracy of its learned dynamics model.

This pendulum example would not be possible with the ex-
isting, pure Python SVAE implementation, since it requires
convolutional neural networks for generating the recogni-
tion potentials and implementing the decoder. With our JAX
implementation, the model can be trained on a single GPU
in tens of minutes. The promising results on this image
forecasting task suggest that the SVAE can be a valuable
model for more complex, high-dimensional time series as
well.
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Figure 5: SVAE yields better predictive performance. We
sample many latent trajectories from the learned dynamics
and estimate the marginal log likelihood of the future 50
frames give the past 50 frames (top). Given the linear regres-
sion weights, we can make predictions in the phase space of
the pendulum (bottom). Each shade in the plot corresponds
to one standard deviation.
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Figure 6: Sample model predictions for pendulum data in image space. For all of the models, we show both the average
prediction (avg) and the best prediction (best) among the 200 sample trajectories. We see that the SVAE alone predicts
pendulum angles that are concentrated around the true angles.

5. Related Works
In recent years, there has been a plethora of work on deep
sequential LVMs, with applications ranging from speech
modeling, and video compression to prediction and plan-
ning in real and simulated environments (Chung et al., 2015;
Yingzhen and Mandt, 2018; Marino et al., 2018; Hafner
et al., 2019; Babaeizadeh et al., 2018; Karl et al., 2016;
Saxena et al., 2021). We focus on the LDS-SVAE since
it is a simple yet interesting model that demonstrates the
advantages of structure-exploiting inference for complex,
high-dimensional datasets. It is worth noting that the SVAE
also allows for more complex and expressive PGM priors
such as the switching linear dynamical system (SLDS) (Mur-
phy, 1998; Fox et al., 2008) and recurrent switching linear
dynamical system (rSLDS) (Linderman et al., 2017) for the
purposes of analyzing sequential data.

Amortization gap Amortized inference with inflexible
encoder networks results in significant amortization gaps —
the difference between the ELBO and the true marginal
likelihood that arises from the recognition network out-
putting suboptimal variational parameters (Cremer et al.,
2018; Marino et al., 2018). A failure mode that often accom-
panies this amortization gap is the posterior collapse, which
happens when the model learns to ignore the latents com-
pletely (Alemi et al., 2018; Lucas et al., 2019b). Turner and
Sahani (2011) studied the effects of approximation gap on
model learning, and more recent work has considered this
issue in the context of amortized variational inference (Cre-
mer et al., 2018; Shu et al., 2018; He et al., 2019). The
SVAE addresses this gap by incorporating the prior into the
implicit definition of the posterior distribution.

Structure-exploiting recognition networks Some infer-
ence frameworks try to address the amortization gap issue
by having the variational posterior depend on the prior pa-
rameters (Marino et al., 2018; Johnson et al., 2016; Lin et al.,
2018; Tomczak and Welling, 2018). Amortized variational

filtering (AVF) (Marino et al., 2018) uses inner-loop gradient
updates to correct the variational posterior which accounts
for the changing prior in an expectation-maximization-like
fashion. Other approaches like the SVAE use structured
exponential family priors and variational posteriors com-
puted with an inner structured inference step involving the
prior, offloading computation from the inference network.
In this work we focus on the SVAE as one representative of
structure-exploiting amortized inference and demonstrate
how it performs more accurate inference and supports better
parameter estimation over its non-structured counterparts.
Interestingly, despite having the capacity to learn the true
posterior in our linear dynamical systems experiments, we
found that the RNN-based approaches failed to attain the
true marginal log likelihood. In essence, it appears hard for
RNNs to learn to perform Kalman smoothing with noisy,
high-dimensional observations in the small data regimes
that we consider.

Sequence modeling beyond RNNs In the past few years
there has been a burst of new model and architectures that
tackles sequence modeling. Transformers (Vaswani et al.,
2017; Kenton and Toutanova, 2019; Brown et al., 2020)
have become the new standard in language modeling, out-
performing RNNs. For very long sequences, structured
state space model for sequences (S4) (Gu et al., 2021) and
its variants (Smith et al., 2022; Hasani et al., 2022; Gupta
et al., 2022) are becoming more prominent in solving hard
sequence tasks with high parallel efficiency. Notably, Zhou
et al. (2022) uses S4 in place of the prior, recognition and
decoder components of a sequential VAE. Although we in-
cluded the CNN as a simple alternative to the RNN-based
models, it would be natural to follow up with comparisons
between SVAEs and these new types of sequence model-
ing techniques that have more complex architectures and
stronger modeling power.
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6. Conclusion
We revisit the structured variational autoencoder, a structure-
exploiting amortized variational inference framework that
combines the flexibility of neural networks with the mod-
eling benefits of probabilistic graphical models. Our JAX
implementation runs efficiently on modern hardware and
leverages parallel Kalman filtering to achieve an order of
magnitude speed-up over RNN-based unstructured infer-
ence methods.

We showed that the SVAE with linear Gaussian dynamics
yields competitive performance on synthetic datasets. Not
only does it perform fast and accurate inference in the case
of well-specified models, it also yields superior predictive
performance for high-dimensional observations with nonlin-
ear underlying dynamics. With its advantage for handling
missing data, we use self-supervised masking to encourage
learning of dynamics. Compared to its RNN and CNN-
based counterparts, the SVAE learns representations that
are informative about the dynamics, and we were able to
linearly decode the true states of the system from its latent
states. These results show much promise for the SVAE in
deep generative modeling tasks.
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A. Learning higher dimensional linear dynamics
To investigate if the performance of the SVAE can scale to higher dimensions, we include results on learning higher
dimensional linear dynamical systems in Table 1. For the data, we sample from 32 and 64 dimensional linear dynamical
systems with 64 and 128 dimensional observations respectively. For the 128 dimensional dataset, we also sampled 10 times
more data, since we expect the sample complexity of parameter estimation to be greater. We use the same architecture as in
the LDS experiments in Section 4.1, but scaling up the hidden layer sizes to 64 and 128. We also use diagonal matrices
for the dynamics noise covariance and recognition potentials for efficiency. None of the models achieve the true marginal
likelihood in this regime, but the SVAE still outperforms the other methods considerably.

Table 1: Evidence lower bound (ELBO) on higher dimensional linear dynamical systems.

METHOD ELBO
32D 64D

TRUE MLL −1.905 −2.039

SVAE −2.599 −3.419
RNN-AR-L -4.331 -4.665
RNN-MF -4.317 -4.781
RNN-AR-NL -4.697 -6.395
CNN-AR-L -4.387 -7.005

B. Ablation studies for unsupervised masking
Here we examine the effects of the unsupervised masking approach to learning dynamics. We provide results in validation
ELBO and predictive log likelihoods for all of the methods with and without masks applied in Table 2. The results shown
here correspond to models with 5 dimensional latent spaces, but the same trends appear across the different dimensionalities
studied in the paper. It is clear that while applying the masks hurt the overall ELBO achieved, due to having less access to
and more uncertainty in the training data, it is beneficial for learning the correct model for predicting the future.

Table 2: Ablation results for the unsupervised masking method.

METHOD ELBO PREDICTION

SVAE -0.3015 −0.1558
SVAE (NO MASK) −0.2763 -0.1910

RNN-AR-L -0.2886 −0.1717
RNN-AR-L (NO MASK) −0.2757 -0.1862

RNN-MF -0.2906 −0.1815
RNN-MF (NO MASK) −0.2761 -0.1899

RNN-AR-NL -0.2914 −0.1783
RNN-AR-NL (NO MASK) −0.2779 -0.1798

CNN-AR-L -0.2902 −0.1719
CNN-AR-L (NO MASK) −0.2796 -0.1861
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